EDP : Josephine Evans (Univ. Paris Dauphine) : Quantitative rates of convergence to equilibrium for kinetic equations with spatially inhomogeneous jump rates.

Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé.

EDP : Josephine Evans (Univ. Paris Dauphine) : Quantitative rates of convergence to equilibrium for kinetic equations with spatially inhomogeneous jump rates.

5 mars 2020 / 14:00 - 15:00

I will discuss kinetic equations whose jump rate $sigma(x)$ depends on the position in space. Exponential convergence to equilibrium for such equations was proved to be equivalent to a geometric control condition by Bernard and Salvarani for the zero potential case and then by Han-Kwan and Leautaud for more complex jump kernels and with non zero potential. These works do not give quantitative rates. I will explain how Doeblin’s theorem can be used to give quantitative rates of convergence to equilibrium.

EDP : Josephine Evans (Univ. Paris Dauphine) : Quantitative rates of convergence to equilibrium for kinetic equations with spatially inhomogeneous jump rates.

Détails

Date :
5 mars 2020
Heure :
14:00 - 15:00
Catégorie d’Évènement:

Lieu

Bâtiment Sophie Germain, salle G204

Organisateurs

Tahar Boulezaoud
Pierre Gabriel
Vahagn Nersesyan