AG : Danil Gubarevich (LMV) : Genus 0 Gromov-Witten theory of even dimensional complete intersection of two quadrics

Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé.

AG : Danil Gubarevich (LMV) : Genus 0 Gromov-Witten theory of even dimensional complete intersection of two quadrics

25 juin / 14:00 - 14:30

Even dimensional complete intersections \(X\) of two quadrics in projective space are exceptional from the point of view of the Gromov-Witten theory: they are (together with surfaces of degrees 2 and 3) the only complete intersections whose Gromov-Witten theory is not invariant under the full orthogonal or symplectic group acting on the primitive cohomology. The genus~0 Gromov-Witten theory of \(X\) was studied by Xiaowen Hu. He used geometric arguments and the WDVV equation to compute all genus~0 correlators except one, which cannot be determined by his methods. In the paper we compute the remaining Gromov-Witten invariant of \(X\) using Jun Li’s degeneration formula.

AG : Danil Gubarevich (LMV) : Genus 0 Gromov-Witten theory of even dimensional complete intersection of two quadrics

Détails

Date :
25 juin
Heure :
14:00 - 14:30
Catégorie d’Évènement: