Les frises de nombres sont des constructions algébriques introduites et étudiées par Coxeter au début des années 70. Coxeter établit des propriétés étonnantes en lien avec des objets classiques de la théorie des nombres ou encore de la géométrie projective. Les frises connaissent un regain d’intérêt ces dernières années dû à des connections avec la théorie des algèbres amassées de Fomin-Zelevinsky. Dans cet exposé on présentera les frises de Coxeter et leurs généralisations, et l’on expliquera comment les espaces de frises s’identifient avec des espaces de modules de points dans les espaces projectifs. On s’intéressera plus particulièrement au cas des frises symplectiques et des configurations Lagrangiennes de points.