Abstract:
I will explain the Frobenius structure conjecture of Gross-Hacking-Keel in mirror symmetry, and an application towards cluster algebras. I will show that the naive counts of rational curves in an affine log Calabi-Yau variety U, containing an open algebraic torus, determine in a simple way, a mirror family of log Calabi-Yau varieties, as the spectrum of a commutative associative algebra equipped with a multilinear form. The structure constants of the algebra are constructed via counting non-archimedean analytic disks in the analytification of U. I will explain various properties of the counting, notably deformation invariance, symmetry, gluing formula and convexity. In the special case when U is a Fock-Goncharov skew-symmetric X-cluster variety, our algebra generalizes, and in particular gives a direct geometric construction of, the mirror algebra of Gross-Hacking-Keel-Kontsevich. The comparison is proved via a canonical scattering diagram defined by counting infinitesimal non-archimedean analytic cylinders, without using the Kontsevich-Soibelman algorithm. Several combinatorial conjectures of GHKK follow readily from the geometric description. This is joint work with S. Keel, arXiv:1908.09861. If time permits, I will mention another application towards the moduli space of KSBA (Kollár-Shepherd-Barron-Alexeev) stable pairs, joint with P. Hacking and S. Keel, arXiv: 2008.02299.
L’exposé de déroulera en ligne, sur Zoom. Contacter Luc Pirio pour obtenir les codes de connexion.
Lien vers les notes de l’exposé