Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé.

AG : Colin Krawchuk (Cambridge) : Boundary algebras arising from uniform Postnikov diagams on surfaces.

29 mars 2022 / 13:45 - 14:45

A Postnikov diagram is an embedding of oriented curves, called strands, in a disk. These diagrams are known to describe the cluster algebra structure of open positroid varieties, with diagrams of uniform type corresponding to a cluster of minors in the Grassmannian Gr(k,n). Each Postnikov diagram can be associated with a dimer algebra, which is the Jacobian algebra of a quiver with potential. Baur-King-Marsh showed that the opposite of the boundary algebra corresponding to such a dimer algebra is isomorphic to a quotient of the preprojective algebra used by Jensen-King-Su to categorify the cluster structure of Gr(k,n). They also determined the boundary algebra for degree two weak Postnikov diagrams arising from general surfaces. This talk will discuss a combinatorial approach to calculating the boundary algebra associated to a uniform Postnikov diagram, and how this can be translated to Postnikov diagrams on other surfaces.

AG : Colin Krawchuk (Cambridge) : Boundary algebras arising from uniform Postnikov diagams on surfaces.

Détails

  • Date : 29 mars 2022
  • Heure :
    13:45 - 14:45
  • Catégorie d’Évènement:

Lieu

  • Bâtiment Fermat, salle 4205

Organisateurs

  • Nicolas Perrin
  • Luc Pirio
  • Pierre-Guy Plamondon