Soutenance de thèse d’Eliane Koussa

Eliane Koussa soutient sa thèse intitulée « Analyse et conception d’algorithmes de cryptographie post-quantique », dirigée par Jacques Patarin, le 18 décembre 2020.

 

Résumé :
La construction d’un ordinateur quantique remettrait en cause la plupart des schémas à clef publique utilisés aujourd’hui. Par conséquent, il existe actuellement un effort de recherche important pour développer de nouveaux schémas cryptographiques post-quantique. En particulier, nous nous intéressons aux schémas post-quantiques dont la sécurité repose sur la dureté de la résolution de certains problèmes mathématiques tels que le problème PKP et le problème HFE. Ce travail étudie d’abord la complexité de PKP. Et après une analyse approfondie des attaques connus sur PKP, nous avons pu mettre à jour certains résultats qui n’étaient pas précis, et fournir une formule de complexité explicite qui nous permet d’identifier les instances difficiles de ce problème et de donner des ensembles de paramètres sécurisés. PKP a été utilisé en 1989 pour développer le premier schéma d’identification à divulgation nulle de connaissance (ZK-IDS) qui a une implémentation efficace sur les cartes à puce. Dans un deuxième temps, nous optimisons le ZK-IDS basé sur PKP, puis nous introduisons PKP-DSS: un schéma de signature digitale basé sur PKP. Nous construisons PKP-DSS à partir du ZK-IDS basé sur PKP en utilisant la transformation Fiat-Shamir (FS) traditionnelle qui convertit les schémas d’identification en schémas de signature. Nous développons une implémentation à temps constant de PKP-DSS. Il semble que notre schéma soit très compétitif par rapport aux autres schémas de signature FS post-quantiques. Étant donné que PKP est un problème NP-difficile et qu’il n’y a pas d’attaques quantiques connues pour résoudre PKP nettement mieux que les attaques classiques, nous pensons que notre schéma est post-quantique. D’autre part, nous étudions les schémas de signature à clé publique de type multivariés qui fournissent des signatures ultra-courtes. Nous analysons d’abord les attaques les plus connues contre les signatures multivariées, puis nous définissons les paramètres minimaux permettant une signature ultra-courte. Nous présentons également de nouveaux modes d’opérations spécifiques afin d’éviter des attaques particulières. Deuxièmement, nous fournissons divers exemples explicites de schémas de signature ultra-courts, pour plusieurs niveaux de sécurité classique, qui sont basés sur des variantes de HFE sur différents corps finis.

Soutenance de thèse d’Eliane Koussa