Salim Rostam soutient sa thèse intitulée « Algèbres de Hecke carquois et généralisations d’algèbres d’Iwahori–Hecke » le lundi 19 novembre 2018 à 11h, salle 505-507 du bâtiment Buffon.
Résumé : Cette thèse est consacrée à l’étude des algèbres de Hecke carquois et de certaines généralisations des algèbres d’Iwahori-Hecke. Dans un premier temps, nous montrons deux résultats concernant les algèbres de Hecke carquois, dans le cas où le carquois possède plusieurs composantes connexes puis lorsqu’il possède un automorphisme d’ordre fini. Ensuite, nous rappelons un isomorphisme de Brundan-Kleshchev et Rouquier entre algèbres d’Ariki-Koike et certaines algèbres de Hecke carquois cyclotomiques. D’une part nous en déduisons qu’une équivalence de Morita importante bien connue entre algèbres d’Ariki-Koike provient d’un isomorphisme, d’autre part nous donnons une présentation de type Hecke carquois cyclotomique pour l’algèbre de Hecke de G(r,p,n). Nous généralisons aussi l’isomorphisme de Brundan-Kleshchev pour montrer que les algèbres de Yokonuma-Hecke cyclotomiques sont des cas particuliers d’algèbres de Hecke carquois cyclotomiques. Finalement, nous nous intéressons à un problème de combinatoire algébrique, relié à la théorie des représentations des algèbres d’Ariki-Koike. En utilisant la représentation des partitions sous forme d’abaque et en résolvant, via un théorème d’existence de matrices binaires, un problème d’optimisation convexe sous contraintes à variables entières, nous montrons qu’un multi-ensemble de résidus qui est bégayant provient nécessairement d’une multi-partition bégayante.