Claudia Moreno soutient sa thèse intitulée « Contrôle des systèmes d’équations aux dérivées partielles de type dispersif », co-dirigée par Emmanuelle Crépeau, le 31 aout 2020.
Résumé :
Il existe peu de résultats dans la littérature sur la contrôlabilité du système d’équations aux dérivées partielles. Dans cette thèse, nous considérons l’étude des propriétés de contrôle pour trois systèmes couplés d’équations aux dérivées partielles de type dispersif et un problème inverse de récupération d’un coefficient. Le premier système est formé par N équations de Korteweg-de Vries sur un réseau en forme d’étoile. Pour ce système, nous étudierons la contrôlabilité exacte avec N contrôles placés aux extrémités du réseau. Le deuxième système couple trois équations de Korteweg-de Vries. Ce système est appelé dans la littérature le système Hirota-Satsuma généralisé. Nous étudions la contrôlabilité exacte avec trois contrôles frontières. Après, nous étudierons un système parabolique du quatrième ordre formé par deux équations de Kuramoto-Sivashinsky. Nous prouvons l’existence et l’unicité de la solution du système. Ensuite, nous étudions la nulle contrôlabilité du système avec deux contrôles, pour supprimer un contrôle, nous avons besoin d’une inégalité de Carleman qui n’est pas encore prouvée. Finalement, nous présentons pour le système parabolique du quatrième ordre le problème inverse de récupérer le coefficient anti-diffusion à partir des mesures de la solution.