Antoine Marchina soutient sa thèse intitulée « Inégalités de concentration pour des fonctions de variables aléatoires indépendantes » le vendredi 8 décembre 2017 à 14h30, bâtiment Fermat, amphi F.
Résumé : Cette thèse porte sur l’étude de la concentration autour de la moyenne de fonctions de variables aléatoires indépendantes à l’aide de techniques de martingales et d’inégalités de comparaison.
Dans une première partie, nous prouvons des inégalités de comparaison pour des fonctions générales séparément convexes de variables aléatoires indépendantes non nécessairement bornées. Ces résultats sont établis à partir de nouvelles inégalités de comparaison dans des classes de fonctions convexes (contenant, en particulier, les fonctions exponentielles croissantes) pour des variables aléatoires réelles uniquement dominées stochastiquement. Dans la seconde partie, nous nous intéressons aux suprema de processus empiriques associés à des observations i.i.d. Le point clé de cette partie est un résultat d’échangeabilité des variables. Nous montrons d’abord des inégalités de type Fuk-Nagaev avec constantes explicites lorsque les fonctions de la classe ne sont pas bornées. Ensuite, nous prouvons de nouvelles inégalités de déviation avec une meilleure fonction de taux dans les bandes de grandes déviations dans le cas des classes de fonctions uniformément bornées. Nous donnons également des inégalités de comparaison de moments généralisés dans les cas uniformément borné et uniformément majoré.
Enfin, les résultats de la première partie nous permettent d’obtenir une inégalité de concentration lorsque les fonctions de la classe ont une variance infinie.