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Abstract. — Let k be a global field and Ak be its ring of adèles. Let ℓ be a prime number and fix
a field isomorphism from C to Qℓ. Let Π1, Π2 be cuspidal automorphic representations of GLnpAkq

for some integer n ě 1. In this paper, we study the following question: assuming that there is a fi-
nite set S of places of k containing all Archimedean places and all finite places above ℓ such that,
for all v R S, the local components Π1,v bCQℓ and Π2,v bCQℓ are unramified and their Satake para-

meters are integral and congruent mod ℓ, are the local components Π1,w bC Qℓ and Π2,w bC Qℓ in-
tegral, and do their reductions mod ℓ share an irreducible factor for all non-Archimedean places w
not dividing ℓ? We show that, under certain conditions on Π1, Π2, the answer is yes. We also give
a simple proof when k is a function field.
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1. Introduction

1.1. Let k be a number field and Ak be its ring of adèles. Let Π1 and Π2 be cuspidal automorphic

representations of GLnpAkq for some integer n ě 1. The rigidity (or strong multiplicity 1) theo-

rem asserts that, if there is a finite set S of places of k containing all Archimedean places such

that, for all v R S, the local components Π1,v and Π2,v are unramified and have the same Satake

parameter, then Π1 and Π2 are isomorphic ([17, 3, 10, 11]). A similar result holds over function

fields.

1.2. Now fix a field isomorphism ι from C to an algebraic closure Qℓ of the field of ℓ-adic num-

bers for some prime number ℓ, and consider the collections of irreducible smooth Qℓ-representa-

tions of GLnpkvq defined by

(1.1) πi,v “ Πi,v bC Qℓ, i P t1, 2u,

where the tensor product is taken with respect to ι, v runs over all finite places of k and kv is the

completion of k at v. As Π1 and Π2 are cuspidal, these representations are generic (see §2.2).
Suppose that there exists a finite set S of places of k containing all Archimedean places and all

finite places above ℓ such that, for all v R S, the following are satisfied:

(1) the representations π1,v and π2,v are unramified representations of GLnpkvq,
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(2) the Satake parameters σ1,v and σ2,v of these unramified representations, considered as con-

jugacy classes of semisimple elements of GLnpQℓq, have their characteristic polynomials P1,vpXq

and P2,vpXq in ZℓrXs, where Zℓ is the ring of integers of Qℓ,

(3) the reductions of P1,vpXq and P2,vpXq in FℓrXs are equal, Fℓ being the residue field of Zℓ.

Assumption 2 is equivalent to assuming that the unramified representations π1,v and π2,v are

integral, that is, their Qℓ-vectors spaces contain GLnpkvq-stable Zℓ-lattices (§2.4). One can then

consider their reductions mod ℓ, denoted rℓpπ1,vq and rℓpπ2,vq, which are finite length, semisimple

smooth Fℓ-representations of GLnpkvq (see Section 2 for a precise definition of reduction mod ℓ).

Assumption 3 is then equivalent to saying that the representations rℓpπ1,vq and rℓpπ2,vq are equal

(see Remarks 4.2 and 4.3).

Now let w be a finite place of k not dividing ℓ. Our first question is

Question 1.1. — Are the irreducible representations π1,w and π2,w integral?

Assume that this is the case. One can then form rℓpπ1,wq and rℓpπ2,wq. These representations

may not be equal (see Remark 4.4 for an example), but one may address the following question.

Question 1.2. — Do rℓpπ1,wq and rℓpπ2,wq have an irreducible component in common?

If k is a totally real (respectively, CM) number field, and if Π1, Π2 are algebraic regular, self-

dual (respectively, conjugate-selfdual) cuspidal automorphic representations, then [16] Theorem

8.2 says that the answers to Questions 1.1 and 1.2 are yes. More precisely:

– the representations π1,w and π2,w are integral for all finite places w of k not dividing ℓ,

– their reductions mod ℓ have a unique generic irreducible component in common,

– this unique common generic irreducible component occurs with multiplicity 1.

Such a result, which can be thought of as a modular rigidity theorem, has been used in [16] in or-

der to study the behavior of local transfer for cuspidal Qℓ-representations of quasi-split classical

groups with respect to congruences mod ℓ.

More generally, thanks to the results of [6, 20, 23], one can make the argument of the proof

of [16] Theorem 8.2 work with no duality assumption on Π1 and Π2: if k is a totally real or CM

number field, and if Π1, Π2 are algebraic regular, cuspidal automorphic representations, the an-

swers to Questions 1.1 and 1.2 are still yes; more precisely, the three properties above still hold.

(See §4.2 below for a detailed argument, which relies on the existence of a correspondence from

algebraic regular cuspidal automorphic representation to Galois representations with local-global

compatibility at all finite places not dividing ℓ.)

It is natural to ask whether the ‘totally real or CM’ assumption on k, or the ‘algebraic regular’

assumption on the representations Π1 and Π2, or the cuspidality assumption, can be removed.

We will not investigate these questions in the present article.

It is also natural to seek an elementary, purely automorphic proof of such a modular rigidity

theorem, avoiding the use of Galois representations and local-global compatibility theorems. We

will study this question in the case of function fields, which is easier since there are no Archi-

medean places.
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1.3. We now assume that k is a function field of characteristic p, with ring of adèles Ak. Recall

that we have fixed a field isomorphism ι from C to Qℓ for some prime number ℓ which we assume

to be different from p. In this article, we prove the following theorem (see Theorem 4.5).

Theorem 1.3. — Let Π1 and Π2 be cuspidal automorphic representations of GLnpAkq. Associa-

ted with them, there are the representations πi,v defined by (1.1). Suppose that there exists a finite

set S of places of k such that, for all v R S, one has:

(1) the representations π1,v and π2,v are unramified,

(2) the characteristic polynomials of their Satake parameters are in ZℓrXs and have the same

reduction in FℓrXs.

Let w be a place of k. Then

– the representations π1,w and π2,w are integral,

– their reductions mod ℓ share a generic irreducible component,

– and such a generic component is unique and occurs with multiplicity 1 in both reductions.

This theorem can be easily deduced from L. Lafforgue’s global Langlands correspondence [13]

(see Remark 4.6). Our purpose is to give a simple proof of Theorem 1.3 which does not rely on

the Langlands correspondence for function fields. Our argument, inspired from Piatetski-Shapi-

ro’s proof of the classical rigidity theorem [17, 3] is described below. We currently do not know

how to extend our argument to number fields.

1.4. Before explaining the proof of Theorem 1.3, we introduce our main local ingredients. Let F

be any non-Archimedean locally compact field of residue characteristic p, and ϑ be a non-trivial

smooth Qℓ-character of F .

Proposition 1.4. — Let π1 and π2 be integral generic irreducible Qℓ-representations of GLnpF q.

Suppose that there are functions W1 and W2 in the Whittaker models of π1 and π2 with respect to

ϑ satisfying the following conditions:

(1) W1 and W2 are Zℓ-valued and W1p1q “ W2p1q “ 1,

(2) the reductions of W1pgq and W2pgq in Fℓ are equal for all g P G.

Then rℓpπ1q and rℓpπ2q share a generic irreducible component, such a generic irreducible compo-

nent is unique and it occurs with multiplicity 1.

Let P be the mirabolic subgroup of GLn, made of all matrices with last row p0 . . . 0 1q, and

N be its unipotent radical. We have the following remarkable integrality criterion (see Proposi-

tion 2.5), which follows from [8] and [14].

Proposition 1.5. — Let π be a generic irreducible Qℓ-representation of GLnpF q. The following

assertions are equivalent.

(1) The representation π is integral.

(2) Given any function in the Whittaker model of π with respect to ϑ whose restriction to P pF q

is compactly supported mod NpF q, this function is Zℓ-valued on GLnpF q if and only if it is Zℓ-

valued on P pF q.
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1.5. We now introduce our main global ingredients. Let us go back to the situation of §1.3 and

fix a continuous unitary complex character ψ of Ak. Consider a cuspidal automorphic form φ on

GLnpAkq. Associated with it by (3.3) with respect to the choice of ψ, there is a Whittaker func-

tion W on GLnpAkq. Note that ψ is valued in the group µp of complex pth roots of 1 since the

field k has characteristic p. Let Z be the centre of GLn.

Given any sub-Zrµps-module I of C, we prove in Section 3 that:

– if W takes values in I on P pAkq, then φ takes values in I on P pAkq (Theorem 3.1),

– if φ takes values in I on ZpAkqP pAkq, then W takes values in I on GLnpAkq (Theorem 3.7).

1.6. We now consider two cuspidal automorphic representations Π1, Π2 of GLnpAkq as in Theo-

rem 1.3. Let A be the local ring ι´1pZℓq and m be its maximal ideal. Fix a place w P S.

For each place v of k, let ψv be the local component of ψ at v. It is a smooth character of kv,

which we may assume, for all v R S, to be trivial on the ring of integers of kv but not on the in-

verse of its maximal ideal.

We first observe that the central characters of Π1 and Π2 are A-valued and congruent mod m

(see Proposition 4.8), thanks to the information we have at all places v R S.

For each v P S, let us fix a function fv : P pkvq Ñ C such that:

(1) the function fv is compactly supported mod Npkvq and takes values in A,

(2) if v ‰ w, then fvp1q “ 1.

Let Wi,v be a function in the Whittaker model of Πi,v with respect to ψv such that:

– if v R S, then Wi,v is the unique GLnpOvq-invariant function such that Wi,vp1q “ 1,

– if v P S, the restrictions of W1,v and W2,v to P pkvq are both equal to fv (see §2.2).
The tensor product of the Wi,v is a function Wi in the Whittaker model of Πi with respect to ψ.

1.7. First, let us concentrate on the first assertion of Theorem 1.3. Let us prove that the repre-

sentation πi,w is integral. It follows from the Shintani formula (see [21, 3] and Proposition 2.4)

that, for each v R S, the function Wi,v is A-valued. Hence Wi is A-valued on ZpAkqP pAkq.

Since A is a sub-Zrµps-module of C, we may apply the results of §1.5, from which we deduce

that Wi is A-valued on GLnpAkq. By Condition (2) above, Wi,w is thus A-valued on GLnpkwq.

Varying fw among all functions on P pkwq satisfying Condition (1) above, we have thus pro-

ved that, given any function Wi,w in the Whittaker model of Πi,w with respect to ψw, if its res-

triction to P pkwq is A-valued and compactly supported mod Npkwq, then it is A-valued. Apply-

ing Proposition 1.5, we deduce that πi,w is integral.

1.8. We now prove the last two assertions of Theorem 1.3, following the same idea. First, assu-

me that the function fw which has been fixed in §1.6 satisfies the additional condition fwp1q “ 1

and fix functions Wi,v as in §1.6 for all v.

On the one hand,W1,v andW2,v are A-valued (§1.7). On the other hand, the Shintani formula

implies that W1,v ´W2,v is m-valued for v R S, thus W1 ´W2 is m-valued on ZpAkqP pAkq. Since

m is a sub-Zrµps-module of C, the results of §1.5 imply that W1 ´W2 is m-valued on GLnpAkq,

thus W1,w ´W2,w is m-valued.

The remaining two assertions of Theorem 1.3 then follow from Proposition 1.4.
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2. Local considerations

In this section, F denotes a locally compact non-Archimedean field of residue characteristic p

and n ě 1 is a positive integer. We write OF for the ring of integers of F and pF for its maximal

ideal. We also write G for the locally profinite group GLnpF q.

Let ℓ be a prime number different from p. We write Qℓ for an algebraic closure of the field of

ℓ-adic integers, Zℓ for its ring of integers and Fℓ for its residue field.

Let ψ : F Ñ Qˆ
ℓ be a non-trivial smooth character. It defines a non-degenerate character

x ÞÑ ψpx1,2 ` ¨ ¨ ¨ ` xn´1,nq

of N , the subgroup of upper triangular unipotent matrices of G, still denoted ψ. Note that this

character takes values in Zℓ, and even more precisely in the group of roots of unity in Qℓ whose

order is a power of p.

Let P denote the mirabolic subgroup of G, made of all matrices whose last row is p0 . . . 0 1q.

The representations we will consider will be smooth representations of locally profinite groups

with coefficients in Zr1{ps-algebras.

2.1. A Qℓ-representation of finite length π of G is said to be integral if its vector space V con-

tains a G-stable Zℓ-lattice. (A G-stable Zℓ-lattice is a G-stable free Zℓ-module generated by a ba-

sis of V or, equivalently, an admissible ZℓrGs-module containing a basis of V .)

If this is the case, and if L is such a G-stable Zℓ-lattice, the representation of G on Lb Fℓ is

smooth and has finite length, and its semisimplification does not depend on the choice of L (see

[26] Theorem 1). This semisimplified Fℓ-representation is called the reduction mod ℓ of π and is

denoted rℓpπq.

An irreducible Qℓ-representation π which embeds in the parabolic induction of some cuspidal

irreducible representation ρ of some Levi subgroup M of G is integral if and only if the central

character of ρ is Zℓ-valued (see [25] II.4.12, II.4.14 and [4] Proposition 6.7).

2.2. In this paragraph, π is a generic irreducible Qℓ-representation of G, that is, its vector space

V carries a non-zero Qℓ-linear form Λ such that Λpπpuqvq “ ψpuqΛpvq for all u P N , v P V . Let

(2.1) Wpπ, ψq Ď IndGN pψq
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denote its Whittaker model with respect to ψ, where IndGN denotes smooth induction from N to

G. Let Kpπ, ψq denote the Kirillov model of π, that is, the space of smooth Qℓ-valued functions

on P which extend to a function in Wpπ, ψq. By Kirillov’s theory, restriction from G to P indu-

ces a P -equivariant isomorphism from Wpπ, ψq to Kpπ, ψq, and one has the containments

indPN pψq Ď Kpπ, ψq Ď IndPN pψq

where indPN denotes compact induction from N to P (see [1]).

2.3. In this paragraph, π1 and π2 are integral generic irreducible Qℓ-representations of G. Let

mℓ denote the maximal ideal of Zℓ.

Proposition 2.1. — Suppose there are Whittaker functions W1 P Wpπ1, ψq and W2 P Wpπ2, ψq

with values in Zℓ such that:

(1) W1p1q “ W2p1q “ 1,

(2) W1pgq and W2pgq are congruent mod mℓ for all g P G.

Then the reductions mod ℓ of π1 and π2 share a generic irreducible component, such a generic ir-

reducible component is unique and it occurs with multiplicity 1.

Proof. — We will need the following result.

Lemma 2.2. — Let π be an integral generic irreducible Qℓ-representation of G. Then its reduc-

tion mod ℓ contains a unique irreducible generic factor, occuring with multiplicity 1.

Proof. — The existence of an irreducible generic factor follows from the fact that any non-zero

linear form in HomN pπ, ψq is non-zero on any G-stable Zℓ-lattice of π. Its uniqueness follows for

instance from [15] Proposition 8.4 applied to the representation parabolically induced from the

cuspidal support of π.

Let i P t1, 2u. By [26] Theorem 2, the Zℓ-module Li made of all Zℓ-valued Whittaker functions

in Wpπi, ψq is a G-stable Zℓ-lattice. Let Λi be the ZℓrGs-module generated by Wi in Wpπi, ψq.

It contains a Qℓ-basis of Wpπi, ψq since πi is irreducible, and it is contained in Li. It follows that

it is a G-stable Zℓ-lattice in Wpπi, ψq. Let Mi denote the submodule of Li made of all mℓ-valued

functions. The containment of mℓΛi in Λi XMi implies that we have morphisms:

Λi b Fℓ Ñ Λi{pΛi XMiq » pΛi `Miq{Mi Ď Li{Mi Ñ IndGN pϑb Fℓq

where the left hand side morphism αi is surjective, the right hand side morphism βi is injective,

and ϑb Fℓ denotes the Fℓ-character of N obtained by reducing ϑ mod mℓ.

As W1 and W2 are congruent mod mℓ on G and take 1 to 1, the intersection:

(2.2) β1ppΛ1 `M1q{M1q X β2ppΛ2 `M2q{M2q

is non-zero in IndGN pϑbFℓq for it contains the function β1pW1 mod M1q “ β2pW2 mod M2q and

the latter is non-zero. The socle of (2.2), denoted Σ , is made of generic irreducible Fℓ-represen-

tations appearing in both the reductions mod ℓ of π1 and π2. By Lemma 2.2, the reduction mod

ℓ of πi contains a unique irreducible generic factor ρi. The socle Σ is thus irreducible, reduced to

ρi. It follows that ρ1 and ρ2 are isomorphic.
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2.4. Let K be the maximal compact subgroup GLnpOF q. In this paragraph, π is an unramified

irreducible Qℓ-representation of G, that is, π has a non-zero K-fixed vector. It defines a conjuga-

cy class of semisimple elements in GLnpQℓq, called its Satake parameter. The characteristic po-

lynomial of this conjugacy class is denoted χpπq. This is a polynomial of degree n in QℓrXs.

Lemma 2.3. — The unramified representation π is integral if and only if the polynomial χpπq

has all its coefficients in Zℓ.

Proof. — Since Zℓ is integrally closed, χpπq has all its coefficients in Zℓ if and only if its roots

are in Zℓ, that is, if and only if π is parabolically induced from an integral unramified character

of the diagonal torus of GLnpF q. The lemma then follows from Paragraph 2.1.

2.5. Now assume that π is a generic unramified irreducible Qℓ-representation of G, and that ψ

is trivial on OF but not on p´1
F . Its Whittaker model Wpπ, ψq contains a unique Whittaker func-

tion Wπ such that:

(1) one has Wπpgkq “ Wπpgq for all g P G and k P K,

(2) and Wπp1q “ 1.

Let us recall the Shintani–Casselman–Shalika formula [21, 3], which gives the values of Wπ at

diagonal elements in terms of the Satake parameter of π.

Fix a representative pµ1, . . . , µnq P Qˆn
ℓ of the Satake parameter of π. If we write

χpπq “ Xn ` c1pπqXn´1 ` ¨ ¨ ¨ ` cnpπq P QℓrXs,

then

p´1qrcrpπq “
ÿ

1ďi1ă¨¨¨ăirďn

µi1 . . . µir

for all r P t1, . . . , nu. Let q be the cardinality of the residue field of F . Fix a uniformizer ϖ P F

and let ∆ be the subgroup of G made of all diagonal matrices whose eigenvalues are integral po-

wers of ϖ. The Iwasawa decomposition G “ N∆K shows that Wπ is entirely determined by its

restriction to ∆. Given a P Zn, write ϖa for the diagonal matrix whose ith eigenvalue is ϖai .

One has the formula:

(2.3) Wπpϖaq “ q

n
ř

j“1
ajpj´pn`1q{2q

¨
detppµal`n´l

j qj,lq
ś

jăl

pµj ´ µlq
if a1 ě . . . ě an

and Wπ vanishes at ϖa otherwise.

2.6. Formula (2.3) has the following application.

Proposition 2.4. — Let π1 and π2 be integral generic unramified irreducible representations of

G. Assume that the polynomials χpπ1q and χpπ2q have the same reduction mod mℓ in FℓrXs. Then

the Whittaker functions Wπ1 and Wπ2 are Zℓ-valued on G and one has:

(2.4) Wπ1pgq ” Wπ2pgq mod mℓ

for all g P G.



8 NADIR MATRINGE, ALBERTO MÍNGUEZ & VINCENT SÉCHERRE

Proof. — Notice that χpπ1q and χpπ2q have coefficients in Zℓ by Lemma 2.3, thus the reduction

of χpπ1q and χpπ2q mod mℓ is well-defined.

It suffices to prove thatWπ1 andWπ2 are Zℓ-valued on ∆ and that the relation (2.4) is satisfied

for all g P ∆. Fix a representative µi “ pµi,1, . . . , µi,nq P Qˆn
ℓ of the Satake parameter of πi for

i “ 1, 2. The scalars µi,1, . . . , µi,n are the roots of χpπiq. They are thus in Zℓ. The fact that the

polynomials χpπ1q and χpπ2q and congruent mod mℓ ensures that, up to reordering, we may as-

sume that µ1,j and µ2,j are congruent mod mℓ for all j “ 1, . . . , n. The lemma now follows from

the Shintani formula (2.3).

2.7. In this paragraph, π is a generic irreducible Qℓ-representation of G. We have the following

remarkable integrality criterion, based on [8] and [14].

Proposition 2.5. — Let π be a generic irreducible Qℓ-representation of G. The following asser-

tions are equivalent:

(1) The representation π is integral.

(2) Given any Zℓ-valued function f P indPN pψq, the Whittaker function in Wpπ, ψq extending f

is Zℓ-valued.

Remark 2.6. — Assertion 2 can be restated as follows: given any functionW P Wpπ, ψq whose

restriction to P is compactly supported mod N , the function W is Zℓ-valued on G if and only if

it is Zℓ-valued on P .

Proof. — That the first assertion implies the second one follows from [14] Corollary 4.3 (which

gives an even stronger result: it says that a Whittaker functionW P Wpπ, ψq is Zℓ-valued on G if

and only if it is Zℓ-valued on P ).

Let us prove that the second assertion implies the first one. We will use [8] Theorem 3.2, which

is stated for Noetherian algebras over the ring Wℓ of Witt vectors of Fℓ. Let us explain how it

applies to a generic Qℓ-representation π satisfying Assertion 2.

Let V be the Qℓ-vector space of π. By [25] II.4.9, there exists a finite extension E of Qur
ℓ , the

maximal unramified extension of Qℓ in Qℓ, such that π is defined over E, that is, V contains a G-

stable E-vector space VE such that V “ VE bE Qℓ. Let πE denote the E-representation of G on

VE . If ψE denotes the character ψ considered as being valued in E, then πE is generic with res-

pect to ψE . Let K be the completion of E. Then πK “ πE bE K is generic with respect to the

character ψK “ ψE bE K. Since the complete discrete valuation ring Wℓ is isomorphic to the

completion of the ring of integers of Qur
ℓ , the ring O of integers of K is a Noetherian Wℓ-algebra.

Let us show that πK satisfies the analogue of Assertion 2 for the ring O.

Lemma 2.7. — Given any O-valued function f P indPN pψKq, there exists an O-valued function

in WpπK , ψKq extending f .

Proof. — This f can be written a1f1 ` ¨ ¨ ¨ ` arfr with a1, . . . , ar P O, and where the functions

f1, . . . , fr P indGN pψq are Zℓ-valued. By assumption on π, the function Wi P Wpπ, ψq extending

fi is Zℓ-valued. Thus a1W1 ` ¨ ¨ ¨ ` arWr is in WpπK , ψKq, it extends f and it is O-valued.
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Let us collect some results from [7] about the category RepWℓ
pGq of all smooth Wℓ-represen-

tations of G. This category decomposes into a product of blocks indexed by inertial classes Ω of

supercuspidal Fℓ-representations of G. Associated with each block, there is its centre zΩ , which is

a finitely generated commutative Wℓ-algebra, and its universal co-Whittaker module WΩ , which

is an admissible zΩ rGs-module.

The representation πK is absolutely irreducible and generic. It is thus a co-Whittaker KrGs-

module in the sense of [8] Definition 2.1. Also, by Schur’s lemma, if Ω is the inertial class asso-

ciated with it, the action of the centre zΩ on πK defines a morphism of Wℓ-algebras χ : zΩ Ñ K.

By [7] Theorem 6.3, the representation πK is a quotient of WΩ bzΩ K.

We now apply [8] Theorem 3.2 to πK (with A “ K and A1 “ O), which says that, thanks to

Lemma 2.7, χ is valued in O, which makes O into a zΩ -algebra. By [7] Lemma 6.4 (or more pre-

cisely its proof), the image L of WΩ bzΩ O in πK is an O-torsion free co-Whittaker OrGs-module

such that LbOK “ πK . By [8] Definition 2.1, this OrGs-module L is admissible. The represen-

tation πK is thus O-integral.

Fix a parabolic subgroup Q of G with Levi subgroup M , and a cuspidal irreducible represen-

tation ρ ofM such that π embeds in the parabolic induction iGQpρq. We may and will choose E so

that ρ is also defined over E: we thus have an E-representation ρE such that ρE bE Qℓ “ ρ and

πE embeds in iGQpρEq. Thus πK embeds in iGQpρKq, where ρK “ ρE bE K is cuspidal and abso-

lutely irreducible. Note that the central character ω of ρK takes values in E.

Since L is admissible, [4] Proposition 6.7 implies that the Jacquet module rGQpLq is admissible,

thus ρK is O-integral. Its central character ω thus takes values in OE , thus the central character

of ρ takes values in Zℓ. It follows (see Paragraph 2.1) that π is integral, as expected.

3. Global considerations

3.1. Let k be a global field, that is, either a finite extension of Q or the field of rational functions

over a smooth irreducible projective curve X defined over a finite field of cardinality q. Let A be

the ring of adèles of k.

Given an integer n ě 2, let N “ Nn be the subgroup of upper triangular unipotent matrices

of GLn and P “ Pn be its mirabolic subgroup, made of all matrices whose last row is p0 . . . 0 1q.

More generally, form P t0, . . . , nu, let Nm,n´m denote the unipotent radical of the parabolic sub-

group of GLn generated by upper triangular matrices and the Levi subgroup GLm ˆ GLn´m.

Let ψ : A Ñ Cˆ be a non-trivial continuous character trivial on k. It defines in the usual way

a non-degenerate character of NpkqzNpAq, namely

u ÞÑ ψpu1,2 ` ¨ ¨ ¨ ` un´1,nq

for all u P NpAq, which we still denote by ψ.

For any place v of k, let kv denote the completion of k at v. If v is finite, we write Ov for the

ring of integers of kv and pv for its maximal ideal. The character ψ decomposes as

(3.1) ψ “
â

v

ψv
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where ψv is a non-trivial continuous character of kv, trivial on Ov but not on p´1
v for almost all

finite v.

3.2. Let us fix a Haar measure du on NpkqzNpAq. Given a cuspidal irreducible automorphic re-

presentation Π of GLnpAq, the linear form

(3.2) φ ÞÑ

ż

NpkqzNpAq

ψpuq´1φpuq du

on Π is known to be well-defined and non-zero (see [3] Theorem 1.1 or (3.4) below).

Associated to φ P Π, there is a Whittaker function Wφ defined by:

(3.3) Wφpgq “

ż

NpkqzNpAq

ψpuq´1φpugq du

for all g P GLnpAq. The map φ ÞÑ Wφ is a morphism from Π to its Whittaker model WpΠ, ψq.

If we choose for du the Haar measure giving measure 1 to the compact group NpkqzNpAq, one

also has a converse expansion:

(3.4) φpgq “
ÿ

γPNn´1pkqzGLn´1pkq

Wφ

ˆˆ

γ 0

0 1

˙

g

˙

for all g P GLnpAq, with absolute and uniform convergence on compact subsets (see for instance

[5] Theorem 13.5.4 or [3] Theorem 1.1).

3.3. From now on, assume that k is a function field of characteristic p. There is thus no Archi-

medean place. Let I be any sub-Zrµps-module of C, where µp denotes the subgroup of pth roots

of unity in C. Note that ψ takes values in µp.

Theorem 3.1. — Let ϕ : PnpAq Ñ C be a smooth function such that:

(1) one has ϕpγgq “ ϕpgq for all γ P Pnpkq and all g P PnpAq,

(2) the function ϕ is cuspidal in the sense that
ż

Nm,n´mpkqzNm,n´mpAq

ϕpugq du “ 0

for all g P PnpAq and all m P t1, . . . , n´ 1u,

(3) the function

Wϕ : g ÞÑ

ż

NpkqzNpAq

ψpuq´1ϕpugq du

takes values in I for all g P PnpAq.

Then ϕpgq P I for all g P PnpAq.

We will prove this theorem by induction on n ě 2.
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3.4. We first treat the case where n “ 2. We will need the following lemma.

Lemma 3.2. — For any smooth functions f, g P C8pA{k,Cq, we have
ż

A{k
fpxqgpxq dx “

ÿ

γPk

ż

A{k
ψ´1pγxqfpxq dx ¨

ż

A{k
ψpγxqgpxq dx.

Proof. — Start with the Fourier expansion formula

fpyq “
ÿ

γPk

ψpγyq ¨

ż

A{k
ψ´1pγxqfpxq dx

for y P A{k. Then multiply by gpyq and integrate over A{k.

Let f P C8pA{k,Cq. For any g P P2pAq, we thus get

(3.5)

ż

A{k
ϕ

ˆˆ

1 u

0 1

˙

g

˙

fpuq du “
ÿ

γPk

Φpγ, gqF pγq

where

Φpγ, gq “

ż

A{k
ψ´1pγuqϕ

ˆˆ

1 u

0 1

˙

g

˙

du and F pγq “

ż

A{k
ψpγuqfpuq du.

Therefore, we have Φp0, gq “ 0 by cuspidality of ϕ and, if γ ‰ 0, we have

Φpγ, gq “

ż

A{k
ψ´1puqϕ

ˆˆ

1 γ´1u

0 1

˙

g

˙

du

“

ż

A{k
ψ´1puqϕ

ˆˆ

γ u

0 1

˙

g

˙

du

“ Wϕ

ˆˆ

γ 0

0 1

˙

g

˙

where the first equality follows from the fact that the module of γ is 1 by the product formula,

and the second one follows from the fact that ϕ is P2pkq-invariant.

Now let U “ Upϕ, gq be a compact open subgroup of A{k such that

ϕ

ˆˆ

1 u

0 1

˙

g

˙

“ ϕpgq for all u P U.

Let f be the characteristic function of U . Thus

F pγq “

ż

U

ψpγuq du.

On the one hand, we have
ż

A{k
ϕ

ˆˆ

1 u

0 1

˙

g

˙

fpuq du “ ϕpgq ¨ |U |
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(where |U | is the volume of U with respect to du). On the other hand, we have
ż

A{k
ϕ

ˆˆ

1 u

0 1

˙

g

˙

fpuq du “
ÿ

γPkˆ

Wϕ

ˆˆ

γ 0

0 1

˙

g

˙

¨

ż

U

ψpγuq du,

which gives the identity

ϕpgq “
ÿ

γPkˆ

Wϕ

ˆˆ

γ 0

0 1

˙

g

˙

¨

ż

U

ψpγuq
du

|U |
.

As Wϕ

ˆˆ

γ 0

0 1

˙

g

˙

P I, for all γ P kˆ, and

ż

U

ψpγuq
du

|U |
“

#

0 if ψ is non-trivial on γU,

1 otherwise,

it only remains to prove that the sum over γ is finite, that is, there are only finitely many γ P kˆ

such that γU Ď Kerpψq. Assume that

U “
ź

vPS

pmv
v ˆ

ź

vRS

Ov

for some finite set S of places of k and some integers mv P Z. Recall that we have the decompo-

sition (3.1) of ψ. By taking a bigger S if necessary, we may (and will) assume that the character

ψv is trivial on Ov but not on p´1
v for all v R S. Thus γU Ď Kerpψq if and only if γOv Ď Kerpψvq

for all v R S and γpmv
v Ď Kerpψvq for all v P S. Equivalently, this means that γ belongs to the

space of f P k, considered as rational functions on the curve X defining the field k, such that

– f has no pole at v R S,

– f has a pole of order ě ´mv at v P S.

The expected finiteness result now follows from the fact that these f form a finite dimensional

vector space over Fq (see for instance [22] Proposition 1.4.9).

3.5. We now assume that n ě 3, and that Theorem 3.1 has been proved for Pn´1pAq.

We fix an arbitrary g P PnpAq and define a function ϕ1 “ ϕ1
g on Pn´1pAq by setting

ϕ1phq “

ż

pA{kqn´1

ψ´1pη ¨ uqϕ

ˆˆ

h u

0 1

˙

g

˙

du

for all h P Pn´1pAq, where η “ p0, . . . , 0, 1q P kn´1 and α ¨ u “ a1u1 ` . . . αn´1un´1 P pA{kqn´1

for any α P kn´1 and u P pA{kqn´1. It has the following properties.

Lemma 3.3. — The function ϕ1 is cuspidal on Pn´1pAq, that is, one has
ż

Nm,n´1´mpkqzNm,n´1´mpAq

ϕ1pvhq dv “ 0

for all h P Pn´1pAq and all m P t1, . . . , n´ 2u.
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Proof. — Let us fix an h P Pn´1pAq and an m P t1, . . . , n´ 2u. Then

(3.6)

ż

Nm,n´1´mpkqzNm,n´1´mpAq

ϕ1pvhq dv “

ż

pA{kqn´1

ψ´1pη ¨ uqΩg,hpuq du

where

Ωg,hpuq “

ż

Nm,n´1´mpkqzNm,n´1´mpAq

ϕ

ˆˆ

vh u

0 1

˙

g

˙

dv

and the right hand side of (3.6) is equal to
ż

pA{kqn´1´m

ψ´1pη ¨ u2q

ż

pA{kqm

Ωg,h

ˆ

u1
u2

˙

du1 du2 “

ż

pA{kqn´1´m

ψ´1pη ¨ u2qΛg,hpu2q du2

where

Λg,hpu2q “

ż

Nm,n´mpkqzNm,n´mpAq

ϕ

¨

˝w

¨

˝

1 0 0

0 1 u2
0 0 1

˛

‚

ˆ

h 0

0 1

˙

g

˛

‚ dw

and this quantity is equal to 0 thanks to the fact that ϕ is cuspidal.

Lemma 3.4. — One has

ϕ1pαhq “ ϕ1phq

for all α P Pn´1pkq and h P Pn´1pAq.

Proof. — Let us fix an α P Pn´1pkq. Thanks to the fact that ϕ is Pnpkq-invariant, one has

ϕ1pαhq “

ż

pA{kqn´1

ψ´1pη ¨ uqϕ

ˆˆ

αh u

0 1

˙

g

˙

du

“

ż

pA{kqn´1

ψ´1pηα ¨ uqϕ

ˆˆ

h u

0 1

˙

g

˙

du.

Since α P Pn´1pkq, we get ηα “ η, thus ϕ1pαhq “ ϕ1phq.

Lemma 3.5. — One has
ż

Nn´1pkqzNn´1pAq

ψ´1pvqϕ1pvhq dv P I

for all h P Pn´1pAq.

Proof. — It suffices to notice that
ż

Nn´1pkqzNn´1pAq

ψ´1pvqϕ1pvhq dv “

ż

NnpkqzNnpAq

ψ´1pwqϕ

ˆ

w

ˆ

h 0

0 1

˙

g

˙

dw

“ Wϕ

ˆˆ

h 0

0 1

˙

g

˙
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which takes values in I for all g P PnpAq and h P Pn´1pAq.

Applying now the inductive hypothesis to the function ϕ1 “ ϕ1
g, we deduce that

(3.7) ϕ1
gphq P I, for all g P PnpAq and all h P Pn´1pAq.

We can do even better.

Lemma 3.6. — For all g P PnpAq and all g1 P GLn´1pAq, we have

(3.8)

ż

pA{kqn´1

ψ´1pη ¨ uqϕ

ˆˆ

g1 u

0 1

˙

g

˙

du P I.

Proof. — Indeed, we have
ż

pA{kqn´1

ψ´1pη ¨ uqϕ

ˆˆ

g1 u

0 1

˙

g

˙

du “

ż

pA{kqn´1

ψ´1pη ¨ uqϕ

ˆˆ

1 u

0 1

˙ ˆ

g1 0

0 1

˙

g

˙

du

which is equal to ϕ1
xp1q with

x “

ˆ

g1 0

0 1

˙

g P PnpAq.

The lemma thus follows from (3.7) applied to the function ϕ1
x.

We now extend ϕ1 “ ϕ1
g to GLn´1pAq by setting

ϕ1pg1q “

ż

pA{kqn´1

ψ´1pη ¨ uqϕ

ˆˆ

g1 u

0 1

˙

g

˙

du

for all g1 P GLn´1pAq. By Lemma 3.6, it takes values in I on GLn´1pAq for all g P PnpAq.

Now, by Fourier analysis on the compact Abelian group pA{kqn´1, we have

ϕ

ˆˆ

1 u

0 1

˙

g

˙

“
ÿ

βPkn´1

ψpβ ¨ uq

ż

pA{kqn´1

ψ´1pβ ¨ xqϕ

ˆˆ

1 x

0 1

˙

g

˙

dx

“
ÿ

ρPPn´1pkqzGLn´1pkq

ψpηρ ¨ uq

ż

pA{kqn´1

ψ´1pη ¨ xqϕ

ˆˆ

ρ x

0 1

˙

g

˙

dx

“
ÿ

ρPPn´1pkqzGLn´1pkq

ψpηρ ¨ uqϕ1 pρq .

Multiplying by fpuq for some function f P C8ppA{kqn´1,Cq and integrating, we get
ż

pA{kqn´1

ϕ

ˆˆ

1 u

0 1

˙

g

˙

fpuq du “
ÿ

ρPPn´1pkqzGLn´1pkq

ϕ1pρq

ż

pA{kqn´1

ψpηρ ¨ uqfpuq du.

Now let U “ Upϕ, gq be a compact open subgroup of A{k such that

ϕ

ˆˆ

1 u

0 1

˙

g

˙

“ ϕpgq for all u P Un´1 Ď pA{kqn´1.
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Now take for f the characteristic function of Un´1. We get

(3.9) ϕpgq “
ÿ

ρPPn´1pkqzGLn´1pkq

ϕ1pρq

ż

Un´1

ψpηρ ¨ uq
du

|U |n´1
.

For all ρ, we have
ż

Un´1

ψpηρ ¨ uq
du

|U |n´1
“

"

0 if ψ is non-trivial on ηρ ¨ Un´1,

1 otherwise.

A coset ρ P Pn´1pkqzGLn´1pkq satisfies ηρ ¨ Un´1 Ď Kerpψq if and only if the vector

β “ pβ1, . . . , βn´1q “ ηρ P kn´1

satisfies β ¨ Un´1 Ď Kerpψq, that is, βiU Ď Kerpψq for all i. But it follows from the case where

n “ 2 that there are finitely many βi P k such that βiU Ď Kerpψq. There are thus finitely many

cosets ρ contributing to the sum (3.9).

Moreover, ϕ1pρq P I for all g P PnpAq and all ρ P Pn´1pkqzGLn´1pkq. It follows that ϕpgq P I

for all g P PnpAq. This finishes the proof of Theorem 3.1.

3.6. As in Paragraph 3.3, k is a function field of characteristic p and I is a sub-Zrµps-module

of C. Let Z “ Zn denote the centre of GLn. We will prove the following result.

Theorem 3.7. — Let ϕ : GLnpAq Ñ C be a smooth function such that:

(1) one has ϕpγgq “ ϕpgq for all γ P GLnpkq and all g P GLnpAq,

(2) the function ϕ is cuspidal in the sense that
ż

Nm,n´mpkqzNm,n´mpAq

ϕpugq du “ 0

for all g P GLnpAq and all m P t1, . . . , n´ 1u,

(3) one has ϕpgq P I for all g P ZpAqP pAq.

Then the function

Wϕ : g ÞÑ

ż

NpkqzNpAq

ψpuq´1ϕpugq du

takes values in I for all g P GLnpAq.

We first prove the following lemma.

Lemma 3.8. — The image of GLnpkqZpAqP pAq in GLnpkqzGLnpAq is dense.

Proof. — Since the projective space Pn´1 is k-isomorphic to GLn{ZP , it is equivalent to saying

that the image of the diagonal embedding of Pn´1pkq in Pn´1pAq is dense, that is, Pn´1 satisfies

the strong approximation property. We thus have to prove that, given any finite set S of places

of k and, for v P S, any non-empty open subset Uv of Pn´1pkvq, the intersection
˜

ź

vPS

Uv ˆ
ź

vRS

Pn´1pOvq

¸

X Pn´1pkq
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is non-empty. As Pn´1pOvq “ Pn´1pkvq for all v (given any point rx1 : ¨ ¨ ¨ : xns P Pn´1pkvq, one

may multiply the xi by a suitable power of a uniformizer so that the coordinates are in Ov), this

is equivalent to proving the weak approximation property, that is, proving that there is a point

P “ rx1 : ¨ ¨ ¨ : xns P Pn´1pkq such that P P Uv for all v P S. Restricting to the affine open sub-

space made of all points whose last coordinate is non-zero, we are reduced to proving the weak

approximation property for an affine space. This follows from the weak approximation theorem

for k (see for instance [22] Theorem 1.3.1).

By Assumptions 1 and 3, the function ϕ takes values in I on GLnpkqZpAqP pAq. Since ϕ is lo-

cally constant on GLnpAq, it follows from Lemma 3.8 that ϕ takes values in I on GLnpAq.

We now prove the theorem: we are going to prove that the function Wϕ takes values in I on

GLnpAq. Since NpkqzNpAq is compact, there exists a compact open subgroup C of NpkqzNpAq

such that NpkqzNpAq is the union of finitely many uiC and the function u ÞÑ ψpuq´1ϕpugq is

constant on these cosets. This gives us

Wϕpgq “ |C| ¨

r
ÿ

i“1

ψ´1puiqϕpuigq.

It thus remains to prove that |C| is in Zrµps.

The measure du gives measure 1 to the compact group NpkqzNpAq. Thus |C| is the index of

C in NpkqzNpAq. Let us prove that this index is a p-power. For this, it suffices to prove that

NpkqzNpAq is a pro-p-group. For this, by dévissage, it suffices to prove that A{k is a pro-p-group.

By [19] Theorem 5.8, there are a finite set S of places of k and integers mv ě 0 for v P S such

that A “ k ` U for some compact open subgroup

U “
ź

vPS

pmv
v ˆ

ź

vRS

Ov

thus A{k is a quotient of U . But U is clearly a pro-p-group, as it is a product of pro-p-groups.

4. Modular rigidity

Let k be a global field as in Paragraph 3.1. Fix a prime number ℓ different from the charac-

teristic of k and a field isomorphism ι : C Ñ Qℓ. Let A “ Ak be its ring of adèles.

Given any place v of k, write Gv “ GLnpkvq and Nv “ Npkvq, and Pv “ P pkvq for the mira-

bolic subgroup of Gv.

Recall that mℓ is the maximal ideal of Zℓ.

4.1. Let us state the following conjecture.

Conjecture 4.1. — Let Π1, Π2 be cuspidal automorphic representations of GLnpAq with central

characters Ω1, Ω2, respectively. Let ι be a field isomorphism from C to Qℓ for some prime number

ℓ different from the characteristic of k. Suppose that:

(1) the characters Ω1 bC Qℓ and Ω2 bC Qℓ are Zℓ-valued and congruent mod mℓ,

(2) there exists a finite set S of places of k, containing all Archimedean places and all finite

places above ℓ, such that, for all v R S, one has:
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(a) the local components Π1,v bC Qℓ and Π2,v bC Qℓ are unramified,

(b) the characteristic polynomials of their Satake parameters belong to ZℓrXs and have

the same reduction mod mℓ in FℓrXs.

Let w be a finite place not dividing ℓ such that the representations Π1,w bCQℓ and Π2,w bCQℓ are

integral. Then the reductions mod ℓ of these representations have a common generic irreducible

component, and such a generic component is unique and occurs with multiplicity 1.

Remark 4.2. — Note that the case where w R S is easy. Indeed, if w R S, write

π1 “ Π1,w bC Qℓ, π2 “ Π2,w bC Qℓ.

These representations are generic (as Π1,w and Π2,w are local components of cuspidal automor-

phic representations) and unramified. For each i, there is thus an unramified character ωi of the

diagonal torus Tw of Gw whose parabolic induction is isomorphic to πi. By Lemma 2.3, these

representations are integral, that is, the character ωi takes values in Zˆ
ℓ . By [16] Proposition 6.2,

the fact that the characteristic polynomials of their Satake parameters are congruent implies

that the reductions mod mℓ of ω1 and ω2 are conjugate by the normalizer of Tw in Gw. It follows

that rℓpπ1q and rℓpπ2q are equal, and the conclusion follows from Lemma 2.2. We will thus con-

centrate on the case where w P S.

Remark 4.3. — The reader should be aware that there are integral unramified irreducible Qℓ-

representations of GLnpkwq whose Satake parameters have congruent characteristic polynomials,

but whose reductions mod ℓ are unequal. (For instance, this is the case for the trivial Qℓ-charac-

ter and any integral unramified principal series Qℓ-representation whose Satake parameter has a

characteristic polynomial congruent to that of the Satake parameter of the trivial Qℓ-character.)

However, this phenomenon does not appear for generic unramified representations.

Remark 4.4. — The reductions mod ℓ of Π1,w bCQℓ and Π2,w bCQℓ won’t be equal in general

for w P S. Here is an example. Start with a unitary group G of rank 2 with respect to a totally

imaginary quadratic extension l of a totally real number field k. Suppose that:

– the group Gpkvq is compact for all Archimedean places v,

– there is a finite place w of k above a prime number p ‰ ℓ such that Gpkwq » GL2pkwq and

q, the cardinality of the residue field of Ow, has order 2 mod ℓ.

Thanks to our assumption on q, the Fℓ-representation induced from the trivial Fℓ-character of

a Borel subgroup of GL2pkwq has length 3: its irreducible subquotients are the trivial character,

the unramified character of order 2 and a cuspidal subquotient denoted ρ (see [24] Théorème 3,

Corollaire 5). Let π be a cuspidal lift of ρ to Qℓ, that is, π is an integral cuspidal Qℓ-represen-

tation of GL2pkwq such that rℓpπq “ ρ. (The existence of such a π is granted by [25] III.5.10.)

Now realize π as the local component at w of some automorphic representation Π1 of GpAkq

which is trivial at infinity, and whose local component at another place u ‰ w where G splits is

a given cuspidal representation η of GL2pkuq.

We now follow [16] Section 3. Let Kw be the maximal compact subgroup GL2pOwq and Fq be

the residue field of kw. Let:
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– κ1 be the inflation to Kw of the cuspidal irreducible representation of GL2pFqq occurring in

the parabolic induction of the trivial Fℓ-character of a Borel subgroup (thus the restriction of π

to Kw contains κ1),

– κ2 be the inflation to Kw of the Steinberg representation of GL2pFqq.

Since the reduction mod ℓ of κ2 contains that of κ1, we get an automorphic representation Π2

of GpAkq such that:

– the representation Π2 is trivial at infinity,

– the representation Π2,u is isomorphic to η,

– the restriction of Π2,w to Kw contains κ2 (thus Π2,w has non-zero Iwahori fixed vectors),

– there is a finite set of places S of k, containing all Archimedean places and u,w, such that,

for all v R S, the representations Π1,v bC Qℓ and Π2,v bC Qℓ are unramified and the characteris-

tic polynomials of their Satake parameters have coefficients in Zℓ and have the same reduction.

Using [12], we transfer Π1 and Π2 to algebraic regular, conjugate-selfdual, cuspidal automor-

phic representations rΠ1 and rΠ2 of GL2pAlq. Applying [16] Theorem 8.2, and as the local transfer

at w is the identity since the group G splits at w, we deduce that the representations rℓpπq “ ρ

and rℓpΠ2,wq share a generic irreducible component. Since rℓ commutes to parabolic restriction

(by [4] Proposition 6.7), proving that rℓpΠ2,wq ‰ ρ reduces to proving that Π2,w is not cuspidal.

But this follows from the fact that Π2,w has non-zero Iwahori fixed vectors.

4.2. An instance of Conjecture 4.1 is provided by [16] Theorem 8.2. More generally, the results

of [6, 20, 23] imply the conjecture in the case when k is a totally real or imaginary CM number

field and Π1,Π2 are algebraic regular, by passing to the Galois side and using a density argument.

In that case, note that:

– Assumption 1 on central characters is unnecessary,

– the representations Πi,v bC Qℓ are automatically integral for all finite v not dividing ℓ.

More precisely, assume that k is a totally real or imaginary CM number field and let Π1,Π2

be algebraic regular cuspidal automorphic representation of GLnpAq. Assume that there exists a

finite set S of places of k, containing all Archimedean places and all finite places dividing ℓ, such

that, for all v R S, one has:

(1) the local components Π1,v, Π2,v are unramified,

(2) the characteristic polynomials of the conjugacy classes of semisimple elements in GLnpQℓq

associated with Π1,v bC Qℓ and Π2,v bC Qℓ have coefficients in Zℓ and are congruent mod mℓ.

Associated with Πi in [6] and [20], there is a continuous ℓ-adic Galois representation

Σi : GalpQ{kq Ñ GLnpQℓq

(depending on ι : C Ñ Qℓ) for i “ 1, 2. For any finite place v of k not dividing ℓ, fix a decompo-

sition subgroup Γv of GalpQ{kq. The Weil-Deligne representation associated with Σi|Γv is made

of a smooth ℓ-adic representation ρi,v together with a nilpotent operator on the space of ρi,v. On

the other hand, the Weil-Deligne representation associated with Πi,v b |det |
p1´nq{2
v by the local

Langlands correspondence is made of a semisimple smooth complex representation σi,v together
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with a nilpotent operator on the space of σi,v. By [23], for any finite place v of k not dividing ℓ,

one has

ρssi,v » σi,v bC Qℓ

(where ρssi,v stand for the semisimplification of ρi,v). Arguing as in [16] 8.2, we deduce that, for

any finite place v of k not dividing ℓ, the representations Π1,v bCQℓ and Π2,v bCQℓ are integral,

their reductions mod ℓ share a generic irreducible component, which occurs with multiplicity 1.

4.3. From now on, and until the end of this section, k is a function field of characteristic p. We

are going to prove Conjecture 4.1 in this case. More precisely, we will prove the following strong-

er result, which is Conjecture 4.1 without the assumption on central characters.

Theorem 4.5. — Let Π1, Π2 be cuspidal automorphic representations of GLnpAq. Let ι be a

field isomorphism from C to Qℓ for some prime number ℓ different from p. Suppose that there is

a finite set S of places of k such that, for all v R S, one has:

(1) the local components Π1,v bC Qℓ and Π2,v bC Qℓ are unramified,

(2) the characteristic polynomials of their Satake parameters belong to ZℓrXs and have the

same reduction mod mℓ in FℓrXs.

Let w be a finite place. Then:

– the representations Π1,w bC Qℓ and Π2,w bC Qℓ are integral

– the reductions mod ℓ of these representations have a common generic irreducible component,

– and such a generic component is unique and occurs with multiplicity 1.

Remark 4.6. — Note that Theorem 4.5 follows from [13] Théorème VI.9 by a global argument

in the spirit of §4.2 (see also [9] IV.1.6).

First, by taking a bigger S, we may and will assume that ψv is trivial on Ov but not on p´1
v

for all v R S.

Let us prove that, under the assumptions of Theorem 4.5, the central characters of Π1,v bCQℓ

and Π2,v bC Qℓ take values in Zˆ
ℓ and are congruent mod mℓ for all v.

Lemma 4.7. — Let χ be an automorphic character of Aˆ{kˆ and U be a subgroup of Cˆ. As-

sume that there is a finite set S of places of k such that, for all v R S, the local component χv is

unramified and takes values in U . Then, for all v, the character χv takes values in U .

Proof. — If S is empty, there is nothing to prove. We thus assume that there is a place w P S.

Let x P kˆ
w . Define an idèle x1 P Aˆ by setting x1

v “ x if v “ w and x1
v “ 1 otherwise. The weak

approximation theorem implies that there is a y P kˆ such that y P Kerpχvq if v P S and v ‰ w,

and yx P Kerpχwq. We have

χwpxq “ χpx1q “ χpyx1q “ χwpxyq ¨
ź

vPS
v‰w

χvpyq ¨
ź

vRS

χvpyq.

Thanks to the conditions given by the weak approximation theorem, this is equal to the product

of χvpyq for all v R S. (Note that this is a product of finitely many terms, since y is a unit in the
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ring of integers of kv for almost all v R S.) The result follows from the fact that, for such v, one

has χvpyq P U .

Proposition 4.8. — Let χ1 and χ2 be automorphic characters of Aˆ{kˆ, and fix a field iso-

morphism ι : C Ñ Qℓ. Assume there is a finite set S of places of k such that, for all v R S:

(1) the characters χ1,v bC Qℓ and χ2,v bC Qℓ are unramified and take values in Zˆ
ℓ ,

(2) the reductions mod ℓ of these characters are equal.

Then, for all places v, the characters χ1,v bC Qℓ and χ2,v bC Qℓ take values in Zˆ
ℓ and are con-

gruent mod mℓ.

Proof. — For Assertion 1 of the proposition, apply Lemma 4.7 to χi and U “ ι´1pAˆq. For As-

sertion 2, apply Lemma 4.7 to χ “ χ1χ
´1
2 and U “ 1 ` ι´1pmℓq.

4.4. The remainder of this section is devoted to the proof of Theorem 4.5. By Remark 4.2, we

may and will assume that w P S.

Let A denote the image of Zℓ by ι
´1 and m denote the image of mℓ by ι

´1. Thus A contains

the complex pth roots of unity and the character ψ of Paragraph 3.1 takes values in Aˆ. Notice

that A and m are sub-Zrµps-modules of C.
For any place v of k and i P t1, 2u, let Wi,v be a function in the Whittaker model WpΠi,v, ψvq

satisfying the conditions:

– if v R S, then Wi,v is the unique GLnpOvq-invariant function such that Wi,vp1q “ 1 (see Pa-

ragraph 2.5),

– if v P S, we fix an arbitrary A-valued function fv P indPv
Nv

pψvq and let Wi,v P WpΠi,v, ψvq be

the unique function extending fv to Gv (see Paragraph 2.2),

– for all v P S such that v ‰ w, we further assume that fvp1q “ 1.

For i P t1, 2u, we consider the global Whittaker function

Wi “
â

v

Wi,v P WpΠi, ψq.

For x P P pAq, we thus have

Wipxq “
ź

vPS

fvpxvq ¨
ź

vRS

Wi,vpxvq.

It follows from Proposition 2.4 that W1 and W2 take values in A and W1 ´ W2 takes values in

m on P pAq. Let φi P Πi be the automorphic form corresponding to Wi via (3.4), that is:

φipgq “
ÿ

γPNn´1pkqzGLn´1pkq

Wi

ˆˆ

γ 0

0 1

˙

g

˙

for all g P GLnpAq. By Theorem 3.1, the functions φ1 and φ2 take values in A and φ1 ´φ2 takes

values in m on P pAq.

Thanks to Proposition 4.8, the central characters of Π1,v and Π2,v take values in Aˆ and are

congruent mod m for all v. It follows that φ1 and φ2 take values in A and φ1 ´ φ2 takes values

in m on ZpAqP pAq, where Z is the centre of GLn. Applying Theorem 3.7, we deduce that W1

and W2 take values in A and W1 ´W2 takes values in m on GLnpAq.
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Now let us consider the place w. For i “ 1, 2 and g P Gw Ď GpAq, one has:

Wipgq “
ź

v

Wi,vpgvq

“ Wi,wpgq ¨
ź

v‰w

Wi,vp1q

“ Wi,wpgq.

It follows that W1,w and W2,w take values in A, and that W1,w ´W2,w takes values in m on Gw.

We thus proved that, given any A-valued function fw P indPw
Nw

pψwq, the functionsW1,w andW2,w

extending fw are A-valued. Proposition 2.5 thus implies that Π1,w bCQℓ and Π2,w bCQℓ are in-

tegral. Now assume further that fwp1q “ 1. Then Theorem 4.5 follows from Proposition 2.1.
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