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Abstract. — Let k be a global field and Ay be its ring of adeles. Let ¢ be a prime number and fix
a field isomorphism from C to Q,. Let II;, II2 be cuspidal automorphic representations of GLy (Ax)
for some integer n > 1. In this paper, we study the following question: assuming that there is a fi-
nite set S of places of k containing all Archimedean places and all finite places above ¢ such that,
for all v ¢ S, the local components II; , ®c Q, and Iz, ®c Q, are unramified and their Satake para-
meters are integral and congruent mod ¢, are the local components II; ., ®c @,_7 and Iz ., ®c @e in-
tegral, and do their reductions mod £ share an irreducible factor for all non-Archimedean places w
not dividing ¢? We show that, under certain conditions on I, Ilz, the answer is yes. We also give
a simple proof when k is a function field.
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1. Introduction

1.1. Let k be a number field and Ay be its ring of adeles. Let II; and IIs be cuspidal automorphic
representations of GL,,(Ay) for some integer n > 1. The rigidity (or strong multiplicity 1) theo-
rem asserts that, if there is a finite set S of places of k containing all Archimedean places such
that, for all v ¢ S, the local components II; ,, and Il5, are unramified and have the same Satake
parameter, then II; and ITs are isomorphic ([17, 3, 10, 11]). A similar result holds over function
fields.

1.2. Now fix a field isomorphism ¢ from C to an algebraic closure Q, of the field of /-adic num-
bers for some prime number ¢, and consider the collections of irreducible smooth Q,-representa-
tions of GLy,(k,) defined by

(1.1) Tiv = Hi,v &c @67 (S {172}7

where the tensor product is taken with respect to ¢, v runs over all finite places of k and k, is the
completion of k at v. As II; and II, are cuspidal, these representations are generic (see §2.2).

Suppose that there exists a finite set .S of places of k£ containing all Archimedean places and all
finite places above ¢ such that, for all v ¢ S, the following are satisfied:

(1) the representations m; , and 7y, are unramified representations of GLj(k,),
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(2) the Satake parameters o1, and o3, of these unramified representations, considered as con-
jugacy classes of semisimple elements of GL,,(Q,), have their characteristic polynomials P; ,(X)
and P, (X) in Z¢[X], where Z; is the ring of integers of Qy,

(3) the reductions of P ,(X) and P, (X) in F,[X] are equal, F; being the residue field of Z,.

Assumption 2 is equivalent to assuming that the unramified representations m , and mo,, are
integral, that is, their Q,-vectors spaces contain GL, (k,)-stable Z-lattices (§2.4). One can then
consider their reductions mod ¢, denoted r(m; ,,) and r¢(m2 ), which are finite length, semisimple
smooth Fy-representations of GL,,(k,) (see Section 2 for a precise definition of reduction mod /).
Assumption 3 is then equivalent to saying that the representations r,(m ) and ry(m2,) are equal
(see Remarks 4.2 and 4.3).

Now let w be a finite place of k not dividing ¢. Our first question is

Question 1.1. — Are the irreducible representations my ,, and ma,, integral?

Assume that this is the case. One can then form ry(my ) and ry(m2,,). These representations
may not be equal (see Remark 4.4 for an example), but one may address the following question.

Question 1.2. — Do ry(m1,) and r¢(m2,,) have an irreducible component in common?

If k£ is a totally real (respectively, CM) number field, and if IT;, Il are algebraic regular, self-
dual (respectively, conjugate-selfdual) cuspidal automorphic representations, then [16] Theorem
8.2 says that the answers to Questions 1.1 and 1.2 are yes. More precisely:

— the representations i ,, and m,, are integral for all finite places w of k not dividing /,
— their reductions mod ¢ have a unique generic irreducible component in common,
— this unique common generic irreducible component occurs with multiplicity 1.

Such a result, which can be thought of as a modular rigidity theorem, has been used in [16] in or-
der to study the behavior of local transfer for cuspidal Q,-representations of quasi-split classical
groups with respect to congruences mod /.

More generally, thanks to the results of [6, 20, 23], one can make the argument of the proof
of [16] Theorem 8.2 work with no duality assumption on IT; and Ily: if & is a totally real or CM
number field, and if II;, IIs are algebraic regular, cuspidal automorphic representations, the an-
swers to Questions 1.1 and 1.2 are still yes; more precisely, the three properties above still hold.
(See §4.2 below for a detailed argument, which relies on the existence of a correspondence from
algebraic regular cuspidal automorphic representation to Galois representations with local-global
compatibility at all finite places not dividing ¢.)

It is natural to ask whether the ‘totally real or CM’ assumption on k, or the ‘algebraic regular’
assumption on the representations II; and Ils, or the cuspidality assumption, can be removed.
We will not investigate these questions in the present article.

It is also natural to seek an elementary, purely automorphic proof of such a modular rigidity
theorem, avoiding the use of Galois representations and local-global compatibility theorems. We
will study this question in the case of function fields, which is easier since there are no Archi-
medean places.
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1.3. We now assume that k is a function field of characteristic p, with ring of adeles Ay. Recall
that we have fixed a field isomorphism ¢ from C to Q, for some prime number ¢ which we assume
to be different from p. In this article, we prove the following theorem (see Theorem 4.5).

Theorem 1.3. — Let 11y and Il be cuspidal automorphic representations of GLy, (Ay). Associa-
ted with them, there are the representations m; ., defined by (1.1). Suppose that there exists a finite
set S of places of k such that, for allv ¢ S, one has:

(1) the representations w1, and w2, are unramified,

(2) the characteristic polynomials of their Satake parameters are in Z¢[X] and have the same
reduction in F,[X].
Let w be a place of k. Then

— the representations i, and wo,, are integral,
— their reductions mod £ share a generic irreducible component,
— and such a generic component is unique and occurs with multiplicity 1 in both reductions.

This theorem can be easily deduced from L. Lafforgue’s global Langlands correspondence [13]
(see Remark 4.6). Our purpose is to give a simple proof of Theorem 1.3 which does not rely on
the Langlands correspondence for function fields. Our argument, inspired from Piatetski-Shapi-
ro’s proof of the classical rigidity theorem [17, 3] is described below. We currently do not know
how to extend our argument to number fields.

1.4. Before explaining the proof of Theorem 1.3, we introduce our main local ingredients. Let F'
be any non-Archimedean locally compact field of residue characteristic p, and ¥ be a non-trivial
smooth Q-character of F.

Proposition 1.4. — Let T and 7 be integral generic irreducible Q,-representations of GL,, (F).
Suppose that there are functions W1 and Wy in the Whittaker models of w1 and wo with respect to
¥ satisfying the following conditions:

(1) Wy and Wy are Zg-valued and Wi(1) = Wa(1) = 1,

(2) the reductions of Wi(g) and Wa(g) in Fy are equal for all g € G.

Then ry(m1) and rg(me) share a generic irreducible component, such a generic irreducible compo-
nent is unique and it occurs with multiplicity 1.

Let P be the mirabolic subgroup of GL,,, made of all matrices with last row (0 ... 0 1), and
N be its unipotent radical. We have the following remarkable integrality criterion (see Proposi-
tion 2.5), which follows from [8] and [14].

Proposition 1.5. — Let  be a generic irreducible Qy-representation of GL,(F). The following
assertions are equivalent.

(1) The representation 7 is integral.

(2) Given any function in the Whittaker model of m with respect to ¥ whose restriction to P(F')
is compactly supported mod N(F), this function is Zg-valued on GL,(F) if and only if it is Z-
valued on P(F).
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1.5. We now introduce our main global ingredients. Let us go back to the situation of §1.3 and
fix a continuous unitary complex character ¥ of Aj. Consider a cuspidal automorphic form ¢ on
GL,, (Ag). Associated with it by (3.3) with respect to the choice of v, there is a Whittaker func-
tion W on GL,(Aj). Note that 1 is valued in the group p, of complex pth roots of 1 since the
field k has characteristic p. Let Z be the centre of GL,,.

Given any sub-Z[pp]-module I of C, we prove in Section 3 that:

— if W takes values in I on P(Ay), then ¢ takes values in I on P(Aj) (Theorem 3.1),
— if ¢ takes values in I on Z(Ag)P(Ay), then W takes values in I on GL,,(Ag) (Theorem 3.7).

1.6. We now consider two cuspidal automorphic representations I1;, ITs of GL,,(Ag) as in Theo-
rem 1.3. Let A be the local ring :71(Z;) and m be its maximal ideal. Fix a place w € S.

For each place v of k, let ¢, be the local component of ¢ at v. It is a smooth character of k,,
which we may assume, for all v ¢ S, to be trivial on the ring of integers of k, but not on the in-
verse of its maximal ideal.

We first observe that the central characters of II; and Il are A-valued and congruent mod m
(see Proposition 4.8), thanks to the information we have at all places v ¢ S.

For each v € S, let us fix a function f, : P(k,) — C such that:

(1) the function f, is compactly supported mod N(k,) and takes values in A,
(2) if v # w, then f,(1) = 1.
Let W; , be a function in the Whittaker model of II; ,, with respect to v, such that:
— if v ¢ S, then W;, is the unique GL,,(0,)-invariant function such that W;,(1) = 1,
— if v € S, the restrictions of Wi, and Ws, to P(k,) are both equal to f, (see §2.2).

The tensor product of the W; ,, is a function W; in the Whittaker model of II; with respect to .

1.7. First, let us concentrate on the first assertion of Theorem 1.3. Let us prove that the repre-
sentation m; ,, is integral. It follows from the Shintani formula (see [21, 3] and Proposition 2.4)
that, for each v ¢ S, the function W; , is A-valued. Hence W; is A-valued on Z(Ay)P(Ay).

Since A is a sub-Z[u,|-module of C, we may apply the results of §1.5, from which we deduce
that W; is A-valued on GL,,(Aj). By Condition (2) above, W; ,, is thus A-valued on GLy, (k).

Varying f,, among all functions on P(k,,) satisfying Condition (1) above, we have thus pro-
ved that, given any function W;,, in the Whittaker model of II; ,, with respect to v, if its res-
triction to P(k,,) is A-valued and compactly supported mod N (k,), then it is A-valued. Apply-
ing Proposition 1.5, we deduce that m; ,, is integral.

1.8. We now prove the last two assertions of Theorem 1.3, following the same idea. First, assu-
me that the function f,, which has been fixed in §1.6 satisfies the additional condition f,,(1) =1
and fix functions W; , as in §1.6 for all v.

On the one hand, W, and Wy, are A-valued (§1.7). On the other hand, the Shintani formula
implies that Wy, — Wa,, is m-valued for v ¢ S, thus W7 — Ws is m-valued on Z(Aj)P(Ay). Since
m is a sub-Z[up]|-module of C, the results of §1.5 imply that W; — W is m-valued on GL,,(Ag),
thus W1, — Wa,, is m-valued.

The remaining two assertions of Theorem 1.3 then follow from Proposition 1.4.
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2. Local considerations

In this section, F' denotes a locally compact non-Archimedean field of residue characteristic p
and n > 1 is a positive integer. We write O for the ring of integers of F' and pp for its maximal
ideal. We also write G for the locally profinite group GL,,(F).

Let ¢ be a prime number different from p. We write Q, for an algebraic closure of the field of
(-adic integers, Zy for its ring of integers and F, for its residue field.

Let ¢ : F — @Z be a non-trivial smooth character. It defines a non-degenerate character

=Pz + -+ Tpo1n)

of N, the subgroup of upper triangular unipotent matrices of G, still denoted . Note that this
character takes values in Z;, and even more precisely in the group of roots of unity in Q, whose
order is a power of p.
Let P denote the mirabolic subgroup of G, made of all matrices whose last row is (0...0 1).
The representations we will consider will be smooth representations of locally profinite groups
with coefficients in Z[1/p|-algebras.

2.1. A Qy-representation of finite length 7 of G is said to be integral if its vector space V con-
tains a G-stable Z-lattice. (A G-stable Z-lattice is a G-stable free Zy-module generated by a ba-
sis of V or, equivalently, an admissible Z;[G]-module containing a basis of V.)

If this is the case, and if L is such a G-stable Z,-lattice, the representation of G on L ® Fy is
smooth and has finite length, and its semisimplification does not depend on the choice of L (see
[26] Theorem 1). This semisimplified Fy-representation is called the reduction mod £ of 7 and is
denoted ry().

An irreducible Q,-representation 7 which embeds in the parabolic induction of some cuspidal
irreducible representation p of some Levi subgroup M of G is integral if and only if the central
character of p is Zs-valued (see [25] 11.4.12, 11.4.14 and [4] Proposition 6.7).

2.2. In this paragraph, 7 is a generic irreducible Q,-representation of G, that is, its vector space
V carries a non-zero Q-linear form A such that A(w(u)v) = ¥ (u)A(v) for all u e N, ve V. Let

(2.1) W(r, ) < Ind§ (1))
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denote its Whittaker model with respect to v, where Ind% denotes smooth induction from N to
G. Let K(m,) denote the Kirillov model of 7, that is, the space of smooth Q-valued functions
on P which extend to a function in W(7,v). By Kirillov’s theory, restriction from G to P indu-
ces a P-equivariant isomorphism from W(r, 1) to X(m,v), and one has the containments

ind% (1) € K (7, ¥) < Ind (1)

where indy; denotes compact induction from N to P (see [1]).

2.3. In this paragraph, m; and 7 are integral generic irreducible Q,-representations of G. Let
m, denote the maximal ideal of Z,.

Proposition 2.1. — Suppose there are Whittaker functions W1 € W(my, ) and Wa € W(ma, )
with values in Zy such that:

(1) Wi(1) = Wa(1) =1,

(2) Wi(g) and Wa(g) are congruent mod my for all g € G.
Then the reductions mod £ of w1 and wo share a generic irreducible component, such a generic ir-
reducible component is unique and it occurs with multiplicity 1.

Proof. — We will need the following result.

Lemma 2.2. — Let m be an integral generic irreducible Qp-representation of G. Then its reduc-
tion mod £ contains a unique irreducible generic factor, occuring with multiplicity 1.

Proof. — The existence of an irreducible generic factor follows from the fact that any non-zero
linear form in Hom y (7, %) is non-zero on any G-stable Z-lattice of 7. Its uniqueness follows for
instance from [15] Proposition 8.4 applied to the representation parabolically induced from the
cuspidal support of . ]

Let i € {1,2}. By [26] Theorem 2, the Z;-module L; made of all Z,-valued Whittaker functions
in W(m;,1) is a G-stable Z,-lattice. Let A; be the Z,[G]-module generated by W; in W(m;, ).
It contains a Q-basis of W(mr;, 1) since 7; is irreducible, and it is contained in L;. It follows that
it is a G-stable Z-lattice in W(;, ). Let M; denote the submodule of L; made of all my-valued
functions. The containment of myA; in A; N M; implies that we have morphisms:

A; @Fg — Az/(/lz N Mz) ~ (/11 + MZ)/MZ - Li/Mi — Ind%(ﬂ @Fg)

where the left hand side morphism «; is surjective, the right hand side morphism g; is injective,
and ¥ ® Fy; denotes the Fy-character of N obtained by reducing ¥ mod my.
As W7 and Ws are congruent mod my on G and take 1 to 1, the intersection:

(2.2) B1((A1 + My)/My) 0 B2((A2 + Mz)/Ma)

is non-zero in Ind%(ﬁ@@) for it contains the function (W7 mod M) = B2(W2 mod My) and
the latter is non-zero. The socle of (2.2), denoted X, is made of generic irreducible Fy-represen-
tations appearing in both the reductions mod ¢ of m; and ms. By Lemma 2.2, the reduction mod
£ of m; contains a unique irreducible generic factor p;. The socle X' is thus irreducible, reduced to
pi. It follows that p; and po are isomorphic. O
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2.4. Let K be the maximal compact subgroup GL,,(O). In this paragraph, 7 is an unramified
irreducible Q,-representation of G, that is, 7 has a non-zero K-fixed vector. It defines a conjuga-
cy class of semisimple elements in GL,,(Q), called its Satake parameter. The characteristic po-
lynomial of this conjugacy class is denoted x (7). This is a polynomial of degree n in Q,[X].

Lemma 2.3. — The unramified representation m is integral if and only if the polynomial x ()
has all its coefficients in Z,.

Proof. — Since Z; is integrally closed, x(m) has all its coefficients in Z, if and only if its roots
are in Zj, that is, if and only if 7 is parabolically induced from an integral unramified character
of the diagonal torus of GL,,(F'). The lemma then follows from Paragraph 2.1. O

2.5. Now assume that 7 is a generic unramified irreducible Q,-representation of G, and that v
is trivial on O but not on p;l. Its Whittaker model W(r, 1) contains a unique Whittaker func-
tion W such that:

(1) one has Wr(gk) = Wx(g) for all ge G and k€ K,

(2) and Wr(1) = 1.
Let us recall the Shintani-Casselman—Shalika formula [21, 3], which gives the values of W at
diagonal elements in terms of the Satake parameter of .

Fix a representative (p1, ..., tn) € @Z" of the Satake parameter of . If we write

X(m) = X" +er(m) X" 4 en(m) € Q[ X],
then

(=D7er(m) = D1 iy,
1<ip < <ir<n
for all r € {1,...,n}. Let ¢ be the cardinality of the residue field of F. Fix a uniformizer w € F'
and let A be the subgroup of G made of all diagonal matrices whose eigenvalues are integral po-
wers of w. The Iwasawa decomposition G = N AK shows that W is entirely determined by its
restriction to A. Given a € Z", write w® for the diagonal matrix whose ith eigenvalue is ww®.
One has the formula:

S a;Gi-(n+1)/2) det((u@ Y,
(2.3) We(w®) = ¢7=* ’ : (o )i ifa;>...>ay
[1(j — )
g<l
and W, vanishes at w® otherwise.
2.6. Formula (2.3) has the following application.
Proposition 2.4. — Let w1 and wo be integral generic unramified irreducible representations of

G. Assume that the polynomials x (1) and x(ms) have the same reduction mod my inFy[X]. Then
the Whittaker functions Wy, and Wy, are Zg-valued on G and one has:

(2.4) Wi (9) = W, (g) mod my
forall ge G.
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Proof. — Notice that x (1) and x(m2) have coefficients in Z, by Lemma 2.3, thus the reduction
of x(m1) and x(m2) mod my is well-defined.

It suffices to prove that W, and W, are Zy-valued on A and that the relation (2.4) is satisfied
for all g € A. Fix a representative p; = (ti1,- .., tin) € @Z” of the Satake parameter of m; for
i =1,2. The scalars p;1, ..., itin are the roots of x(m;). They are thus in Zy. The fact that the
polynomials x(71) and x(m2) and congruent mod my ensures that, up to reordering, we may as-
sume that ;1 ; and pg ; are congruent mod my for all j = 1,...,n. The lemma now follows from
the Shintani formula (2.3). O

2.7. In this paragraph, 7 is a generic irreducible Q,-representation of G. We have the following
remarkable integrality criterion, based on [8] and [14].

Proposition 2.5. — Let T be a generic irreducible Q,-representation of G. The following asser-
tions are equivalent:

(1) The representation 7 is integral.
Q) Given any Zg-valued function f € ind% (), the Whittaker function in W(rw,v) extending f
18 Zy-valued.

Remark 2.6. — Assertion 2 can be restated as follows: given any function W € W(r, ¢) whose
restriction to P is compactly supported mod N, the function W is Zs-valued on G if and only if
it is Zg-valued on P.

Proof. — That the first assertion implies the second one follows from [14] Corollary 4.3 (which
gives an even stronger result: it says that a Whittaker function W € W(r, ) is Zg-valued on G if
and only if it is Z-valued on P).

Let us prove that the second assertion implies the first one. We will use [8] Theorem 3.2, which
is stated for Noetherian algebras over the ring W, of Witt vectors of Fy. Let us explain how it
applies to a generic Q-representation 7 satisfying Assertion 2.

Let V be the Qg -vector space of 7. By [25] I1.4.9, there exists a finite extension E of Q}", the
maximal unramified extension of Qy in Q,, such that 7 is defined over E, that is, V contains a G-
stable E-vector space Vg such that V = Vg ®g Q. Let 75 denote the E-representation of G on
VE. If ¥ denotes the character ¢ considered as being valued in F, then ng is generic with res-
pect to ¥p. Let K be the completion of E. Then ng = mg ®g K is generic with respect to the
character ¥ = ¥ ®g K. Since the complete discrete valuation ring W, is isomorphic to the
completion of the ring of integers of Q}, the ring O of integers of K is a Noetherian W-algebra.
Let us show that 7x satisfies the analogue of Assertion 2 for the ring O.

Lemma 2.7. — Given any O-valued function f € indﬁ(w;{), there exists an O-valued function
in W(rg, k) extending f.

Proof. — This f can be written a1 f1 + - - - + a, fr with aq,...,a, € O, and where the functions
f1,- o fr€ ind%(w) are Zy-valued. By assumption on 7, the function W; € W(r, 1) extending
fi 18 Zg-valued. Thus a; Wi + -+ + a, W, is in W(rg, k), it extends f and it is O-valued. [
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Let us collect some results from [7] about the category Repyy,(G) of all smooth W-represen-
tations of G. This category decomposes into a product of blocks indexed by inertial classes {2 of
supercuspidal Fy-representations of G. Associated with each block, there is its centre 3¢, which is
a finitely generated commutative Wy-algebra, and its universal co- Whittaker module Wy, which
is an admissible 3 [G]-module.

The representation g is absolutely irreducible and generic. It is thus a co-Whittaker K|[G]-
module in the sense of [8] Definition 2.1. Also, by Schur’s lemma, if §2 is the inertial class asso-
ciated with it, the action of the centre 3 on 7w defines a morphism of Wy-algebras x : 30 — K.
By [7] Theorem 6.3, the representation 7 is a quotient of Wo ®;,, K.

We now apply [8] Theorem 3.2 to mx (with A = K and A’ = O), which says that, thanks to
Lemma 2.7, x is valued in O, which makes O into a 3-algebra. By [7] Lemma 6.4 (or more pre-
cisely its proof), the image L of W ®;,, O in 7k is an O-torsion free co-Whittaker O[G]-module
such that L®g K = mx. By [8] Definition 2.1, this O[G]-module L is admissible. The represen-
tation mg is thus O-integral.

Fix a parabolic subgroup @ of G with Levi subgroup M, and a cuspidal irreducible represen-
tation p of M such that m embeds in the parabolic induction ’Lg (p). We may and will choose E so
that p is also defined over E: we thus have an E-representation pg such that pr ®g Q, = p and
7 embeds in zg(pE) Thus 7 embeds in ig(pK), where px = pg ®g K is cuspidal and abso-
lutely irreducible. Note that the central character w of px takes values in E.

Since L is admissible, [4] Proposition 6.7 implies that the Jacquet module rg(L) is admissible,
thus pg is O-integral. Its central character w thus takes values in O, thus the central character
of p takes values in Z,. It follows (see Paragraph 2.1) that 7 is integral, as expected. O

3. Global considerations

3.1. Let k be a global field, that is, either a finite extension of Q or the field of rational functions
over a smooth irreducible projective curve X defined over a finite field of cardinality ¢. Let A be
the ring of adeles of k.

Given an integer n > 2, let N = N,, be the subgroup of upper triangular unipotent matrices
of GL,, and P = P, be its mirabolic subgroup, made of all matrices whose last row is (0...0 1).
More generally, for m € {0,...,n}, let Ny, ,—pm denote the unipotent radical of the parabolic sub-
group of GL,, generated by upper triangular matrices and the Levi subgroup GL,, x GLy,—p,.

Let ¢ : A — C* be a non-trivial continuous character trivial on k. It defines in the usual way
a non-degenerate character of N(k)\N(A), namely

U — ¢(U1,2 + -+ unfl,n)

for all u e N(A), which we still denote by ).
For any place v of k, let k, denote the completion of k at v. If v is finite, we write O, for the
ring of integers of k, and p, for its maximal ideal. The character 1) decomposes as

(3'1) ¢ = ®¢v
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where 1), is a non-trivial continuous character of k,, trivial on O, but not on p, I for almost all
finite v.

3.2. Let us fix a Haar measure du on N(k)\N(A). Given a cuspidal irreducible automorphic re-
presentation II of GLy,(A), the linear form

(3.2) o f W) o) du
N(k)\N(A)

on II is known to be well-defined and non-zero (see [3] Theorem 1.1 or (3.4) below).
Associated to ¢ € II, there is a Whittaker function W, defined by:

(3.3) W(g) = f (u) " p(ug) du
(R)\N(A)

for all g € GL,,(A). The map ¢ — W,, is a morphism from II to its Whittaker model W(IL, v).
If we choose for du the Haar measure giving measure 1 to the compact group N (k)\N(A), one
also has a converse expansion:

0
(3.4) - 3 w((§ 1))
YENn—1 (k)\GLnfl (k‘)

for all g € GL,,(A), with absolute and uniform convergence on compact subsets (see for instance
[5] Theorem 13.5.4 or [3] Theorem 1.1).

3.3. From now on, assume that k is a function field of characteristic p. There is thus no Archi-
medean place. Let I be any sub-Z[p,]-module of C, where 1, denotes the subgroup of pth roots
of unity in C. Note that ¢ takes values in p,.

Theorem 3.1. — Let ¢ : P,(A) — C be a smooth function such that:

(1) one has ¢(vg) = ¢(g) for all v € P,(k) and all g € P,(A),
(2) the function ¢ is cuspidal in the sense that

f d(ug) du =0
N7n,n—m(k)\Nm,n—m/(A)
for all g€ P,(A) and allme {1,...,n — 1},
(3) the function
Wy : g f P(u) " p(ug) du
N(k)\N(A)
takes values in I for all g € P,(A).
Then ¢(g) € I for all g € P,(A).

We will prove this theorem by induction on n > 2.
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3.4. We first treat the case where n = 2. We will need the following lemma.

Lemma 3.2. — For any smooth functions f,g € C*(A/k,C), we have

f(x)g(x) dz =) Y7 ya) f(x) dz - | Y(ya)g(z) da.

Ak Sok JAVK Ak
Proof. — Start with the Fourier expansion formula
=Y vtw)- [ v 0o do
byt AJk
for y € A/k. Then multiply by ¢g(y) and integrate over A/k. O

Let f e C®(A/k,C). For any g € P,(A), we thus get

(3.5) quﬁ (((1) 7{) g) Fw) du= Y 8(v,9)F(3)

vyek

where

20,0 = [ o (5 §)o) an wna Fo)= [ wionse au

AJk

Therefore, we have (0, g) = 0 by cuspidality of ¢ and, if v # 0, we have

B(1.9) = Lkw—l(uw(((ﬁ 7_1“‘) g> du
= [emwe((§ 1)s) o
(69

where the first equality follows from the fact that the module of v is 1 by the product formula,
and the second one follows from the fact that ¢ is Py(k)-invariant.
Now let U = U(¢, g) be a compact open subgroup of A/k such that

¢ <<(1] 11‘) g> — ¢(g) foralluel.

Let f be the characteristic function of U. Thus
F(3) = [wlu) du.
U

On the one hand, we have
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(where |U| is the volume of U with respect to du). On the other hand, we have
1 wu 0
¢ g) fwydu= YW, ( () 1)g) | vom du,
Ak 0 1 0 1
’YEk‘X U
which gives the identity

dl9) = D, Wy <<g (1)) g) -Jw(vu) ‘%ﬁ-

yek> U

As Wy <<g (1)> g) e I, for all v € k>, and

du 0 if % is non-trivial on yU,
Y(yu) Tk
U]
U

it only remains to prove that the sum over ~ is finite, that is, there are only finitely many v € k*
such that vU < Ker(7)). Assume that

Uznpvm“ XHOU

veES vES

1 otherwise,

for some finite set S of places of k and some integers m, € Z. Recall that we have the decompo-
sition (3.1) of 9. By taking a bigger S if necessary, we may (and will) assume that the character
1y is trivial on O, but not on p; ! for all v ¢ S. Thus YU < Ker(¢)) if and only if O, < Ker(v,)
for all v ¢ S and vp'v < Ker(¢,) for all v € S. Equivalently, this means that v belongs to the
space of f € k, considered as rational functions on the curve X defining the field k, such that

— f has no pole at v ¢ S,
— f has a pole of order > —m,, at ve S.

The expected finiteness result now follows from the fact that these f form a finite dimensional
vector space over F, (see for instance [22] Proposition 1.4.9).

3.5. We now assume that n > 3, and that Theorem 3.1 has been proved for P,,_1(A).
We fix an arbitrary g € P,(A) and define a function ¢’ = ¢y on P,,—1(A) by setting

_ h u
o= [ oo ((G 1))
(A/k)n—1
for all h € P,_1(A), where = (0,...,0,1) e k" L and a-u = ajus + ... n_1up_1 € (A/k)" 1
for any o€ k"' and u € (A/k)"~!. It has the following properties.

Lemma 3.3. — The function ¢' is cuspidal on P,_1(A), that is, one has

@' (vh) dv =0
Nm,nflfm(k?)\Nm,nflfm(A)

for all he P,—1(A) and allme {1,...,n —2}.
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Proof. — Let us fix an h e P,_1(A) and an m € {1,...,n — 2}. Then

(3.6) | Sehydv= [ T ) 2w du

Nin—1—m(K)\Nm n—1—m (A) (A/k)n—t

() = | 6 <(”0" 1;) g) a

Nm,nflfm(k)\Nm,nflfm(A)
and the right hand side of (3.6) is equal to

f (- ug) f Qgh(Z;) duy dup = f W - ug) Ag p(us) dus

(A/k)yn—t=m (A/k)™ (A/k)n—1=

1 0 0 -
Ag,n(uz) = j plw |0 1 wuy <0 1) g | dw
Ninn—m (K)\Nom,n—m (A) 00 1

and this quantity is equal to 0 thanks to the fact that ¢ is cuspidal. 0

where

where

Lemma 3.4. — One has
¢'(ah) = ¢'(h)
for all a € P,_1(k) and h € Pn_l(A).

Proof. — Let us fix an o € P,_1(k). Thanks to the fact that ¢ is P,(k)-invariant, one has

#loh) = f o oes (4 1)a) au
A/k)n 1
_ h
R (DD
(A/k)n—t
Since o € P,,_1(k), we get na = n, thus ¢'(ah) = ¢'(h). O
Lemma 3.5. — One has

J Y ()¢ (vh) dve I
Np—1(E)\Nn—1(A)
for all he P,_1(A).

Proof. — It suffices to notice that

[ s oo (w(f V)o) v
Np—1(k)\Np_1(A) Nrn(k)\Nn(A)

- f(6 1))
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which takes values in I for all g € P,(A) and h € P,,_1(A).

Applying now the inductive hypothesis to the function ¢" = ¢}, we deduce that
(3.7) ,(h) eI, forall ge P,(A)and all he P, 1(A).
We can do even better.

Lemma 8.6. — For all g € P,(A) and all ¢’ € GL,,—1(A), we have

(3.8) f W w)e ((%/ 1{) g> duel.
(4 /k)n—1

Proof. — Indeed, we have

oo (4 1)a) a= [ oo (5 1) (4 1)a) au

(A/k)m=1 (A/k)m=1
which is equal to ¢/,(1) with
_ (90
xr = (0 1)gePn(A).

The lemma thus follows from (3.7) applied to the function ¢,.
We now extend ¢’ = ¢, to GL,_1(A) by setting

¢(g) = f d}‘l(n-uw((% ﬁ‘)g) du
(A/k)n—1

for all ¢’ € GL,,—1(A). By Lemma 3.6, it takes values in I on GL,_1(A) for all g € P,(A).
Now, by Fourier analysis on the compact Abelian group (A/k)"~!, we have

(6 3)) = Zpe [ wrean((s 1)s) o

A/kn 1

- S e [ eteas((f 7)) @

pePnfl(k)\GLnfl(k) (A/k)nfl
= > b(np-u)¢' (p)-
pEPn_l (k)\GLn_l (k’)

Multiplying by f(u) for some function f € C*((A/k)"~!, C) and integrating, we get

f ¢<<(1) llb)g>f(U)dU= > J Y(np-u)f(u) d

(A/k)n—1 pEPn—1(k)\GLn—_1( (A/k)n—1

Now let U = U(¢, g) be a compact open subgroup of A/k such that

¢ (((1) Qf) g) = ¢(g) forallue U™ < (A/k)"
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Now take for f the characteristic function of U"~!. We get

(3.9) O T S 1) f b(np - ) |U‘|“‘1

pePn—1(k)\GLn—1(k) Un—1

For all p, we have

du 0 if ¢ is non-trivial on np - U™ "1,
j 7/1(7#7“) ‘U’n_l = { v ”

yUn—1
A coset p € P,_1(k)\GL,_1(k) satisfies np - U"~! < Ker(¢) if and only if the vector

B=(B1,-..,Bn1) =npe k"

satisfies 3 - U™~ < Ker(v), that is, 3;U < Ker(z)) for all i. But it follows from the case where
n = 2 that there are finitely many ; € k such that 5;U < Ker(¢)). There are thus finitely many
cosets p contributing to the sum (3.9).

Moreover, ¢'(p) € I for all g € P,(A) and all p € P,,_1(k)\GL,,—1(k). It follows that ¢(g) € I
for all g € P,,(A). This finishes the proof of Theorem 3.1.

1 otherwise.

3.6. As in Paragraph 3.3, k is a function field of characteristic p and I is a sub-Z[p,|-module
of C. Let Z = Z,, denote the centre of GL,,. We will prove the following result.
Theorem 3.7. — Let ¢ : GL,(A) — C be a smooth function such that:

(1) one has ¢(vg) = ¢(g) for all v e GL, (k) and all g € GL,(4A),
(2) the function ¢ is cuspidal in the sense that

J ¢(ug) du =0
Nm,nfm(k)\Nm,nfm(A)
for all g € GL,(A) and allme {1,...,n— 1},
(3) one has ¢(g) € I for all ge Z(A)P(A).
Then the function
Woigm [ vl olug) du
N(k)\N(A)
takes values in I for all g € GL,(A).
We first prove the following lemma.

Lemma 3.8. — The image of GL,,(k)Z(A)P(A) in GL,(k)\GLy(A) is dense.

Proof. — Since the projective space P"~! is k-isomorphic to GL,/ZP, it is equivalent to saying
that the image of the diagonal embedding of P*~!(k) in P"~!(A) is dense, that is, P"~! satisfies
the strong approximation property. We thus have to prove that, given any finite set S of places
of k and, for v € S, any non-empty open subset U, of P"~1(k,), the intersection

<H U, x HIP’”_l(Ov)> ~P(k)

veS v¢S
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is non-empty. As P"~1(0,) = P""1(k,) for all v (given any point [x1 : --- : z,] € P""1(k,), one
may multiply the x; by a suitable power of a uniformizer so that the coordinates are in O, ), this
is equivalent to proving the weak approximation property, that is, proving that there is a point
P=[zy:--:m,] € P }(k) such that P € U, for all v € S. Restricting to the affine open sub-
space made of all points whose last coordinate is non-zero, we are reduced to proving the weak
approximation property for an affine space. This follows from the weak approximation theorem
for k (see for instance [22] Theorem 1.3.1). O

By Assumptions 1 and 3, the function ¢ takes values in I on GL,(k)Z(A)P(A). Since ¢ is lo-
cally constant on GL,(A), it follows from Lemma 3.8 that ¢ takes values in I on GL,,(A).

We now prove the theorem: we are going to prove that the function Wy takes values in I on
GL,(A). Since N(k)\N(A) is compact, there exists a compact open subgroup C of N (k)\N(A)
such that N(k)\N(A) is the union of finitely many u;C and the function u — ¥ (u) ¢ (ug) is
constant on these cosets. This gives us

Wy(g) = |Cl- D¢ () d(uig)-
=1

It thus remains to prove that |C| is in Z[u,].

The measure du gives measure 1 to the compact group N (k)\N(A). Thus |C| is the index of
C in N(k)\N(A). Let us prove that this index is a p-power. For this, it suffices to prove that
N(k)\N(A) is a pro-p-group. For this, by dévissage, it suffices to prove that A /k is a pro-p-group.

By [19] Theorem 5.8, there are a finite set S of places of k and integers m, > 0 for v € S such
that A = k£ 4+ U for some compact open subgroup

U:HPTU XHOU

ves v¢S
thus A/k is a quotient of U. But U is clearly a pro-p-group, as it is a product of pro-p-groups.

4. Modular rigidity

Let k£ be a global field as in Paragraph 3.1. Fix a prime number ¢ different from the charac-
teristic of k and a field isomorphism ¢ : C — Q. Let A = A}, be its ring of adeles.

Given any place v of k, write G, = GL,(k,) and N, = N(k,), and P, = P(k,) for the mira-
bolic subgroup of G,.

Recall that my is the maximal ideal of Z.

4.1. Let us state the following conjecture.

Conjecture 4.1. — Let 11y, Il be cuspidal automorphic representations of GL,, (A) with central
characters Qy, Qq, respectively. Let v be a field isomorphism from C to Q, for some prime number
¢ different from the characteristic of k. Suppose that:

(1) the characters Q1 ®c Q; and Qs ®c Q; are Zy-valued and congruent mod my,
(2) there exists a finite set S of places of k, containing all Archimedean places and all finite
places above £, such that, for allv ¢ S, one has:
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(a) the local components 111 , @c Q, and Mz, ®c Q, are unramified,
(b) the characteristic polynomials of their Satake parameters belong to Z¢[X] and have
the same reduction mod my in F,[X].

Let w be a finite place not dividing £ such that the representations 11y ®cQy and 115 4 ®cQy are
integral. Then the reductions mod ¢ of these representations have a common generic irreducible
component, and such a generic component is unique and occurs with multiplicity 1.

Remark 4.2. — Note that the case where w ¢ S is easy. Indeed, if w ¢ S, write

m =1, ®c Qp 72 = o, ®c Q.

These representations are generic (as II; ,, and Il ,, are local components of cuspidal automor-
phic representations) and unramified. For each 4, there is thus an unramified character w; of the
diagonal torus T, of G,, whose parabolic induction is isomorphic to m;. By Lemma 2.3, these
representations are integral, that is, the character w; takes values in ZZ. By [16] Proposition 6.2,
the fact that the characteristic polynomials of their Satake parameters are congruent implies
that the reductions mod my of w; and ws are conjugate by the normalizer of T, in G,,. It follows
that ry(m) and ry(m2) are equal, and the conclusion follows from Lemma 2.2. We will thus con-
centrate on the case where w € S.

Remark 4.3. — The reader should be aware that there are integral unramified irreducible Q-
representations of GL,,(k,,) whose Satake parameters have congruent characteristic polynomials,
but whose reductions mod ¢ are unequal. (For instance, this is the case for the trivial Q,-charac-
ter and any integral unramified principal series Q,-representation whose Satake parameter has a
characteristic polynomial congruent to that of the Satake parameter of the trivial Q,-character.)
However, this phenomenon does not appear for generic unramified representations.

Remark 4.4. — The reductions mod £ of 11y ., ®c Q, and I3, ®c Q; won’t be equal in general
for w € S. Here is an example. Start with a unitary group G of rank 2 with respect to a totally
imaginary quadratic extension [ of a totally real number field k. Suppose that:

— the group G(k,) is compact for all Archimedean places v,
— there is a finite place w of k above a prime number p # ¢ such that G(k,) ~ GL2a(k,,) and
q, the cardinality of the residue field of O,,, has order 2 mod ¥.

Thanks to our assumption on ¢, the F,-representation induced from the trivial F,-character of
a Borel subgroup of GLy(k,,) has length 3: its irreducible subquotients are the trivial character,
the unramified character of order 2 and a cuspidal subquotient denoted p (see [24] Théoreme 3,
Corollaire 5). Let 7 be a cuspidal lift of p to Q, that is, 7 is an integral cuspidal Q,-represen-
tation of GLa(ky) such that ry(m) = p. (The existence of such a 7 is granted by [25] I111.5.10.)

Now realize 7 as the local component at w of some automorphic representation II; of G(Ay)
which is trivial at infinity, and whose local component at another place u # w where G splits is
a given cuspidal representation 7 of GLa(ky,).

We now follow [16] Section 3. Let K, be the maximal compact subgroup GL2(0,,) and Fy be
the residue field of k,,. Let:
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— k1 be the inflation to K, of the cuspidal irreducible representation of GLg(F,) occurring in
the parabolic induction of the trivial F,-character of a Borel subgroup (thus the restriction of 7
to K, contains k1),

— K2 be the inflation to K, of the Steinberg representation of GLa(F,).

Since the reduction mod ¢ of k9 contains that of k1, we get an automorphic representation Ils
of G(Ay) such that:

— the representation Ils is trivial at infinity,

— the representation Iy, is isomorphic to 7,

— the restriction of Ilp,, to K,, contains kg (thus Il ,, has non-zero Iwahori fixed vectors),

— there is a finite set of places S of k, containing all Archimedean places and u, w, such that,
for all v ¢ S, the representations II; , ®c Qy and Iy », ®c Qy are unramified and the characteris-
tic polynomials of their Satake parameters have coefficients in Z; and have the same reduction.

Using [12], we transfer IT; and II; to algebraic regular, conjugate-selfdual, cuspidal automor-
phic representations II; and II, of GL2(4;). Applying [16] Theorem 8.2, and as the local transfer
at w is the identity since the group G splits at w, we deduce that the representations ry(m) = p
and ry(Ilz,,) share a generic irreducible component. Since r, commutes to parabolic restriction
(by [4] Proposition 6.7), proving that r,(Il3,,) # p reduces to proving that Ils,, is not cuspidal.
But this follows from the fact that Il ,, has non-zero Iwahori fixed vectors.

4.2. An instance of Conjecture 4.1 is provided by [16] Theorem 8.2. More generally, the results
of [6, 20, 23| imply the conjecture in the case when k is a totally real or imaginary CM number
field and IIy, IT5 are algebraic regular, by passing to the Galois side and using a density argument.
In that case, note that:

— Assumption 1 on central characters is unnecessary,
— the representations II; , ®c Q, are automatically integral for all finite v not dividing .

More precisely, assume that k is a totally real or imaginary CM number field and let 11y, 1y
be algebraic regular cuspidal automorphic representation of GL, (A). Assume that there exists a
finite set S of places of k, containing all Archimedean places and all finite places dividing ¢, such
that, for all v ¢ S, one has:

(1) the local components II; ,, IIp,, are unramified,
(2) the characteristic polynomials of the conjugacy classes of semisimple elements in GL,,(Q,)
associated with II; , ®c Qy and Iy, ®c Qy have coefficients in Z; and are congruent mod my.

Associated with II; in [6] and [20], there is a continuous ¢-adic Galois representation
%; : Gal(Q/k) — GLA(Qr)

(depending on ¢ : C — Q) for i = 1, 2. For any finite place v of k not dividing ¢, fix a decompo-
sition subgroup I, of Gal(Q/k). The Weil-Deligne representation associated with ¥;|r, is made
of a smooth ¢-adic representation p;, together with a nilpotent operator on the space of p; ,. On
1-n)/2

by the local
Langlands correspondence is made of a semisimple smooth complex representation o; ,, together

the other hand, the Weil-Deligne representation associated with II; , ® | det \1(,
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with a nilpotent operator on the space of o;,. By [23], for any finite place v of k not dividing ¢,
one has

Py = 0,4, ®C Q
(where p%, stand for the semisimplification of p;,). Arguing as in [16] 8.2, we deduce that, for

any finite place v of k not dividing ¢, the representations Il , ®c Qy and 15, ®c Qy are integral,
their reductions mod ¢ share a generic irreducible component, which occurs with multiplicity 1.

4.3. From now on, and until the end of this section, k is a function field of characteristic p. We
are going to prove Conjecture 4.1 in this case. More precisely, we will prove the following strong-
er result, which is Conjecture 4.1 without the assumption on central characters.

Theorem 4.5. — Let 11y, Ily be cuspidal automorphic representations of GLy,(A). Let ¢ be a
field isomorphism from C to Q, for some prime number { different from p. Suppose that there is
a finite set S of places of k such that, for all v ¢ S, one has:

(1) the local components 111 , ®c Q; and Iz, ®c Q, are unramified,
(2) the characteristic polynomials of their Satake parameters belong to Zy[X] and have the
same reduction mod my in Fy[X].

Let w be a finite place. Then:

— the representations Il , @c Qy and II3., ®c Qy are integral
— the reductions mod £ of these representations have a common generic irreducible component,
— and such a generic component is unique and occurs with multiplicity 1.

Remark 4.6. — Note that Theorem 4.5 follows from [13] Théoreme VI.9 by a global argument
in the spirit of §4.2 (see also [9] IV.1.6).

First, by taking a bigger S, we may and will assume that 1, is trivial on O, but not on p,!
forall v ¢ S.

Let us prove that, under the assumptions of Theorem 4.5, the central characters of IT; , ®c Q,
and Iz, ®@c Q, take values in ng and are congruent mod my for all v.

Lemma 4.7. — Let x be an automorphic character of A*/k* and U be a subgroup of C*. As-
sume that there is a finite set S of places of k such that, for all v ¢ S, the local component x., is
unramified and takes values in U. Then, for all v, the character x, takes values in U.

Proof. — If S is empty, there is nothing to prove. We thus assume that there is a place w € S.
Let x € k5. Define an idele 2’ € A* by setting z/, = z if v = w and 2, = 1 otherwise. The weak
approximation theorem implies that there is a y € k™ such that y € Ker(x,) if v € S and v # w,
and yzx € Ker(xy). We have

Xu(@) = x(2') = x(y2") = xw(@y) - [ [ 2@ - ] [ x0(v)-

ves veS

vFEW

Thanks to the conditions given by the weak approximation theorem, this is equal to the product
of xu(y) for all v ¢ S. (Note that this is a product of finitely many terms, since y is a unit in the
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ring of integers of k, for almost all v ¢ S.) The result follows from the fact that, for such v, one
has x,(y) € U. O

Proposition 4.8. — Let x1 and x2 be automorphic characters of A* k™, and fix a field iso-
morphism 1 : C — Q,. Assume there is a finite set S of places of k such that, for allv ¢ S:

(1) the characters x1,, ®c @g and X2, ®c @g are unramified and take values in 7.,
(2) the reductions mod £ of these characters are equal.

Then, for all places v, the characters x1., ®c Qp and x2., ®c Q; take values in ZEX and are con-
gruent mod my.

Proof. — For Assertion 1 of the proposition, apply Lemma 4.7 to x; and U = 1~(A*). For As-
sertion 2, apply Lemma 4.7 to x = x; X5+ and U = 1+ ¢~ (my). O

4.4. The remainder of this section is devoted to the proof of Theorem 4.5. By Remark 4.2, we
may and will assume that w e S.

Let A denote the image of Z; by :~! and m denote the image of my by ¢~!. Thus A contains
the complex pth roots of unity and the character ¢ of Paragraph 3.1 takes values in A*. Notice
that A and m are sub-Z[x,]-modules of C.

For any place v of k and i € {1, 2}, let W;,, be a function in the Whittaker model W(II; ,,, ¥,)
satisfying the conditions:

—if v ¢ S, then W; , is the unique GL,, (0O, )-invariant function such that W, (1) =1 (see Pa-
ragraph 2.5),

— if v € S, we fix an arbitrary A-valued function f, € indﬁ”v (1) and let W; , € W(II; ,,, ¢,,) be
the unique function extending f, to G, (see Paragraph 2.2),

— for all v € S such that v # w, we further assume that f,(1) = 1.

For i € {1,2}, we consider the global Whittaker function
VVZ’ = ®Wi,v € W(Hmd))

For z € P(A), we thus have
Wix) = [ [ fol@o) - [ [ Wi (o).

vES vgS
It follows from Proposition 2.4 that W7 and W5 take values in A and W7 — W5 takes values in
m on P(A). Let ¢; € II; be the automorphic form corresponding to W; via (3.4), that is:

wilg) = > )Wi ((g ?) g)

’yENn_l (k‘)\GLn_l (k:

for all g € GL,,(A). By Theorem 3.1, the functions 1 and ¢9 take values in A and 1 — @9 takes
values in m on P(A).

Thanks to Proposition 4.8, the central characters of II; , and Il , take values in A* and are
congruent mod m for all v. It follows that ¢ and s take values in A and ¢; — @9 takes values
in m on Z(A)P(A), where Z is the centre of GL,,. Applying Theorem 3.7, we deduce that W
and W take values in A and W; — Wy takes values in m on GL, (A).
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Now let us consider the place w. For i = 1,2 and g € G,, € G(A), one has:

Wi(g) = HWi,v(gv)
= Wi,w(g)' sz,v(l)

VFEW

= Wi,w (9) .

It follows that Wi ,, and Wa,, take values in A, and that Wy ,, — Wa,, takes values in m on G,,.
We thus proved that, given any A-valued function f,, € indﬁ"ﬁj (1w), the functions Wy 4, and Wo,,
extending f,, are A-valued. Proposition 2.5 thus implies that II; ,, ®c Qy and IIs o, ®c Qg are in-
tegral. Now assume further that f,,(1) = 1. Then Theorem 4.5 follows from Proposition 2.1.
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