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Abstract. — Proposition B.1 of [1] is false. We prove a weaker statement which is sufficient for
our purpose.

1.

Proposition B.1 of [1] is false: given a p-adic field F with p ‰ 2 and an integer n ě 2, the split

even special orthogonal group SO2npF q has no cuspidal representation of level 0 whose transfer

to GL2npF q is cuspidal. The error lies in the proof of [1] Lemma B.2.

We prove that [1] Proposition B.1 holds for the split odd special orthogonal group SO2n´1pF q

and the unramified non-split quasi-split even special orthogonal group. We then show that this is

enough for proving the main theorem of [1].

1.1.

Let p be a prime number different from 2, let F be a p-adic field and let WF be the absolute

Weil group of F .

Let ϕ be an irreducible smooth representation of WF of dimension 2n for some integer n ě 1.

Suppose that ϕ is self-dual. It is thus

– either symplectic, that is, its image is contained in a conjugate of Sp2npCq in GL2npCq,

– or orthogonal, that is, its image is contained in a conjugate of O2npCq in GL2npCq.

If it is symplectic, it factors through a local Langlands parameter φ for SO2n`1pF q. The packet

ΠφpSO2n`1pF qq thus contains a cuspidal representation whose transfer to GL2npF q is the cuspi-

dal representation with parameter ϕ.

If it is orthogonal, it factors through a Langlands parameter φ for a quasi-split special orthogo-

nal group SOα
2npF q for some α P Fˆ{Fˆ2 (see [1] 5.1). More precisely (see [1] 5.3), the determi-

nant of ϕ corresponds through the local class field theory to the character

(1.1) x ÞÑ pα, xqF
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of Fˆ, where p¨, ¨qF is the Hilbert symbol over F . The packet ΠφpSOα
2npF qq associated with the

O2npCq-conjugacy class of φ thus contains a cuspidal representation whose transfer to GL2npF q

is the cuspidal representation with parameter ϕ.

1.2.

We prove the following result.

Proposition 1.1. — Suppose that either G “ SO2n`1pF q, or G “ SOα
2npF q for an α P Fˆ such

that F p
?
αq is quadratic and unramified over F . Then there is a cuspidal representation of level

0 of G whose transfer to GL2npF q is cuspidal.

Thanks to Paragraph 1.1, it suffices to prove that there exist

– a symplectic self-dual irreducible representation ϕ of WF of dimension 2n of level 0,

– an orthogonal self-dual irreducible representation ϕ of WF of dimension 2n of level 0 whose

determinant is unramified and has order 2.

1.3.

Let L be the unramified extension of degree 2n of F in Qp, and let K Ď L be the unramified

extension of degree n of F . Thus L has degre 2 over K. Let

ξ : Lˆ Ñ Cˆ

be a tamely ramified character such that all conjugates ξα, α P GalpL{F q, are pairwise distinct.

Let η denote the unramified character of Lˆ of order 2. Thus

σ “ IndL{F pξηq

(where IndL{F denotes induction from WL to WF ) is an irreducible 2n-dimensional representa-

tion of level 0 of WF . Through local class field theory, the determinant of σ corresponds to the

restriction of ξ to Fˆ. (See for instance [2] Theorem 2).

Likewise, τ “ IndL{Kpξηq is an irreducible 2-dimensional representation of WK whose determi-

nant corresponds to the restriction of ξ to Kˆ. One has σ “ IndK{F pτq.

Let γ P GalpL{Kq Ď GalpL{F q denote the element of order 2. One thus has Lγ “ K. Suppose

that σ is self-dual. This is equivalent to ξγ “ ξ´1. Indeed, the fact that the representation σ is

self-dual implies that ξ´1 “ ξα for some α P GalpL{F q. Applying α twice gives ξα
2

“ ξ, which

implies that α2 “ idL, thus α “ γ thanks to the regularity assumption on ξ. Note that the res-

triction of ξ to Kˆ is unramified since ξ is trivial on NL{KpLˆq.

Note that τ is self-dual, with same parity as σ. Indeed, if x¨, ¨yτ is a τ -invariant ε-symmetric

non-degenerate bilinear form on the space of τ , for some sign ε P t´1, 1u, then

xf, gyσ “
ÿ

wPWKzWF

xfpwq, gpwqyτ

is a σ-invariant ε-symmetric non-degenerate bilinear form on the space of σ “ IndK{F pτq, where

w ranges over a set of representatives of WKzWF in WF .

Suppose that ξ is trivial on Kˆ. Then the representation τ has determinant 1, that is, it takes

values in SL2pCq “ Sp2pCq. It is thus symplectic. It follows that σ is symplectic.
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Now suppose that ξ is non-trivial on Kˆ. The representation τ is orthogonal, thus σ is ortho-

gonal. Its determinant is the restriction of ξ to Fˆ, which is unramified non-trivial (since the res-

triction of ξ to Kˆ is unramified non-trivial and K is unramified over F ). It has order 2 since σ

is self-dual.

In order to prove Proposition 1.1, it thus remains to prove the existence of a tamely ramified

character ξ : Lˆ Ñ Cˆ such that

(1) all conjugates ξα, α P GalpL{F q, are pairwise distinct,

(2) the restriction of ξ to Kˆ is a given character of Kˆ trivial on NL{KpLˆq.

A tamely ramified character ξ of Lˆ is entirely determined by

– the character χ : kˆ
L Ñ Cˆ, where kL denotes the residue field of L, whose inflation to Oˆ

L

is the restriction of the character ξ to Oˆ
L ,

– the non-zero scalar z “ ξpϖF q P Cˆ, where ϖF is a fixed uniformizer of F .

Then the two conditions p1q and p2q are equivalent to the following two conditions:

p11q all conjugates χ, χq, . . . , χq2n´1
are pairwise distinct, where q is the cardinality of the re-

sidue field of F ,

p21q one has χ´1 “ χqn and the scalar z takes a given value in t´1, 1u.

The existence of characters ξ satisfying the conditions (1) and (2) thus follows for instance from

(the proof of) [3] Lemma 2.17.

1.4.

Let us now adapt the proof of [1] Lemma 9.1 in the case where G is a quasi-split special or-

thogonal group over F . Let Q be a non-degenerate quadratic form over F such that G “ SOpQq.

Let k, w and q be as in [1] Theorem 2.8. Thus

– k is a totally real number field of even degree,

– w is a finite place of k such that kw “ F ,

– q is a non-degenerate quadratic form over k such that q b F and Q are equivalent, and the

group SOpq b kvq is compact for all real places v and quasi-split for all finite places v.

We may even assume that the discriminant of q (in the sense of [1] 2.1) is equal to any given ele-

ment δ P kˆ{kˆ2 such that δw is equal to the discriminant of Q, and δv ą 0 for all real places v

of k (see [1] Propositions 2.2, 2.4). We thus may assume that there is a finite place u ‰ w, not

dividing 2ℓ, such that the extension of ku generated by a square root of p´1qnδu is unramified

and of degree 2.

Let G be the k-group SOpqq. Let ℓ be a prime number different from p.

Lemma 1.2. — There is a finite place u of k different from w, not dividing ℓ, such that there is

a unitary cuspidal irreducible complex representation ρ of Gpkuq with the following properties:

(1) ρ is compactly induced from some compact mod centre, open subgroup of Gpkuq,

(2) the local transfer of ρ to GL2npkuq is cuspidal.

Proof. — Recall that, if u does not divide 2, any cuspidal representation of Gpkuq is compactly

induced from some compact mod centre, open subgroup of Gpkuq.
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If dimpqq is odd, it suffices to choose any finite place u ‰ w not dividing 2ℓ, then apply Pro-

position 1.1.

If dimpqq “ 2n for some n ě 1, it suffices to choose any finite place u ‰ w not dividing 2ℓ

such that the extension of ku generated by a square root of p´1qnδu is quadratic and unramified,

that is, such that SOpq b kuq is non-split and unramified, then apply Proposition 1.1.

The main theorem of [1] now follows, since its proof (see [1] 9.1) relies on Lemma 9.1, Propo-

sition 6.3, Theorems 4.4, 5.5, 5.6, 8.2 only.
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