Nonlinear Klein-Gordon equation with damping - Exam March 27th of 2024 - 3h

All electronic devices are forbidden

Exercice 1. In this exercise, we consider the equation

{afu + 200yu — O*u + sinu = h, (t,z) € R x R, )

u(0,z) = up(x), Ou(0,x) = vo(x), z €R,

where o € (0,1/2) and h € C([0, +00), L*(R)).

(a) Justify briefly that the local Cauchy problem for is well-posed for any
initial data (ug,v9) € HY(R) x L*(R). Hint : write sinu = u + (sinu — u).
We rewrite the equation as
Ou =v

O = —2av + 0?u — sinu + h, (t,z) e R x R, (17)
u(0,2) = up(z), v(0,z) =vo(x), r € R,

We define as in the course the operator A, on H' x L? by
D(A,) = H?> x HY,
Ayt = (v,u” —u — 2aw), for any @ € D(A,)

and the strongly continuous semigroup of contractions (Sq(t))i>0 in X gene-
rated by A,. We rewrite the equation in the following equivalent Duhamel
formulation

u(t) = Sqtip + /0 Sa(t — $)(0,u(s) — sinu(s) + h(s))ds.

Using the same arguments as in the course, we prove the local existence and
uniqueness of a solution .

(b) For (u,v) € H' x L?

E(u,v) = / (30° + 2(0pu)* + 1 — cosu) dx (2)
R
and compute (formally)
d
< Bult), duu(r)

for u(t, ) a solution of (T]).

We compute
%E(u(t),@tu(t)) - —2a/v2+/hv.
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(c) Prove that any solution of (1)) is global.
Note that E(u(t)) > [; (1’02 + 3 (azu)2). We introduce

Then

d
dtgo(t):—2a/v2+/hv+/uvgC’cp(t)-i-C’/hQ.

Assuming that the solution is not global, there exists T' > 0 such that @ exists
on [0,7) but lim;_,7— ||i(t)|| g1 <12 = +00. But by the previous computation,
we have

/(1v2+ (0pu)? + Fu®) < o <C’eCt/ /h2+e (0
R

which provides a uniform bound on [0, 7] and thus a contradiction.

Exercice 2. In this exercise, we denote by C' various positive constants that may
change from one line to another.

We consider the following equation

2 N _
{@u + 0, (Ocu+u") =0 (gKdV)

Ujt=0 = Ug

Here (gKdV) means generalized Korteweg de Vries equation. In this exercise, we
assume that for any initial data in uy € H'(R), there exists a local in time solution
u € C([0, Thnax), H*(R)). Moreover, in this exercise, all computations can be done
formally, that is, without rigorous justification (usually based on density arguments
and persistence of regularity).

(a) We define, for v € H'(R), E(v) = § [(8,v)* — 5 [ v®. Prove that for any
solution u, the energy F(u(t)) is conserved for all time such that the solution is

defined.

We formally find the energy conservation by multiplying (gKdV) by 02u + u’
and using

/Gx(ﬁzu +u)(Pu+u") =0
so that
/ (Opu)(02u + uT) = 0,
which provides after integration by parts

d

SE() =0,
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(b) Check that @ defined by Q(z) = (m) is solution of
T

cosh?
QeH'MR), Q"+Q"=QonR.

We have . .
Q(x) = 43 cosh™ 3 (3x)
and so
Q" (x) = 43 (sinh(Sx) cosh_%(?)w))/
43 (_3 cosh™3 (3z) + 4 sinh? (3z) cosh™3 (3:15))
(cosh_%(Bx) - 4cosh_%(31‘)) =Q(z) — Q"(x)

(c) Check that ¢(t,x) = Q(x —t) is a solution of (gKdV).
We have

hq+0:(02q+q") =-Qz-t)+(Q"+ Q") (x—1t) =0

J@r=3[e

Multiplying the equation of @ by @ and integrating by parts, we find

- [@r+ [or= [e

Multiplying the equation of @ by Q' and integrating on (—oo, z|, we find
1

ne  Los 1o
5(@) +§Q —2Q-

W=

=4

(d) Check that

Integrating on R, we find

1
J@r+g [e=[e
Combining the two identities, we find the desired result.

Our objective in the next questions is to prove the instability of the solution ¢
in the space H'.

e) Let F(v) = E(v) + £ [v2. Prove that for any € € H'(R) such that |||/ <1,
2

1
F(Q+¢)=F(Q)+ é(ﬁs, )+ R(e) where |R(¢)| < Clle|l3
and where the operator £ is defined by
Le=—0%+¢e—TQ%.
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We compute

BQ+e) = ;/< Q- g [@+o

/Qas—/Q7e+ / ;/@652

/((Q—i—s) —8Q"e — 28Q%?)

_/Q5_|_2/ /Q65 + R(e

where

R(e)| < / P 4 el < Cllelf.
Second

pf@rar=g [@ [aer [
Thus,

FQ+¢)=FQ)+ %(Cs,s) + R(e).
(f) Define ¢ = Q* and AQ = 3Q + zQ'. Compute

L6, LAQ) and L(Q).

We compute
2 4
Q*(z) = 45 cosh™3 (3z),

and thus

Q) = —45 (sinh(?)x) cosh_§(3x)),

=43 ( 3cosh™ (3$) + 7sinh?(3z) cosh*13*0(3x)>
=45 (4 cosh™ ( x) — 7cosh™ 3 (Sx))
=16Q" - 7Q°Q".
Therefore
L£Q* = —15Q%.
Then
L£Q' =0

by differentiating Q" + Q7 = @Q with respect to x. Lastly,

L(AQ) = gcQ + L(zQ") = —2Q7 — 2Q" = —2Q.



We assume the following property : there exist K, K5 > 0 such that
for all ¢ € H'(R) with (¢,Q") =0, (Le,¢) > Ki|le|l?n — Ka(s,0)*.  (3)
(g) For oy > 0 small, consider the set
Uy = {u € H'®) | inf [~ Q= )l < ao}:
Prove that for o small enough, there exists a unique map o : U,, — R such that
for all u € U,,, we can decompose u(z) = (Q + ¢)(z + o(u)) with
(6,Q") =0 and ||g||gn < Cay.

Let u € Uy,. We fix y; such that ||u(- + 1) — Q[ g1 < 209 Then, we define
v = u(- +y1) and we apply the result from the course (based on the Implicit
Function Theorem). There exists

v z(v)
such that e(z) = v(z) — Q(x — 2z(v)) satisfies [eQ'(z — z(v)) = 0.
(h) Define the initial data ug(z) = AQ(A%x), for A > 1 close to 1. Prove

leoalle = 1@l Jim lluos = @l =0, 6(N) = B(Q) — Blug) > 0.

The computations follow from change of variable
/u%»\ = /\Q/QQ(/\Qx)dm = /QQ.

/ (AQ(\22) — Q(x))2dz — 0, / (BQ'(02) — Q' (2))2dz — 0

as A — 1 by the dominated convergence theorem.

Then

Last, we have

B@=-; [@r-5 [ =5(3-1) [ -5 [@

and
E(ug ) = /\4/ Aﬁ/QS
S KR
—/\4 3 —2)\?) / Q8.
Thus,

o) = 16

Setting f(\) = 1 — 3"+ 2% we have f(1) = 0, f/(1) = 0 but f”(1) = 24 > 0.

1
—(1 -3\ 4+2)9 /Q8
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Denote by u,(t) the local H! solution of (gKdV]) corresponding to ux(0) = ug .

For the sake of contradiction, we consider the following assertion

V0 < a0 < ag, X > 1, such that u, exists for all £ > 0
and for all t > 0, uy(t) € U,.

(4)

(i) Explain why contradicting assertion (4] will prove a form of instability of the
solution ¢(t, x).

Taking the negation, we have
30 < a < ap, VA > 1, such that 3t >0, uy(t) € U,.

This means that even taking A > 1 arbitrarily close to 1, the corresponding
solution u) exits the neighbourhood U,.

From now on, we assume that holds and we seek a contradiction.
We take 0 < a < ap (where oy can be taken smaller if needed) and we
consider A\ > 1 as in (4)). For all ¢ > 0, we decompose u(t,z) as u(t,z) =
(Q+¢)(t,z+ o(t)) where

(e(t),Q") =0 and ||&(t)||m < Ca.

We assume that the function ¢ — o(t) is of class C'.

(j) Using the conservation of the L? norm for u(t), show that for all ¢ > 0,

(e(1), Q)] < Clle(®) 72
Indeed, we check that

d

& [ = / udhu — / (02u + uT)Byu = 0

by integration by parts. Thus,

[@=[wa=[wo- @2 [ e+ [0

This proves
1
(), QI < S lle®)1Z2-

(k) Write the equation satisfied by € and prove that, for all £ > 0,

|0'(t) = 1] < Clle(®)l] -



We have

Opu = at5($ + O'(t)) + U,(Q/ + 8365)(x + O’(t)),
0u(O2u+u") = (Q" + 9 + (Q7) + 79,(Q%) + 9,((Q + )" — Q7 — 7Q%))(z + o (1))

Thus, the equation of u is rewritten as follows
e+ 0y(Le+(Q+e)"— QT —7Q%) + (¢! — 1)(Q' + 0ue) =0

Multiplying this equation by @’ and using (¢,Q') = 0, we find the bound
|0’ (t) = 1] < Clle(®) [ g1

(1) Prove that there exists K3 > 0 such that, for all ¢ > 0,
(e(t), @) = Kslle(®)]|mr + Ks/0(A).

We have
(Le,e) = Killellin — Kale, ¢)?

and by F(ug,) = F(Q +¢),
~26(A) = (Le, ) + 2R(e) > [le]2 — Kale, 9)’

Thus,
(e,0)? = Cllel|21 + CS(N).

for a constant C' > 0, which implies the result.
Let xy be a smooth function on R such that
x(z) =1on (—o0,1], x(z)=0on [2,+0), 0< x(x)<1on/l,?2]

Let ((z) be defined as follows

(@) = / " (AQU) + Boly)dy, 8- f%f. (5)

For A > 1 large to be defined later, for all ¢ > 0, set
x
30 = [ ettaon () do

(m) Prove that
1

VE> 0, [J(8)] < CapAb.
Check that [(Q' = 0.



This follows from the Cauchy-Schwarz inequality
1
24 bl
|J| < Clle]| 2 </ dx) < Olle]| 2 VA < CagVA.
0

(n) Using the equation of ¢, prove (formally) that

d

E‘J(t) = Ky(e(t), o) + Ry(e(t))

where K, # 0 is a constant to specify and where R; satisfies

IRs(e)| < Clle|l3n + CA 2 ||e] .

(o) Find a contradiction to for A > 1 large enough and g > 0 small enough.



