
Nonlinear Klein-Gordon equation with damping - Exam March 27th of 2024 - 3h

All electronic devices are forbidden

Exercice 1. In this exercise, we consider the equation®
∂2
t u+ 2α∂tu− ∂2

xu+ sinu = h, (t, x) ∈ R× R,
u(0, x) = u0(x), ∂tu(0, x) = v0(x), x ∈ R,

(1)

where α ∈ (0, 1/2) and h ∈ C([0,+∞), L2(R)).
(a) Justify briefly that the local Cauchy problem for (1) is well-posed for any
initial data (u0, v0) ∈ H1(R)× L2(R). Hint : write sinu = u+ (sinu− u).

We rewrite the equation as
∂tu = v

∂tv = −2αv + ∂2
xu− sinu+ h, (t, x) ∈ R× R,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,
(1’)

We define as in the course the operator Aα on H1 × L2 by®
D(Aα) = H2 ×H1,

Aαu⃗ = (v, u′′ − u− 2αv), for any u⃗ ∈ D(Aα)

and the strongly continuous semigroup of contractions (Sα(t))t⩾0 in X gene-
rated by Aα. We rewrite the equation in the following equivalent Duhamel
formulation

u⃗(t) = Sαu⃗0 +

∫ t

0
Sα(t− s)(0, u(s)− sinu(s) + h(s)) ds.

Using the same arguments as in the course, we prove the local existence and
uniqueness of a solution u⃗.

(b) For (u, v) ∈ H1 × L2,

E(u, v) =

∫
R

(
1
2
v2 + 1

2
(∂xu)

2 + 1− cosu
)
dx (2)

and compute (formally)
d
dt
E(u(t), ∂tu(t))

for u(t, x) a solution of (1).
We compute

d
dt

E(u(t), ∂tu(t)) = −2α

∫
v2 +

∫
hv.
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(c) Prove that any solution of (1) is global.
Note that E(u(t)) ⩾

∫
R
(
1
2v

2 + 1
2(∂xu)

2
)
. We introduce

φ(t) = E(u(t)) +
1

2

∫
u2(t).

Then
d
dt

φ(t) = −2α

∫
v2 +

∫
hv +

∫
uv ⩽ Cφ(t) + C

∫
h2.

Assuming that the solution is not global, there exists T > 0 such that u⃗ exists
on [0, T ) but limt→T− ∥u⃗(t)∥H1×L2 = +∞. But by the previous computation,
we have∫

R

(
1
2v

2 + 1
2(∂xu)

2 + 1
2u

2
)
⩽ φ(t) ⩽ CeCt

∫ T

0

∫
h2 + eCtφ(0),

which provides a uniform bound on [0, T ] and thus a contradiction.

Exercice 2. In this exercise, we denote by C various positive constants that may
change from one line to another.

We consider the following equation®
∂tu+ ∂x(∂

2
xu+ u7) = 0

u|t=0 = u0

(gKdV)

Here (gKdV) means generalized Korteweg de Vries equation. In this exercise, we
assume that for any initial data in u0 ∈ H1(R), there exists a local in time solution
u ∈ C([0, Tmax), H

1(R)). Moreover, in this exercise, all computations can be done
formally, that is, without rigorous justification (usually based on density arguments
and persistence of regularity).

(a) We define, for v ∈ H1(R), E(v) = 1
2

∫
(∂xv)

2 − 1
8

∫
v8. Prove that for any

solution u, the energy E(u(t)) is conserved for all time such that the solution is
defined.

We formally find the energy conservation by multiplying (gKdV) by ∂2
xu+ u7

and using ∫
∂x(∂

2
xu+ u7)(∂2

xu+ u7) = 0

so that ∫
(∂tu)(∂

2
xu+ u7) = 0,

which provides after integration by parts

d

dt
E(u(t)) = 0.
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(b) Check that Q defined by Q(x) =

Å
4

cosh2 (3x)

ã1/6
is solution of

Q ∈ H1(R), Q′′ +Q7 = Q on R.

We have
Q(x) = 4

1
3 cosh−

1
3 (3x)

and so

Q′′(x) = −4
1
3

Ä
sinh(3x) cosh−

4
3 (3x)

ä′
= 4

1
3

Ä
−3 cosh−

1
3 (3x) + 4 sinh2(3x) cosh−

7
3 (3x)

ä
= 4

1
3

Ä
cosh−

1
3 (3x)− 4 cosh−

7
3 (3x)

ä
= Q(x)−Q7(x)

(c) Check that q(t, x) = Q(x− t) is a solution of (gKdV).
We have

∂tq + ∂x(∂
2
xq + q7) = −Q′(x− t) + (Q′′ +Q7)′(x− t) = 0

(d) Check that ∫
(Q′)2 =

3

8

∫
Q8.

Multiplying the equation of Q by Q and integrating by parts, we find

−
∫
(Q′)2 +

∫
Q8 =

∫
Q2.

Multiplying the equation of Q by Q′ and integrating on (−∞, x], we find

1

2
(Q′)2 +

1

8
Q8 =

1

2
Q2.

Integrating on R, we find∫
(Q′)2 +

1

4

∫
Q8 =

∫
Q2

Combining the two identities, we find the desired result.

Our objective in the next questions is to prove the instability of the solution q
in the space H1.

(e) Let F (v) = E(v) + 1
2

∫
v2. Prove that for any ε ∈ H1(R) such that ∥ε∥H1 ⩽ 1,

F (Q+ ε) = F (Q) +
1

2
(Lε, ε) +R(ε) where |R(ε)| ⩽ C∥ε∥3H1

and where the operator L is defined by

Lε = −∂2
xε+ ε− 7Q6ε.
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We compute

E(Q+ ε) =
1

2

∫
(∂x(Q+ ε))2 − 1

8

∫
(Q+ ε)8

= E(Q) +

∫
Q′∂xε−

∫
Q7ε+

1

2

∫
(∂xε)

2 +
7

2

∫
Q6ε2

− 1

8

∫ (
(Q+ ε)8 − 8Q7ε− 28Q6ε2

)
= E(Q)−

∫
Qε+

1

2

∫
(∂xε)

2 +
7

2

∫
Q6ε2 +R(ε)

where
|R(ε)| ⩽

∫
|ε|3 + |ε|7 ⩽ C∥ε∥3H1 .

Second
1

2

∫
(Q+ ε)2 =

1

2

∫
Q2 +

∫
Qε+

∫
ε2.

Thus,

F (Q+ ε) = F (Q) +
1

2
(Lε, ε) +R(ε).

(f) Define ϕ = Q4 and ΛQ = 1
3
Q+ xQ′. Compute

Lϕ, L(ΛQ) and L(Q′).

We compute
Q4(x) = 4

2
3 cosh−

4
3 (3x) ,

and thus

(Q4)′′ = −4
5
3

Ä
sinh(3x) cosh−

7
3 (3x)

ä′
= 4

5
3

Ä
−3 cosh−

4
3 (3x) + 7 sinh2(3x) cosh−

10
3 (3x)

ä
= 4

5
3

Ä
4 cosh−

4
3 (3x)− 7 cosh−

10
3 (3x)

ä
= 16Q4 − 7Q6Q4.

Therefore
LQ4 = −15Q4.

Then
LQ′ = 0

by differentiating Q′′ +Q7 = Q with respect to x. Lastly,

L(ΛQ) =
1

3
LQ+ L(xQ′) = −2Q7 − 2Q′′ = −2Q.
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We assume the following property : there exist K1, K2 > 0 such that

for all ε ∈ H1(R) with (ε,Q′) = 0, (Lε, ε) ⩾ K1∥ε∥2H1 −K2(ε, ϕ)
2. (3)

(g) For α0 > 0 small, consider the set

Uα0 =
{
u ∈ H1(R) | inf

y∈R
∥u−Q(· − y)∥H1 ⩽ α0

}
.

Prove that for α0 small enough, there exists a unique map σ : Uα0 → R such that
for all u ∈ Uα0 , we can decompose u(x) = (Q+ ε)(x+ σ(u)) with

(ε,Q′) = 0 and ∥ε∥H1 ⩽ Cα0.

Let u ∈ Uα0 . We fix y1 such that ∥u(· + y1) − Q∥H1 ⩽ 2α0 Then, we define
v = u(·+ y1) and we apply the result from the course (based on the Implicit
Function Theorem). There exists

v 7→ z(v)

such that ε(x) = v(x)−Q(x− z(v)) satisfies
∫
εQ′(x− z(v)) = 0.

(h) Define the initial data u0,λ(x) = λQ(λ2x), for λ > 1 close to 1. Prove

∥u0,λ∥L2 = ∥Q∥L2 , lim
λ→1+

∥u0,λ −Q∥H1 = 0, δ(λ) = E(Q)− E(u0,λ) > 0.

The computations follow from change of variable∫
u20,λ = λ2

∫
Q2(λ2x)dx =

∫
Q2.

Then ∫
(λQ(λ2x)−Q(x))2dx → 0,

∫
(λ3Q′(λ2x)−Q′(x))2dx → 0

as λ → 1 by the dominated convergence theorem.
Last, we have

E(Q) =
1

2

∫
(Q′)2 − 1

8

∫
Q8 =

1

8

Å
3

2
− 1

ã∫
Q8 =

1

16

∫
Q8

and

E(u0,λ) =
1

2
λ4

∫
(Q′)2 − 1

8
λ6

∫
Q8

=
3

16
λ4

∫
Q8 − 1

8
λ6

∫
Q8

=
1

16
λ4(3− 2λ2)

∫
Q8.

Thus,

δ(λ) =
1

16
(1− 3λ4 + 2λ6)

∫
Q8

Setting f(λ) = 1− 3λ4+2λ6 we have f(1) = 0, f ′(1) = 0 but f ′′(1) = 24 > 0.
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Denote by uλ(t) the local H1 solution of (gKdV) corresponding to uλ(0) = u0,λ.

For the sake of contradiction, we consider the following assertion

∀0 < α < α0, ∃λ > 1, such that uλ exists for all t ⩾ 0

and for all t ⩾ 0, uλ(t) ∈ Uα.
(4)

(i) Explain why contradicting assertion (4) will prove a form of instability of the
solution q(t, x).

Taking the negation, we have

∃0 < α < α0, ∀λ > 1, such that ∃t ⩾ 0, uλ(t) ̸∈ Uα.

This means that even taking λ > 1 arbitrarily close to 1, the corresponding
solution uλ exits the neighbourhood Uα.

From now on, we assume that (4) holds and we seek a contradiction.
We take 0 < α < α0 (where α0 can be taken smaller if needed) and we
consider λ > 1 as in (4). For all t ⩾ 0, we decompose u(t, x) as u(t, x) =
(Q+ ε)(t, x+ σ(t)) where

(ε(t), Q′) = 0 and ∥ε(t)∥H1 ⩽ Cα0.

We assume that the function t 7→ σ(t) is of class C1.

(j) Using the conservation of the L2 norm for u(t), show that for all t ⩾ 0,

|(ε(t), Q)| ⩽ C∥ε(t)∥2H1 .

Indeed, we check that

d

dt

∫
u2(t) =

∫
u∂tu =

∫
(∂2

xu+ u7)∂xu = 0

by integration by parts. Thus,∫
Q2 =

∫
u20,λ =

∫
u2(t) =

∫
Q2 + 2

∫
Qε(t) +

∫
ε2(t).

This proves

|(ε(t), Q)| ⩽ 1

2
∥ε(t)∥2L2 .

(k) Write the equation satisfied by ε and prove that, for all t ⩾ 0,

|σ′(t)− 1| ⩽ C∥ε(t)∥H1 .
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We have

∂tu = ∂tε(x+ σ(t)) + σ′(Q′ + ∂xε)(x+ σ(t)),

∂x(∂
2
xu+ u7) = (Q′′′ + ∂3

yε+ (Q7)′ + 7∂y(Q
6ε) + ∂y((Q+ ε)7 −Q7 − 7Q6ε))(x+ σ(t)).

Thus, the equation of u is rewritten as follows

∂tε+ ∂y(Lε+ (Q+ ε)7 −Q7 − 7Q6ε) + (σ′ − 1)(Q′ + ∂xε) = 0

Multiplying this equation by Q′ and using (ε,Q′) = 0, we find the bound
|σ′(t)− 1| ⩽ C∥ε(t)∥H1 .

(l) Prove that there exists K3 > 0 such that, for all t ⩾ 0,

|(ε(t), ϕ)| ⩾ K3∥ε(t)∥H1 +K3

»
δ(λ).

We have
(Lε, ε) ⩾ K1∥ε∥2H1 −K2(ε, ϕ)

2

and by F (u0,λ) = F (Q+ ε),

−2δ(λ) = (Lε, ε) + 2R(ε) ⩾ ∥ε∥2H1 −K2(ε, ϕ)
2

Thus,
(ε, ϕ)2 ⩾ C∥ε∥2H1 + Cδ(λ).

for a constant C > 0, which implies the result.

Let χ be a smooth function on R such that

χ(x) ≡ 1 on (−∞, 1], χ(x) ≡ 0 on [2,+∞), 0 ⩽ χ(x) ⩽ 1 on [1, 2].

Let ζ(x) be defined as follows

ζ(x) =

∫ x

−∞
(ΛQ(y) + βϕ(y))dy, β = −

∫
QΛQ∫
Q5

. (5)

For A > 1 large to be defined later, for all t ⩾ 0, set

J(t) =

∫
ε(t, x)ζ(x)χ

( x

A

)
dx.

(m) Prove that
∀t ⩾ 0, |J(t)| ⩽ Cα0A

1
2 .

Check that
∫
ζQ′ = 0.
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This follows from the Cauchy-Schwarz inequality

|J | ⩽ C∥ε∥L2

Ç∫ 2A

0
dx

å 1
2

⩽ C∥ε∥L2

√
A ⩽ Cα0

√
A.

(n) Using the equation of ε, prove (formally) that

d

dt
J(t) = K4(ε(t), ϕ) +RJ(ε(t))

where K4 ̸= 0 is a constant to specify and where RJ satisfies

|RJ(ε)| ⩽ C∥ε∥2H1 + CA− 1
2∥ε∥H1 .

(o) Find a contradiction to (4) for A > 1 large enough and α0 > 0 small enough.
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