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The objective of this course is to give a qualitative description of the asymptotic
behavior in large time of all the global solutions of the one-dimensional focusing cubic
Klein-Gordon equation with damping{

∂2
t u+ 2α∂tu− ∂2

xu+ u− u3 = 0, (t, x) ∈ R× R,
u(0, x) = u0(x), ∂tu(0, x) = v0(x), x ∈ R.

(1)

Here, α ∈ (0, 1) is a fixed damping constant and (u0, v0) ∈ H1(R) × L2(R) is the
initial data. We start by a study of the local and global Cauchy problem. Then, we
introduce the key notion of solitary waves for this equation, and we study their stability
properties. By variational techniques, it is then proved that in large time, any global
solution converges strongly, at least for a subsequence, to the zero function or to a sum
of decoupled solitary waves. Lastly, we describe a more detailed convergence result,
for the whole sequence of time, with a characterization of all the possible asymptotic
configurations and a precise convergence rate.

These lecture notes contain no new material and are entirely inspired by the refer-
ences [1, 3, 4, 7, 9, 13, 14, 16].

1 The local Cauchy problem

1.1 The linear problem

A solution u of (1) will be seen as a solution of the first order system
∂tu = v

∂tv = −2αv + ∂2
xu− u+ u3, (t, x) ∈ R× R,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,
(NLKG)

and we will use the notation u⃗ = (u, ∂tu) = (u, v). We define the energy of u⃗ by

E(u⃗) =

∫
R

(
1
2v

2 + 1
2(∂xu)

2 + 1
2u

2 − 1
4u

4
)
dx. (2)
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We check by integration by parts that it holds formally

d

dt
E(u⃗) = −2α∥v∥2

and thus, for 0 ≤ t1 < t2,

E(u⃗(t2))− E(u⃗(t1)) = −2α

∫ t2

t1

∥v∥2 dt. (3)

Since α > 0, we obtain that the energy is nonincreasing for any solution for which
(3) can be justified. This important qualitative property leads us to work for finite energy
solutions, that is solutions such that u⃗(t) ∈ H1(R) × L2(R), for which the quantity E
is well-defined. The space H1(R)× L2(R), denoted simply by H1 × L2 or by X, will be
called the energy space. We also denote Y = L2 ×H−1.

The notation
∫

will be used for
∫
R dx. We denote ⟨·, ·⟩ the L2 scalar product for

real-valued functions ui or vector-valued functions u⃗i = (ui, vi) (i = 1, 2)

∥u∥ := ∥u∥, ⟨u1, u2⟩ :=
∫

u1u2, ⟨u⃗1, u⃗2⟩ :=
∫

u1u2 +

∫
v1v2,

and we denote

∥u⃗∥X :=
√

∥u∥2
H1 + ∥v∥2, ⟨u⃗1, u⃗2⟩X :=

∫
(∂xu1)(∂xu2) +

∫
u1u2 +

∫
v1v2,

∥u⃗∥Y :=
√

∥u∥2 + ∥v∥2
H−1 .

Lemma 1.1 ([4, Chapter 9.5]). The linear problem{
∂tu = v

∂tv = ∂2
xu− u− 2αv,

(4)

generates a strongly continuous semigroup of contractions (Sα(t))t≥0 in X satisfying, for
some Cα ≥ 1, γ > 0, for all t ≥ 0,

∥Sα(t)∥L(X) ≤ Cαe
−γt, (5)

Moreover, (Sα(t))t≥0 extends to a strongly continuous semigroup of contraction in Y
satisfying, for some C ′

α ≥ 1, γ′ > 0, for all t ≥ 0,

∥Sα(t)∥L(Y ) ≤ C ′
αe

−γ′t.

Proof. We define the operator Aα on H1 × L2 by{
D(Aα) = H2 ×H1,

Aαu⃗ = (v, u′′ − u− 2αv), for any u⃗ ∈ D(Aα).

We claim that the operator Aα is maximally dissipative in the sense that
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• Aα is dissipative: for all u⃗ ∈ D(Aα) and all λ > 0, ∥u⃗− λAαu⃗∥X ≥ ∥u⃗∥X ,

• for all λ > 0 and all f⃗ ∈ X, there exists u⃗ ∈ D(Aα) such that u⃗− λAαu⃗ = f⃗ .

Indeed, we have

⟨Aαu⃗, w⃗⟩X =

∫
v′w′ + vw + (u′′ − u− 2αv)z

=

∫
(v′w′ + vw − u′z′ − uz)− 2α

∫
vz.

In particular, ⟨Aαu⃗, u⃗⟩X = −2α
∫
v2 ≤ 0. Moreover, for an operator on a Hilbert space,

the property ⟨Aαu⃗, u⃗⟩X ≤ 0 is known to be equivalent to the fact that Aα is dissipative.
Then, we prove the surjectivity. It is enough to prove the surjectivity for λ = 1. Let
f⃗ ∈ X. We solve{

u− v = f

v − u′′ + u+ 2αv = g
⇐⇒

{
−u′′ + 2(1 + α)u = g + (1 + 2α)f

v = u− f

Using the Fourier transform, or the convolution product, or the Lax-Milgram theorem,
it is easy to find u ∈ H2, solution of −u′′ + 2(1 + α)u = g + (1 + 2α)f . Then, we set
v = u− f ∈ H1. Moreover, it is clear that the domain D(Aα) is dense in X. Therefore,
by the Hille-Yosida-Phillips theorem, Aα generates a semigroup of contraction (Sα(t))t≥0

on X.
For a solution of (4), we set

N(t) =

∫
(v2 + (∂xu)

2 + u2 + 2αuv)

and we compute d
dtN = −2αN. Thus, N(t) = N(0)e−2αt and since

(1− α)

∫
(v2 + (∂xu)

2 + u2) ≤ N(t) ≤ (1 + α)

∫
(v2 + (∂xu)

2 + u2)

we obtain the result for the bound in L(X).
The theory in Y = L2 ×H−1 is done similarly.

Remark 1.2 (The User Guide). For u⃗0 ∈ D(Aα), the function u⃗(t) = Sα(t)u⃗0 is the
unique solution of the linear problem

u⃗ ∈ C([0,+∞), D(Aα)) ∩ C1([0,+∞), X)
du⃗
dt = Aαu⃗

u⃗(0) = u⃗0

For u⃗0 ∈ X, the function u⃗(t) = Sα(t)u⃗0 is unique solution of the linear problem
u⃗ ∈ C([0,+∞), X) ∩ C1([0,+∞), Y )
du⃗
dt = Aαu⃗

u⃗(0) = u⃗0
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1.2 The nonlinear problem

The standard theory of semilinear evolution equations (see for instance [4, Chapter 4.3]
or [19]) yields the following result.

Proposition 1.3. For any initial data u⃗0 ∈ X, there exists a unique maximal solution

u⃗ = (u, ∂tu) ∈ C([0, Tmax), X) ∩ C1([0, Tmax), Y )

of (NLKG) satisfying u⃗(0) = u⃗0.
If the maximal time of existence Tmax is finite, then limt↑Tmax ∥u⃗(t)∥X = ∞.
If u⃗0 ∈ D(Aα), then

u⃗ = (u, ∂tu) ∈ C([0, Tmax), D(Aα)) ∩ C1([0, Tmax), X).

Moreover, the map Tmax : u⃗0 ∈ X 7→ (0,∞) is lower semicontinuous, and for any
sequence (u⃗0,n) in X, if limn→∞ u⃗0,n = u⃗0 in X then, for any 0 < T < Tmax,

lim
n→∞

u⃗n = u⃗ in C([0, T ], X),

where u⃗n is the solution of (1) corresponding to u⃗0,n.

Proof. Observe that the map u 7→ u3 is Lipschitz continuous from bounded sets of H1

to L2. Indeed, in dimension one, one has supR |u| ≤ C∥u∥H1 and thus

|u3 − v3| ≤ C(|u|2 + |v|2)|u− v| so that ∥u3 − v3∥ ≤ C(∥u∥2H1 + ∥v∥2H1)∥u− v∥.

Let B̄M denote the closed ball of X of center 0 and radius M > 0. It follows that there
exists CL > 0 such that for all M > 0 and for all u, v ∈ B̄M it holds

∥u3 − v3∥ ≤ CLM
2∥u− v∥. (6)

We rewrite (NLKG) under the following equivalent Duhamel formulation

u⃗(t) = Sαu⃗0 +

∫ t

0
Sα(t− s)(0, u3(s)) ds. (7)

Uniqueness. Let T > 0. Then there exists at most one solution of (7) on [0, T ]. Indeed,
let u⃗1, u⃗2 be two solutions of (7) with the same initial data. Set

M = sup
t∈[0,T ]

max{∥u⃗1(t)∥X ; ∥u⃗2(t)∥X}.

We have by (7) and ∥S(t)∥L(X) ≤ C,

∥u⃗1(t)− u⃗2(t)∥X ≤ C

∫ t

0
∥u31(s)− u32(s)∥ ds ≤ CM2

∫ t

0
∥u1(s)− u2(s)∥ ds.

It follows from the Gronwall lemma that ∥u⃗1(t)− u⃗2(t)∥X = 0, for all t ∈ [0, T ].
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Existence of a local solution by contraction. Let M > 0 and fix

TM =
1

2CM2
> 0. (8)

We claim that for any u⃗0 ∈ X such that ∥u⃗0∥X ≤ M/2, there exists a solution u⃗ of (7)
on [0, T ]. Define

E = {u⃗ ∈ C([0, TM ], X) : ∥u⃗(t)∥X ≤ M, for all t ∈ [0, TM ]}.

We equip E with the distance generated by norm of C([0, TM ], X), i.e., for any u⃗1, u⃗2 ∈ E,

d(u, v) = sup
t∈[0,TM ]

∥u⃗1(t)− u⃗2(t)∥X .

Since C([0, TM ], X) is a Banach space and E is closed in C([0, TM ], X), (E, d) is a complete
metric space. For all u⃗ ∈ E, we define Φ(u⃗) ∈ C([0, TM ], X) by

Φ(u⃗)(t) = S(t)u⃗0 +

∫ t

0
S(t− s)u3(s) ds,

for all t ∈ [0, TM ].
First, we prove that Φ : E → E. Indeed, for any s ∈ [0, TM ], by (6)

∥u3∥ ≤ CM2∥u∥ ≤ CM3,

It follows from ∥Sα(t)∥ ≤ C and the definition of TM in (8) that for any t ∈ [0, TM ],

∥Φ(u⃗)(t)∥X ≤ ∥u⃗0∥X +

∫ t

0
∥u3(s)∥ds ≤ M + CLTMM3 ≤ 3

2
M.

Second we prove that Φ is a contraction on (E, d). Indeed, for any u⃗, v⃗ ∈ E, and for
any t ∈ [0, TM ],

∥Φ(u⃗)(t)− Φ(v⃗)(t)∥ ≤
∫ t

0
∥u3(s)− v3(s)∥ ds ≤ CLTMM2d(u, v) ≤ 1

2
d(u, v).

By the Banach Fixed-Point Theorem, Φ has a unique fixed-point u⃗ ∈ E, which is a
solution of (7).

Maximal solution. We claim that there exists a function Tmax : X → (0,∞] with the
following properties. For any u⃗0 ∈ X, there exists u ∈ C([0, Tmax(u⃗0)), X), such that for
all T ∈ (0, Tmax(u⃗0)), u is the unique solution of (7). Moreover, the following alternative
holds:

(i) Either Tmax(u⃗0) = ∞;

(ii) Or Tmax(u⃗0) < ∞ and then limt↑Tmax(u⃗0) ∥u⃗(t)∥X = ∞.
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When property (i) holds, one says that the solution is globally defined, or global.
When property (ii) holds, one says that the solution blows up in finite time.

Proof. Let u⃗0 ∈ X and M = 2∥u⃗0∥X . We define

Tmax(u⃗0) = sup{T > 0 : there exists a solution u of (7) on [0, T ]}.

We have just proved that Tmax is well-defined and Tmax ≥ TM > 0. Now, we define a func-
tion u⃗ ∈ C([0, Tmax(u⃗0)), X) which is solution of (7) on [0, T ] for any T ∈ (0, Tmax(u⃗0)).
Let t ∈ [0, Tmax(u⃗0)). Let T ∈ [t, Tmax(u⃗0)). By the definition of Tmax(u⃗0) as a supre-
mum, there exists a solution u⃗T of (7) on [0, T ]. Then, we set u⃗(t) = u⃗T (t) on [0, T ]. By
the uniqueness result, this definition does not depend on the choice of T ∈ [t, Tmax(u⃗0)).
Thus, it provides a function u⃗ ∈ C([0, Tmax(u⃗0)), X) which is indeed a solution of (7) on
[0, T ] for any T ∈ (0, Tmax(u⃗0)). Last, note that by the definition of Tmax(u⃗0), this solu-
tion cannot be extended beyond Tmax(u⃗0). This solution is called the maximal solution
of (7).

Now, we prove the blowup alternative. Fix any τ ∈ [0, Tmax(u⃗0)), set M = 2∥u(τ)∥
and consider TM > 0 given by (8). There exists a solution w⃗ of

w⃗ ∈ C([0, TM ], X),

w⃗(t) = S(t)u⃗(τ) +

∫ t

0
S(t− s)w3(s) ds.

(9)

We extend the function w⃗ ∈ C([0, τ + TM ], X) by setting

w⃗(t) =

{
u⃗(t) if t ∈ [0, τ ],

w⃗(t− τ) if t ∈ [τ, τ + TM ].

We observe that w⃗ is now a solution of the problem (7) on the interval [0, T ], for T =
τ + TM . By the definition of Tmax(u⃗0), this shows that

τ + TM < Tmax(u⃗0).

Assume Tmax(u⃗0) < ∞. By the general definition of TM in (8) and the value of M =
2∥u(τ)∥ in the present context, we obtain

1

2CLM2
≤ Tmax(u⃗0)− τ.

This is equivalent to

2CL∥u(τ)∥2 ≥
1

Tmax(u⃗0)− τ
, (10)

which proves that if Tmax(u⃗0) < ∞, then limt↑Tmax(u⃗0) ∥u⃗(t)∥X = ∞.

Persistence of regularity. In the above framework, since u3 ∈ C([0, Tmax(u⃗0), H
1), one

has (0, u3) ∈ C([0, Tmax(u⃗0), D(Aα)). Assume now in addition that u⃗0 ∈ D(Aα). Using
the Duhamel formulation (7) and the properties of Sα, we obtain u ∈ C([0, Tmax), D(Aα))
and then ∂tu ∈ C([0, Tmax), X).

Continuous dependence on the initial data. Now, we claim that
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(i) The function Tmax : X → (0,∞] is lower semi-continuous;

(ii) If u⃗0,n → u⃗0 as n → ∞ in X, then for any T ∈ (0, Tmax(u⃗0)), u⃗n → u⃗ in C([0, T ], X)
as n → ∞, where u⃗n and u⃗ are the solutions of (7) corresponding respectively to
u⃗0,n and u⃗0.

Let T ∈ (0, Tmax(u⃗0)). To prove (1)-(2), it suffices to show that if u⃗0,n → u⃗0 then for
n large enough Tmax(u⃗0,n) > T and u⃗n → u⃗ in C([0, T ], X).

Set M = 1 + 2 supt∈[0,T ] ∥u⃗(t)∥X and define

τn = sup{t ∈ [0, Tmax(u⃗0)) : ∥u⃗n(s)∥X ≤ M for all s ∈ [0, t]}.
Since ∥u⃗0,n∥ < M/2 for n large enough, τn > 0 is well-defined. Moreover, by the well-
posedness theory τn > TM . For any t ∈ [0,min(T ; τn)], we have

∥u⃗(t)− u⃗n(t)∥X ≤ ∥u⃗0 − u⃗0,n∥X + CLM
2

∫ t

0
∥u⃗(s)− u⃗n(s)∥ ds,

and thus by the Gronwall Lemma, for any t ∈ [0,min(T ; τn)],

∥u⃗(t)− u⃗n(t)∥X ≤ ∥u⃗0 − u⃗0,n∥X exp
(
CLM

2T
)
. (11)

This proves that for any t ∈ [0,min(T ; τn)],

∥u⃗n(t)∥X ≤ ∥u⃗(t)∥X + ∥u⃗(t)− u⃗n(t)∥X ≤ M

2
+ ∥u⃗0 − u⃗0,n∥X exp

(
CLM

2T
)
<

3M

4
,

for n large enough. Therefore, τn > T , which also justifies that Tmax(u⃗0,n) > T .
Lastly, estimate (11) implies that u⃗n → u⃗ in C([0, T ], X).

In this course, we systematically work in the framework of such maximal finite energy
solutions.

Corollary 1.4. In the context of Proposition 1.3, the function t 7→ E(u⃗(t)) is C1 on
[0, Tmax(u⃗0)) and for all t ∈ [0, Tmax(u⃗0)), it holds

d

dt
E(u⃗(t)) = −2α∥v(t)∥2.

Proof. Let u⃗0 ∈ X and for all n ≥ 0, let u⃗0,n ∈ D(Aα) be such that u⃗0,n → u⃗0 as n → ∞
in X. It is known that for any T ∈ (0, Tmax(u⃗0)), u⃗n → u⃗ in C([0, T ], X) as n → ∞.

For u⃗(t), it is rigorously checked by using (NLKG) that

d

dt
E(u⃗n(t)) = −2α∥vn(t)∥2.

In particular, for all t ∈ [0, Tmax(u⃗0)), and all n large,

E(u⃗n(t))− E(u⃗0,n) = −2α

∫ t

0
∥vn(s)∥2 ds.

Passing to the limit n → +∞ E(u⃗n(t)) → E(u⃗(t)) and ∥vn(s)∥2 → ∥v(s)∥2. Thus, for
all t ∈ [0, Tmax(u⃗0)),

E(u⃗(t))− E(u⃗0) = −2α

∫ t

0
∥v(s)∥2 ds.

This proves the result.
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2 The global Cauchy problem

2.1 On blowup in finite time

The negative sign in front of u3 in equation (1) means that the equation is focusing. In
particular, the sign of the quartic term in the definition of the energy prevents us to
use the decay of energy to prove global wellposedness. On the contrary, we are going to
prove that there exist blow up solutions for the equation.

Together with the energy functional E(t) := E(u⃗(t)) defined in (2) and satisfying
(3), we will use the following quantities

M(t) :=
1

2
∥u(t)∥2 + α

∫ t

0
∥u(s)∥2 ds,

W (t) :=
1

2

(
∥∂tu(t)∥2 + ∥∂xu(t)∥2 + ∥u(t)∥2

)
.

Lemma 2.1. It holds

M ′(t) =

∫
u(t)∂tu(t) dx+ α∥u(t)∥2 (12)

=

∫
u(t)∂tu(t) dx+ 2α

∫ t

0

∫
u(s)∂tu(s) dx ds+ α∥u(0)∥2, (13)

M ′′(t) = 3∥∂tu(t)∥2 + ∥∂xu(t)∥2 + ∥u(t)∥2 − 4E(t), (14)

W ′(t) = −2α∥∂tu(t)∥2 +
∫

u3(t)∂tu(t) dx. (15)

Proof. Direct computations using (1) and (2). Density arguments are used as in the
proof of Corollary 1.4.

Theorem 2.2. Let 0 < α ≤ 1
4 . If E(0) < 0, then the corresponding solution of (1)

blows up in finite time.

Proof. Assume that E(0) < 0. For the sake of contradiction, assume that the solution
is global. Then, by (3), E(t) ≤ E(0) < 0. In particular, by (14), we have M ′′(t) ≥
−4E(t) ≥ −4E(0) > 0. It follows that limt→+∞M(t) = +∞. Moreover, since M ′′(t) ≥
3∥∂tu(t)∥2 + ∥u(t)∥2, we also have

M(t)M ′′(t) ≥ 1

2
∥u(t)∥2(3∥∂tu(t)∥2 + ∥u∥2) ≥ 3

2

(∫
u∂tu

)2

+
1

2
∥u∥4.

Using the inequality (a+ b)2 ≤ 5
4a

2 + 5b2, and then α < 1
4 , we have

(M ′(t))2 ≤ 5

4

(∫
u∂tu

)2

+ 5α2∥u∥4 ≤ 5

6
M(t)M ′′(t).

This implies that for all t ≥ 0,

(M− 1
5 )′′(t) ≤ 0.
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Since limt→+∞M− 1
5 (t) = 0, there exists t1 > 0 such that (M− 1

5 )′(t1) < 0. Using the
concavity, we obtain for t ≥ t1,

0 ≤ M− 1
5 (t) ≤ M− 1

5 (t1) + (t− t1)(M
− 1

5 )′(t1).

This is contradictory for t large.

2.2 Global solutions are bounded

Using arguments of [3] and [2, Proof of Lemma 2.7] for the undamped Klein-Gordon
equation, we prove a bound on global solutions of (1).

Theorem 2.3 ([2, 3]). Any global solution of (1) is bounded in X.

Proof. Let u⃗ be a global solution of (1). From (12) and the Cauchy-Schwarz inequality,

|M ′(t)| ≤ (1 + 2α)W (t). (16)

Moreover, by (3) and (14),
M ′′(t) ≥ 2W (t)− 4E(0). (17)

The proof of the global bound now proceeds in three steps.
Step 1. We prove that

lim inf
t→∞

M ′(t) < ∞. (18)

Proof of (18). We argue by contradiction, proving that lim∞M ′ = ∞ implies the
following inequality, for all t large enough,

(1 + ϵ)[M ′(t)]2 < M ′′(t)M(t) where ϵ > 0 is to be chosen. (19)

Then, we reach a contradiction by a standard argument. Indeed, remark that (19)

implies d2

dt2
[M−ϵ(t)] < 0, and lim∞M ′ = ∞ also implies lim∞M−ϵ = 0. Thus, there

exists t1 > 0 such that d
dt [M

−ϵ(t1)] < 0, and for all t ≥ t1,

0 ≤ M−ϵ(t) ≤ M−ϵ(t1) + (t− t1)
d

dt
[M−ϵ(t1)],

which is absurd for t ≥ t1 large enough.
Thus, we only need to prove (19) assuming lim∞M ′ = ∞. On the one hand, by (13)

and the Cauchy-Schwarz inequality, it holds

|M ′| ≤ ∥u∥∥∂tu∥+ 2α

(∫ t

0
∥u(s)∥2 ds

) 1
2
(∫ t

0
∥∂tu(s)∥2 ds

) 1
2

+ α∥u(0)∥2.

Let ϵ > 0 to be chosen later, we estimate

|M ′|2 ≤ (1 + ϵ)

[
∥u∥∥∂tu∥+ 2α

(∫ t

0
∥u(s)∥2 ds

) 1
2
(∫ t

0
∥∂tu(s)∥2 ds

) 1
2

]2
+

(
1 +

1

ϵ

)
α2∥u(0)∥4.
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Thus, using the inequality (AB + CD)2 ≤ (A2 + C2)(B2 +D2), we obtain

|M ′|2 ≤ (1 + ϵ)

[
1

2
∥u∥2 + α

∫ t

0
∥u(s)∥2 ds

] [
2∥∂tu∥2 + 4α

∫ t

0
∥∂tu(s)∥2 ds

]
+

(
1 +

1

ϵ

)
α2∥u(0)∥4

≤ (1 + ϵ)M

[
2∥∂tu∥2 + 4α

∫ t

0
∥∂tu(s)∥2 ds

]
+

(
1 +

1

ϵ

)
α2∥u(0)∥4.

On the other hand, by (3) and (14),

M ′′ = 2∥∂tu∥2 + 2W + 8α

∫ t

0
∥∂tu(s)∥2 ds− 4E(0)

≥ (1 + ϵ)3
[
2∥∂tu∥2 + 4α

∫ t

0
∥∂tu(s)∥2 ds

]
+W − 4E(0),

by fixing any ϵ such that

0 < ϵ <

(
5

4

) 1
3

− 1.

In particular, since lim∞W = ∞ by (16) and the assumption lim∞M ′ = ∞, we have
for t large enough,

M ′′ ≥ (1 + ϵ)3
[
2∥∂tu∥2 + 4α

∫ t

0
∥∂tu(s)∥2 ds

]
.

Thus,

(1 + ϵ)2|M ′|2 ≤ MM ′′ +

(
1 +

1

ϵ

)
α2∥u(0)∥4,

and using again lim∞M ′ = ∞ we obtain (19) for any t large enough.
Step 2. We prove that

sup
t∈[0,∞)

|M ′(t)| < ∞. (20)

Proof of (20). Combining (16) and (17), we obtain

M ′′(t) ≥ 2

1 + 2α
|M ′(t)| − 4E(0).

Let

H+(t) =
2

1 + 2α
M ′(t)− 4E(0),

H−(t) = − 2

1 + 2α
M ′(t)− 4E(0).

10



Then, H ′
+(t) =

2
1+2αM

′′(t) ≥ p−1
1+2α + (t). If there exists t ≥ 0 such that H+(t) > 0, then

lim∞H+ = ∞, contradicting (18). It follows that for all t ≥ 0,

M ′(t) ≤ 2(1 + 2α)E(0).

Similarly, H ′
−(t) = − 2

1+2αM
′′(t) ≤ − 2

1+2αH−(t). It follows that H−(t) ≤ e−
2

1+2α
tH−(0),

for all t ≥ 0. Thus,

M ′(t) ≥ −1 + 2α

2
(4E(0) + |H−(0)|) .

and (20) is proved.
Step 3. Last, we prove the global bound

sup
t∈[0,∞)

|W (t)| < ∞. (21)

Proof of (21). We rewrite (17) as

W (t) ≤ 1

2
M ′′(t) + 2E(0).

Integrating on (t, t+ 1) and using (20), we observe that

sup
t≥0

∫ t+1

t
W (s) ds < ∞. (22)

Moreover, by (15),

W ′ ≤ −2α∥∂tu∥2 +
∫

|u|3|∂tu| ≤
1

2
∥∂tu∥2 +

1

2

∫
|u|6 ≤ W +

1

2

∫
|u|6.

For t ≥ 1 and τ ∈ (0, 1), integrating on (t− τ, t), we find

W (t) ≤ W (t− τ) +

∫ t

t−τ
W (s) ds+

1

2

∫ t

t−τ

∫
|u(s)|6 dx ds

≤ W (t− τ) +

∫ t

t−1
W (s) ds+

1

2

∫ t

t−1

∫
|u(s)|6 dx ds.

Using the Sobolev inequality (in space-time) for the last term, we obtain, for some
constants C > 0,

W (t) ≤ W (t− τ) +

∫ t

t−1
W (s) ds+ C∥u∥6H1((t−1,t)×R)

≤ W (t− τ) +

∫ t

t−1
W (s) ds+ C

(∫ t

t−1
W (s) ds

)3

.

Integrating in τ ∈ (0, 1) and using (22), we find (21).

11



3 The solitary waves

It is also well-known that up to sign and translation, the only stationary solution of (1)
is the solitary wave (Q, 0), where Q is the explicit ground state

Q(x) =

√
2

cosh(x)
=

√
2 sech(x) (23)

which solves the equation
Q′′ −Q+Q3 = 0 on R. (24)

We see from the explicit expression of Q in (23) that, as x → ∞,

Q(x) = cQe
−x +O(e−3x), Q′(x) = −cQe

−x +O(e−2x) (25)

where cQ = 2
√
2. Note that by (24), it holds

∫
(∂xQ)2 +Q2 −Q4 = 0 and so

E(Q, 0) =
1

4

∫
Q4 > 0. (26)

Let

L = −∂2
x + 1− 3Q2 = −∂2

x + 1− 6 sech2,

⟨Lε, ε⟩ =
∫ {

(∂xε)
2 + ε2 − 3Q2ε2

}
dx.

We recall some standard properties of the operator L (see e.g. [9, Lemma 1]).

Lemma 3.1. The following properties hold.

(i) Spectral properties. The unbounded operator L on L2 with domain H2 is self-
adjoint, its continuous spectrum is [1,∞), its kernel is span{Q′} and −3 is its
unique negative eigenvalue with corresponding smooth normalized eigenfunction

Y =
√
3
2 sech2(x).

(ii) Coercivity property. There exist c1, c2 > 0 such that, for all ε ∈ H1,

⟨Lε, ε⟩ ≥ c1∥ε∥2H1 − c2
(
⟨ε, Y ⟩2 + ⟨ε,Q′⟩2

)
.

Proof. The continuous spectrum of L is the same as the one of the operator −∂2
x+1, i.e.

the interval [1,+∞), since the potential −6 sech2 is a compact perturbation of −∂2
x + 1.

We check by direct computations that LY = −3Y and LQ′ = 0. Since Y > 0, it is a
standard observation that −3 is the lowest eigenvalue of L. Moreover, since Q′ only has
one zero, 0 is the second eigenvalue. Lastly, we check R = 1− 3

2 sech
2 satisfies LR = R.

Since R ∈ L∞ and R′ ∈ L2, but R ̸∈ L2 the bottom of the continuous spectrum 1 is called
a resonance. Since R only vanishes twice on R, there is no other discrete eigenvalue. In
particular, by the spectral theorem, if ⟨ε, Y ⟩ = 0 and ⟨ε,Q′⟩ = 0, then

⟨Lε, ε⟩ ≥ ∥ε∥2.

12



See also the Appendix.
For a general ε ∈ H1, we decompose ε = aY + bQ′ + η, where ⟨η, Y ⟩ = 0 and

⟨η,Q′⟩ = 0. In particular, a = ⟨Y, ε⟩ and b∥Q′∥2 = ⟨Q′, ε⟩. We also have ⟨Lη, η⟩ ≥ ∥η∥2.
Thus,

⟨Lε, ε⟩ = −3a2 − b2∥Q′∥2 + ⟨Lη, η⟩
≥ −3a2 − b2∥Q′∥2 + ∥η∥2

≥ −4a2 − 2b2 + ∥ε∥2

≥ −4⟨ε, Y ⟩2 − 2⟨ε,Q′⟩2 + ∥ε∥2

Moreover, it is easy to see from the definition of L that

⟨Lε, ε⟩ ≥ ∥∂xε∥2 − 5∥ε∥2.

By taking a linear combinaison with coefficients 6/7 and 1/7 of the above inequalities,
we find

⟨Lε, ε⟩ ≥ 1

7

(
∥∂xε∥2 + ∥ε∥2

)
− 24

7
⟨ε, Y ⟩2 − 12

7
⟨ε,Q′⟩2.

The unique negative eigenvalue of L is related to an instability of the solitary wave
for the equation (1), described by the following functions:

ν± = −α±
√
α2 + 3, Y⃗ ± =

(
Y

ν±Y

)
, (27)

ζ± = α±
√

α2 + 3, Z⃗± =

(
ζ±Y
Y

)
. (28)

Indeed, it follows from explicit computations that the function

ε⃗±(t, x) = exp(ν±t)Y⃗ ±(x)

is solution of the linearized problem{
∂tε = η

∂tη = −Lε− 2αη.
(29)

Since ν+ > 0, the solution ε⃗+ illustrates the exponential instability of the solitary wave
in positive time. This means that the presence of the damping α > 0 does not remove
the exponential instability of the Klein-Gordon solitary wave. An equivalent formulation
of instability is obtained by saying that the functions Z⃗± are the eigenfunctions of the
adjoint linearized operator in (29):(

0 −L
1 −2α

)
Z⃗± = ν±Z⃗±,

and as a consequence, for any solution ε⃗ of (29),

a± = ⟨ε⃗ , Z⃗±⟩ satisfies
da±

dt
= ν±a±. (30)

13



Remark 3.2. The existence of the solutions ε+ is called linear exponential instability.
More arguments are needed to prove that the solitary wave solution (Q, 0) is actually
nonlinearly unstable, in the following sense

∃δ0 > 0,∀σ > 0,∃u⃗0 ∈ X, ∥u⃗0 − (Q, 0)∥X ≤ σ, ∃T > 0 : inf
a∈R

∥u⃗(T )− (Q(· − a), 0)∥X ≥ δ0

where u⃗ is the solution of (NLKG) with initial data u⃗0. We will not address this question
here, but it is an interesting exercise to prove this statement.

4 First decomposition result of any global solution

4.1 The Brezis-Lieb Lemma

The following is a particular case of the Brezis-Lieb lemma.

Lemma 4.1. Let (fn) be a sequence of functions in L4 that converges a.e. to a function
f and such that supn ∥fn∥L4 < +∞. Then

lim
n→∞

∫ ∣∣f4
n − f4 − (f − fn)

4
∣∣ = 0.

In particular,

lim
n→∞

(∫
f4
n −

∫
(f − fn)

4

)
=

∫
f4.

Proof. Let rn =
∣∣f4

n − f4 − (f − fn)
4
∣∣. We have

rn =
∣∣(fn − f + f)4 − f4 − (f − fn)

4
∣∣

=
∣∣4(fn − f)3f + 6(fn − f)2f2 + 4(fn − f)f3

∣∣
≤ ϵ(fn − f)4 + Cϵf

4.

for any ϵ > 0. Thus, the nonnegative function1 sn,ϵ = (rn−ϵ(fn−f)4)+ converges a.e. to
zero and is dominated by the integrable function Cϵf

4. By the dominated convergence
theorem, this proves that limn→+∞

∫
sn,ϵ = 0. Now, 0 ≤ rn ≤ sn,ϵ + ϵ(fn − f)4 and so

lim sup
n→+∞

∫
rn ≤ ϵ lim sup

n→+∞

∫
(fn − f)4.

In particular,

lim sup
n→+∞

∫
rn ≤ Cϵ lim sup

n→+∞

∫
(f4

n + f4) ≤ Cϵ,

and ϵ being arbitrary, we obtain limn→+∞
∫
rn = 0.

1The notation x+ means x+ = max(x, 0)
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4.2 A compactness result

Theorem 4.2. Let (un) be a sequence of functions in H1(R) such that

(i) sup
n

∥un∥H1 < +∞,

(ii) lim
n→+∞

u′′n − un + u3n = 0 in H−1.

Then, there exist a strictly increasing map φ : N → N, ξ1 ∈ R, σ1 ∈ {−1, 0,+1}, an
integer J ≥ 1 and if J ≥ 2, J − 1 values σj ∈ {−1;+1} and J − 1 sequences of points
(ξj,n)n, j = 2, . . . , J such that

(i) lim
n→+∞

|ξj,n − ξk,n| = lim
n→+∞

|ξj,n| = +∞, for j ̸= k, j ̸= 1, k ̸= 1

(ii) lim
n→+∞

∥∥∥uφ(n) − σ1Q(x− ξ1)−
J∑

j=2

σkQ(x− ξj,n)
∥∥∥
H1(R)

= 0.

Remark 4.3. As usual, the sum
∑J

j=2 is simply zero if J = 1.

Proof. The proof is taken from [1] (see also [14]).
Let

I(u) = 1
2

∫ (
(u′)2 + u2 − 1

2u
4
)

and
Ω(u) = −u′′ + u− u3

We extract subsequences of (un), but we will always denote them simply by (un). Firstly,
by assumption (i), extracting a subsequence, we assume

lim
n→+∞

∥un∥2H1 = c.

If c = 0, the conclusion of the theorem is true for σ1 = 0 and J = 1.
Now, we assume c > 0. By assumption (ii), we also have

lim
n→+∞

⟨Ω(un), un⟩H−1,H1 = lim
n→+∞

∫ (
(u′n)

2 + u2n − u4n
)
= 0.

As a consequence,

lim
n→+∞

∫
u4n = c, lim

n→+∞
I(un) =

c
4 .

Secondly, we extract a subsequence of (un) such that for some function q1 ∈ H1(R),

un ⇀ q1 weakly in H1(R) and L4(R) as n → +∞,

un → q1 a.e. in R as n → +∞.

By passing to the limit in D′, q1 satisfies on R

q′′1 − q1 + q31 = 0.
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In particular, either q1 = 0 or there exists σ1 ∈ {−1,+1} and ξ1 ∈ R such that q1 =
σ1Q(x− ξ1). We summarize saying that q1 = σ1Q(x− ξ1) for σ1 ∈ {−1, 0,+1}.

Third, we set
v1,n = un − q1, c1 = ∥q1∥2H1 ,

so that

v1,n ⇀ 0 as n → +∞ weakly in H1(R)
v1,n → 0 as n → +∞ in L2([−K,K]), for any K > 0.

Moreover, by weak convergence

lim
n→+∞

∥v1,n∥2H1 = lim
n→+∞

∥un∥2H1 − ∥q1∥2H1 = c− c1

and by a.e. convergence and the Brezis-Lieb lemma

lim
n→+∞

∫
v41,n = lim

n→+∞

∫
u4n −

∫
q41 = c− c1.

Thus, limn→+∞ I(v1,n) =
1
4(c− c1). Then

Ω(v1,n) = Ω(un)− Ω(q1)−
(
(un − q1)

3 − u3n + q31
)

= Ω(un)− Ω(q1) + 3unq1v1,n.

We have by hypothesis Ω(un) → 0 in H−1 and by the definition of q1, Ω(q1) = 0. We
now claim that unq1v1,n → 0 in L2. This follows from ∥un∥L∞ +∥v1,n∥L∞ ≤ C, v1,n → 0
as n → +∞ in L2([−K,K]), for any K > 0, and the fact that lim±∞ q1 = 0. As a
consequence

Ω(v1,n) → 0 in H−1 as n → +∞.

If c = c1 then σ1 = ±1, the sequence (v1,n) converges to 0 strongly in H1 and the
result is proved.

Now, we assume c1 < c and we want to prove that there exist a sequence (ξ2,n)n of
R and σ2 = −1 or +1 such that |ξ2,n| → +∞ and v1,n(· − ξ2,n) ⇀ σ2Q in H1 weak. To
begin with, we introduce J [k] = [k, k + 1] for any k ∈ Z and we set

µn = max
k

∥v1,n∥L4(Jk).

We estimate∫
v41,n =

∑
k∈Z

∫
J [k]

v41,n ≤ µ2
n

∑
k∈Z

(∫
J [k]

v41,n

)1/2
≤ Cµ2

n

∑
k∈Z

∫
J [k]

(
v′1,n)

2 + v21,n
)
≤ Cµ2

n∥v1,n∥2H1 .

Since limn→+∞
∫
v41,n = limn→+∞ ∥v1,n∥2H1 = c − c1 > 0, for n large, µn ≥ γ where

γ =
√

1/2C > 0. We denote by kn an integer such that µn = ∥v1,n∥L4(J [kn]). The
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sequence (kn)n cannot be bounded in Z. Indeed, otherwise, up to the extraction of a
subsequence, the sequence (kn)n would be constant, say kn = k0 for all n ∈ N. Thus,
∥v1,n∥L4(J [k0]) ≥ γ for all n large. By the H1 bound and Ascoli (or Rellich) theorem,
(v1,n)n converges strongly in L4 on J [k0] to a function v ̸≡ 0, up to a subsequence. But
this is a contradiction with v1,n ⇀ 0 weakly in H1(R).

We denote by q2 the weak limit of a subsequence of (v1,n(·+kn))n. Arguing as before,
q2 ̸≡ 0 and q2 is a solution of q′′2 − q2 + q32 = 0 on R. Therefore, there exists ξ2,n and
σ2 ∈ {−1, 1} such that |ξ2,n − ξ1| → +∞ and v1,n(·+ ξ2,n) ⇀ σ2Q weakly in H1. We set
v2,n = v1,n − σ2Q(· − ξ2,n) so that, again by weak convergence

lim
n→+∞

∥v2,n∥2H1 = lim
n→+∞

∥v1,n∥2H1 − ∥Q∥2H1 = c− c1 − ∥Q∥2H1 .

Iterating this argument a finite number of times, we find that there exists J ≥ 2 such
that

c− c1 = J∥Q∥2H1

(in particular, we deduce that c/∥Q∥2H1 is an integer), J − 1 values σj ∈ {−1;+1}, and
J − 1 sequences of points (ξj,n)n such that for j = 2, . . . , J , it holds

lim
t→+∞

|ξj,n − ξk,n| = +∞, for j ̸= k,

vj,n(·+ ξj,n) ⇀ σjQ in H1(R) weak, where vj,n = vj−1,n − σj−1Q,

wn → 0 in H1(R) strong where wn = vJ,n(·+ ξJ,n)− σJQ(· − ξJ,n).

In particular, we have obtained the decomposition

un = σ1Q(· − ξ1) + v1,n = · · · = σ1Q(· − ξ1) +
J∑

j=2

σjQ(· − ξj,n) + wn

with the requested properties on (ξj,n)n and σj .

4.3 First decomposition result on a subsequence of time

Theorem 4.4. Any global solution u⃗ of (1)

• either converges to 0, i.e. limt→∞ ∥u⃗(t)∥H1×L2 = 0 ;

• or is asymptotically a single or multi-solitary wave along a subsequence of time
in the following sense: there exist K ≥ 1, a sequence tn → ∞, a sequence
(ξk,n)k∈{1,...,K} ∈ RK and signs σk = ±1, for any k ∈ {1, . . . ,K}, such that

lim
n→∞

{∥∥∥u(tn)− K∑
k=1

σkQ(· − ξk,n)
∥∥∥
H1

+ ∥∂tu(tn)∥L2

}
= 0. (31)

Moreover, if K ≥ 2 then

lim
n→∞

ξk+1,n − ξk,n = ∞ for any 1 ≤ k ≤ K − 1.
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Remark 4.5. It is clear that if a global solution u⃗ satisfies (31) for two different se-
quences (tn)n and (t′n)n, then the number K ≥ 1 of solitary waves is the same for both
sequences. Indeed, by monotonicity of the energy (3) and (26), it holds

lim
t→∞

E(u⃗(t)) = KE(Q, 0) > 0. (32)

Remark 4.6. The following stronger result holds in the framework of Theorem 4.4: for
any sequence (tn)n with tn → ∞, the multi-solitary wave behavior (31) is satisfied for a
subsequence of (tn)n. This result, valid on any global solution of (1), is quite remarkable.
However, it does not fully describe the asymptotic behavior of global solutions as t → ∞,
which is the objective of Theorem 5.1.

Proof. Let u⃗ be a global solution of (1); in particular, by Theorem 2.3, it is bounded in
X. The proof proceeds in two steps.

Step 1. We prove that

lim
t→∞

{
∥∂tu(t)∥+ ∥∂2

t u(t)∥H−1

}
= 0. (33)

The function v⃗(t) = (v(t), ∂tv(t)) = (∂tu(t), ∂
2
t u(t)) satisfies

v⃗(t) = Sα(t)v⃗(0) +

∫ t

0
Sα(t− s)(0, 3u2(s)v(s)) ds.

By the bound in X and (3), it follows that v ∈ L2((0,∞) × R). Moreover, using
estimate (5), ∥ · ∥H−1 ≲ ∥ · ∥ and ∥ · ∥L∞ ≲ ∥ · ∥H1 , we have, for all t ≥ 0,

∥v⃗(t)∥L2×H−1 ≲ e−γt∥v⃗(0)∥L2×H−1 + ∥u∥2L∞([0,∞),H1)

∫ t

0
e−γ(t−s)∥v(s)∥ ds.

Splitting the integral
∫ t
0 =

∫ t/2
0 +

∫ t
t/2 in the last term and using the Cauchy-Schwarz

inequality ∫ t

0
e−γ(t−s)∥v(s)∥ ds ≲ e−γt/2∥v∥L2((0,∞)×R) + ∥v∥L2((t/2,∞)×R),

which implies limt→∞ ∥v⃗(t)∥L2×H−1 = 0 and thus (33).
Step 2. Let (tn)n be any sequence such that tn → ∞ and let un(x) = u(tn, x). Then,

by (33) and equation (1), it follows that

lim
n→∞

∥∂2
xun − un + u3n∥H−1 = 0.

Moreover, the sequence (un)n is bounded in H1. Then, the alternative stated in the
Theorem follows directly from Theorem 4.2.

In the case where limn→∞ ∥u⃗(sn)∥H1×L2 = 0, for some sequence of time (sn)n, sn →
∞, then it follows from (3) that limt→∞E(u⃗(t)) = 0. Thus, by (26) and the previous
arguments applied to any sequence (tn)n, with tn → ∞, there exists a subsequence (tn′)n′

such that limn′→∞ ∥u⃗(tn′)∥H1×L2 = 0. This implies that limt→∞ ∥u⃗(t)∥H1×L2 = 0 for
the whole sequence of time, as stated in the first part of the alternative.
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In the next sections, we will go deeper into the analysis of global solutions of (1).
However, because of limited time, most arguments will be formal and restricted to the
soliton behavior. In particular, the perturbation term will not be rigorously estimated
and only the interactions between the solitons will be studied. For rigorous proofs, we
refer to the original articles [7, 8].

5 Refined convergence theorem

The objective of the rest of the course is to give a sketch of the proof of the following
more refined convergence result.

Theorem 5.1. For any global solution u⃗ ∈ C
(
[0,∞), X

)
of (1), one of the following

three scenarios occurs:

Vanishing u⃗(t) converges exponentially to 0 in X as t → ∞.

Single soliton There exist σ = ±1, ℓ ∈ R such that u⃗(t) converges exponentially to
(σQ(· − ℓ), 0) in X as t → ∞.

Multi-soliton There exist K ≥ 2, σ = ±1, ℓ ∈ R and functions zk : [0,∞) → R, for
all k = 1, . . . ,K such that

lim
t→+∞

∥∥∥∥∥u(t)− σ
K∑
k=1

(−1)kQ(· − zk(t))

∥∥∥∥∥
H1

+ ∥∂tu(t)∥L2 = 0 (34)

and for any k = 1, . . . ,K,

lim
t→+∞

{
zk(t)−

(
k − K + 1

2

)
log t

}
= τk + ℓ (35)

where τk are given by (71).

6 Dynamics close to decoupled solitary waves

In this Section, we give general formal computation on solutions of (1) close to the
sum of K ≥ 1 decoupled solitary waves. For any k ∈ {1, · · · ,K}, let σk = ±1 and let
t 7→ (zk(t), ℓk(t)) ∈ R2 be C1 functions such that

K∑
k=1

|ℓk| ≪ 1 and, if K ≥ 2, for any k = 1, . . . ,K − 1, zk+1 − zk ≫ 1. (36)

For k ∈ {1, · · · ,K}, define

Qk = σkQ(· − zk), Q⃗k =

(
Qk

−ℓk∂xQk

)
. (37)
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Set

R =
K∑
k=1

Qk, R⃗ =
K∑
k=1

Q⃗k, G =

(
K∑
k=1

Qk

)3

−
K∑
k=1

Q3
k. (38)

We will also use the following notation σ−1 = 0 and σK+1 = 0.

6.1 Leading order of the nonlinear interactions

Lemma 6.1. Assume (36). For any k, j ∈ {1, . . . ,K}, j ̸= k, it holds.

(i) Asymptotics.
⟨Q3

k, Qj⟩ ∼ σkσjc1κe
−|zk−zj | (39)

where

κ :=
2
√
2

c1

∫
Q3(x)ex dx > 0 and c1 := ∥Q′∥2L2 . (40)

(ii) Leading order interactions.

• If K = 1 then G = 0 ;

• If K ≥ 2 then

⟨G, ∂xQk⟩ ∼ c1κσk

(
σk−1e

−(zk−zk−1) − σk+1e
−(zk+1−zk)

)
(41)

Proof. Assume that zj ≫ zk. Then, using (25),

⟨Q3
k, Qj⟩ = σkσj

∫
Q3(x− zk)Q(x− zj) dx

= σkσj

∫
Q3(x)Q(x+ zk − zj) dx

∼ 2
√
2σkσje

zk−zj

∫
Q3(x)ex dx = σkσjc1κe

−|zk−zj |.

6.2 Decomposition close to the sum of solitary waves

Lemma 6.2. Let u⃗ = (u, ∂tu) be a solution of (1) such that for some K ≥ 1

∥u(t)−
K∑
k=1

σkQ(· − ξk(t))∥H1 ≪ 1, ∥∂tu(t)∥L2 ≪ 1, ξk(t)− ξk+1(t) ≫ 1. (42)

Then, there exist unique C1 functions t 7→ (zk(t), ℓk(t))k∈{1,...,K} ∈ R2K , such that the
solution u⃗ decomposes as

u⃗ =

(
u
∂tu

)
=

K∑
k=1

Q⃗k + ε⃗ , ε⃗ =

(
ε
η

)
(43)

with the following properties.
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(i) Orthogonality and smallness. For any k = 1, . . . ,K,

⟨ε, ∂xQk⟩ = ⟨η, ∂xQk⟩ = 0 (44)

and
∥ε⃗ ∥H1×L2 ≪ 1, |ℓl| ≪ 1, zk+1 − zk ≫ 1

(ii) Equation of ε⃗ .{
∂tε = η +Modε

∂tη = ∂2
xε− ε+ (R+ ε)3 −R3 − 2αη +Modη +G

(45)

where

Modε =
K∑
k=1

(żk − ℓk) ∂xQk,

Modη =

K∑
k=1

(
ℓ̇k + 2αℓk

)
∂xQk −

K∑
k=1

ℓkżk∂
2
xQk.

(iii) Control of the geometric parameters. For k = 1, . . . ,K,

|żk − ℓk| ≲ ∥ε⃗ ∥2H1×L2 +

K∑
l=1

|ℓl|2, (46)∣∣∣ℓ̇k + 2αℓk + κσk

(
σk−1e

−(zk−zk−1) − σk+1e
−(zk+1−zk)

)∣∣∣ (47)

≲ ∥ε⃗ ∥2H1×L2 +

K∑
l=1

|ℓl|2 +
K−1∑
l=1

e−2(zl+1−zl). (48)

(iv) Control of the exponential directions. For k = 1, · · · ,K, if

a±k = ⟨ε⃗ , Z⃗±
k ⟩ (49)

then ∣∣∣∣ ddta±k − ν±a±k

∣∣∣∣ ≲ ∥ε⃗ ∥2H1×L2 +
K∑
l=1

|ℓl|2 +
K−1∑
l=1

e−(zl+1−zl). (50)

Proof. Proof of (i). The existence and uniqueness of the geometric parameters (zk, ℓk)
is proved for a fixed time t and we set u := u(T1). Let 0 < γ ≪ 1. First, for any u ∈ H1

such that
inf

|ξ1−ξ2|>| log γ|

∥∥∥u−
∑
k=1,2

σkQ(· − ξk)
∥∥∥
H1

≤ γ, (51)
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we consider z1(u) and z2(u) achieving the infimum∥∥∥u−
∑
k=1,2

σkQ(· − zk(u))
∥∥∥
L2

= inf
ξ1,ξ2∈R

∥∥∥u−
∑
k=1,2

σkQ(· − ξk)
∥∥∥
L2
.

Then, for γ > 0 small enough, the minimum is attained for z1(u) and z2(u) such that
|z1(u)− z2(u)| > | log γ| − C, for some C > 0. Let

ε(x) = u(x)− σ1Q(x− z1(u))− σ2Q(x− z2(u)), ∥ε∥L2 ≤ γ.

By the definition of z1(u) and z2(u), we have for k = 1, 2,

d

dξk

∫ [
u−

∑
k′=1,2

σk′Q(· − ξk′)
]2∣∣∣

(ξ1,ξ2)=(z1(u),z2(u))
= 0

and so
⟨ε,Q′(· − z1(u))⟩ = ⟨ε,Q′(· − z2(u))⟩ = 0. (52)

For u and ũ as in (51), we compare the corresponding zk, z̃k and ε, ε̃. First, for ζ,
ζ̃ ∈ RN , setting ζ̌ = ζ − ζ̃, we observe the following estimates

Q(· − ζ)−Q(· − ζ̃) = −ζ̌Q′(· − ζ) +OH1(|ζ̌|2), (53)

Q′(· − ζ)−Q′(· − ζ̃) = −ζ̌Q′′(· − ζ) +OH1(|ζ̌|2). (54)

Thus, denoting ǔ = u− ũ, žk = zk − z̃k, ε̌ = ε− ε̃, we obtain

ǔ = −
∑
k=1,2

σkžkQ
′(· − zk) + ε̌+OH1(|ž1|2 + |ž2|2).

(In the OH1 , there is no dependence on ǔ or ε̌). Projecting on Q′(· − zk), using (52) and
the above estimates, we obtain

|ž1|+ |ž2| ≲ ∥ǔ∥L2 + (|ž1|+ |ž2|)(e−
1
2
|z| + ∥ε̃∥L2 + |ž1|+ |ž2|)

and thus, for γ, ž1 and ž2 small,

∥ε̌∥H1 ≲ ∥ǔ∥H1 , |ž1|+ |ž2| ≲ ∥ǔ∥L2 . (55)

Therefore, for γ small enough, this proves uniqueness and Lipschitz continuity of z1 and
z2 with respect to u in H1.

Now, let v ∈ L2 and z1, z2 be such that ∥v∥L2 < γ and |z1 − z2| ≫ 1. Set

η(x) = v(x) + σ1ℓ1Q
′(x− z1) + σ2ℓ2Q

′(x− z2).

Then, it is easy to check that the conditions

⟨η,Q′(· − zk)⟩ = 0 (56)
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are equivalent to a 2× 2 linear system in the components of ℓ1 and ℓ2 whose matrix is a
perturbation of the identity up to a multiplicative constant. In particular, it is invertible
and the existence and uniqueness of parameters ℓ1(v, z1, z2), ℓ2(v, z1, z2) ∈ RN satisfying
(56) and |ℓ1|+ |ℓ2| ≲ ∥v∥L2 is clear. Moroever, with similar notation as before, it holds

∥η̌∥L2 + |ℓ̌1|+ |ℓ̌2| ≲ ∥v̌∥L2 + |ž1|+ |ž2|. (57)

The decomposition is thus achieved for u(t) with any fixed t ∈ [T1, T2]. In the rest of
this proof, we formally derive the equations of ε⃗ and the geometric parameters from the
equation of u. This derivation is used to prove by the Cauchy-Lipschitz theorem that
the parameters are C1 functions of time

The system of equations (45) follows from direct computations.
Now, we derive (46) from (44). We have

0 =
d

dt
⟨ε,Q1⟩ = ⟨∂tε, ∂xQ1⟩+ ⟨ε, ∂t(∂xQ1)⟩.

Thus (45) gives

⟨η, ∂xQ1⟩+ ⟨Modε, ∂xQ1⟩ − ⟨ε, ż1∂2
xQ1⟩ = 0.

The first term is zero due to the orthogonality (44). Hence, using the expression of Modε

(ż1,j − ℓ1,j)∥∂xQ∥2L2 = −
∫

(ż2 − ℓ2)∂xQ2(∂xQ1) dx+ ⟨ε, ż1∂2
xQ1⟩. (58)

From this formula, we deduce

|ż1,j − ℓ1,j | ≲ |ż2 − ℓ2|
∫

|∂xQ2(x)||∂xQ1(x)| dx+ |ż1| ∥ε∥.

Thus, we obtain

|ż1 − ℓ1| ≲ |ż2 − ℓ2|e−
1
2
|z| + |ż1 − ℓ1| ∥ε⃗ ∥H1×L2 + |ℓ1| ∥ε⃗ ∥H1×L2 .

Since ∥ε⃗ ∥H1×L2 ≲ γ, this yields

|ż1 − ℓ1| ≲ |ż2 − ℓ2|e−
1
2
|z| + |ℓ1| ∥ε⃗ ∥H1×L2 .

Similarly, it holds

|ż2 − ℓ2| ≲ |ż1 − ℓ1|e−
1
2
|z| + |ℓ2| ∥ε⃗ ∥H1×L2 ,

and thus, for large |z|, ∑
k=1,2

|żk − ℓk| ≲ (|ℓ1|+ |ℓ2|) ∥ε⃗ ∥H1×L2 ,

which justifies (46).
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Now, we prove (48) for k ∈ {2, . . . ,K − 1} for K ≥ 3. First,

d

dt
⟨η, ∂xQk⟩ = ⟨∂tη, ∂xQk⟩+ ⟨η, ∂t∂xQk⟩ = 0.

Thus, using (44) and (45),

0 =⟨∂2
xε− ε+ 3Q2

kε, ∂xQk⟩+ ⟨(R+ ε)3 −R3 − 3R2ε, ∂xQk⟩
+ 3⟨

(
R2 −Q2

k

)
ε, ∂xQk⟩+ ⟨G, ∂xQk⟩+ ⟨Modη, ∂xQk⟩ − ⟨η, żk∂2

xQk⟩.

Since ∂xQk satisfies ∂2
x∂xQk − ∂xQk + 3Q2

k∂xQk = 0, by integration by parts, the first
term is zero. Next, by Taylor expansion, we have the pointwise estimate

∣∣(R+ ε)3 −R3 − 3R2ε
∣∣ ≲ |ε|3 + |ε|2

K∑
l=1

|Ql|

and ∣∣R2 −Q2
k

∣∣ ≲ |Qk|
∑
j ̸=k

|Qj |+
∑
j ̸=k

∣∣Qj

∣∣2.
Thus, using ∥ · ∥L∞ ≲ ∥ · ∥H1 ,∣∣⟨(R+ ε)3 −R3 − 3R2ε, ∂xQk⟩

∣∣ ≲ ∥ε∥2H1

and by the Cauchy-Schwarz inequality

∣∣⟨(R2 −Q2
k)ε, ∂xQk⟩

∣∣ ≲ ∥ε∥2H1 +

K−1∑
k=1

e−2(zk+1−zk) .

By direct computation, we obtain

⟨Modη, ∂xQk⟩ =
(
ℓ̇k + 2αℓk

)
∥Q′∥2L2 +

∑
j ̸=k

(
ℓ̇j + 2αℓj

)
⟨∂xQj , ∂xQk⟩

−
∑
j ̸=k

ℓj żj⟨∂2
xQj , ∂xQk⟩.

Thus, using the equation of Q, (40) and (46), we obtain

⟨Modη, ∂xQk⟩ = c1
(
ℓ̇k + 2αℓk

)
+O

(∑
j ̸=k

|ℓ̇j + 2αℓj |e−
3
4
|zj−zk|

)

+O

(
∥ε⃗ ∥2H1×L2 +

K∑
l=1

|ℓl|2
)
.

Note that, by (46) and the Cauchy-Schwarz inequality, we obtain

∣∣⟨η, żk∂2
xQk⟩

∣∣ ≲ (|żk − ℓk|+ |ℓk|
)
∥ε⃗ ∥H1×L2 ≲ ∥ε⃗ ∥2H1×L2 +

K∑
k=1

|ℓk|2.
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Gathering above estimates we obtain∣∣∣ℓ̇k + 2αℓk + κσk

(
σk−1e

−(zk−zk−1) − σk+1e
−(zk+1−zk)

) ∣∣∣
≲ ∥ε⃗ ∥2H1×L2 +

K∑
l=1

|ℓl|2 +
∑
j ̸=k

|ℓ̇j + 2αℓj |e−
3
4
|zj−zk| +

K−1∑
l=1

e−2(zl+1−zl).
(59)

We obtain (48) by combining the estimates (59) for all k ∈ {1, . . . ,K} and neglecting
all second order terms.

6.3 Energy estimates

For µ > 0 small to be chosen, we denote ρ = 2α − µ. Consider the nonlinear energy
functional

E =

∫ {
(∂xε)

2 + (1− ρµ)ε2 + (η + µε)2 − 2[F (R+ ε)− F (R)− f(R)ε]
}
.

We recall the following energy estimates.

Lemma 6.3. There exists µ > 0 such that in the context of Lemma 6.2, the following
hold.

(i) Coercivity and bound.

µ∥ε⃗ ∥2H1×L2 −
1

2µ

K∑
k=1

(
(a+k )

2 + (a−k )
2
)
≤ E ≤ 1

µ
∥ε⃗ ∥2H1×L2 . (60)

(ii) Time variation.

d

dt
E ≤ −2µE +

1

µ
∥ε⃗ ∥H1×L2

[
∥ε⃗ ∥2H1×L2 +

K∑
k=1

|ℓk|2 +
K−1∑
k=1

e−(zk+1−zk)

]
. (61)

Proof. Left as an exercise. See also [8].

6.4 Approximate transformed system

We introduce refined parameters and functionals to analyse the time evolution of solu-
tions in the framework of Lemma 6.2. First, we set, for k = 1, . . . ,K,

yk = zk +
ℓk
2α

,

and for k = 1, . . . ,K − 1 (when K ≥ 2),

rk = yk+1 − yk ≫ 1.
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Second, we define

K+ = {k = 1, . . . ,K − 1 : σk = σk+1}, F+ =
∑
k∈K+

e−rk ,

K− = {k = 1, . . . ,K − 1 : σk = −σk+1}, F− =
∑
k∈K−

e−rk .

Proposition 6.4. Assume K ≥ 2. The equation for the evolution of yk is

ẏk ∼ − κ

2α
σk−1σke

−rk−1 +
κ

2α
σkσk+1e

−rk (62)

Moreover, there exists λ > 0 such that

d

dt

(
1

F+

)
≤ −λ. (63)

Proof. By direct computation

ẏk = żk +
ℓ̇k
2α

∼ − κ

2α
σk−1σke

−rk−1 +
κ

2α
σkσk+1e

−rk

It follows that, for any k = 1, . . . ,K − 1,

ṙk = ẏk+1 − ẏk = −κ

α
σkσk+1e

−rk +
κ

2α
σk+1σk+2e

−rk+1 +
κ

2α
σk−1σke

−rk−1

On the right-hand side of the above expression, the first term is always present for
k = 1, . . . ,K − 1, while the second and third terms might be zero depending on the
value of k. For k ∈ K+, it holds σk = σk+1 and one sees that

ṙk = −κ

α
e−rk +

κ

2α
σk+1σk+2e

−rk+1 +
κ

2α
σk−1σke

−rk−1 ,

with the same observation concerning the second and third terms on the right-hand side.
Thus,

−Ḟ+ =
∑
k∈K+

ṙke
−rk = − κ

2α
S+ (64)

where S+ denotes

S+ =
∑
k∈K+

(
2e−2rk − σk+1σk+2e

−(rk+rk+1) − σk−1σke
−(rk−1+rk)

)
.

We claim that there exists λ̃ > 0 such that S+ satisfies

S+ ≥ λ̃
∑
k∈K+

e−2rk . (65)
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Indeed, first, recall that the symmetric matrix of size N

AN =



2 −1 0 . . . 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 . . . 0 −1 2


is definite positive by the Sylvester criterion since for any j ∈ {1, . . . N}, the jth leading
principal minor of this matrix, i.e. the determinant of its upper-left j × j sub-matrix, is
positive (its value is j + 1).

Second, observe that in the sum defining S+, for given k ∈ K+, if k − 1 ̸∈ K+, then
σk−1σk = 1 (if k ≥ 2) or 0 (if k = 1) and thus the corresponding term is positive or zero
and can be ignored in establishing a lower bound for S+. The same property is true
for the term corresponding to σk+1σk+2 if k + 1 ̸∈ K+. Letting N = card(K+) ≥ 1 (by
the contradiction assumption), and calling ϕ the strictly monotone function such that
ϕ : j ∈ {1, . . . , N} 7→ ϕ(j) ∈ K+, we have

S+ ≥
∑

j∈{1,...,N}

(
2e−2rϕ(j) − e−(rϕ(j)+rϕ(j+1)) − e−(rϕ(j−1)+rϕ(j))

)
= f t

NANfN ,

where

fN =

 e−r(ϕ(1))

...

e−r(ϕ(N))

 .

Since AN > 0, (65) holds for some λ̃ > 0.
It follows from (64) and (65) that there exists λ > 0 such that

−Ḟ+ =
∑
k∈K+

ṙke
−rk ≤ −λF 2

+.

Thus,
d

dt

(
1

F+

)
= − 1

F 2
+

Ḟ+ ≤ −λ.

6.5 Long-time energy asymptotics

Lemma 6.5. It holds

E(u⃗) ∼ KE(Q, 0)− c1κF+ + c1κF−. (66)
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Proof. Expanding E(u, ∂tu) using the decomposition (43), integration by parts, the equa-
tion −∂2

xQ+Q− f(Q) = 0 and the definition of G in (38), we find

2E(u, ∂tu) =

∫
(∂tu)

2 + 2E (R, 0)− 2

∫
Gε

+

∫ (
(∂xε)

2 + ε2 − 1
2(R+ ε)4 + 1

2R
4 + 1

2R
3ε
)
.

Thus, using the Cauchy-Schwarz and Sobolev inequalities, it holds

2E(u, ∂tu) ∼
∫

(∂tu)
2 + 2E (R, 0) .

Note also that (43) implies∫
(∂tu)

2 ≲
∫ (

|η|2 +
K∑
k=1

∣∣ℓk∂xQk

∣∣2) ∼ 0.

Then, by direct computation, next −∂2
xQ+Q− f(Q) = 0,

E(R, 0) = KE(Q, 0) +
∑
k<j

∫ [
(∂xQk)(∂xQj) +QkQj −Q3

kQj −Q3
jQk

]
− 1

4

∫ (
R4 −

K∑
k=1

Q4
k −

∑
k ̸=j

Q3
kQj

)
∼ KE(Q, 0)−

∑
k<j

⟨Q3
k, Qj⟩.

Last, by the definition of F+ and F−, we observe that∑
k<j

⟨Q3
k, Qj⟩ ∼ c1κF+ − c1κF−

Indeed, in the above double sum
∑

k<j in k and j, the terms corresponding to j = k+1
contribute to ±c1κF± (depending on k ∈ K±) and the other terms (i.e. j ≥ k + 2) only
contribute to the error term.

Combining (66) with (3) and (32), we obtain the following result.

Corollary 6.6.

2α

∫ ∞

t
∥∂tu(s)∥2L2 ds ∼ −c1κF+(t) + c1κF−(t). (67)
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7 Description of long-time asymptotics

7.1 Alternate signs property

Proposition 7.1. Let u⃗ be a global solution of (1) such that K ≥ 2 in (31) of Theo-
rem 4.4. Then,

σk = −σk+1 for all k ∈ {1, . . . ,K − 1}. (68)

Proof. Assuming that K+ is not empty, we reach a contradiction. Indeed, recall that

d

dt

[
1

F+

]
≤ −λ,

By integrating the above estimate on [T, t], we obtain

1

F+(t)
≤ 1

F+(T )
− λ(t− T ),

which is contradictory with F+(t) ≥ 0 for large t. This means that K+ = ∅ and so
K− = {1, . . . ,K − 1}: the signs of the solitary waves are alternate.

7.2 No soliton case

If u⃗(t) converges to 0 as t → ∞, using the energy functional (see the proof of Lemma
1.1)

N(t) =

∫
(v2 + (∂xu)

2 + u2 + 2αuv − 1
2u

4)

and we compute d
dtN = −2αN. This proves the exponential convergence to 0 of u⃗ in X.

7.3 Multi-soliton case

In view of the alternate signs property (68), the system (62) is rewritten

ẏk =
κ

2α

(
e−(yk−yk−1) − e−(yk+1−yk)

)
(69)

This system of ODEs is studied in [16] and [10], where it appears in a different context
(the description of characteristic blowup points of the semilinear wave equation).

We check that an explicit solution to the ODE system is given by

ȳk(t) :=

(
k − K + 1

2

)
log t+ τk, for k = 1, . . . ,K, (70)

where (τk)k=1,...,K are constants uniquely defined by

K∑
k=1

τk = 0, e−(τk+1−τk) =
2α

κ
γk where γk =

k(K − k)

2
. (71)

(The first relation is choice made without loss of generality.)

29



A A positivity result

Lemma A.1. Let P = sech2 and Z = sech′. For any u ∈ H1, set

J(u) =

∫
(u′)2 − 6

∫
Pu2.

Let
γ = inf

{
J(u) : u ∈ H1 with (u, P ) = (u, Z) = 0, ∥u∥L2 = 1

}
. (72)

Then γ = 0.

Proof. Set R = 1− 3
2P and Au = −u′′−6Pu. Observe that P,Z,R′ ∈ H∞ and R ∈ L∞.

Moreover, AP = −4P , AZ = −Z, AR = 0 and (P,Z) = (P,R) = (Z,R) = 0.
We first show that γ ≤ 0. This is because J(R) = 0 and (R,P ) = (R,Z) = 0. Since

R ̸∈ L2, one needs an approximation argument. Let ζ be a smooth cut-off function
(ζ(x) = 0 for |x| ≥ 2, ζ(x) = 1 for |x| ≤ 1), set ζϵ(x) = ζ(ϵx) and let

Rϵ = ζϵR− ∥P∥−2
L2 (ζϵR,P )P − ∥Z∥−2

L2 (ζϵR,Z)Z,

for ϵ > 0. It follows that (ζϵ, P ) = (ζϵ, Z) = 0. Moreover,

|(ζϵR,P )| = |(ζϵR,P ) + ((1− ζϵ)R,P )| = |((1− ζϵ)R,P )| ≲ e−1/ϵ,

and as well |(ζϵR,Z)|| ≲ e−1/ϵ. Using similar estimates, it is not difficult to prove that

J(Rϵ) = J(R) +O(e−1/ϵ) = O(e−1/ϵ).

Since ∥Rϵ∥L2 ∼ ϵ−
1
2 , it follows that J(Rϵ/∥Rϵ∥L2) → 0 as ϵ → 0. Thus γ ≤ 0.

Now, to how that γ ≥ 0, we assume for the sake of contradiction that γ < 0.
Let (un)n≥1 be a minimizing sequence for problem (72). Since (un)n≥1 is clearly

bounded in H1, there exists u ∈ H1 such that (after extracting a subsequence) un → u
weakly in H1 and strongly in L2({|x| < k}) for all k > 0. It follows that (u, P ) =
(u, Z) = 0 and that J(u) ≤ lim inf J(un) = γ. In particular, J(u) < 0 so that u ̸= 0. If
∥u∥L2 < 1, then J(u/∥u∥L2) < γ, which is absurd. Thus we see that u is a minimizer.
It follows that there exist real constants λ, µ, ν (the Lagrange multipliers) such that

J ′(y) = 2Au = λu+ µP + νZ.

Multiplying the above equation successively by P and Z and using the orthogonality
properties and the equations for P and Z, we see that µ = ν = 0. Moreover, multiplying
the equation by u we obtain λ = 2γ; and so

Au = γu.

In particular, u ∈ H∞.
We next claim that γ ̸= −1. Indeed, if γ = −1, then u′′Z−uZ ′′ = 0 by the equations,

so that u′Z − uZ ′ is constant. Since u′Z − uZ ′ vanishes at ±∞, we see that u′Z = uZ ′,
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so that u and Z are proportional. This contradicts the orthogonality of u and Z and
proves the claim.

Since γ < 0, u does not vanish for |x| large. In particular, u has a finite number
of zeroes. Also, since (u, P ) = 0 and P > 0, u has at least one zero. We claim that
γ > −1. Indeed, suppose to the contrary that γ < −1, and let x0 be the smallest
zero of u. Without loss of generality, we may assume that u > 0 on (−∞, x0). On
(−∞,min{0, x0}), we have u, Z > 0 and u′′Z−uZ ′′ = (−γ−1)uZ > 0. Thus u′Z−uZ ′ is
increasing on (−∞,min{0, x0}). Since u′Z−uZ ′ vanishes at −∞, we see that u′Z−uZ ′ >
0 at x = min{0, x0}. If x0 = min{0, x0}, then (u′Z−uZ ′)(x0) = u′(x0)Z(x0) < 0, which
is a absurd. Thus x0 > 0; and so u > 0 on (−∞, 0]. One shows similarly that u < 0
on [0,∞), which is a contradiction and proves the claim γ > −1. Therefore −γ − 1 < 0
so that, arguing as above, u′Z − uZ ′ < 0 on (−∞,min{0, x0}]. It easily follows that
x0 < 0, i.e. u has at least one zero on (−∞, 0). Similarly one shows that u has at least
one zero on (0,∞), so that u has at least two zeroes.

We finally conclude. Let x0 be the smallest zero of u, and let −a < 0 < a be the two
zeroes of R. Assuming x0 ≤ −a, we have u′′R − uR′′ = −γuR > 0 on (−∞, x0) (recall
that γ < 0). Since u′R − uR′ vanishes at −∞, we conclude that (u′R − uR′)(x0) > 0.
As (u′R − uR′)(x0) = u′(x0)R(x0) < 0, this is absurd. Therefore −a < x0, i.e. R has
a zero on (−∞, x0). Similarly, if x1 > x0 is the largest zero of u, then R has a zero on
(x1,∞). Finally, by a similar Wronskian argument, we see that between any two (finite)
zeroes of u, there is a zero of R. Thus R has at least three zeroes. Since R has exactly
two zeroes, we obtain a contradiction which completes the proof.
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