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Abstract. — Let F//Fy be a quadratic extension of non-Archimedean locally compact fields of re-
sidual characteristic p # 2 with Galois automorphism o, and let R be an algebraically closed field of
characteristic £ ¢ {0, p}. We reduce the classification of GL,, (Fp)-distinguished cuspidal R-represen-
tations of GLy (F) to the level 0 setting. Moreover, under a parity condition, we give necessary con-
ditions for a o-selfdual cuspidal R-representation to be distinguished. Finally, we classify the distin-
guished cuspidal F,-representations of GL,(F) having a distinguished cuspidal lift to Q,.

Contents
1. Introduction. .. ..o 1
Structure of the paper. ... ... . 5
Acknowledgements. . ... 5
2. NOBALIOM . e 5}
3. Basic reSUltS. . .. 7
4. Reduction to level zero. . ... 11
5. The odd CaSe. ... o 28
6. Distinguished lift theorems........ ... .. .. 35
References. . ... 42

1. Introduction

1.1. Let F/Fy be a quadratic extension of non-Archimedean locally compact fields whose resi-
dual characteristic is a prime number p different from 2. Let ¢ be its non-trivial automorphism,
and G be the general linear group GL, (F") for some positive integer n. It is a totally disconnec-
ted, locally compact group, on which the involution ¢ acts componentwise, and the group G? of

its o-fixed points is equal to GL, (Fp).

Now fix an algebraically closed field R of characteristic different from p. A (smooth) represen-
tation 7 of G on an R-vector space V' is said to be distinguished (by G?) if V' carries a non-zero
G?-invariant linear form; more generally, if x is a smooth character of G with values in R*, the
representation 7 is said to be x-distinguished if V' carries a non-zero linear form A such that

A(m(h)v) = x(h)A(v), heG°, wveV.
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1.2. In the case where R is the field of complex numbers, distinguished irreducible representa-
tions of G have been extensively studied:

(1) they are o-selfdual, that is, the contragredient 7¥ of a distinguished irreducible represen-
tation 7 of G is isomorphic to its o-conjugate 7% (|16, 32, 33|) and their central character is tri-
vial on Fy,

(2) any o-selfdual discrete series representation of G is either distinguished or s«-distinguished
(5¢ denotes the character of F{j* whose kernel is the subgroup of F'/Fy-norms), but not both: this
is the Dichotomy and Disjunction Theorem (|23, 2, 3|),

(3) distinguished generic irreducible representations of G are classified in terms of their cuspi-
dal support (|4, 26, 27|),

(4) distinguished cuspidal representations of G are characterized in terms of their Galois para-
meter ([17]) and in terms of type theory (see [35] and below).

1.3. Distinguished irreducible representations of G with coefficients in a field R of positive cha-
racteristic have been less well studied (see [3, 35, 25, 12]). As in the complex case, they are o-
selfdual and their central character is trivial on F;*. For o-selfdual supercuspidal representations,
that is, irreducible representations which do not occur as subquotients of parabolically induced
representations from a proper Levi subgroup, one has a Dichotomy and Disjunction Theorem (see
Paragraph 3.2). One also has a distinction criterion in terms of Galois parameters (12| Proposi-
tion 3.15) and in terms of types (|35] Theorem 10.9). But there are explicit examples of o-selfdual
non-supercuspidal cuspidal representations that are neither distinguished nor s-distinguished (as
in [35] Remark 2.18) and of Steinberg representations that are both distinguished and s«-distin-
guished ([12] Remark 1.9). Also, there is no known classification of distinguished cuspidal repre-
sentations of GL, (F) for an arbitrary n > 3 (see [12] and Paragraph 4.13 below for n = 2).

In this paper, which can be considered as a sequel to [35], where all distinguished supercuspi-
dal R-representations of G have been classified, we investigate the classification of distinguished
cuspidal R-representations of G in terms of their supercuspidal support. We:

— reduce this classification to that of distinguished cuspidal representations of level 0, and from
there to finite group theory (see Section 4),

— give a necessary condition of distinction for o-selfdual cuspidal representations of G that sa-
tisfy a certain parity condition (see Section 5),

— classify the (distinguished, cuspidal) Fy-representations of G having a distinguished cuspidal
lift to Q,, where Qy is an algebraic closure of the field of /-adic numbers with residue field F,.

Let us explain these results in more detail.

1.4. Bushnell and Kutzko [9], in work extended to the modular setting by Vignéras [41], have
given an explicit construction of a collection of pairs (J, A) called extended mazimal simple types
(which we will abbreviate to types here), consisting of a compact-mod-centre open subgroup J of
G and an irreducible R-representation A of J, such that the representations ind?()\) are (irredu-
cible and) cuspidal, and such that every cuspidal R-representation of G appears in the collection
of ind§ ().

We need the following invariants associated to a cuspidal R-representation of G following this
explicit construction by compact induction (see Paragraphs 4.2 and 4.7):

(1) the endo-class ©: a fine refinement of the level introduced by Bushnell-Henniart in [6] and
which applies equally well to the modular setting,
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(2) the tame parameter field T: a tamely ramified extension of F' of degree dividing n, uniquely
determined up to F-isomorphism by O,

(3) the relative degree m: a positive integer such that m[T : F'] divides n, uniquely determined
by ©® and n.

Suppose further that ® is o-selfdual (which follows if for example the cuspidal representation
itself is o-selfdual), then there is a uniquely determined tamely ramified extension Ty of Fy con-
tained in T such that 7' is isomorphic to To®g, F'. The Galois group of T'/Tj canonically identifies
with that of F'/Fp, and the unique non-trivial automorphism of 7'/Tj extending o will be denoted
by o (see §4.3). Our main theorem on reduction to the level 0 setting is then (see Theorem 4.41):

Theorem 1.1. — (1) There is a natural bijection:
(1.1) T T

from the set of isomorphism classes of cuspidal representations of G with endo-class © to the set
of isomorphism classes of cuspidal representations of level 0 of GL,,(T).

(2) The representation w is o-selfdual if and only if 7 is o-selfdual.

(3) The representation 7 is GL, (Fy)-distinguished if and only if my is GLyy, (To)-distinguished.

The map (1.1) is also compatible with supercuspidal support, see Proposition 4.43 for a precise
statement.

1.5. Let us briefly explain how the map (1.1) above is defined. Let (J,A) be a type inducing a
cuspidal representation 7 of G with o-selfdual endo-class ®, tame parameter field T" and relative
degree m. Then:

— the group J has a unique maximal compact subgroup J°, and a unique maximal normal
pro-p subgroup J*,

— there is a group isomorphism J°/J! ~ GL,,(l), where I is the residue field of T,

— the restriction of X to J! is isotypic for an irreducible representation 7 of J', and this re-
presentation 1 extends (non-canonically) to J,

— the choice of a representation & of J extending 7 determines a decomposition A ~ Kk ® T,
where T is a representation of J trivial on J!, uniquely determined up to isomorphism.

The fact that @ is o-selfdual implies that there is a preferred choice for (J,A): the group J is
fixed by o, the representation 7 is o-selfdual and there exists a natural isomorphism between the
space of G?-invariant linear forms on 7 and that of J n G?-invariant linear forms on A. Such a
type is called generic (see Definition 4.31). We prove (see Proposition 4.16):

Proposition 1.2. — The representation n has a unique extension k to J which is both o-selfdual
and J n G?-distinguished, and whose determinant has order a power of p.

The choice of the representation x given by Proposition 1.2 thus uniquely determines a repre-
sentation 7 of J trivial on J'.

Now there is a natural choice, as explained in §4.10, of a o-fixed maximal compact subgroup
J? of GL,,(T), with normalizer J; and pro-p-radical J}, such that there is a o-equivariant group
isomorphism:

J/ gt~ 7, /3L
The representation T then defines a representation of J; trivial on J!, denoted 7. The cuspidal
representation 7y associated with 7 by (1.1) is then the compact induction of 7¢ to GL,,(T).
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1.6. Having reduced the classification of distinguished cuspidal R-representations to level 0, we
further reduce this classification to the finite group setting. Let m be a o-selfdual cuspidal R-re-
presentation of G of level 0 with central character ¢, and generic type (J,A). Restricting A to
JO defines a cuspidal R-representation V of GL,(k), where k is the residue field of F. We prove
(see Theorem 4.45):

Theorem 1.3. — Suppose n # 1. The representation m is GLy, (Fy)-distinguished if and only if
its central character c,; is trivial on FOX and

(1) iof F/Fy is unramified, then V is GL,,(ko)-distinguished (ko is the residue field of Fy);

(2) if F/Fy is ramified, then n is even, V is GLy, 5(k) x GL,, )5 (k)-distinguished and

0 id
s = (id 0) e GL, (k)
acts on the space of its GLy,j9(k) x GL,, /2 (k)-invariant linear forms by the sign c;(w), where @
1s any uniformizer of F'.

As an application, we classify all distinguished cuspidal representations of GLy(F') (see Para-
graph 4.13).

1.7. Let m be a cuspidal non-supercuspidal R-representation of G. Following [29], we recall in
Paragraph 3.4 that there are a uniquely determined integer r = r(7) > 2 and a supercuspidal R-
representation p of GL,, ;,.(F') such that 7 is isomorphic to St,.(p), where St,(p) denotes the unique
generic subquotient of the parabolically induced representation

pyi(ril)/Q X oo X py(ril)/z

(where v denote the unramified character which is the absolute value of F' composed with the de-
terminant). The representation p is not unique in general, but, if 7 is o-selfdual and r is odd, and
if one further demands that p be o-selfdual, then p is uniquely determined up to isomorphism (see
Proposition 3.8). In this case, we obtain further necessary conditions for distinction (see Theo-
rem 5.1):

Theorem 1.4. — Let 7 be a o-selfdual cuspidal non-supercuspidal R-representation of GLy(F).
Assume that the integer r = r(m) is odd, thus w is isomorphic to St,(p) for a uniquely determined
o-selfdual supercuspidal representation p of GL, . (F'). If 7 is GLy,(Fp)-distinguished, then
(1) the relative degree m = m(m) and the ramification index of T /Ty have the same parity,
(2) the representation p is GL,, ), (Fy)-distinguished.

As a corollary, we extend the Disjunction Theorem from the supercuspidal setting (that is, the
statement that, if £ # 2, a supercuspidal R-representation is not both distinguished and s¢-dis-
tinguished) to include cuspidal R-representations m with r(7) odd.

1.8. Say that an irreducible Fj-representation 7 of G lifts to Q if there exists a free Z,-lattice L
equipped with a linear action of G such that the F-representation of G on L ® F, is isomorphic
to m. When this is the case, say that the smooth Q,-representation of G on L ® Qy is a lift of
to Q. By [41], any cuspidal Fy-representation of G lifts to Q, and any of its lifts is cuspidal.
According to [25] (see Theorem 3.3), any cuspidal Fy-representation of G having a G-distin-
guished lift to Q, is G?-distinguished. The converse holds for supercuspidal Fy-representations of
G (see [35] and [12]), but there are examples of G-distinguished F,-cuspidal representations of
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GL2(F) with no distinguished lift if £ = 2 (see Paragraph 4.13 and Remark 6.4). In the final sec-
tion, we classify the G?-distinguished cuspidal Fy-representations of G having a G°-distinguished
cuspidal lift to Q, (see Propositions 6.1 and 6.2 for a precise statement).

1.9. Finally, let us comment on how the main results of this article could be pushed further.

Let 7 be a o-selfdual cuspidal non-supercuspidal Fj-representation of G. In the case when r ()
is even and ¢ > 2, we conjecture that 7 is distinguished if and only if it has a distinguished lift to
Qy (see Conjecture 6.3). We expect that this conjecture could be approached via the use of the
Rankin-Selberg local factors developed in [24].

In the case when 7(7) is odd, we do not expect the necessary conditions of Theorem 1.4 to be
sufficient for distinction. It would be interesting to determine whether any G°-distinguished cus-
pidal representation of G’ has a distinguished lift to Q,.

Finallly, this work is part of a wider programme aiming at classifying all distinguished generic
R-representations of G. Such a classification might be approached by developing a theory of mod
¢ intertwining periods.

Structure of the paper

After setting some notation in Section 2, in Section 3 we collect together necessary background
from the literature and prove some basic results on o-selfdual cuspidal R-representations.

Section 4 constitutes the technical heart of the paper. It reduces the problem of classifying dis-
tinguished cuspidal R-representations to level 0.

In Section 5, under a parity condition, we provide necessary conditions for distinction, allowing
us to deduce the Disjunction Theorem and a lifting theorem.

In Section 6, we classify the cuspidal F-representations having a distinguished cuspidal lift.
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2. Notation

2.1. Given any non-archimedean locally compact field F', we write O for its ring of integers, pp
for the maximal ideal of Op, kg for its residue field and ¢ for the cardinality of k.

We also write valp for the valuation of F' taking any uniformizer to 1, and | - |¢ for the abso-
lute value of F' taking any uniformizer to the inverse of gr.

Given any finite extension L of K, we write Nz i and try i for the norm and trace maps.
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2.2. Given a locally compact, totally disconnected topological group GG and an algebraically clo-
sed field R of characteristic different from p, we consider smooth representations of G on R-vector
spaces. We will abbreviate smooth R-representation to R-representation, or even representation if
the coefficient field R is clear from the context.

An R-character (or character) of G is a group homomorphism from G to R* with open kernel.

Let m be a representation of G. We write 7V for its contragredient. Given a character x of G,
we write my for the representation g — x(g)7(g) of G.

Let m be a representation of a closed subgroup H of G. Given any element g € G, we write 79
for the representation z ~— m(gzg~') of H9 = g~'Hg. Given any continuous involution o of G,
we write 7 for the representation m oo of o(H). Given any character u of H n G, we say that
7 is p-distinguished if the space Homg~go (7, x) is non-zero. If p is the trivial character, we will
abbreviate p-distinguished to H n G°-distinguished, or just distinguished.

2.3. Let us fix a separable quadratic extension F/Fj of non-archimedean locally compact fields
of residual characteristic p, and let o denote its non-trivial automorphism. Let R be an algebrai-
cally closed field of characteristic different from p. Let

(2.1) n=npmp Fy —{-1,1} =2~

denote the Z-valued character of F;* with kernel N /F (F*). When needed, we will consider s as
a character with values in R. We abbreviate ¢ = g and g9 = ¢r,. We fix a square root

(2.2) qé/Q ER
of ¢o in R and define
(2.3) g% = qé/Q if F'/Fy is ramified,
. qo  if F/Fy is unramified,

which we will use to normalize parabolic induction and restriction functors (see below).

2.4. Given a positive integer n > 1, the automorphism o acts on the group GL, (F") component-
wise, thus defines a continuous involution of GL,,(F), still denoted o. Its fixed points form the
subgroup GL,,(Fp).

We denote by v the unramified character “absolute value of the determinant” of GL,,(F') and
by /2 the unramified character taking any element whose determinant has valuation 1 to ¢=/2.
We thus have (v/2)? = v. Similarly, we define the characters v, and yé/ 2 of GL, (Fp).

Given positive integers nq,...,n, such that n; +---+n, =n and, for each ¢ = 1,...,r, given
an R-representation m; of GL,, (F'), we write

(2.4) T X -0 X Ty

for the representation of GL,,(F') obtained by normalized parabolic induction from m ® - - - ® 7,
along the parabolic subgroup generated by upper triangular matrices and the standard Levi sub-
group GLy,, (F) x -+ x GL,,,.(F).

An irreducible R-representation of GL,,(F') is said to be cuspidal (respectively, supercuspidal) if
it does not occur as a subrepresentation (respectively, a subquotient) of any representation of the
form (2.4) with » > 2. Any supercuspidal representation of GL,, (F’) is cuspidal. When R has cha-
racteristic 0, any cuspidal representation of GL,,(F') is supercuspidal. When R has characteristic
¢ > 0, the group GL,(F) may have cuspidal non-supercuspidal representations (see §3.4).

Given a representation m of GL,,(F) and a character x of F'*, we will write my for w(x o det).
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2.5. Let us fix an algebraic closure Q, of the field of f-adic numbers. Let Z, denote its ring of in-
tegers, and F, denote the residue field of Z,.

We call an irreducible representation 7 of a locally compact, totally disconnected group G on a
Qy-vector space V integral if it stabilizes a Z,-lattice L in V. In this case, we obtain a smooth F-
representation L ® Fy of G whose isomorphism class may depend on the choice of L.

If G is either the group of rational points of a connected reductive linear algebraic F-group or
a finite group (see [42, Theorem 1] and the Brauer—Nesbitt principle), the smooth Fy-representa-
tion L ® Fy has finite length, and its semisimplification is independent of the choice of L. This
semisimplification is called the reduction modulo £ of 7, and is denoted by ry(7).

Given an irreducible Fy-representation p of G, we call an irreducible integral Q,-representation
with reduction modulo ¢ equal to p a Q,-lift of p.

3. Basic results

In this section, p is an arbitrary prime number, F'/Fj is a separable quadratic extension and R
has characteristic £ # p. We fix a positive integer n > 1.

3.1. Fundamental results of Flicker and Prasad [16, 32, 33| on irreducible complex representa-
tions of GL,,(F') distinguished by GL, (Fp) have been extended to irreducible R-representations in
[35] Theorem 4.1.

Theorem 3.1. — Let w be an irreducible representation of GL,(F') distinguished by GLy, (Fp).
(1) The central character c; of 7 is trivial on Fy' .
(2) The R-vector space Homgy,, (g (7, R) has dimension 1.
(3) The contragredient ™ of 7 is isomorphic to ©°.

We will say that a representation m of GL,,(F') is o-selfdual if 7V is isomorphic to 7.

3.2. For supercuspidal representations, we have the following Dichotomy and Disjunction Theo-
rem (23] Theorem 4, 2] Corollary 1.6 if £ = 0, [35] Theorem 10.8 if p # 2 and [12] Theorem 3.14
if £ #0,2).

Theorem 3.2. — Let p be a o-selfdual supercuspidal R-representation of GL,(F).
(1) If £ = 2, then p is distinguished.
(2) If £ # 2, then p is either distinguished or s-distinguished, but not both.

3.3. In this paragraph, £ is a prime number different from p and we will consider representations
with coefficients in Q, or Fy. The following theorem is [25] Theorem 3.4.

Theorem 3.3. — Let 7 be an integral o-selfdual cuspidal Q,-representation of GLy(F). If 7 is
distinguished by GL,,(Fy), then its reduction mod ¢ is (irreducible, cuspidal and) distinguished.

It follows that any o-selfdual cuspidal Fy-representation of GL, (F) having a distinguished lift
to Qy is distinguished. For supercuspidal representations, one has the following converse (see [35]
Theorem 10.11 if p # 2, and [12] Theorem 3.4):

Theorem 3.4. — Any GL,(Fy)-distinguished supercuspidal Fy-representation of GL,(F) has a
GLy,(Fy)-distinguished lift to Q,.
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We also have the following Distinguished Lift Theorem, making Theorem 3.4 more precise.

Theorem 3.5. — Let p be a o-selfdual supercuspidal Fy-representation of GLy,(F).

(1) The representation p has a o-selfdual lift to Q.
(2) Let p be a o-selfdual lift of p to Q, and suppose that £ # 2. Then p is distinguished if and
only p is distinguished.

Proof. — 1If p # 2, this is [35] Theorem 10.11. Assume now that p = 2, thus ¢ # 2.

By Theorem 3.2, the representation p is either distinguished or »-distinguished. If it is distin-
guished, it has a o-selfdual lift thanks to Theorem 3.4 and Theorem 3.1(3). If it is s-distingui-
shed, fix a Q/-character & of F* extending the canonical Q,-lift of 2. The reduction mod ¢ of &
is an [Fy-character of F* extending s, denoted y. The representation py is distinguished and su-
percuspidal. It thus has a o-selfdual lift 7. Then 7&~! is a distinguished lift of p. This proves (1).

Let u be a o-selfdual lift of p, and assume that p is distinguished. If p is not distinguished, it
must then be s-distinguished. By Theorem 3.3, this implies that p is se-distinguished, which con-
tradicts the Dichotomy and Disjunction Theorem. Conversely, if p is distinguished, then p is dis-
tinguished thanks to Theorem 3.3. 0

3.4. From now on, we consider the case of cuspidal non-supercuspidal R-representations, thus ¢
is a prime number different from p. Let us recall how they are classified in terms of their super-
cuspidal support.

Recall that a representation 7 of GL,,(F) on an R-vector space V' is generic if V' carries a non-
zero R-linear form © such that ©(m(u)v) = 6(u)v for all v € V and all unipotent upper triangular
matrices u, where §(u) = ¥ (u1 2 + -+ + up—1,) and 9 is a non-trivial R-character of F.

Let k > 1 be a positive integer, and p be a supercuspidal R-representation of GLx(F'). Accor-
ding to [29] 8.1, for any r > 1, the induced representation

(3.1) py_(r_]‘)/Q X oo X py(’r—l)/z

contains a unique generic irreducible subquotient, denoted St,(p).

Let e(p) be the smallest integer i > 1 such that pv? is isomorphic to p and ¢(p) be the torsion
number of p, that is, the number of unramified characters x of F'* such that px is isomorphic to
p. By [31] Lemme 3.6, these integers are related by the identity

(3.2) e(p) = order of ¢"?) mod .
By [29] Théoréme 6.14, one has the following classification.

Proposition 3.6. — Let w be a cuspidal non-supercuspidal R-representation of GL, (F).

(1) There are a unique positive integer r = r(m) = 2 dividing n and a supercuspidal represen-
tation p of GLy,,.(F') such that m is isomorphic to St,(p).

(2) There is a unique integer v = 0 such that r = e(p)L".

(3) Let p' be a supercuspidal representation of GL,, . (F'). The representation 7 is isomorphic
to St (p') if and only if p’ is isomorphic to pvt for some i € Z.

Note that, conversely, by the same references, if p is a supercuspidal representation of GL(F')
and r = e(p)¢¥ for some v = 0, the representation St,(p) is cuspidal.
It will be convenient to set r(m) = 1 for any supercuspidal R-representation 7 of GL,,(F).
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3.5. We now classify o-selfdual cuspidal representations.

Lemma 3.7. — Let p be a supercuspidal R-representation of GLy(F) for some k > 1. Letr > 2
be such that St,(p) is cuspidal, and suppose that St;(p) is o-selfdual. Then there is an i € Z, uni-
quely determined mod e(p), such that p¥° is isomorphic to pv'.

Proof. — The representation St,(p) is the unique generic irreducible subquotient of (3.1). The
representation St,(p)Y? is thus generic, irreducible and it is a subquotient of

pvoy(rfl)/2 NI, pvoyf(rfl)/Q.

Equivalently (see [29] Proposition 2.6), it is a subquotient of p¥u==1/2 x ... x pvop(r=1/2,

By uniqueness of the generic irreducible subquotient, we thus have

Str(p) 7 = St (p”7).

The representation St,(p) is thus o-selfdual if and only if St,(p¥?) is isomorphic to St,(p). The
result then follows from Proposition 3.6. [

Proposition 3.8. — Let w be a cuspidal o-selfdual representation of GLy(F'). Setr = r(w) and
write k = n/r.
(1) If r is odd or € = 2, there is a unique o-selfdual supercuspidal representation p of GLg(F')
such that 7 is isomorphic to St (p).
(2) Suppose that r is even and ¢ # 2.
(a) There are a supercuspidal representation p of GLi(F') and an i € {0,1} such that 7 is
isomorphic to St.(p) and p¥° ~ pvt.
(b) Let p’ be a supercuspidal representation of GLk(F) and j € {0,1} such that 7 is iso-
morphic to St,(p') and p'~7 ~ p'vi. Then j =i, and either p' ~ p or p ~ pv"/?.

Proof. — If r = 1, the result is trivial. Let us assume that r > 2. Fix a supercuspidal irreducible
representation p of GLy(F') such that 7 is isomorphic to St,(p). By Lemma 3.7, there is an i € Z
such that p¥° ~ pvi. Changing p to p’ = pv® for some s € Z does not change St,(p), but changes
itoi—2s. If ris odd or £ = 2, then e(p) is odd, thus 2Z + e(p)Z = Z. This proves (1). Similar-
ly, if 7 is even and ¢ # 2, then e(p) is even: we thus may assume that i € {0, 1}, proving (2.a).
Moreover, if p’ and j are as in (2.b), then j — i is even, thus j = i. Moreover, p’ is isomorphic to
pv® for some 0 < s < e(p) such that v>!(?) = 1, thus e(p) divides 2s. O

3.6. We will need the finite field analogue of 3.4 (see [41] II1.2.5 or [10] Theorem 19.3).

Proposition 3.9. — Let k be a finite field of characteristic p.
(1) Let f =1 be a positive integer and o be a supercuspidal representation of GL¢ (k).
(a) For all w > 1, the induced representation

0% -+ X (utimes)

has a unique generic irreducible subquotient, denoted st,(p).
(b) Let e(0) be the order of ¢/ mod €. The representation st, (o) is cuspidal if and only
ifu=1 oru=e(p)l" for some v = 0.
(2) Let W be a cuspidal representation of GLy, (k). There exist a unique integer u = (W) =1
dividing n and a unique supercuspidal representation o of GLy, (k) such that W = sty (o).
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3.7. Asin the previous paragraph, k is a finite field of characteristic p. Let us recall how to pa-
rametrize cuspidal representations of GL,, (k) by regular characters ([19], [14] Theorem 3.5 and
[15, 21]).

Let k be an algebraic closure of k. For any integer s > 1, let k, be the extension of k of degree
s contained in k. Let A denote the group Gal(k,/k). A character of kX is A-regular if it is fixed
by no non-trivial element of A.

Proposition 3.10. — (1) Associated with any A-reqular Qy-character € of k), there is a cus-
pidal Qg-representation We of GLy,(k), unique up to isomorphism, such that

tr We(a) = (=1)""- > &)
LISTAN
for all x € k) of degree n over k, where k,; is considered as a maximal torus in GL,, (k).
(2) The correspondence
£ We
induces a bijection from the set of A-conjugacy classes of A-regular Qq-characters of kX to that
of isomorphism classes of cuspidal Qg-representations of GLy, (k).

By reduction mod /¢, we get the following classification.

Proposition 3.11. — (1) Given any A-regular Qg-character € of k), the reduction mod £ of
We, denoted Wg, is irreducible and cuspidal, and it only depends on the reduction mod £ of .
(2) Reduction mod ¢ induces a bijection from the set of A-conjugacy classes of Fy-characters of
kX having a A-regular lift to Q, to that of isomorphism classes of cuspidal Fy-representations of
the group GLy, (k).
(3) The integer r(We) is the greatest divisor r of n such that the reduction of & mod £ factorizes
through a character of k;/r.

Definition 3.12. — A parameter of a cuspidal representation p of GL, (k) is a character of k,;
whose A-conjugacy class corresponds to p by the bijection of either Proposition 3.10 or 3.11.

3.8. Finally, we will need the following distinction criterion for cuspidal Q,-representations (see
[20] Proposition 6.1 and [11] Lemme 3.4.10) of GL,, (k) when p is odd.

Proposition 3.13. — Assume that q is odd, n is even and write n = 2u. We consider the group
GL, (k) x GLy (k) as a Levi subgroup of GLy, (k). Let £ be a A-regular Q,-character of k,; .
(1) The following assertions are equivalent.
(a) The cuspidal Qq-representation We is GLy (k) x GLy,(k)-distinguished.
(b) The space of GLy(k) x GLy(k)-invariant linear forms on W¢ has Qg-dimension 1.
(¢) The cuspidal Q,-representation W is selfdual.
(d) The character £ is trivial on k,, .

(2) Assume that the conditions of (1) are satisfied, and fix an element o € k,; such that o ¢ k.,
and o? € k). The element

(3.3) o= (i?i 151> & GL(K),
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where id is the identity in GLy(k), normalizes the group GLy (k) x GL, (k) and acts on the Q-
vector space of GLy(k) x GLy(k)-invariant linear forms on W¢ by the sign —£(a).

Remark 3.14. — Suppose that W¢ is GL, (k) x GL,,(k)-distinguished. By [35] Lemma 2.6, the
cuspidal Fy-representation W is GLy (k) x GL,(k)-distinguished as well. More precisely, if we
fix a non-zero GLy, (k) x GL, (k)-invariant Q,-linear form A on W together with a GLy, (k)-stable
Zy-lattice L < W, then the associated F/-linear form

A L@F@ — A(L)@ﬁg

is non-zero and GLy (k) x GL, (k)-invariant. Moreover, if s acts on A by a sign c € {—1,1} € Q/,
then s acts on A by the image of ¢ in F}'.

4. Reduction to level zero

In this section, p is odd, £ is any prime number different from p and R has characteristic 0 or
¢. Let us fix a positive integer n > 1, and set G = GL,(F). We fix a character

(4.1) ¢ : F — R

which is trivial on pr but not on Op.

4.1. Let us recall the definitions and main results of [9, 8, 30, 3] which we will need.
Let [a, #] be a simple stratum in the algebra M,,(F') of n x n matrices with entries in F. Recall
that a is a hereditary Op-order of M, (F') and § is an element of M,,(F") such that

— the F-algebra E = F[(] is a field, and
— the multiplicative group E* normalizes a

(plus an extra technical condition on 8 which is not necessary to recall here: see [9] 1.5.5).
Let K, be the normalizer of a in G and p, be its Jacobson radical, and set Ué =1+ pg. Let
B be the centralizer of E in M,,(F'). The intersection b = a n B is a hereditary order in B.
Associated with [a, 8] in [9] Chapter 3, there are compact mod centre open subgroups

H'(a,8) = J'(a,8) = 3%a,B) < I(a,B) < Ka

and a non-empty finite set C(a, 8) of characters of H!(a, 3) called simple characters, depending
on the choice of (4.1). We write J = J(a, 8), J* = J%(a, 3), J* = J'(a, 8) and H' = H'(a, B) for
simplicity.

We will only be interested in the case where b is a maximal order in B, in which case the sim-
ple stratum [a, 3] and the simple characters in C(a, ) are said to be mazimal. For the following
result, see [8] 2.1, 3.2 and [9] 5.1.1.

Proposition 4.1. — Let [a, 3] be a mazimal simple stratum.

(1) The group J° is the unique mazximal compact subgroup of J, and J' is its unique mazimal
normal pro-p-subgroup.
(2) One has J = EXJ° = (J n B*)J! and

(4.2) JAnB*=%, J'nB*=0% J'nB*=T.
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(3) There is an isomorphism of E-algebras

(4.3) B~M,,(FE), m=n/[E:F]|,
sending b* to the maximal compact open subgroup GL,,(Og), which induces isomorphisms
(4.4) JO/J ~ % /UL ~ GL,, (1)

where 1 is the residue field of E.
(4) Given any simple character 0 € C(a, 3), we have

(a) the normalizer of 0 in G is equal to J, and
(b) there is an irreducible representation n of J1, unique up to isomorphism, whose res-
triction to H' contains 0, and such a representation extends to J.

The representation 7 of (4.b) is called the Heisenberg representation associated with 0. If k
is a representation of J extending n, any other extension of 7 to J has the form & for a unique
character &€ of J trivial on J'.

Remark 4.2. — (1) An isomorphism (4.3) as in Proposition 4.1(3) comes from the choice of
an Opg-basis of an Op-lattice £ in F™ whose endomorphism algebra is b.

(2) Changing the isomorphism (4.3), that is, changing the basis of £ above, has the effect of
conjugating the identification (4.4) by an inner automorphism of GL,,(1).

A character 8 of an open pro-p-subgroup H of G will be called a mazimal simple character if
there is a maximal simple stratum [a, 8] in M, (F) such that H = H'(a,3) and 6 € C(a, 3). Gi-
ven a maximal simple character 6 of G, we will write He1 for the group on which 6 is defined, J,
for its G-normalizer, J 2 for its unique maximal compact subgroup, J é for its unique maximal nor-
mal pro-p-subgroup and 7' for the maximal tamely ramified extension of F' in E = F[3]. The
following result shows how the latter depends on the choice of [a, 8] (see [8] 2.1, 2.5 and 2.6).

Proposition 4.3. — Let [a/, 3] be a simple stratum such that 6 € C(d', '), and set E' = F[f'].

(1) The orders a, a’ are equal and E, E' have the same degree over F.
(2) The simple stratum [a, 8] is mazimal.
(3) The mazimal tamely ramified extension of F in E' is Jé-conjugate toT.

It follows that the G-conjugacy class of the simple character 8 uniquely determines the integer
m in (4.3), as well as the extension T up to G-conjugacy (or equivalently up to F-isomorphism).
However, the fields E, E’ need not be isomorphic (see [8] Example 2.1).

4.2. In this paragraph only, we let n vary among all positive integers, and consider the set

Cmax(F) = | J €(a,8)
[a,5]

where the union is taken over all maximal simple strata of M,,(F'), for any n > 1. It is endowed
with an equivalence relation called endo-equivalence (|6, 7]). An equivalence class for this equi-
valence relation is called an endo-class (see [3] 3.2).

Given a maximal simple character 6 € Cpax(F) with endo-class ©, the degree [E : F'] and the
F-isomorphism class of its tame parameter field T only depend on ©. They are called the degree
and tame parameter field of ®, respectively.

For a given n, any two maximal simple characters of GL,,(F') are endo-equivalent if and only
if they are GL, (F')-conjugate.
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Remark 4.4. — Note that endo-equivalence is defined in [6, 7| for arbitrary simple characters,
not only for maximal ones, but we will not need this extra generality.

4.3. We go back to the situation of Paragraph 4.1, assuming further that the character ¥ of (4.1)
is o-invariant, which is possible since p # 2. As in [35], we will say that:

— a simple stratum [a, 8] in M, (F) is o-selfdual if a is o-stable and o(8) = —f,

— a simple character 0 is o-selfdual if the group H; is o-stable and 6~ oo = 6,

— an endo-class © of (maximal) simple characters is o-selfdual if for some (or equivalently for
any) 6 € ©, the character ! oo is in ©.

Proposition 4.5. — Let 0 be a o-selfdual maximal simple character.

(1) There is a o-stable simple stratum [a, 5] such that 6 € C(a, 3).
(2) Let Ey be the o-fized points of E and ly be its residue field. There is an isomorphism (4.3)
inducing an isomorphism (4.4) which transports the action of o on J°/J! to

(a) the action of the non-trivial element of Gal(l/ly) on GL, (1) if E/Ey is unramified,
(b) the adjoint action of

—id; 0
4.5 b GL, (1
(45) (7o 1l ) e )
on GL, (1) if E/Ey is ramified, for a uniquely determined integer i € {0,...,|m/2]}.

If 0 is a o-selfdual maximal simple character, we will write Ty for the maximal tamely ramified
extension of Fy in Ep, that is, Ty = T n Ey. By [3] Lemma 4.10, the canonical homomorphism

(4.6) To®p F — T

is an isomorphism. Also, T'/Tp and E/Ey have the same ramification index. By [3] Lemma 4.29,
the Fy-isomorphism class of Tj is uniquely determined by the endo-class ® of . And it follows
from (4.6) that the Fy-isomorphism class of T determines the F-isomorphism class of T'.

The following result is given by [35] Proposition 6.12, Lemma 6.20 and [36] Lemme 3.28. (The
latter reference in [36] is for representations with coefficients in R = C, but its proof is still valid
in the /-modular case.)

Proposition 4.6. — Let 0 be a o-selfdual maximal simple character.

(1) The Heisenberg representation n of 0 is o-selfdual and J* ~ G -distinguished, and the space
Homjyi~go (0, R) has dimension 1.
(2) For any representation & of J extending n, there are

(a) a unique character & of J trivial on J' such that KV is isomorphic to K€,
(b) a unique character x of J n G trivial on J' n G° such that
(47> HomJlﬂG" (777 R) = HOmeGa (K’7 Xﬁl)a
and the restriction of € to J n G is equal to x>.
(3) Given a representation k as in (2) and an irreducible representation T of J trivial on J?,
the canonical linear map
(4.8) Homji g0 (0, R) ® Homg~go (T, x) — Homg~ge (k ® T, R)

s an isomorphism of R-vector spaces.
(4) There exists a o-selfdual representation of J extending n.



14 ROBERT KURINCZUK, NADIR MATRINGE & VINCENT SECHERRE

Conversely, let ® be a o-selfdual endo-class of degree dividing n. By [3] Section 4, it contains
a o-selfdual maximal simple character 6 in GG, and we have the following classification.

Proposition 4.7. — Let T/Ty be the quadratic extension associated with © as above, and let
us write m = n/deg(©).

(1) If T/Ty is unramified, the G-conjugacy class of 6 contains a unique G°-conjugacy class of
o-selfdual simple characters.

(2) If T/Ty is ramified, the number of G?-conjugacy classes of o-selfdual simple characters in
the G-conjugacy class of 0 is equal to |m/2| + 1, each class corresponding bijectively to an integer
i €{0,...,|m/2|} characterized by Proposition 4.5(2.b).

Remark 4.8. — When T'/Tj is ramified, we define (as in [3, 35]) the indez of a o-selfdual ma-
ximal simple character € to be the integer i € {0,...,|m/2|} associated with its G7-conjugacy
class. By [3] Remark 4.28 or [35] 5.D, if # has index 0 and if

y; = diag(w,...,w,1,...,1) € GL,(F) ~ B*, w a uniformizer of E occurring i times,

for some i € {0,...,|m/2[}, then 6% is a o-selfdual maximal simple character of index i.

4.4. Let 6 be a maximal simple character, and [a, 5] be a simple stratum such that 6 € C(a, 3).
Asin 4.1, write J = J, Jo = Jg, Jt= Jé and H' = Hel Let 1 be the Heisenberg representation
of J! associated with . In this paragraph, we give a slightly generalized version of [8] 3.3.

Fix an Op-lattice £ in V = F™ whose endomorphism algebra is b. (It is uniquely determined
up to homothety as b is maximal.) Fix a divisor u > 1 of m and decompositions

(4.9) L=L,D - PL,, V=V,D - -DV,,

in which Vj is an E-vector space of dimension m/u and L, is an Og-lattice of rank m/u in V.
It defines a Levi subgroup M of G. Fix a pair (Q_, Q+) of M-opposite parabolic subgroups of G
with Levi component M, and write N_, N for their unipotent radicals. Define a,, = Endg, (L+).
It is a hereditary order, and [ay, 8] is a maximal simple stratum in Endg(V;). Write J,., J9, J1
and H for the subgroups associated with it. Compare with [8] 3.3, which corresponds to the par-
ticular case where u = m.

The next result follows from |6] Example 10.9 (compare with Lemma 1 in [8] 3.3).

Lemma 4.9. — (1) There are Iwahori decompositions
H' = (H'AN_.)-(H'AM)-(H'~nNy),
H'~M = H!x..-xH}
and
J= AN - JAaM)- I ANy,
JAaM = JLlx...xJL
(2) The character 6 is trivial on H' nN_, H' n N and there exists a unique simple character

0, € C(ay, B) such that 0 agrees with 0, ® - ® 0, on H' n M.

Moreover, the map 6 — 6, defined by Lemma 4.9(2) is a bijection from C(a, 3) to C(ay,3):
this is an instance of the transfer of [9] 3.6.

Let 7, denote the Heisenberg representation of J} associated with §,. Compare the next result
with Lemma 2 in 8] 3.3 and the discussion after it.
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Lemma 4.10. — Let Ky be a representation of J. extending 1.

(1) The set I = (H' A N_)- (I n Q) is a group, and there is a unique representation k.
of I which is trivial on H* n N_, J° n N, and agrees with k+ ® - @ ks on J n M.

(2) The representation Ky of (J1 A N_)- (I n Q) = J T induced by Kk, extends 7.

(3) There is a unique irreducible representation k of J extending K.

Proof. — That J is a group follows from the fact that H' is normalized by J, thus by J n Q.
The existence of K, follows from the containment

JOAN)-(H' AN)YS(H' AN)- I AaM)-I°ANy)
(see the argument of [34] 2.3). Mackey’s formula implies that the restriction of & to J! is
1
Indglm‘]+ (K'/J,_)

The restriction of k4 to J'nJ, = (H' n N_)-(J' n Q) is the unique representation 1, which
is trivial on H' n N_, J' n N, and agrees with 17, ® - -- ® 74 on J* n M. The representation it
induces to J! is isomorphic to 7: indeed, this representation contains # by Lemma 4.9(2), and it
has dimension

dim(n: ® - @ns) - J'AN_:H' AN.) = J'AaM:H AM)Y?. (J'AN_:H AN.)
_ (Jl:Hl)l/Q

which is the dimension of n (see [30] 2.3).

It remains to prove (3). First, uniqueness follows from the fact that any two such extensions
differ from a character of J trivial on J'J,, and such a character is trivial since p # 2. Existen-
ce follows from [9] 5.2.4 (see [30] 2.4 in the modular case). O

The reader will pay attention to the fact that, although J° n M is equal to J? x --- x J2, the
group J n M is not equal to J, x --- x J in general (unless u = 1). It is generated by J° n M
and B, the latter being diagonal in M.

Lemma 4.11. — (1) The map
(4.10) Ky — K

from isomorphism classes of representations of J. extending n. to isomorphism classes of repre-
sentation of J extending n is surjective.

(2) Any two representations of J. extending n. have the same image if and only if they are
twists of each other by a character of J, trivial on J and of order dividing u.

Proof. — The case where u = m is given by [8] 3.3, Corollary 1. For the general case, first note
that, if & is the image of k4 by the map (4.10), and if £, is a character of J, trivial on J%, then
the image of k+&, by (4.10) is equal to K€", where £ is the character of J trivial on J° coinciding
with €, on any uniformizer of E. Now start with a representation k extending 7. Let K, denote
its restriction to J'J, and k. denote the representation of J on the space of J' N N_-invariants
of R4. The restriction of k4 to JY n M has the form

0 0

for a uniquely determined representation k2 of J{ extending 7. Since any two extensions of
to J, are twists of each other by a character of J, = E*J? trivial on J2, the result follows. [
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Remark 4.12. — Suppose that u is equal to m. Let y € M n B> and write 8/ = 6Y € C(a¥, ).
The groups associated with 6" are J/ = J¥, etc. The group isomorphism B* ~ GL,,(E) identifies
M ~ B* with the diagonal torus E* x --- x E*, and E* normalizes 6. The character ¢’ is thus
trivial on H'Y n N_, H'Y n N, and agrees with 0, ® --- ® 0, on HYW n M = H' n M. If K, is
a representation of J, extending 7, the representation of J' corresponding to it by (4.10) is kY.

4.5. Suppose now that the simple character 6 and the simple stratum [a, 8] of 4.4 are o-selfdual.
The groups J, J°, J! and H! are thus o-stable. Suppose also that the decompositions (4.9) are
o-stable. (To obtain such decompositions, consider the vertex in the reduced building of B* de-
fined by the Og-lattice £ (see [5]) and choose a o-stable apartment containing this vertex, whose
existence is granted by [13] since p # 2.)

The Levi subgroup M is thus o-stable, and we may assume that Q_, Q1 are o-stable as well.
Also, the simple stratum [ay, 5] and the simple character 6, given by Lemma 4.9 are o-selfdual.
Let G« denote the group Autg(Vy). It is isomorphic to GL,,, (F).

We may also assume that our choice of basis induces an isomorphism of groups (4.4) between
JO/J' and GL,,(1) as in Proposition 4.5(4), transporting the action of o on J°/J* to

— the action of the non-trivial element of Gal(l/ly) on GL,,(1) if T'/Tj is unramified,

— the adjoint action of (4.5) on GLy,(I) for some i € {0,...,|m/2]}, if T/Tp is ramified.

Let K« be a representation of J, extending 7, and let k correspond to it by (4.10).

Lemma 4.13. — If Ky is o-selfdual, then k is o-selfdual.

Proof. — First, kY7 is trivial on both H'n N_, J' A N, and agrees with kY ® --- ® k7 on
Jn M. If k, is o-selfdual, it follows by uniqueness that k. is o-selfdual, thus K is o-selfdual
as well. The unique representation of J extending K77 is k¥, hence k is o-selfdual. O

We will need the following lemma. Let @ be a uniformizer of E such that

(4.11) o(w) = { w if T/T} is unramified,

—w if T'/Tp is ramified.
Note that the group J is generated by J° and w.

Lemma 4.14. — The group J n G is generated by J° n G and an element @' such that

(1) @' = w if T/Ty is unramified,

(2) @’ = @? if T/Ty is ramified and m # 2i,

(3) @' € @I’ if T/Ty is ramified and m = 2i.
Proof. — 1f T'/T} is unramified, see [35] Lemma 9.1. Suppose that T'/T} is ramified, and assume
that there is an x € J n G, z ¢ (w?,J° n G). We have z = w"y where v € Z is odd and y € J°

satisfies o(y) = —y. Reducing mod J', we get an a € GL,,(l) such that o(a) = —a. Since the
involution o acts on GL,,(l) by conjugacy by

§ = diag(—1,...,—1,1,...,1)
(where —1 occurs ¢ times), this implies that § and —d are GL,,(1)-conjugate, thus m = 2i. Con-

versely, if m = 2i, then

(4.12) w=<£ ?)eﬁmezmm@m

is o-anti-invariant, and @’ = ww has the required property. O
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We now investigate the behavior of the map (4.10) with respect to distinction. The case where
u = m will be sufficient for our purpose (see Paragraph 4.6).

Lemma 4.15. — Suppose that u = m and K, is J, N G -distinguished.

(1) If T/Ty is unramified, or if T /Ty is ramified and m # 2i, the representation k is J N G-
distinguished.

(2) If T/Ty is ramified and m = 2i, there exists a quadratic character & of J trivial on J° such
that kK€ is J n G?-distinguished.

Proof. — The representation k4 is J n G?-distinguished, thus & is J'J, n G°-distinguished.
It follows that x is J'J . n G-distinguished. Let x be the character of J n G associated with
k by Proposition 4.6. It is trivial on J'J, n G°. Restricting to J° n G, it is a character of

(I~ G)/(I' A G7) ~ GL,,(1)°.

Since J n M < J, it is trivial on the image of (J n M) n (J° A G?) in GL,,(1)°, which is made
of the o-fixed points of the diagonal torus M =1 x --- x ™.

If T'/Tp is unramified, we have GL,,(1)? = GLp,(lp) and M7 = 1] x --- x I, thus x is trivial
on J A G7. If T/Ty is ramified, we have GL,,(1)° = GL;(1) x GL;,_;(1) and M? = M. Again, x
is trivial on JO n G°.

By Lemma 4.14, it remains to consider the value of x at @’. If T'/Tj is unramified, or if T'/T
is ramified and m # 2i, we have @’ € J'J, n G, thus y is trivial.

Now assume that T'/Tj is ramified and m = 2i. Let &€ be the quadratic character of J trivial
on JO defined by £(@’) = x(@’). Then k€ is J n G°-distinguished. O

We will prove in Paragraph 4.6 that the quadratic character & of Lemma 4.15(2) is always tri-
vial: see Corollary 4.19.

4.6. Asin Paragraph 4.5, the simple character 6 and the simple stratum [a, 5] are both maximal
o-selfdual, and 7 is the Heisenberg representation of J' associated with #. The next proposition,
which says that 7 has a canonical extension to J, is the core of our proof of Theorem 4.41.

Proposition 4.16. — There is, up to isomorphism, a unique representation k of J extending n
satisfying the following conditions:

(1) it is both o-selfdual and J n G -distinguished,
(2) its determinant has order a power of p.

This unique representation will be denoted Kg.

Remark 4.17 — This extends (and makes more precise) the results of [35] (see ibid., Propo-
sitions 7.9, 9.4) where 6 is assumed to be generic and either T'/T} is unramified and m is odd, or
T/Ty is ramified and m € {1,2i}. See also [35] Remarks 9.5 and 9.9.

Proof. — Suppose first that there exists a representation satisfying (1). As in the proof of [36]
Corollary 6.12, one then easily proves the existence of a representation k satisfying (1) and (2).
Let us prove that such a representation is unique. Any other representation of J satisfying the
conditions of the proposition is of the form k¢ for some character ¢ of J which is o-selfdual and
trivial on (J n G?)J*', and whose order is a power of p. The restriction of ¢ to J° can be consi-
dered as a character of GL,(1). Since the latter group is not isomorphic to GLa(F2) (for p # 2),
this character factors through the determinant. Its order is thus prime to p, which implies that
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¢ is trivial on JY. It is thus a character of J/(J n G?)J° which, by Lemma 4.14, has order at
most 2. Uniqueness follows from the fact that p # 2.

We are now reduced to proving the existence of a representation k satisfying (1). If m = 1,
this follows from |35] Propositions 7.9, 9.4. (See also Remark 4.17.)

Now consider the constructions of 4.4 and 4.5 with 4 = m. Thanks to the case where m is
equal to 1, there is a representation k. of J. extending 7, which is both o-selfdual and J, n G-
distinguished. Let k be the representation of J extending n associated with it by (4.10). Lemma
4.13 implies that it is o-selfdual, and Lemma 4.15 implies that there is a quadratic character &
of J trivial on J° such that k€ is J n G?-distinguished. Since £ is unramified and quadratic, k€
is also o-selfdual and extends 7. O

Remark 4.18. — Notice that this gives another proof of [35] Propositions 7.9, 9.4, based on
the case m = 1 only.

Now we can improve Lemma 4.15. Suppose we are in the situation of Paragraphs 4.4 and 4.5,
with v = m.

Corollary 4.19. — Suppose that u = m. Let k4 be a representation of J,. extending n, and K
correspond to it by the map (4.10). If k, is J, N G-distinguished, then k is J NG -distinguished.

Proof. — The result is given by Lemma 4.15, except when T'/T} is ramified and m = 2i, which
we assume now. Suppose that k, is J, n GZ-distinguished. By Lemma 4.15, there is a quadratic
character € of J trivial on J? such that k€ is J n G°-distinguished. Let kg be the representation
given by Proposition 4.16 and write k€ = kg¢ for some character ¢ of J trivial on (J n G7)J!.
Restricting to J%, the character ¢ can be seen as a character of GL,, (1) of the form « o det, for
some character « of 1, which is trivial on GL,,(1)? = GL;(I) x GL;(l). This implies that « is
trivial, thus ¢ is trivial on J°. Also, ¢ is trivial at @’ € @wJ® by Lemma 4.14. It is thus trivial.
In conclusion, we have k = kg€&. Taking determinants, we get

(4.13) det k = £1M*0 . det kg = & - det Ky.

(The second equality comes from the fact that € is quadratic and p # 2 so dim kg is odd.)

There exists a y € M n B* such that 8 = 0¥ € C(a¥, §) is a o-selfdual maximal simple charac-
ter of index 0 (in the sense of Remark 4.8). By Remark 4.12, the simple character of C(ay, /)
associated with 8 by Lemma 4.9 is still 6, and the representation of J' = J¥ corresponding to
Ky by (4.10) is kY. Let kg be the representation associated with 6’ by Proposition 4.16. By
Lemma 4.15, ' is distinguished. By the discussion above, it follows that

(4.14) det kY = det Ky .

But the characters det &, det k¥ have the same order (since they are conjugate to each others),
and the latter one has order a power of p thanks to (4.14). Now (4.13) implies that & has order
a power of p. Since £ is quadratic and p # 2, this character is trivial. ]

We extract from the proof of Corollary 4.19 the following valuable corollary.

Corollary 4.20. — Suppose that u = m. Let kg, and kg be the representations associated with
6« and 0 by Proposition 4.16, respectively. Then the map (4.10) takes kg, to K.

We also have the following corollary, which extends [35] Lemma 7.10(3), Corollary 9.6(1).

Corollary 4.21. — Any J n G -distinguished representation of J extending n is o-selfdual.
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Proof. — Let k be a J n G?-distinguished representation of J extending 7, and &€ be the unique
character of J trivial on J' such that kK = ky€&. We have to prove that € 'oo = £. The fact that
k is distinguished implies that £ is trivial on (J n G?)J!. Restricting to J°, the character £ can
be seen as a character of GLy,(l) of the form « o det, for some character a of 1.

If T'/Tp is unramified, o is trivial on Ij, thus £ oo and € coincide on J°. They also coinci-
de on w € J n G7, thus they are equal.

If T/T) is ramified, « is trivial, thus £ oo and € are both trivial on J°. Since £ is trivial on
w?eJ NG, we get & oo(w) =€ (—w) = £ (w) = &(w), which finishes the proof. O

4.7. We now come to the type theoretic description of cuspidal representations of G. The follow-
ing proposition follows from [9] Theorem 8.4.1, Corollary 6.2.3, Theorem 5.7.1 (see [30] Théo-
rémes 3.4, 3.7 and [37] Theorem 7.2 in the modular case).

Proposition 4.22. — Let 7 be a cuspidal representation of G. There is, up to G-conjugacy, a
unique simple character 0 such that the restriction of ™ to Hél, contains 0, and it is maximal.

Let m be a cuspidal representation of GG, and let 6 be a simple character occurring in 7. Asso-
ciated with it, there are:

— the positive integer m(mw) = m = 1 defined by (4.3), called the relative degree of 7,

— the G-conjugacy class (or equivalently the F-isomorphism class) of the tamely ramified ex-
tension 1" of F associated with 0, called the tame parameter field of m,

— the endo-class © of 6, called the endo-class of .

(Note that, when 7 has level 0, one has m = n and T' = F', and © is the null endo-class.)
Write J = J,, JO =739 Jt = Jé and let n be the Heisenberg representation of §. The next
proposition follows from [30] Lemme 5.3, Theorem 3.11.

Proposition 4.23. — Let k be a representation of J extending n, and define a representation
of J on the space Homyi (k, ) by making x € J act on f € Homyi (k,7) by

z-f=mn(z)ofor(z) L.
This representation, denoted T, has the following properties:

(1) It is irreducible, and trivial on J*.

(2) If one identifies J° /I with a finite general linear group as in (4.4), its restriction to J° is
the inflation of a cuspidal representation.

(3) The compact induction of Kk ® T from J to G is isomorphic to 7.

Any two representations of J extending n differ from a character of J trivial on J'. The pair
(4.15) (J,k®T)

thus only depends on 7 and the choice of 8, and not on the choice of k.

When 7 varies among all cuspidal representations of G and 6§ varies among all maximal simple
characters in , the pairs (4.15) are called extended mazimal simple types in |9, 30|, which we
will abbreviate to types here. A given cuspidal representation of GG thus contains, up to G-conju-
gacy, a unique type (J, A): there is a unique maximal simple character € such that Jg = J and
0 occurs in the restriction of A to H, 91, a representation k of J which restricts irreducibly to J!
and a representation 7 of J trivial on J! such that A is isomorphic to kK ® 7.
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Remark 4.24. — If a is a maximal order in M,,(F), the trivial character of U} is a maximal
simple character, with £ = T = F and m = n. The cuspidal representations of G that contain
such a simple character are precisely the cuspidal representations of level 0.

Fix a representation k of J extending n and define 7 as in Proposition 4.23, and fix a simple
stratum [a, 3] such that 6§ € C(a, ) and an isomorphism (4.3). This gives a field E and an iso-
morphism J°/J! ~ GL,, (1), where 1 is the residue field of 7.

By Proposition 4.23(2), the restriction of 7 to J? is the inflation of a cuspidal irreducible re-
presentation, denoted V.

On the other hand, the representation 7 has a central character : it is a character of the cen-
tre EXJ!/J! of J/J!, or equivalently a tamely ramified character of EX. Since F is totally wild-
ly ramified over its maximal tamely ramified subextension T', any tamely ramified character of
E* factors through the norm Ng 7. The restriction of 7 to £ is thus a multiple of w o Ngp
for a uniquely determined tamely ramified character w of T*.

The data V and w are subject to the compatibility condition that the restriction of V to 1™ is
a multiple of the character of I* whose inflation to O is the restriction of wP’, with p¢ = [E : T).
Associated with V by Proposition 3.9, there are a unique integer v > 1 dividing m and a unique
supercuspidal representation g of GL,, /, (1) such that V is isomorphic to st,(9). The next impor-
tant result is [31] Lemma 3.2. The integer r(7) has been defined in Paragraph 3.4.

Lemma 4.25. — The integer u is equal to ().

It follows that r(7) divides m, and that 7 is supercuspidal if and only if V is supercuspidal.

4.8. Write r = r(m) and k = n/r, and let p be a supercuspidal representation of GLy(F") such
that 7 is isomorphic to St,(p) given by Proposition 3.6. In this paragraph, we will compare the
type theoretic description of 7 with that of p. Asin 4.7, we fix a representation k of J extending
n. It defines an irreducible representation 7 of J trivial on J!, then a cuspidal representation V
of GL,, (1) and a tamely ramified character w of 7. There is also a (unique) supercuspidal repre-
sentation ¢ of GL,, /() such that V is isomorphic to st; (o).

Since r divides m, we may apply the results of 4.4 to the case where u = r, which we assume
now. Let 6, be the simple character associated with 6 by Lemma 4.9.

Lemma 4.26. — The representation p contains 0.
Proof. — This follows from the description) of St,.(p) in [29] Section 6. O
Consequently, m and p have the same endo-class. We have the following immediate corollary.

Corollary 4.27. — We have m(mw) = m(p)r and the representations m, p have the same tame
parameter field.

Let 1, be the Heisenberg representation associated with 6, and let k. be a representation of
J. extending 7, such that the representation of J associated with it by (4.10) is k. It defines an
irreducible representation 7, of J, trivial on JL, such that the pair (J,, kK« ® T4) is a type in p.
Associated with this, there are a cuspidal representation g, of GL,, /r(l) (which is supercuspidal

(DWarning: the representation denoted St(p, ) in [29] corresponds to St,.(pr""*/2), and the one denoted St (p)
in [29] corresponds to St,(pr " "1/2) with v = e(p)¢".
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thanks to the comment after Lemma 4.25) and a tamely ramified character w, of 7. The fol-
lowing proposition compares the pairs (9, w) and (o, wy) associated with 7 and 7.

Proposition 4.28. — We have o ~ 04 and w = w.

Proof. — Again, the fact that o is isomorphic to g, follows from the description of St,(p) in [29]
Section 6. It thus remains to prove the second equality. For this, consider the action of J on

(4.16) HOHlJ1 (Kﬂ ]<,0, T))

where .#(p, ) is the parabolically induced representation (3.1). By [38] Proposition 5.6, its res-
triction to J is the inflation of the induced representation g, x --- x g4 of GL,,(1). By tracking
the action of E* in the arguments of [38] Section 5, we see that it acts on the space (4.16) by
the character

w: ©) NE/T

In particular, E* acts through this character on the subquotient Homji (&, ), which is 7. [

4.9. Suppose that the cuspidal representation 7 is o-selfdual. We say a type (J, A) is o-selfdual
if J is o-stable and AV? is isomorphic to A. The next result is [3] Theorem 4.1.

Proposition 4.29. — The representation m contains a o-selfdual type.

A type (J, A) contains a unique simple character 6 such that Jg = J: it follows that, if (J, A)
is o-selfdual, @ is o-selfdual as well. In particular, = contains a o-selfdual simple character.

Let 0 be a o-selfdual simple character occurring in 7, and [a, 3] be a o-selfdual simple stratum
such that 6 € C(a, 8) (which exists by Proposition 4.5). The G7-conjugacy class (or equivalently
the Fp-isomorphism class) of the tamely ramified extension T of Ey associated with 6 only de-
pends on 7. Associated with 7, there is thus a quadratic extension T'/Tj.

Remark 4.30. — When 7 has level 0, one has Ty = Fj.

If follows from Proposition 4.7 that 7 contains
— only one G7-conjugacy class of o-selfdual types if T'/T} is unramified,
— |m/2] + 1 different G?-conjugacy classes of o-selfdual types if T'/Tj is ramified.

Among these G?-conjugacy classes of o-selfdual types, one is of particular importance.

Definition 4.31. — A o-selfdual type (J, A) is said to be generic if either T'/Tj is unramified,
or T'/Tj is ramified and the integer i of Proposition 4.5(2.b) is equal to [m/2].

A o-selfdual cuspidal representation of G thus contains, up to G?-conjugacy, a unique generic
o-selfdual type. The next result is [35] Theorem 10.3 (see also [3] Section 6).

Proposition 4.32. — Let be a o-selfdual cuspidal representation of G and (J, ) be its generic
o-selfdual type. Then 7 is distinguished if and only if A is J n G?-distinguished.

If (J, ) is a o-selfdual type, and if 0 is the unique simple character contained in A such that
Jg = J, we will write Ay, for the unique representation kg of J extending the Heisenberg repre-
sentation of @ given by Proposition 4.16. The next result extends [35] Propositions 7.9, 9.8 to
the case of arbitrary o-selfdual cuspidal representations.
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Proposition 4.33. — Let m be a o-selfdual cuspidal representation of G. Let (J, A) be a generic
o-selfdual type in © and T be the representation of J trivial on J' such that X\ is isomorphic to
Aw ® 7. Then 7 is distinguished if and only if T is J n G?-distinguished.

Proof. — This follows from Proposition 4.32 together with the fact that
Homyngo (A, R) ~ Homy~go (Aw, R) ® Homg~go (T, R)
and Homy~go (Aw, R) has dimension 1 (see Proposition 4.6(4)). O

Fix isomorphisms
(4.17) B~M,(E), J°J'~GL,(l),

as in Proposition 4.5(4). The restriction of 7 to J n B* is a generic o-selfdual type of level 0
in B* ~ GL,,(F) and J/J' is naturally isomorphic to (J n B*)/(J' n B*). The representation
7 is thus distinguished by J n G7 if and only if its restriction to J n GL,,(FE) is distinguished
by J n GL,,(Ep). Proposition 4.33 used twice thus implies that 7 is distinguished by G if and
only if the cuspidal representation of level 0 of GL,,(FE) compactly induced from the restriction
of T to J n GL,,,(F) is distinguished by GL,,(Ej).

However, the field extension F is not canonical. In 4.10, we will canonically associate with 7
a o-selfdual cuspidal representation 7 of level 0 of GL,,(T), which is GL,,(Tp)-distinguished if
and only if 7 is G?-distinguished, where T'/T} is the quadratic extension associated with . Our
strategy is inspired from [8] Section 3.

The following proposition relates the parity of m/r to the ramification of T'/Tj.

Proposition 4.34. — Letn be a o-selfdual cuspidal representation of GL, (F) with quadratic ex-
tension T'/Ty, and write m = m(w), r = r(w). Then

m/r is odd if T/Ty is unramified,
either even or equal to 1 if T/Ty is ramified.

Proof. — Write 7 as St,(p) as in Proposition 3.8 with p?¥ ~ pv* for some i € {0,1}. Then pv*/?
is a o-selfdual supercuspidal representation of GL,,/.(F), and the quadratic extension associated
with it is T'/Ty. Applying [35] Propositions 8.1, 9.8, we get the expected result. O

4.10. In order to prove Theorem 4.41, it will be useful to consider the slightly more general si-
tuation where 7 is a cuspidal representation of G with o-selfdual endo-class ®. Thus 7 itself
needs not be o-selfdual. However, it has a relative degree m and, since © is o-selfdual, there is
a quadratic extension T'/Tj associated with it. Moreover, by Proposition 4.7, it contains, up to
G?-conjugacy, a unique generic o-selfdual maximal simple character 6. Let J be its normalizer
in G and kg be the representation of J given by Proposition 4.16. Then 7 contains a unique
type of the form

(4.18) (J, ko ®T)

for a uniquely determined irreducible representation 7 of J trivial on J'. Fix a o-selfdual simple
stratum [a, 3] and isomorphisms (4.17) as in Proposition 4.5.
First, we define an open and compact mod centre subgroup Ji of GL,,(T) as follows:

— if T'/T} is unramified, J¢ is the normalizer of GL,,(Or) in GL,(T),
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— if T'/T} is ramified, and if ¢ is a uniformizer of T' such that o(t) = —t, then Jy is the nor-

malizer in GL,,(T") of the conjugate of GL,,(Or) by the diagonal element
diag(t,...,t,1,...,1) € GL,(T)

where ¢ occurs |[m/2| times.
The group J¢ (which does not depend on the choice of ¢ in the ramified case) has a unique maxi-
mal compact subgroup J? and a unique normal maximal pro-p-subgroup J{. The natural group
isomorphism
(4.19) JV/3t ~ GL,, (1)
transports the action of o € Gal(T/Tp) on JV/J! to

— the action of the non-trivial element of Gal(l/ly) on GL,,(1) if T//Ty is unramified,
— the adjoint action of

—idy,, 2] 0
(4.20) ( lm/2| ) € GLn (1),
0 idmjmy
on GL,, (1) if T'/T} is ramified.

Remark 4.35. — When T'/T} is ramified, the isomorphism (4.19) depends on the choice of ¢ :
changing ¢ to another uniformizer ¢’ conjugates the isomorphism by the o-invariant element
diag(a,...,a,1,...,1) € GL,,, (1)

where o (which occurs i times) is the image of ##~1 in 1. This element is central in GL,,(1)°.

We now associate to T an irreducible representation 7, of J; trivial on J}. On the one hand,
the restriction of 7 to J° is the inflation of an irreducible cuspidal representation V of GL,,(l).
On the other hand, the restriction of 7 to E* is a multiple of w o Ng/p for a uniquely determi-
ned tamely ramified character w of T*: see 4.7. Note that [E : T'] = p® for some e > 1.

Lemma 4.36. — Let V and w be as above.
(1) There is a unique representation T, of J, trivial on J! such that
(a) the restriction of T, to T is a multiple of the character w,
(b) the restriction of T, to IV is the inflation of V™) where V™) is the representation
of GLy(1) obtained from V by applying the field automorphism x > P .
(2) The pair (J¢, T¢) is a level O type in GL,,(T).
(3) Up to isomorphism, the representation T only depends on T, and not on the choice of the
o-selfdual simple stratum [a, 8], the uniformizer t and the identification J°/J' ~ GL,,(1).

Proof. — Uniqueness follows from the fact that J, is generated by J¥ and T, and the existence
of T, follows from the fact that the restriction of V(P™°) to 1* is a multiple of the character of 1
defined by the restriction of w to the units of 7. Since V) is cuspidal, the pair (Jg,T¢) is a
level 0 type by construction. It remains to prove (3). Since it will require techniques which are
not used anywhere else in the paper, we will prove it apart, in Paragraph 4.14. ]

It will be convenient to give another description of the representation 7.

Lemma 4.37. — (1) There is a unique group isomorphism m : J/J* — J, /I such that

(a) its restriction to GL,, (1) is the automorphism acting entrywise by ¢ : x > zP°,
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(b) for all x € E*, the image of zJ* is NE/T(ac)J%.
(2) The isomorphism m is o-equivariant.
(3) The representation T+ is isomorphic to T o mw L.

Proof. — Again, uniqueness follows from the the fact that J is generated by J° and E*. Exis-
tence follows from the fact that Ngp(z) = xP° for all x € O, of order prime to p, and that N p
induces a group isomorphism from E* /(1 + pg) to T /(1 + pr).

Define 71 to be o ow oo~ 1. The restriction of 1 to E* corresponds to o o Ngro o=, which
is equal to Np/p since £ and T' are stable by o. The restriction of 71 to GL, (1) is

— the automorphism defined by making o0 o ¢p oo~ ! = ¢ € Gal(l/F,) act entrywise if T/Tj is
unramified,

— the automorphism Ad(d71¢(d)) o ¢ = ¢ if T/Ty is ramified, where ¢ is the ¢-invariant ma-
trix defined by (4.5).

The fact that 7 is o-equivariant now follows from its uniqueness, and (3) is immediate. O
Now let us describe the behavior of 7 +— 7 with respect to duality and distinction.

Lemma 4.38. — (1) The representation T is o-selfdual if and only if T is o-selfdual.
(2) The representation T is Jy N GLyy, (Tp)-distinguished if and only if T is J n G -distingui-
shed.

Proof. — Saying that 7 is o-selfdual is equivalent to saying that the representation V and the

character w o Ng/p are o-selfdual. Assertion (1) follows from the fact that (V™)) is isomor-

phic to (VY9)P™) and (wo Ng/r) ! oo is equal to (w ' oo)oNgp.

Assertion (2) follows from the fact that 7¢ o = 7 and 7 maps (J/J')? to (J,/J})°. O

Corollary 4.39. — The pair (Jy, T¢) is a generic o-selfdual type if and only if (J, kg ® T) is a
generic o-selfdual type.

Proof. — This follows from Lemma 4.38(1), thanks to our choice of J; (see (4.20)). O

4.11. We still are in the situation of Paragraph 4.10. Consider the compactly induced represen-
tation

(4.21) m = indg " (7).
It satisfies the following properties.

Proposition 4.40. — (1) The representation  is cuspidal, irreducible and has level 0.
(2) One has m(my) = m and r(m) =r.
(3) The representation m, is o-selfdual if and only if 7 is o-selfdual.
(4) The representation m, is GLy,(Ty)-distinguished if and only 7 is GLy,(Fp)-distinguished.

Proof. — Assertion (1) follows from the fact that 7 is compactly induced from a level 0 type in
GL,(T) (see Lemma 4.36 and Remark 4.24). The first equality of Assertion (2) follows from
Remark 4.24, and the second one from Lemma 4.25.

Suppose that 7 is o-selfdual. Then 7 is o-selfdual (see 4.9). By Lemma 4.38, the representa-
tion Ty is o-selfdual as well. By compact induction, it follows that 7 is o-selfdual. The argument
also works the other way round, proving (3). Assertion (4) follows from Proposition 4.33 together
with Lemma 4.38(2). O
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Theorem 4.41. — (1) The process
(4.22) T — T

induces a bijection from the set of isomorphism classes of cuspidal representations of G with endo-
class © to that of cuspidal representations of level 0 of GLy,(T).

(2) The bijection (4.22) maps o-selfdual representations onto o-selfdual representations and G -
distinguished representations onto GLyy,(Ty)-distinguished representations.

(3) For any cuspidal representation © with endo-class © and any tamely ramified character x
of F'*, the representation (mx)¢ is isomorphic to mi(x o Ny/p).

Proof. — For (1), let mp be a cuspidal representation of level 0 of GL,, (7). It contains a level 0
type (Jy, 7o) for a uniquely determined representation 7o of J; trivial on J}. It then suffices to
check that the process

Ty —> ind?(na ® (Toom))

gives the inverse bijection. For (3), notice that if 7w contains the type (J, kg®7), then 7x contains
the type (J, kg ® Tx7), where x” is the unique character of J trivial on J! whose restriction to
Jn B* ~ GLy(E) is equal to (x o Ng/p) odetp where detg is the determinant on B ~ M, (E).
Then (7x”); is isomorphic to the representation 74 twisted by the character of J; trivial on J}
given by (x o Ng/p) odetr , where dety is the determinant on M,,(T'). Assertion (2) is given by
Proposition 4.40. 0

Corollary 4.42. — Let pu be a tamely ramified character of Fy'. A cuspidal representation 7 of
GL,(F') with endo-class © is distinguished by p if and only if my is distinguished by j10 Ngy /.

Proof. — Fix a tamely ramified character £ of F'* extending p. Then 7 is u-distinguished if and
only if 7&~1 is distinguished, and (7¢~1); is isomorphic to (6~ o Np /i) Thus 7 is p-distingui-
shed if and only if 7 is distinguished by the character £ o Ny /F|T0>< = po Ny /- O

Finally, let us describe the compatibility of the process (4.22) with the description of cuspidal
representations in terms of supercuspidal ones of 4.8.

Proposition 4.43. — Let 7 be a cuspidal representation of G with endo-class ® and r = r(m).
Let p be a supercuspidal representation of GL,,,.(F') such that 7 is isomorphic to St,(p). Then
is isomorphic to St,(py).

Remark 4.44. — Note that this makes sense since, by Corollary 4.27, the representations 7, p
have the same endo-class @, thus the same quadratic extension 7'/Tj.

Proof. — The representation 7 contains a type of the form (J, kg ® 7) for a unique representa-
tion 7 of J trivial on J!. Fix a o-selfdual simple stratum [a, 3] and isomorphisms (4.17) as in
Proposition 4.5. Associated with 7, there are a tamely ramified character w of T', and a cuspidal
representation V = st,.(0) of GLy, (1), for some supercuspidal representation ¢ of GL,,/.(I). The
representation 7 is entirely determined by the fact that

— its restriction to J? is the inflation of V,
— its restriction to £ is a multiple of the character w o Ng/r.
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We now use the results of 4.4 and 4.5 for u = r. Let 6, be the simple character associated with 6
by Lemma 4.9. Thanks to Corollary 4.20, the representation kg, corresponds to k¢ via the map
(4.10). Paragraph 4.8 says that p contains the type (J«, kg, ®T+), where T, is the representation
of J, trivial on J1 determined by

— its restriction to J is the inflation of g,

— its restriction to £ is a multiple of w, o N p, where wy is a tamely ramified character of
T such that w} = w.

Thus pt is compactly induced from the level 0 type (Ju, T«t) Where 7, ¢ is determined by

— its restriction to J?k’t is the inflation of o® ),
— its restriction to T is a multiple of wy.
Thus St,(pt) is compactly induced from the level 0 type (J¢,d) where § is determined by

— its restriction to J? is the inflation of st,(o® 7)) ~ V¥~
— its restriction to T is a multiple of W], = w.

It follows that & is isomorphic to 7, whence St,(p) is isomorphic to 7. ]

4.12. Finally, let m be a o-selfdual cuspidal representation of GG, of level 0. It has a central cha-
racter ¢, and its generic type (J, A) defines a cuspidal representation V of GL,, (k). Assume that
n # 1. In the spirit of Proposition 4.33, we give a necessary and sufficient condition for 7 to be
distinguished by GL,(Fp) in terms of ¢, and V.

Theorem 4.45. — The representation m is GL,, (Fy)-distinguished if and only if its central cha-
racter ¢, is trivial on Fy' and

(1) if F/Fy is unramified, then V is GL,,(ko)-distinguished,

(2) if F/Fy is ramified, then n is even, V is GLy, 5(k) x GL,, )5 (k)-distinguished and

(4.23) 5= <121 151> € QL (k)

acts on the space of its GLy,j5(k) x GL,, o (k)-invariant linear forms by the sign cx(w), where w
is any uniformizer of F.

Note that, if 7 is distinguished and F'/Fp is ramified, the space of GL,,j5(k) x GL,, o (k)-inva-
riant linear forms on V has dimension 1 by Proposition 3.13.

Proof. — By Proposition 4.33, the representation 7 is GL,, (Fp)-distinguished if and only if X is
J n G?-distinguished. In the unramified case, the result follows from the fact that J n G? is ge-
nerated by F; and J° n G7 (see Lemma 4.14) and (J° 1 G7)/(J! 1 G9) identifies with GL,, (ko).

Assume now that we are in the ramified case. Since ¢, is trivial on FO>< and 1 + pp, its value
at w does not depend on the choice of a uniformizer w of F. We thus may and will assume that
o(w) = —w, thus ¢;(w) € {—1,1}. By Lemma 4.14 again, J n G is generated by F,, J* n G
and ww, where the element w € J is defined by (4.12). The quotient (J° 1 G?)/(J' A G7) iden-
tifies with GL,, /2 (k) x GLy,/2(k), the image of w in J°/J' ~ GL, (k) is the element s and ws acts
on the (1-dimensional) space of GL;,/5(k) x GL,, j(k)-invariant linear forms on V as ¢z (w)s. [

Putting Theorems 4.41 and 4.45 together, we have thus reduced the problem of characterizing
distinguished cuspidal representations of GL, (F') to a problem about distinction of cuspidal re-
presentations of finite general linear groups.
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4.13. As an application of Theorem 4.45, we classify all distinguished cuspidal representations
of GLa(F). The supercuspidal case has been treated in [35] and the case where ¢ # 2 has been
treated in [12]. It thus remains the case of non-supercuspidal cuspidal representations for ¢ = 2.

Proposition 4.46. — Suppose that £ = 2. The GLy(Fp)-distinguished cuspidal non-supercuspi-
dal representations of GLo(F') are the representations Sta(x) where x is a character of F* trivial
on Fy°.

Proof. — According to Lemma 3.7, and since the character v is trivial when ¢ = 2, the o-selfdual
non-supercuspidal cuspidal representations of GLy(F') are the representations of the form Sta(y)
for a uniquely determined o-selfdual character x of F"*. Since Np/p, (F*) has index 2 in Fy, any
o-selfdual character of F* is trivial on F;*. We are thus reduced to proving that the representa-
tion m = Sta(1) is distinguished.

This representation has level 0 and trivial central character. By Theorem 4.45, it is distingui-
shed if and only if the cuspidal representation V = sta(1) of GLa(k) is

— distinguished by GLa (ko) if F'/Fp is unramified,

— distinguished by k™ x k™ if F'/Fy is ramified.

(The condition on the action of s disappears in the ramified case, since —1 = 1 mod ¢ = 2.) We
are thus reduced to proving that V is distinguished.

Let W denote the parabolic induction to GLa(k) of the trivial character of the Borel subgroup
B made of all upper triangular matrices. By [40], it is indecomposable of length 3, its socle and
cosocle are irreducible and isomorphic to the trivial character and its remaining irreducible sub-
quotient is V.

Let us assume first that F'/Fp is unramified. Then the action of GLa(ko) on B\ GL2(k) has two
orbits Oy and Op. If one identifies B\ GL2(k) with the projective line P!(k), then Oy = P!(ko)
and 01 = P!(k)\P! (k). It follows that W has a 2-dimensional space of GLg(ko)-invariant linear
forms, generated by Ag and Ay with

Ai(f) = Z f(x), feW, ie{0,1}.

:DEOZ'

These two linear forms vanish on the subspace R of constant functions. They thus define nonzero
linearly independent GLq(ko)-invariant linear forms on X = W/R. If both of them vanish on V,
then the 1-dimensional quotient X /V has a 2-dimensional space of invariant linear forms: contra-
diction. It thus follows that V is distinguished by GLa (ko).

Now assume that F'/Fp is ramified. Then the action of k* x k* on B\ GL2(k) has three orbits
O, Og and O1, the first two orbits being single points. They define three linearly independent in-
variant linear forms A, Ag and A;. The two linear forms A, — Ay and A; vanish on the subspace
R of constant functions. From there, an argument similar to that of the unramified case shows
that V is distinguished by k> x k*. O

4.14. In this paragraph, we prove Lemma 4.36(3). First, by Remarks 4.2, 4.35, changing (4.17)
and ¢ does not affect the isomorphism class of 7¢. Let [a, 5] be another o-selfdual maximal sim-
ple stratum such that 6 € G(a, 3’). Conjugating by J*, we may and will assume that the maximal
tamely ramified extension of F in E' = F[f'] is T. This gives us another isomorphism 7’ from
J/J' to J,/J!. By construction, it coincides with 7 on J°/J! and the image of J! by 7’ is equal
to NE//T(a:)Jl for all z € E'*. We are going to prove that 7’ is equal to w. The result will then
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follow from the fact that 7 is equal to 7 o 7. For this, it suffices to prove that 7 and 7’ take the
same value at some given uniformizer of E’. Let w, @’ be uniformizers of E, E’ respectively.

The centre of J/J! is EXJ'/J' = E'*J', thus B’ < EXJ'. We thus may write @’ € w(J!
for some root of unity ¢ of T* of order prime to p. Changing @’ to @’¢ !, we may and will
assume that @’ € wJ'. It suffices to prove the following claim.

Claim 4.47. — We have N p(w') = Ng/p(w) mod 1+ pr.

First, this is true when m = 1. Indeed, writing G'p for the centralizer of T' in G and detp for
the determinant on G, we have detr(z) = Ng/p(z) for all z € E*, thus

NE//T(w/) = detyp(w’) € detp(w) - detp (It Gr) = Ng/r(@) - (1 + pr).

Now assume that m > 1. We use the results of 4.4 for u = m. Let 6, € C(ay, 8) denote the
transfer of 6 as in Lemma 4.9. Fix a T-embedding

L B — EndT(V*) = EndF(V*)

such that a, is normalized by ¢E’*, and transfer 6 to 6, € C(a,¢3’) in the sense of [9] 3.6. The
simple character 6 is in C(a, ) N C(a, B’). It follows from [6] Theorem 8.7 that 6., 6, intertwine
in Gy, and from [9] Theorem 3.5.11 that 6, = 65 for some z € K,,. Changing ¢ to Ad(x) o, we
thus may assume that 0, = 0, € C(ay, ) N C(ay,¢s’). By using ¢, we get a diagonal embedding

E — EndT(V*) X -0 X EndT(V*) < EndT(V)

denoted ¢, which is the identity on 7. The Skolem-Noether theorem implies that ¢ = Ad(g) for
some g € Gr. Conjugating by g, we thus may assume that £ and E’* are both diagonal in M.
The identity ' € wJ' thus implies @’ € wJL. We are thus reduced to the case where m = 1.

Remark 4.48. — The fact that 7y does not depend on the choice of /3 is claimed in [8] Lem-
ma 3.6. However, Property (b) of this lemma does not hold: using the notation of ibid., the res-
triction of /\g to P* is a multiple of the character § o Np , whereas the restriction of (§|7x ) to
P> is (6o Npp)°. (Note that P corresponds to our F, and s corresponds to our m.)

5. The odd case

In this section, p is odd, £ is any prime number different from p and the field R has characteris-
tic £. This section is devoted to the proof of the following theorem.

Theorem 5.1. — Let 7 be a o-selfdual cuspidal non-supercuspidal R-representation of GL, (F).
Assume that the integer r = r(7) is odd, thus m is isomorphic to St,(p) for a uniquely determined
o-selfdual supercuspidal representation p of GLg(F'), with k = n/r. If w is GLy, (Fy)-distinguished,
then

(1) the relative degree m = m(w) and the ramification index of T'/Ty have the same parity,
(2) the representation p is GLy(Fy)-distinguished.

Note that the fact that r is odd and r # 1 implies that £ # 2.
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5.1. Before we start the proof of Theorem 5.1, let us prove the following Disjunction Theorem.

Corollary 5.2. — Let 7 be a o-selfdual cuspidal R-representation of GL,,(F'). Assume that r(m)
1s odd. Then w cannot be both distinguished and s-distinguished.

Proof. — Assume that 7 is both distinguished and s-distinguished, and let x be a tamely rami-
fied character of F'* extending ». Then 7y is distinguished, it is isomorphic to St,(px) and px is
supercuspidal and o-selfdual. Theorem 5.1 applied to both 7 and 7wy implies that p is both dis-
tinguished and s¢-distinguished. This contradicts Theorem 3.2. O

We also have the following Distinguished Lift Theorem.

Corollary 5.3. — Let 7 be a GL,,(Fp)-distinguished cuspidal Fy-representation of GLy,(F) with
r(m) odd. There is a GLy,(Fy)-distinguished integral generic Qp-representation of GLy,(F) whose
reduction mod £ contains .

Proof. — Write 7 as St,-(p) with p distinguished. Let u be a distinguished integral cuspidal lift of
p, which exists by Theorem 3.5. Then the generic representation St,.(u) satisfies the required pro-
perty (see [1] Theorem 1.3 or [26] Corollary 4.2 when F' has characteristic zero, and observe that
the argument in [26] holds verbatim in positive characteristic thanks to |22, Theorem 4.7]). O

Remark 5.4. — A GL,(Fp)-distinguished integral generic Q,-representation of GL,(F) as in
Corollary 5.3 may not be cuspidal. See Section 6 for the classification of all distinguished cuspidal
Fy-representations of GL,,(F') having a cuspidal distinguished lift to Q,.

Finally, compare Theorem 5.1 with the following finite field analogue.

Proposition 5.5. — Let k/ko be a quadratic extension of finite fields of characteristic p. Let o
be a supercuspidal R-representation of GLy(k) for some f =1, and r be an odd integer such that
str(0) is cuspidal. If st.(p) is distinguished by GLy,(ko), then o is distinguished by GLf(ko).

Proof. — First, [35] Remark 4.3 tells us that st, (o) is o-selfdual (where o is here the nontrivial
automorphism of k/kg). Proposition 3.9 implies that g is o-selfdual. By [35] Lemma 2.5, it is dis-
tinguished by GL¢ (ko). O

5.2. Let us prove Theorem 5.1(1). Since r is odd, m has the same parity as m/r, and, since 7 is
non-supercuspidal, we have r > 1, thus m > 1. It follows from [35] Proposition 7.1 that, if m is
odd, T'/Tp is unramified, and from Proposition 4.34 that, if m is even, T'/T} is ramified.

5.3. We now start the proof of Theorem 5.1(2). We thus have a distinguished cuspidal repre-
sentation 7 of GL,,(F'), which we write St,(p) with p supercuspidal and o-selfdual.

Associated with 7, there are a positive divisor m of n, a quadratic extension T'/Ty and a cus-
pidal representation 7y of GL,,(T"). By Proposition 4.40, the representation 7 has level 0, it is
distinguished by GL,,(Tp) and it satisfies () = 7.

Similarly, associated with p, there is a supercuspidal o-selfdual representation pg of GL,, /. (T'),
which has level 0, and is distinguished by GL,,.(Tp) if and only if p is distinguished by GL(Fp).
By Proposition 4.43, the representation 7y is isomorphic to St,(py).

It follows that, in order to prove Theorem 5.1(2), we may assume that 7 has level 0.
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5.4. Let w be a distinguished cuspidal representation of level 0 of GL,,(F'). Associated with it,
there are its central character ¢; and a cuspidal representation V of GL,, (k) (see §4.7).

The representation 7 is isomorphic to St,(p) for a unique o-selfdual supercuspidal representa-
tion p, and p has level 0. Associated with p, there are its central character ¢, and a supercuspidal
representation ¢ of GL (k). We have the relation

(5.1) Cr = (cp)"

and, by Proposition 4.28, the representation V is isomorphic to st, ().

Since 7 is distinguished, its central character is trivial on F;. Since p is o-selfdual, the restric-
tion of ¢, to F;* has order at most 2. Restricting the relation (5.1) to Fy, and since r is odd, we
deduce that ¢, is trivial on Fy.

5.5. In this paragraph, we will assume that F'/Fj is unramified. By Theorem 4.45, the represen-
tation V is distinguished by GL, (ko). By [35] Remark 4.3, it is thus o-selfdual, that is
str(g) ~ V>~ V7 ~st,.(07").

It follows from Proposition 3.9 that o is o-selfdual. By [35] Lemma 2.5, it is thus distinguished
by GLg (ko). Applying Theorem 4.45 again, we deduce that p is distinguished by GLg(Fp). This
proves Theorem 5.1 in the unramified case.

5.6. From now on, and until the end of this section, we assume that F'/Fj is ramified. By Theo-
rem 4.45, we may write n = 2u for some integer u > 1. We write G = G,, = GL,,(k), H = H,, =
GL, (k) x GLy(k) and K = K, for the normalizer of H in G, which is generated by H and

0 id
S:S":<id 0>€G

where id is the identity in GL, (k). It will be convenient to introduce the following definition.

Definition 5.6. — Let ce {—1,1} € R*. An irreducible R-representation V of G is said to be
c-distinguished by H if V' is H-distinguished and s acts on the space of H-invariant linear forms
on V by multiplication by c.

By Theorem 4.45, the representation V is H-distinguished and s acts on the 1-dimensional vec-
tor space Homy (V, R) by the sign ¢ = ¢;(w). In other words, V is c-distinguished by H. We are
now reduced to proving the following result. (Note that k is even since n is even and 7 is odd.)

Proposition 5.7. — The supercuspidal representation o is c-distinguished by Hy,.

Indeed, since r is odd, the identity (5.1) together with Proposition 5.7 will give us ¢ = ¢,(w). It
will then follow from Theorem 4.45 that p is GLy(Fp)-distinguished.

5.7. Let 7 be an irreducible Fj-representation of G. The natural map
HOInEH(ﬂ', F)) ® R — Hompy(r @ R,F, ® R)

defined by f®r +— r(f ®id) is an isomorphism of R-vector spaces. Moreover, these spaces have
dimension at most 1, and it follows from this isomorphism that 7 is c-distinguished by H if and
only if 7 ® R is c-distinguished by H.
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Since G is finite, any irreducible R-representation of G is defined over Fy, that is, isomorphic to
7o ® R for some irreducible Fy-representation o of G. In order to prove Proposition 5.7, we thus
may assume that R is equal to Fy.

5.8. From now on, we assume that R is equal to F,. The remaining part of the section will be de-
voted to the proof of Proposition 5.7.

Lemma 5.8. — There exists a c-distinguished irreducible Q,-representation of G whose reduc-
tion mod £ contains V.

Proof. — Let x denote the unique Fy-character of K trivial on H such that x(s) = ¢. Since V is c-
distinguished, it embeds in Ind%(x). Equivalently, the representation Ind?((x), which is selfdual
(as x is equal to x 1), surjects onto the contragredient W of V. Let II be a projective indecompo-
sable F-representation of G' whose unique irreducible quotient is isomorphic to W. Let II be the
unique projective Z,-representation of G such that ﬁ@E is isomorphic to II. Let A be a surjecti-
ve homomorphism from Indf((x) to W. By projectivity, it defines a non-zero homomorphism A’
from IT to Ind% (x), then a non-zero homomorphism A” from II to Ind% (%), where ¥ is the cano-
nical Z,-lift of x.

By inverting ¢, we deduce that there is an irreducible Q,-representation X of G occurring in
each of the semi-simple representations J = Ind[G((i) ®Q, and ﬁ@@g. It is thus c-distinguished
and, by [39] 15.4, its reduction mod ¢ contains W.

Now observe that, since X is quadratic, J is selfdual. The contragredient of X is thus c-dis-
tinguished and its reduction mod ¢ contains V. O

5.9. Let 7 be a c-distinguished irreducible Q,-representation as in Lemma 5.8. Consider its cus-
pidal support: there are positive integers ny,...,ns such that n; +--- + ny = n and, for each ¢
in {1,...,t}, a cuspidal irreducible Q,-representation p; of GLy, (k), such that T occurs as a com-
ponent of the parabolically induced representation p; x - - - x p;, denoted W. The representation
W is thus c-distinguished. We claim the following.

Claim 5.9. — There is ani€ {1,...,t} such that n; is even and p; is c-distinguished by H,, .

Before proving this claim in the next paragraph, let us explain how it implies Proposition 5.7.

Propositions 3.9 and 3.11 imply that, for each i € {1,...,t}, the reduction mod ¢ of p; is irre-
ducible and cuspidal, of the form st,, (g;) for a unique positive integer r; and a unique supercuspi-
dal representation g;. Since the reduction mod ¢ of 7 contains V, the representation V occurs as
an irreducible component of the parabolically induced representation ry(p1) x -+ x rg(p¢). Uni-
queness of the supercuspidal support implies that g; ~ o for all 7. It follows that either r; = 1 or
r; = e(0)l" for some v; = 0. Observe that, as r = e(p)¢" for some v > 0 and 7 is odd, the integer
e(o) is odd, thus r; is odd in any case, for all 1.

Fix an integer i as in Claim 5.9, and let & be a parameter for p; in the sense of Definition 3.12.
It is a Gal(kny,/k)-regular Z-character of k,;.. By Proposition 3.13, it is trivial on k,; , where u;
is defined by n; = 2u;, and it takes the unique element of k. /k,;. of order 2 to —c.

Since the reduction mod ¢ of p; is st,, (9), the reduction mod ¢ of &; takes the form 9o Nk, /k:
where 1 is a parameter for g.

Since n; = 73k and 7; is odd, 1 is trivial on k;° (where k = 2[) and takes the element of k; /k/*
of order 2 to —c.
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By Proposition 3.13, the canonical Zy-lift of 1 is the parameter of a c-distinguished Q,-lift of
0, which implies that ¢ is c-distinguished (see Remark 3.14). This proves Proposition 5.7.

5.10. The remaining part of this section will be devoted to the proof of Claim 5.9. We follow the
argument of [28] Section 3, which simplifies in our situation since we deal with finite groups. Let
A denote the set of t-uples a = (v, ..., ) where

(1) for each i, the element «; is a family of ¢ + 1 non-negative integers of the form

+ J—
Q; = (”z‘,p s My 1 Ty Ty s T i 10 e - v"i,t)
of sum n;,

(2) one has nf | + - +nf; =ny - +n; and ng; = nj,; for all i # j.

For an v € A, it will be convenient to set n;; = n;, + n;, for each integer i € {1,...,¢}.

Asin |28] 3.1, the set A parametrizes the set of (P, H)-double cosets in G, where P in the para-
bolic subgroup of G generated by upper triangular matrices and the standard Levi subgroup M
isomorphic to Gy, x --- x Gp,. Let us explain how this parametrization works. Associated with
any « € A, there are

— a standard Levi subgroup
M, = (Gn1,1 X Gm,z X X Gnl,t) X X (Gnt,l X Gnt,z X X Gnt,t) c M,

— a diagonal element

id,+ id,
— 3 1,1 3 3 3 3 t,t
do, = diag id idpy 5y e ey idny s ee s idp, g idng o, id € M,
LS Tyt

— a permutation matrix w, € G defined as follows: decompose {1,...,n} as the disjoint union
of intervals J; j = {aij,a;; + 1,...,b;;} of length n; ;, for each i,j € {1,...,t}, where a;; = 1,
a;jy1 =b;j+1if j #tand a;411 = b;y + 1 if ¢ # ¢; then w, is the involution which

e restricts to the identity on J;; for each 1,

e exchanges the intervals J; ; and J;; if i # j, and sends the kth element of any of these inter-
vals to the kth element of the other one, for all k € {1,...,n;;}.

A system of representatives (x4 )aea of (P, H)-double cosets in G is then obtained by any choice
of x, € G such that

(5.2) Lo <1du —id > $<;1 = €a,

where e, = dyw,.

Definition 5.10. — An « € A is called admissible if, for any i, there exists a unique j such that
n;j # 0. This defines an involution o, : 7 — j on {1,...,t}.

When this is the case, let us write H, for the subgroup of M made of the diag(g1,...,q:) € M
such that
Yoo (i) = Gi forallie {1,...,t},
gi € GLnji<k) X GLn;i(k) for all ¢ fixed by o4.

Moreover, if n;; = n;, for all i € {1,...,t}, we define a matrix ko = diag(k1,...,k) € M by

ki =idpn, = —ko, ) if i <0a(i), ki=sp, if i =04(i).
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This matrix normalizes H,, and we write K, for the group generated by H, and k..
We denote by 6, the inner automorphism of the group PGL,, (k) induced by conjugacy by e,
(which normalizes M,). It is not hard to check that:

Lemma 5.11. — Let Z denote the centre of G.
(1) An a € A is admissible if and only if M /Z is Oq-stable in G/Z = PGLy, (k).
(2) Suppose that o € A is admissible. The preimage of (M/Z)% in G, denoted by Le, is
{ K, if n:g =n,; for all i,

H, otherwise.

When L, = K, we denote by x, the character of K, trivial on H, and sending k., to c. Other-
wise, we set . to be the trivial character of L, = H,. We have the following lemma.

Lemma 5.12. — Suppose that « is admissible and Lo, = K. Then there is a system of repre-
sentatives (To)aea of (P, H)-double cosets of G satisfying both (5.2) and z,5,7," = ka.

Proof. — Let us set m; = n:rl = n;; = n;;/2 for any integer i € {1,..., ¢} such that 0,(i) = i. For

each a € A, we look for a matrix z, € G such that

idu -1 _ idu -1 _
Ty, ( —idu> T, =eq and =z, (idu ) T, = ka.

To make an explicit choice of x,, € G, it will be convenient to introduce the matrix v, € G defined
as follows: for all integers 4,5 € {1,...,t}, the (i, j)-block of vy in My, ,, (k) is

— the identity matrix id,, if j =i or j = 0,(7) < 1,

— its opposite —idy,, if j = 04(7) > 1,

— and 0 otherwise.

Then we choose ¥, the permutation matrix corresponding to the permutation of minimal length
(with the usual generators of the symmetric group) satisfying

ldu -1 _
ya ( _1du> ya - la

where [, = diag(ly,...,l;) € M is defined by

li = idy, = —ly ) if i < 0a(i), L= (ldmi . ) if i = 0q(d).

Finally we put x, = vo¥ya, which has the desired property thanks to the equality

. . : . . -1
ldk —ldk ldk ldk —Id]€ -
(5-3) (idk idk> ( Sidy) Uidy i) TS
valid for any k > 1. With this choice, the careful reader checks by a computation relying again on
Equality (5.3), that y,s,y,' = v, k,v,, which is the desired equality. O

aro

Now we have the following lemma.

Lemma 5.13. — There is an admissible o € A such that Homp, (p1 ® - - ® pt, Xo) 1S non-zero.
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Proof. — Given any subgroup X of G, we will write X for its image  in G/Z = PGL, (k). In par-
ticular, we have G = G/Z. Note that K = K/Z is the subgroup of G made of all elements fixed

by conjugacy by
id, O
( 0 —idu> mod Z.

Let x be the unique character of K trivial on H such that x(s) = ¢. The character that it induces
on K will still be denoted by . Since W is c-distinguished, Mackey’s formula implies that there
is an x € G such that p, the representation of P inflated from p; ®- - - ® py, is distinguished by the
character x*|pnx=. We derive from p a representation p of P distinguished by X B Tee-

In fact, because H is a subgroup of K, we can chose z to be some z,, for « € A. Now we claim
that for all non admissible ao € A, the space

(5.4) Homp 7. (9, X™)

is zero, so in particular x can only be of the form z,, for admissible a. Indeed, it follows from [28]
Proposition 3.5 that, for a non admissible «, the group P n H¥* contains a non trivial unipotent
radical U, of some parabolic subgroup of M, but the character x, is trivial on Uy, so if the space
(5.4) were not reduced to zero, we would deduce that Homy, (p, R) is non-zero, contradicting the
cuspidality of p. Hence we deduce x = z,, for an o which is admissible. In this case, M n K%« is
equal to M?%  so that the space

Homy,, (p, x**) = Homp,, (p, x™)

is non-zero. If L, = K, then x*« is equal to x, thanks to Lemma 5.12. Otherwise, xy** and x,

are trivial, thus equal. The statement now follows. ]
Recall that, for any i € {1,...,t}, either r; = 1 or r; = e(p)¢" for some v; = 0.
Lemma 5.14. — Let a € A be as in Lemma 5.13. Then the involution o, has a fized point.

Proof. — Let I be the set of i € {1,...,t} such that r; > 1, let ¢; be the cardinality of this set,
and define tg = t — ¢1. The identity r = r; + - - - + r; implies

r=t0+e(g)-2€”i.

iEIl

Since r, e(p) and ¢ are odd, it follows that ¢y + ¢t; = ¢ is odd. Thus o, has a fixed point. O]

Claim 5.9 now follows from Lemmas 5.13, 5.14. Indeed, by Lemma 5.13, there is an admissible
a € A such that Homy,_ (p1 ® - - - ® pt, Xa) is non-zero. Since L, contains H,, the representation
p; is, for all 4 fixed by o, distinguished by the Levi subgroup

GL, . (k) x GL, - (k).

7

Lemma 5.14, there in an integer i € {1,...,t} fixed bﬁz 0q. The ith block of L, = K, is K, and
Xa(ki) = ¢. Thus p; is c-distinguished.

By [35] Proposition 2.14, this implies that njl = n;, for all i fixed by o4, thus L, = K,. By
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6. Distinguished lift theorems

In this section, p is odd and ¢ is a prime number different from p. We look for a necessary and
sufficient condition for an Fy-cuspidal representation of GL,,(F) to have a GL,,(Fp)-distinguished
lift to Q,. Since the case of supercuspidal representations is treated by Theorems 3.3 and 3.4, we
will concentrate on non-supercuspidal cuspidal representations.

6.1. We will prove the following two propositions.

Proposition 6.1. — Let w be a o-selfdual cuspidal Fy-representation of GL,,(F) with quadratic
extension T'/Ty and m = m(w). Assume thatr = r(m) > 1 is odd. Then w has a distinguished lift
to Qg if and only if
(1) the representation 7 is isomorphic to St.(p) for some GLy, . (Fo)-distinguished supercuspi-
dal representation p of GL,,,(F),
(2) if e, eg are the orders of the cardinalities of the residue fields 1, ly of T, Ty mod ¢, then
(a) either T'/Ty is unramified and eg is even,
(b) or T/Ty is ramified, m is even and m/e is odd.

Note that the assumption “r > 1 is odd” in Proposition 6.1 implies that ¢ # 2.

Proposition 6.2. — Let w be a o-selfdual cuspidal Fy-representation of GL,,(F) with quadratic
extension T /Ty and m = m(w). Assume that r = () is even. Then 7 has a distinguished lift to
Qy if and only if
(1) the extension T /Ty is ramified,
(2) one hasm =,
(3) if we denote by vy the normalized absolute value of Fy, then
(a) either £ # 2 and 7 is isomorphic to St (p) for some supercuspidal representation p of
GLy )/ (F) which is either s-distinguished or vy L_distinguished,
(b) or £ =m =r = 2, the cardinality of the residue field of T is congruent to —1 mod 4
and 7 is isomorphic to Sta(p) where p is a GL,,jo(Fo)-distinguished supercuspidal represen-
tation of GLy, /5 (F).

We also formulate the following conjecture making Proposition 6.2 more precise when ¢ > 2.

Conjecture 6.3. — Assume that £ # 2. Let w be a o-selfdual cuspidal Fy-representation of the
group GL,,(F') such that r(m) is even. The following assertions are equivalent:

(1) the representation m is distinguished,
(2) the representation m has a distinguished lift to Q,
(3) the three conditions of Proposition 6.2 hold.

By Proposition 6.2, Theorem 3.3, we know that (2) implies (1) and is equivalent to (3). We thus
conjecture that (1) implies (3). See [12] Theorem 4.6 for the case n = r = 2.

Remark 6.4. — When ¢ = 2, there are distinguished cuspidal Fy-representations of GLy(F) with
no distinguished lift. This is the case exactly when either F'/Fy is unramified, or F'/Fj is ramified
and ¢ is congruent to 1 mod 4. See Paragraph 4.13.
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6.2. Let 7 be a o-selfdual cuspidal Fy-representation of G = GL,(F). Let (J, \) be a generic o-
selfdual type in 7, let Ay be the representation of J given by Proposition 4.16 (see Paragraph 4.9)
and T be the representation of J trivial on J' such that A is isomorphic to Ay ® 7. Associated
with 7 by (4.21), there is also a o-selfdual cuspidal Fy-representation 7 of GL,(T).

Lemma 6.5. — The following assertions are equivalent.

(1) The representation w has a GLy,(Fy)-distinguished lift to Q,.

(2) The representation X has a J n GL,,(Fy)-distinguished lift to Q.
(3) The representation T has a J n GLy,(Fy)-distinguished lift to Q,.
(4) The representation my has a GLy, (Tpy)-distinguished lift to Q.

Proof. — Fix a o-selfdual simple stratum [a, 8] as well as isomorphisms (4.17) as in Proposition
4.5. Let 6 € C(a, 3) be the o-selfdual maximal simple character associated with A, and 0 be its
unique Q,-lift: this is a o-selfdual maximal simple character (with respect to the unique Q,-lift 1Z
of the character 1 given by (4.1)) having the same G-normalizer J as 6.

Let ;\W be the Q-representation of J associated with 0 by Proposition 4.16. It is J n G7-dis-
tinguished and o-selfdual, and its determinant has order a power of p. It is thus integral. Let us
consider its reduction mod £. On the one hand, it is J n G?-distinguished, o-selfdual, and its de-
terminant has order a power of p. On the other hand, [30] Proposition 2.37 implies that it is an
irreducible representation extending the Heisenberg representation associated with 6. By unique-
ness, we deduce that XW is a Q-lift of Ay.

Suppose that 7 has a G?-distinguished Q,-lift #. Thus 7 is a o-selfdual and cuspidal represen-
tation of G' containing the maximal simple character 0. By Proposition 4.32, this representation
7 contains a distinguished generic o-selfdual type, which we may assume to be of the form (J, X)
with X = XW ® T and the representation 7 is J n G7-distinguished. Reducing mod ¢, we deduce
that 7 contains the type Ay ® 6 where 6 is the reduction mod £ of 7. But « also contains the
type Aw ® T, thus § is isomorphic to 7, and the reduction mod ¢ of A s isomorphic to A. Thus
(1) implies both (2) and (3).

Conversely, suppose that T has a distinguished Q,-lift 7. Then the pair (J, Xw ® T) is a dis-
tinguished type whose compact induction to G is a G-distinguished Q,-lift of 7, and whose re-
duction mod ¢ is isomorphic to Ay ® 7 ~ A. Thus (3) implies both (1) and (2).

Applying these results to the representation 7y, we get that 7; has a distinguished lift to Q, if
and only if 7¢ has a distinguished lift to Q,. The fact that 7 is isomorphic to 7y o 7w (by Lemma
4.37) thus implies that (4) is equivalent to (3). O

It follows from Lemma 6.5, together with Corollary 4.42 and Proposition 4.43, that, in order to
prove Propositions 6.1 and 6.2, it suffices to prove them for o-selfdual cuspidal Fy-representations
of level 0. (For Proposition 6.2(3.a), this also follows from the fact that sp/p o Np /g, = 217,

and VF, © NTo/Fo = l/TO.)

6.3. We continue with the situation of Paragraph 6.2, assuming further that 7 has level 0. Thus
7 is a o-selfdual cuspidal Fy-representation of G of level 0. We will also assume that 7 is non-su-
percuspidal, that is, 7 = r(m) > 1. Let (J, A) be a generic o-selfdual type in m. Associated with
it in Paragraph 4.7, there are

— a o-selfdual tamely ramified character w of F'*, which is the central character ¢, of ,
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— and a o-selfdual cuspidal representation V of GL,, (k) of the form st, (o) for some supercuspi-
dal representation ¢ of GL,,/,(k), uniquely determined up to isomorphism (thus V is non-super-
cuspidal).

Recall that the restriction of A to J is the inflation of V, and that its restriction to F* is a mul-
tiple of w. Since V is o-selfdual, Proposition 3.9 implies that o is o-selfdual.

The action of o on GL, (k) is described in Proposition 4.5: this is the action of the non-trivial
automorphism of k/kg if F'/F} is unramified, and the adjoint action of (4.5) with i = |m/2| other-
wise.

Let us fix a uniformizer w of F such that @ € Fy if F//Fy is unramified, and @? € Fy if F/Fy is
ramified. (One thus has o(w) = —w in the ramified case.)

Lemma 6.6. — The representation @ has a GL,, (Fp)-distinguished lift to Qy if and only if V has
a GLy, (k)7 -distinguished lift V to Q, such that

(1) if F/Fy is unramified, then w(w) =1,

(2) if F'/Fy is ramified, then n is even and (4.23) acts on the space of GLy,/5(k) x GL,, )5 (k)-in-

variant linear forms on \Y% by a sign whose reduction mod ¢ is equal to w(w).

Proof. — By Lemma 6.5, the representation 7 has a GL,, (Fp)-distinguished lift if and only if the
type X has a J nGL,, (Fp)-distinguished lift to Q,. Suppose X has a distinguished lift X. Then the
pair (J, 3\) is the generic type of a distinguished cuspidal Q,-representation 7, compactly induced
from X. Associated with it, there are

— a cuspidal Q-representation V of GL, (k) lifting V,

— a tamely ramified Q-character & of F* lifting w.

By Theorem 4.45, the character @ is trivial on F* and V is distinguished by GL,(k)°. If F/Fy
is unramified, then @(w) = 1, thus w(w) = 1. If F/F} is ramified, then n = 2u for some u > 1
and V is &(w)-distinguished (in the sense of Definition 5.6), and the reduction mod ¢ of &(w) is
equal to w(w).

Conversely, suppose that V has a GL,, (k)?-distinguished lift \% satisfying the conditions of the
lemma. Let & be a Q,-lift of w coinciding on the units of F' with the inflation of the central cha-
racter of \N/, and

(1) if F/Fy is unramified, then @(w) = 1,

(2) if F/Fy is ramified, then &(w) € {—1,1} and the representation V is &(w)-distinguished.
Inflate V to J 0 and extend it to a representation XofJ by demanding that the restriction of pY
to F* is a multiple of &. The representation X is then a J n GL,, (Fp)-distinguished lift of . [

6.4. In this paragraph, we assume that F'/Fj is unramified. Remind that ¢ denotes the cardina-
lity of k and gy denotes that of k.

Lemma 6.7. — Let W be a o-selfdual cuspidal Fy-representation of GLy (k). It has a GLy(ko)-
distinguished lift to Q, if and only if n is odd and

(1) either W is supercuspidal,

(2) or W is non-supercuspidal and the order of qo mod € is even (thus { # 2).

Proof. — By [18] Theorem 3.6, an irreducible Q,-representation of GLj, (k) is GL, (ko)-distin-
guished if and only if it is o-selfdual.
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First, the condition on the parity of n is necessary: see [35] Lemma 2.3 for instance. Now as-
sume that n is odd. If £ # 2, the result is given by [25] Proposition 4.6. If £ = 2, then W has the
form st,(0), where ¢ is a supercuspidal representation of GL,.(k) and r = 2" for some v > 0.
Since n is odd, W must be supercuspidal, and the result is given by [35] Remark 2.7. O

Remark 6.8. — Let e and e be the orders of ¢ and gy mod ¢, respectively. Note that r = e(g)¢"
for some v > 0, where e(p) is the order of ¢/ mod ¢ with f = n/r. If n is odd, then f and r are
odd, thus e(p) is odd. But e(p) = ¢/(e, f). It follows that e = eg/(ep,2) is odd. Thus ey is not
divisible by 4.

Exzample 6.9. — Let W be the o-selfdual cuspidal Fy-representation st (1) of GL.(k). We have
e = ep/(eg,2), which is odd if and only if eg is not divisible by 4. Thus W has a GL.(kg)-distin-
guished lift to Q, if and only if eq is divisible by 2 but not by 4.

Suppose first that 7 has a distinguished lift to Q,. On the one hand, the generic type of such
a lift defines a o-selfdual cuspidal Q-representation of GL, (k), and [35] Lemma 2.3 implies that
n is odd, thus r is odd. On the other hand, Theorem 3.3 implies that 7 is distinguished. It thus
follows from Theorem 5.1 that 7 is isomorphic to St,(p) for some distinguished supercuspidal re-
presentation p of GL,,.(F'). Finally, Lemma 6.6 says that V has a distinguished lift. It follows
from Lemma 6.7 that the order ey of the cardinality of k¢ mod £ is even.

We thus proved that, when F'/Fy is unramified, if 7 has a distinguished lift, then r is odd and
Conditions (1), (2.a) of Proposition 6.1 are satisfied.

Conversely, suppose that the conditions (1), (2.a) of Proposition 6.1 are satisfied. Then V has a
distinguished lift V. By Lemma 6.6, the representation 7 has a GL,, (Fp)-distinguished lift to Q,
if and only if w(w) = 1. By Paragraph 4.8, the central character w, of p satisfies w}, = w. Since
p is distinguished, we have wy(w) = 1, thus w(w) = w«(w)" = 1.

We proved Proposition 6.1 in the case when F'/Fj is unramified.

6.5. In this paragraph, we assume that F'/Fj is ramified. Let g denote the cardinality of k, and
let e denote the order of ¢ mod /.

Lemma 6.10. — Let W be a selfdual cuspidal Fy-representation of GLy,(k), isomorphic to st (o)
for some selfdual supercuspidal representation of GL,, (k). Write u = |n/2|. Then W has a lift
to Qp which is distinguished by GL, (k) x GL,_y (k) if and only if
(1) either W is supercuspidal,
(2) or W is non-supercuspidal, n is even and
(a) either £ # 2 and r, n/e are odd,
(b) orf #2 and r =mn,
(¢) or £ =n=r =2 and q is congruent to —1 mod 4, and o is trivial.

Proof. — First note that n must be either even or equal to 1: see [35] Lemma 2.17 for instance.
Also, the supercuspidal case is given by [35] Remark 2.21. Let us assume that W is non-super-
cuspidal (thus n is even, and we will write n = 2u). We use the notation of Paragraph 3.7.

Set f =n/r and let o be a Gal(k¢/k)-regular Fy-character of kz}< of order A which is a para-

meter of g in the sense of Definition 3.12. Let ¥ be the canonical Q,-lift of

v=aoNg .,
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that is, its unique lift of order A. Let W be a cuspidal lift of W. It is parametrized by a Gal(k,,/k)-
regular character of k) lifting v, that is, of the form ¥, where ¢ is a Q,-character of k* of order
£ for some s = 0. Since W is not supercuspidal, one has s = 1. The character ¢ has order A¢*.

By Proposition 3.13, the representation W is distinguished by GL, (k) x GL, (k) if and only if
it is selfdual, which is also equivalent (see for instance [35] (2.7)) to A¢® dividing ¢*+1. Similarly,
the fact that p is selfdual is equivalent to

— either f =1 and p is a quadratic character (thus A is equal to 1 or 2),
— or f is even and A divides ¢//2 + 1 (thus A > 2 since ¢ has order f > 2 mod A).

Suppose that £ # 2 and f is even. If W is distinguished, then A divides ¢//2 + 1 and ¢* + 1.

Since u = rf/2, we have

¢“ = (¢/?)"=(-1)" mod A
thus A divides 1 + (—1)". Since A > 2, it follows that r is odd. Also, ¢ divides ¢* + 1, that is,
the order of ¢* mod ¢ is e/(e,u) = 2, which implies that n/e is odd. Conversely, suppose that r
and n/e are odd. The fact that A divides ¢/ /241 and r is odd implies that A divides ¢* + 1.
Now ¢° divides ¢" — 1 = (¢" + 1)(¢* — 1). If £ divides ¢" — 1, then e divides u = n/2, thus n/e is
even: contradiction. Thus ¢° divides ¢“ + 1, thus W is distinguished.

Suppose that £ # 2 and f = 1. Then p is a character of k™, thus r = ef? for some v > 0. This
gives n/e = ¢V, which is odd. The same argument as above implies that ¢" + 1 is a multiple of
¢°. Tt is also a multiple of A € {1,2} since it is even. Thus W is distinguished.

Now suppose that ¢ = 2. If W is distinguished and f is even, then, as in the case where ¢ # 2,
the integer A > 2 divides ¢/2 +1 and ¢"7/2 + 1, thus r is odd. But the fact that W is cuspidal
implies that r is a power of 2. It follows that r» = 1: contradiction. Thus f = 1, that is W is the
representation st, (1) with n = 2! for some ¢t > 1. Moreover, ¢ has order m mod 2%, that is, 2°
divides ¢" — 1 but not ¢* — 1. Set

a=uv9(q"+1), b=uwa(q"—1).

We have b < s < a+ b and min(a,b) = 1. The fact that W is distinguished implies s < a, which
gives b = 1 < a, that is 4 divides ¢* + 1. Since u is a power of 2, we deduce that 4 divides ¢ + 1
and u = 1.

Conversely, suppose that £ = n = r = 2 and 4 divides ¢ + 1 (hence b = 1 < a). Then any Q-
character of k; of order 2* parametrizes a distinguished cuspidal Q,-representation of GLo(k) lif-
ting W = sta(1). O

Example 6.11. — The fact that GL;(k) has a selfdual supercuspidal F-representation is equi-
valent to the fact that there is an k-regular Fy-character of kz}( which is trivial on k:;f /20 that is,
there exists an integer A with the following properties:

(1) A is prime to ¢ and the order of ¢ mod A is equal to f,
(2) A divides ¢//2 + 1.

Now suppose that £ > 2 and f = 2. Thus GLa(k) has a selfdual supercuspidal Fy-representation
if and only if there exists an integer A prime to ¢ dividing ¢ + 1 but not ¢ — 1, that is, if and
only if ¢ + 1 has a prime divisor different from 2 and ¢. Assume this is the case, and let ¢ be
a selfdual supercuspidal Fy-representation of GLa(k). Let W be the selfdual cuspidal Fy-repre-
sentation st,(9) of GLy (k) with » = e/(e,2) and m = 2r. Then r is odd if and only if e is not
divisible by 4, and n/e = 2/(e, 2) is odd if and only if e is even. If we take ¢ =9 and ¢ = 7, we
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get 7 = 3 and n/e = 2. If we take ¢ = 5, we get ¢ — 1 = 4 and ¢% — 1 = 1953 x 8. Thus if £ is a
prime divisor of 1953, we get r = 3 and n/e = 6.

In addition, we have the following result. We assume that n = 2u for some u > 1.

Lemma 6.12. — Let W be a selfdual cuspidal Fy-representation of GLy, (k) of the form sty (o) for
some quadratic character o of k™. Assume W is distinguished by GL,, (k) x GL, (k). Then (4.23)
acts on the space of GLy (k) x GLy(k)-invariant linear forms on W by

-1 if o is trivial,
(=1)"a=D/2 if o is non-trivial.

Proof. — Let ¢ be the sign such that W is c-distinguished. If £ = 2, the result is immediate since
the only sign is 1. Assume that £ # 2. By Lemma 6.10, the representation W has a distinguished
cuspidal Q,-lift. Let W be such a Qy-lift and ¢ be a parameter for W. Let a be an element of kn
such that o ¢ k, and o? € k,. By Proposition 3.13, the representation W is —¢(a)-distinguished
by GL, (k) x GL,(k). Since W lifts W, we have

— the reduction mod £ of the parameter ¢ is equal to (9o Ny, /)¢ where ¢ is a character whose
order is a power of ¢ (see Proposition 3.11),

— the reduction mod ¢ of —&(«) is equal to ¢ (see Remark 3.14).

On the one hand, the character £ is trivial on k,; since W is selfdual (see Proposition 3.13). On
the other hand, oo Ny, s, is trivial on k;; since g is quadratic and the index of k;; in k, is even.
We deduce that ¢ is trivial on k;;, thus ¢(«) is a sign. Since it has order a power of £ # 2| it is
trivial. It follows that

¢ = —0(Ng, k().
If p is trivial, this gives ¢ = —1, as expected. Assume now that o is non-trivial. It thus coincides
with 2 on k™. Since a? is not a square in k., its k,/k-norm is not a square in k*. Thus

¢ = —#(Np,p(a? 1)) = —(-n)@"+1/2

and one verifies that this is equal to s(—1)* = (—1)“2=1D/2 a5 expected. O

6.6. Let us prove Proposition 6.1 when F'/Fj is ramified. Assume that r is odd, and suppose that
7 has a distinguished lift to Q,. By Theorem 3.3, it is distinguished. Thus Theorem 5.1 implies
that n/r is even and  is isomorphic to St,(p) for some distinguished supercuspidal representation
p of GL,,,.(F'). Lemma 6.6 says that V has a distinguished lift. It follows from Lemma 6.10 that
n/e is odd.

Conversely, assume that r is odd, 7 is isomorphic to St,(p) for some distinguished supercuspi-
dal representation p of GL,,,(F') of level 0, n is even and n/e is odd. It follows from Lemma 6.10

that V has a distinguished lift V. Lete € {—1,1} be the unique sign such that V is e-distinguished
by GLy(k) x GL,(k) in the sense of Definition 5.6, with n = 2u. By Lemma 6.6, the represen-
tation 7 has a distinguished lift if and only if w(w) is equal to the image of ¢ in FZ, denoted c.
We are going to prove that this is the case. Let w, be the central character of p. By Theorem
4.45, we have

— the representation g is w(w)-distinguished by GLyo(k) x GLy o (k).
(Note k is even since n is even and r is odd.) By Proposition 4.28, we have

— the sign w(w) is equal to wy(w)" = wy(w).
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Let « be the unique sign such that V is a-distinguished by GL, (k) x GL, (k). By Remark 3.14,
we have a = ¢. On the other hand, we have o = w,(w) by Proposition 5.7. Putting these facts
together, we get w(w) = wy(w) = a = ¢ as expected. This proves Proposition 6.1 if F'/Fy is ra-
mified. Together with Paragraph 6.4, this finishes the proof of Proposition 6.1.

6.7. In this paragraph and the next one, we prove Proposition 6.2. Assume that r is even, and
let g be the cardinality of k. Since r divides n, we have n = 2u for some u > 1.

Suppose that 7 has a distinguished lift. By Paragraph 6.4, this implies that F'/Fj is ramified.
By Lemma 6.6, the representation V has a distinguished Q-lift. By Lemma 6.10, one has r = n,
thus V is isomorphic to st,(g) for a character ¢ of k™ of order at most 2. Besides, if £ = 2, then
n = 2 and ¢ is congruent to —1 mod 4. Since r = n, the representation 7 is isomorphic to Sty (p)
for a tamely ramified character p of F'* whose restriction to the units of F' is the inflation of o.

Suppose first that ¢ = 2. Since 7 is distinguished (by Theorem 3.3), it is o-selfdual (by Theo-
rem 3.1). It follows from Proposition 3.8 that the representation p is o-selfdual and from Theo-
rem 3.2 that it is Fj;‘-distinguished, as expected.

Suppose now that ¢ # 2. By Proposition 3.8, we may choose p so that p~! oo = pv’ for some
i€ {0,1}, that is, po Np/p, = v, It remains to prove that the restriction of p to Fy' is either

1

-1
xOr vy .

Let ¢ be the sign by which the element (4.23) acts on the space of GL, (k) x GL,(k)-invariant
linear forms on V, which is given by Lemma 6.12. Remind that we have fixed a uniformizer w of
F such that o(w) = —w, thus wy = w? is a uniformizer of Fy. The representation 7 is distin-
guished (by Theorem 3.3) and it follows from Theorem 4.45 that ¢ = ¢;(w). We have

(6.1) cr(w) = p(w)" = p(wo)*.

On the other hand, the identity po Np/p = v~ implies that p(—wo) = ¢'.

Lemma 6.13. — We have ¢* = —1 mod ¢.

Proof. — Since r > 2 and 7 is cuspidal, r has the form e(p)¢ for some v > 0, where e(p) is the
order of ¢¥ mod ¢ by (3.2). In particular, (¢¥)" = ¢" is congruent to 1 mod £. Moreover, since ¢
is odd, one has ¢* = —1 # 1 mod /. O

It follows from Lemma 6.13 and (6.1) that

[ (=) if p is trivial,
€= (—1)"- 3(—1)* otherwise (that is, if o = ).

Comparing with Lemma 6.12, we get the following corollary.
Corollary 6.14. — We have i = 1 if o is trivial, and i = 0 if o is non-trivial.

If i = 0, then p is selfdual. By Theorem 3.2, it is either distinguished or s-distinguished. Since
its restriction to the units of F' is the inflation of ¢ = s, we deduce that p is »-distinguished.
If i = 1, then pr'/? is unramified and selfdual. By Theorem 3.2, it is distinguished. Thus the

restriction of p to F* is equal to V_1/2\F0x = Vo_l.
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6.8. Let us finish the proof of Proposition 6.2. Assume that n = r = 2u for some u > 1, the
extension F'/Fy is ramified and 7 is isomorphic to St,,(p) for some tamely ramified character p of
F*. We also assume that

— either £ # 2 and the restriction of p to F is either s or v L

—or{=n=r=2,qis congruent to —1 mod 4 and p is trivial on Fj.
It follows from Lemma 6.10 that V has a distinguished Q,-lift \N/, which is e-distinguished for
some sign € € {—1,1}. By Lemma 6.6, the representation 7 has a distinguished lift to Q, if and

only if the reduction of € mod ¢, denoted ¢, is equal to w(w). Let us prove that this is the case.
On the one hand, we have w(w) = p(w)"” = p(wp)*. If £ =2, we have w(w) = 1. Otherwise, we
1

have
w(w) = q if the restriction of p to Fy* is v -,
~ | s(=1)* if the restriction of p to Fy is s.

U

On the other hand, V is distinguished, and it is isomorphic to st, (o) where g is the character of
k> defined by the restriction of p to the units of F. One thus may apply Lemma 6.12, which
says that V is a-distinguished, with
—1 if o is trivial,
o = u(g—1)/2 . ..
(—1) if o is non-trivial.

Note that o = ¢ by Remark 3.14, and that g is trivial if and only if the restriction of p to Fj* is
equal to 1/0_1. Together with Lemma 6.13, this gives w(w) = ¢ as expected.
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