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Introduction

These are notes from a series of lectures that I gave in April 2013 at the Institute of Mathema-
tics of Singapore. I thank the organizers for the opportunity to give these lectures. They were
concerned with the representation theory of reductive p-adic groups with coefficients in a field
of characteristic ` � 0, p.

The representation theory of reductive p-adic groups with coefficients in the field of complex
numbers has been developed since the 1960’s (see Cartier’s introduction [11]). It has inherited
certain techniques coming from harmonic analysis on reductive groups over Archimedean fields,
making a large use of the fact that the representations have complex coefficients (Harish-Chan-
dra [16], Langlands’ classification [25]). Then in the 1980’s, Bernstein and Zelevinski developed
a fully algebraic approach [2, 3, 4].

The arithmetic of modular forms has required to develop the representation theory of reductive
p-adic groups with coefficients in fields, or even rings, other than complex numbers. Provided
that p is invertible in the coefficient ring, a large part of Bernstein-Zelevinski’s algebraic approach
can be reproduced (Vignéras [27, 28]). In these lectures, I will assume that the coefficient ring
is an algebraically closed field with characteristic different from p. For bibliographic references,
see Vignéras [27] and Blondel [5].

In Lecture 1, I define parabolic induction and restriction, and the notions of cuspidal repre-
sentation and cuspidal support. An important aspect of the theory of `-modular representation
is that there is a difference between cuspidal and supercuspidal representations (Example 1.11).
This leads to the notion of supercuspidal support and to the problem of classifying all irreducible
representations with a given supercuspidal support.

In Lecture 2, I discuss the case of the group GLn and its inner forms. I explain how, thanks
to the theory of types developed by C. Bushnell and P. Kutzko, one can prove the uniqueness
of supercuspidal support for irreducible representations of these groups (Theorem 2.1).

In Lecture 3, I present the classification of all irreducible representations of GLnpFq in terms
of multisegments, generalizing Zelevinski’s classification of complex irreducible representations.
First, type theory allows one to reduce to the classification of all unipotent irreducible represen-
tations. Then one defines a map:

(0.1) m ÞÑ Zpmq
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that associates a unipotent irreducible representation to any multisegment. The definition of
this map and the proof that it is injective relies on the theory of generic representations for the
group GLnpFq (see also Remark 3.11 for inner forms). Proof of surjectivity requires a counting
argument that relies on results of [1, 12] on the classification of simple modules over an affine
Hecke algebra of type A at a root of unity.

In Lecture 4, I introduce the operation of reducing mod ` an irreducible `-adic representation
of G having a stable lattice. Then I present the properties of the bijection (0.1) and of the local
Langlands correspondence with respect to reduction mod `.

Lecture 1.

1.1. Notation and preliminaries

In all these lectures, we fix a locally compact non-Archimedean field F of residue characteristic
denoted p ; we write O for its ring of integers, p for the maximal ideal of O and q for the cardinality
of its residue field. We also fix an algebraically closed field R of characteristic not dividing q.

Let G be a connected reductive group defined over F, and let G � GpFq be the group of its F-
points. When endowed with the topology coming from that of F, the group G is locally compact,
and its neutral element 1 has a basis of neighborhoods made of compact open pro-p-subgroups
(that is, all of whose open subgroups have index of the form pr, r ¥ 0).

Example 1.1. — If G � GLn, then G is the group GLnpFq. The identity matrix has a basis
of neighborhoods made of the compact open pro-p-subgroups Ki � 1�Mnppiq for i ¥ 1.

Definition 1.2. — A smooth R-representation of G is a pair pπ,Vq made of a vector space V
over R together with a group homomorphism π : G ÞÑ GLpVq such that, for all v P V, there is
a compact open subgroup of G fixing v.

In these lectures, all representations will be smooth R-representations. Therefore we will often
write representation for smooth R-representation.

Given two smooth R-representations pπ,Vq and pσ,Wq of G, a homomorphism from pπ,Vq to
pσ,Wq is an R-linear map f : V Ñ W such that f � πpgq � σpgq � f for all g P G. The space of
all such maps will be denoted HomGpπ, σq.

This defines the abelian category, denoted RRpGq, of smooth R-representations of G.

Definition 1.3. — A smooth R-representation pπ,Vq of G is said to be admissible if, for any
open subgroup H of G, the space VH of H-fixed vectors of V is finite-dimensional.

A smooth R-character (or character for short) of G is a group homomorphism from G to R�

with open kernel.
Given a representation π and a character χ of G, we write πχ for the twisted representation

g ÞÑ πpgqχpgq.
A first very important fact is that one can define R-valued Haar measures on the group G

(see [27, I.2]). Such a measure is a nonzero R-linear form on:

C8c pG,Rq � tcompactly supported and locally constant R-valued functions on Gu
which is invariant under right translations (it is then automatically invariant under left transla-
tions). Such a measure is unique up to a non zero scalar. To define a Haar measure, let us fix a
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compact open pro-p-subgroup H � G and define the measure of any compact open subgroup K
of G by:

measpKq � pK : KXHq
pH : KXHq P R,

which is well defined since the denominator is a p-power and p is invertible in R.
We have here our first important difference between the complex theory (when R is the field

C of complex numbers) and the modular theory (when R has characteristic ` ¡ 0). Unlike the
complex case, measpKq may be 0 in the modular case. Smooth R-representations of K need not
be semi-simple, and the functor V ÞÑ VK of K-fixed vectors need not be exact.

1.2. Parabolic functors

Let P be a parabolic subgroup of G, together with a Levi decomposition P � MN defined
over F, where N is the unipotent radical of P. Write P � PpFq, M � MpFq and N � NpFq.

Attached to the parabolic subgroup P there is a complex character δP of M defined by:

δPpmq � pmKm�1 : mKm�1 XKq{pK : mKm�1 XKq
for all m P M, where K is an arbitrary compact open pro-p-subgroup of N (the value δPpmq does
not depend on the choice of K). These values are integer powers of q. Thus for all m P M, there
is a vpmq P Z such that δPpmq � qvpmq. Let us make a choice of a square root of q in R, denoted?
q, and write: a

δP : m ÞÑ p?qqvpmq P R�.

Let pσ,Wq be a smooth representation of M. Write iGM,PpWq for the space of locally constant
functions f : G Ñ W such that:

fpmngq �
a
δPpmqσpmqfpgq, m P M, n P N, g P G.

The representation of G on this space by right translation is smooth, denoted iGM,Ppσq and called
the parabolic induction of pσ,Wq to G along P. The functor:

iGM,P : RRpMq Ñ RRpGq
has a left adjoint rG

M,P, the parabolic restriction functor from G to M along P. Given pπ,Vq a
smooth representation of G, write VpNq for the subspace of V spanned by πpnqv�v for all n P N
and v P V. Then rG

M,Ppπq is the natural representation of M on the quotient V{VpNq twisted by
the inverse of the character

?
δP.

Remark 1.4. — (1) The functors iGM,P, rG
M,P are exact, rG

M,P preserves the property of being
of finite type, and iGM,P preserves admissibility (see [27, II.2.1]).

(2) More difficult: iGM,P and rG
M,P preserve the property of having finite length ([27, II.5.13]).

We have the following theorem (see [27], II.2.18 for more details).

Theorem 1.5 (Geometric Lemma). — Given parabolic subgroups P � MN and Q � LU of
G, there is a formula describing the functor rG

L,Q � iGM,P.

If R is the field of complex numbers, iGM,P has a right adjoint, which is rG
M,P� with P� the

parabolic subgroup of G opposite to P with respect to M (this is known as the second adjointness
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property; see [7]). In the modular case, this is not known in general, but partial results can be
found in [13]. However, there is a version for admissible representations (see [27, II.3.8]).

1.3. Cuspidal representations

Definition 1.6. — A representation pπ,Vq of G is cuspidal if the following equivalent condi-
tions are satisfied:

(1) The space rG
M,PpVq is zero for all proper parabolic subgroups P � MN � G.

(2) The space HomGpV, iGM,PpWqq is zero for all smooth R-representations pσ,Wq of M and
all proper parabolic subgroups P � MN � G.

Theorem 1.7 ([27, 22]). — Given pπ,Vq an irreducible representation of G, there are a para-
bolic subgroup P � MN � G and an irreducible cuspidal representation pσ,Wq of M such that π
embeds in iGM,Ppσq. Moreover, the cuspidal pair pM, σq is unique up to G-conjugacy.

Definition 1.8. — The G-conjugacy class of pM, σq is called the cuspidal support of pπ,Vq,
denoted cusppπ,Vq.

The cuspidal support depends on the choice of
?
q P R� that we have made.

Problem 1: Classify all irreducible representations of G having given cuspidal support.

There ia another characterization of cuspidality. Write Z for the centre of G.

Proposition 1.9. — An irreducible representation pπ,Vq is cuspidal if and only if, for all v P V
and all smooth linear form ξ : V Ñ R, the function g ÞÑ ξpπpgqvq has support whose image in
G{Z is compact.

Corollary 1.10 ([27]). — All irreducible representation of G are admissible and have a central
character.

When R � C, Proposition 1.9 is crucial. It is one of the key properties used for the Bernstein
decomposition of the category RCpGq into blocks with respect to the notion of (inertial) cuspidal
support. This is related to the fact that an irreducible cuspidal representation of G with central
character ω is projective in the full subcategory of RCpGq made of all smooth R-representations
having central character ω.

As observed by Vignéras, this is no longer true in the modular case, since irreducible cuspidal
representations of G may occur as subquotients of proper parabolically induced representations.

Example 1.11. — Assume G � GL2pQ5q and ` � 3 (where Qp is the field of p-adic numbers).
Let B be the subgroup of upper triangular matrices. The representation of G on the space V
of R-valued locally constant functions on BzG is indecomposable and has length 3. Its unique
irreducible subrepresentation is the trivial character of G, and its unique irreducible quotient is
g ÞÑ |det g|, where x ÞÑ |x| denotes the absolute value of F giving value q�1 to any uniformizer.
The remaining (infinite-dimensional) subquotient is cuspidal.

Definition 1.12. — An irreducible representation of G is supercuspidal if for all proper P �
MN and all irreducible representation pσ,Wq of M, it does not occur as a subquotient of iGM,Ppσq.

All supercuspidal representations of G are cuspidal, but the converse need not be true (see
Example 1.11).
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Remark 1.13. — When R � C, any cuspidal representation is supercuspidal.

Remark 1.14. — (1) Assume pπ,Vq is a supercuspidal irreducible representation of G hav-
ing a projective cover Pπ of finite type. Then Pπ is cuspidal (by Frobenius reciprocity). This
implies that π does not occur as a subquotient of iGM,Ppσq for any smooth pσ,Wq.

(2) It is not known in general whether or not a supercuspidal irreducible representation of G
has a projective cover of finite type. This is known for G � GLnpFq, n ¥ 1 ([14]).

Proposition 1.15. — For all irreducible representation pπ,Vq of G, there are a parabolic sub-
group P � MN and a supercuspidal irreducible representation pσ,Wq of M such that π occurs as
a subquotient of iGM,Ppσq.

Let us denote by scusppπ,Vq the set of all possible such pairs pM, σq, called the supercuspidal
support of pπ,Vq.
Problem 2: Given an irreducible representation pπ,Vq of G, is scusppπ,Vq made of a single
G-conjugacy class?

The answer is known only for the groups GLnpFq, n ¥ 1 and their inner forms (see Lecture 2).
See also [19] for the unitary group Up2, 1q with respect to an unramified quadratic extension.

Lecture 2.

From now on, we will assume that G is GLn, n ¥ 1 or possibly one of its inner form, so that
G is of the form GLmpDq with D a central division F-algebra of degree d2, with n � md.

Let α � pm1, . . . ,mrq be a family of positive integers of sum m. Denote by Mα the subgroup
of GLmpDq of invertible matrices which are diagonal by blocks of size m1, . . . ,mr respectively
(it is isomorphic to GLm1pDq � � � � � GLmrpDq) and by Pα the subgroup of GLmpDq generated
by Mα and the upper triangular matrices.

Write iα for the functor of parabolic induction associated with Mα and Pα, and rα for its left
adjoint. If π1, . . . , πr are smooth representations of GLm1pDq, . . . ,GLmrpDq respectively, write:

π1 � π2 � � � � � πr � iαpπ1 b π2 b � � � b πrq.
If pM, σq is a cuspidal pair, then up to conjugacy we have M � Mα for some α as above and σ has
the form σ1 b � � � b σr where σi is a cuspidal irreducible representation of GLmipDq. Therefore
the GLmpDq-conjugacy class of pM, σq will be identified with the formal sum σ1 � � � � � σr.

2.1. Supercuspidal support

Theorem 2.1 ([28, 22]). — Assume G is GLnpFq or one of its inner forms. For all irreducible
representations pπ,Vq of G, the set scusppπ,Vq is a single G-conjugacy class.

We need to introduce Bushnell-Kutzko’s theory of types [9]. This is a monumental machinery,
initially developed by Bushnell and Kutzko in order to prove that any complex irreducible cus-
pidal representation of GLnpFq is compactly induced from an irreducible representation of a
compact mod centre, open subgroup of GLnpFq. More precisely:

Theorem 2.2 ([9, 27, 23]). — Assume G is GLnpFq or one of its inner forms. Then there is
a family of pairs pJ, λq made of a compact open subgroup J � G and an irreducible representation
λ of J with the following properties:
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(1) For any irreducible cuspidal representation ρ of G, there is a pair pJ, λq, unique up to
G-conjugacy, such that λ embeds in the restriction of ρ to J.

(2) If ρ is an irreducible representation of G containing a pair pJ, λq, then it is cuspidal.
(3) If two irreducible cuspidal representations ρ, ρ1 both contain pJ, λq, then there is an un-

ramified character χ : G Ñ R� (that is, trivial on all compact subgroups of G) such that ρ1 � ρχ.
(4) Given pJ, λq, any irreducible subquotient of indG

J pλq, the compact induction of λ to G, is
isomorphic to a quotient of indG

J pλq.
(5) Given pJ, λq, the representation λ extends to its G-normalizer pJ; compact induction frompJ to G induces a bijection between the set of representations of pJ extending λ and that of iso-

morphism classes of irreducible cuspidal representations of G containing λ.

Example 2.3. — Write GLnpqq for the group of invertible n � n matrices with entries in the
residue field of F, and let σ be an irreducible cuspidal representation of GLnpqq. Inflate σ into
an irreducible representation of K � GLnpOq that is trivial on K1 � 1�Mnppq, still denoted σ.
Then the pairs of the form pK, σq obtained this way fullfil all the properties 1 to 5 for irreducible
cuspidal representations of G � GLnpFq having nonzero K1-fixed vectors (such irreducible re-
presentations are said to have level 0).

Moreover, if pσ is a representation of KZ (where Z is the centre of G) extending σ and if ρ is
the representation of G compactly induced form pσ, then the space ρK1 of K1-fixed vectors of ρ
– which is naturally a representation of K{K1 � GLnpqq – is isomorphic to σ.

Moreover, if ρ is an irreducible representation of G containing pK, σq, then it is supercuspidal
if and only if σ is supercuspidal as a representation of GLnpqq.
Example 2.4. — We give a positive level example for G � GLnpFq. Let us fix a uniformizer
$ of F, a character ψ : F Ñ R� trivial on p but not on O, and a character ω : F� Ñ R� trivial
on 1� p. Define a compact open subgroup:

I1 � 1�

�
����

p O � � � O
...

. . . . . .
...

...
. . . O

p � � � � � � p

�
���


of G. Given t P O�, define a character θ � θt of I1 by:

θp1� xq � ψpx1,2 � � � � � xn�1,n � t$�1xn,1q, 1� x P I1.

Write J � O�I1 and let λ � λt be the character of J defined by λpxgq � ωpxqθpgq for all x P O�

and g P I1. The F-algebra E generated by the element:

β �
�

0 t � idn�1

$ 0



P MnpFq

is a totally ramified extension of degree n and uniformizer β. The group E� normalizes the pair
pJ, λq, and the G-normalizer of the latter is pJ � E�J. Given z P R�, there is a unique character
zλ � zλt of pJ extending λ such that:

zλpβq � z

and its compact induction zρ � zρt is a supercuspidal irreducible representation (of level 1{n)
of G. It is obtained from 1ρ by twisting by the unramified character g ÞÑ zvalpdetpgqq, where val
denotes the valuation of F giving value 1 to any uniformizer.
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Two pairs pJ, λtq, pJ, λuq with t, u P O� are G-conjugate if and only if tu�1 P 1� p.

Remark 2.5. — This construction shows that, given ` and n ¥ 1, there is an irreducible mod `
supercuspidal representation of GLnpFq. Note that it may happen that all level 0 mod ` cuspidal
representations of GLnpFq are non-supercuspidal (this is the case, for instance, if n � q � 2 and
` � 3).

The pairs pJ, λq appearing in Theorem 2.2 a called the maximal simple types of G. The proof
of Theorem 2.1 requires a larger family of types, called the semisimple types of G (see [10, 23]
for a precise definition). We will only give the following crucial fact about these types.

Let α � pn1, . . . , nrq be a family of positive integers of sum n. For i P t1, . . . , ru, let pJi, λiq be
a maximal simple type of GLnipFq. Then there exists a semisimple type pJ,λq of G � GLnpFq
such that the compact induction indG

J pλq is isomorphic to the parabolic induction:

(2.1) indGLn1 pFq
J1

pλ1q � � � � � indGLnr pFq
Jr

pλrq.
For instance, if m1 � � � � � mr � 1 and if λi is the trivial character of Ji � O� for all i, then

one can choose for λ the trivial character of the standard Iwahori subgroup I of G.
Let us sketch the proof of Theorem 2.1 for the group G � GLnpFq. Let pπ,Vq be an irreducible

representation of G.

Step 1. — We first reduce to the case where π is cuspidal, by applying an appropriate parabolic
restriction functor rα (such that rαpπq is cuspidal) and by using the Geometric Lemma 1.5.

Step 2. — We prove uniqueness up to inertia: there are a unique positive integer r dividing n
and an irreducible supercuspidal representation ρ of GLn{rpFq such that any pair in scusppπ,Vq
is G-conjugate to a pair of the form:

pGLn{rpFq � � � � �GLn{rpFq, ρχ1 b � � � b ρχrq
where the χi’s are unramified characters of GLn{rpFq. This step requires type theory and unique-
ness of supercuspidal support for irreducible representations of the groups GLmpquq, where mu
divides n.

Step 3. — We finally prove that any pair in scusppπ,Vq is G-conjugate to a pair of the form:

pGLn{rpFq � � � � �GLn{rpFq, ρb ρ|det | b � � � b ρ|det |r�1q
where x ÞÑ |x| denotes the absolute value of F (normalized so that |$| � q�1) and ρ is uniquely
determined up to a twist by some power of |det | (note that ρ|det |r is isomorphic to ρ). This
step requires the theory of Whittaker models [27, III.1], which allows one to prove the following
crucial fact: if χ1, . . . , χr are unramified characters of GLn{rpFq such that ρχ1 � � � � � ρχr has a
cuspidal subquotient, there is an i P t1, . . . , ru such that, for all k P Z, there is a j P t1, . . . , ru
such that ρχi|det |k � ρχj (see [22, §8.2]).

This proof uses strong results that are known so far for GLnpFq and its inner forms only. They
are of two kinds: (a) results from the theory of types, and (b) results from the representation
theory of finite reductive groups.

We give more details on Step 2 in the case where π is a level 0 cuspidal representation.
We first introduce a useful tool. Given a smooth R-representation pσ,Wq of G, let us form the

space WK1 of K1-fixed vectors of W. Since K1 is normal in K � GLnpOq, there is a representation
of K on WK1 , and K1 acts trivially. This gives us a representation of the quotient K{K1, which
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naturally identifies with GLnpqq. This defines an exact functor from RRpGq to the category of
R-representations of GLnpqq.

Let P � MN be a standard parabolic subgroup (that is, containing all upper triangular matri-
ces) of G. We write Mpqq for the standard Levi subgroup of GLnpqq that corresponds to M. By
restricting functions from G to K, one can see from the Iwasawa decomposition G � PK that
the functor W ÞÑ WK1 transforms the parabolic induction functor iGM,P into the Harish-Chandra
induction functor from Mpqq to GLnpqq, denoted R.

Assume that π occurs as an irreducible subquotient of ρ1 � � � � � ρr where ρi is an irreducible
supercuspidal representation of GLnipFq, and with n1�� � ��nr � n. Then πK1 , which is nonzero,
is a subquotient of:

pρ1 � � � � � ρrqK1 � R
�
ρ

K1pn1q
1 b � � � b ρK1pnrq

r

�
where K1pnq stands for the K1-group of GLnpFq, n ¥ 1. This implies that all the ρi’s have level
0. Following Example 2.3, write:

π � indG
KF�ppσq, ρi � ind

GLni pFq

KpniqF�
ppσiq, i P t1, 2, . . . , ru,

where Kpnq � GLnpOq, n ¥ 1. By taking the K1-fixed vectors, we get that σ is a subquotient of
the Harish-Chandra induction of σ1 b � � � b σr. This implies (see Marc Cabanes’s lectures) that
σ1 � σ2 � � � � � σr (denoted σ0) and n1 � n2 � � � � � nr (denoted n0). We get the result by
choosing r � n{n0 and ρ � ρ1.

Remark 2.6. — The level 0 case is easy because it is the smallest possible level for an irreduci-
ble representation, and because the compatibility of the functor of K1-fixed vectors with parabo-
lic induction follows from the Iwasawa decomposition. The positive level case is more difficult,
and requires the use of endo-classes [8, 6].

2.2. Decomposition of RRpGq
A (super)cuspidal pair of G is a pair pM, ρq made of a Levi subgroup M � G and an irreducible

(super)cuspidal representation ρ of M.

Definition 2.7. — Two cuspidal pairs pM, ρq and pM1, ρ1q in G are inertially equivalent if there
is an unramified character χ of M such that pM1, ρ1q is G-conjugate to pM, ρχq.

Let SpGq denote the set of all inertial classes of supercuspidal pairs of G. Let us fix Ω P SpGq
and choose pM, ρq P Ω with:

M � GLn1pFq � � � � �GLnrpFq,
ρ � ρ1 b � � � b ρr,

where ρi is a supercuspidal irreducible representation of GLnipFq. For each i � 1, . . . , r choose
a pair pJi, λiq for ρi as in Theorem 2.2 and write:

U pΩq � indGLn1 pFq
J1

pλ1q � � � � � indGLnr pFq
Jr

pλrq.
According to (2.1), this representation can be described as the compact induction of a semisimple
type. For instance, if n1 � � � � � nr � 1 and all ρi are the trivial character of F�, then U pΩq is
the compact induction indG

I p1q of the trivial character of an Iwahori subgroup I of G.
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Theorem 2.8 ([24]). — (1) For all irreducible representations pπ,Vq of G and all Ω P SpGq,
one has:

scusppπ,Vq P Ω ô π is a subquotient of U pΩq.
(2) For all smooth representations pπ,Vq of G and all Ω P SpGq, let VpΩq denote the maximal

subrepresentation of V all of whose irreducible subquotients have supercuspidal support in Ω.
Then:

V � à
ΩPSpGq

VpΩq.

(3) If pπ,Vq,pσ,Wq are smooth representations of G, then HomGpV,Wq decomposes canoni-
cally as the product of all HomGpVpΩq,WpΩqq’s for Ω P SpGq.

(4) The full subcategory RRpΩq made of all smooth representations pπ,Vq of G such that
V � VpΩq is indecomposable.

The strategy of the proof is very different from Bernstein’s proof for complex representations.
It uses type theory as well as a decomposition theorem with respect to the supercuspidal support
for representations of GLnpqq.
Example 2.9. — Let pπ,Vq be a smooth level zero R-representation of G, that is, V is gener-
ated by VK1 . As a representation of GLnpqq, VK1 decomposes as a direct sum:à

rL,σs

VK1prL, σsq

where rL, σs ranges over all possible supercuspidal supports of GLnpqq and where VK1prL, σsq is
the maximal subrepresentation of VK1 all of whose irreducible subquotients have supercuspidal
support rL, σs. Write VrL, σs for the subrepresentation of V generated by VK1prL, σsq. Then V
decomposes as the direct sum of the VrL, σs’s. Now write:

L � GLn1pqq � � � � �GLnrpqq,
σ � σ1 b � � � b σr,

where σi is a supercuspidal irreducible representation of GLnipqq. For each i � 1, . . . , r, inflate σi
to an irreducible representation of Ji � Kpniq � GLnipOq, still denoted σi. By Example 2.3, the
pair pJi, σiq is a level 0 maximal simple type. Choose a supercuspidal irreducible representation
ρi of GLnipFq containing the pair pJi, σiq. The representation ρ � ρ1b� � �bρr is a supercuspidal
irreducible representation of a standard Levi subgroup M of G. Let Ω be the inertial class of
the supercuspidal pair pM, ρq. The process rL, σs ÞÑ Ω is well defined and induces a bijection
between supercuspidal supports of GLnpqq and inertial class of level 0 supercuspidal pairs of G.
Moreover, one has VpΩq � VrL, σs.

By type theory, one can prove that the endomorphism algebra EndGpU pΩqq is a finite tensor
product of affine Hecke algebras of type A. Together with part 2 of Theorem 2.8, this implies
that RRpΩq is indecomposable.

Problem 3: What is the structure of RRpΩq for Ω P SpGq? Find a progenerator PΩ in RRpΩq
and compute EndGpPΩq.

For G � GLmpDq, type theory provides candidates for the PΩ’s.
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Theorem 2.10 ([14]). — Let ρ be an irreducible supercuspidal representation of G � GLnpFq.
Let Ω be its inertial class. Write npρq for the number of unramified characters χ of G such that
ρχ � ρ and v for the `-adic valuation of qnpρq � 1. There is a progenerator PΩ of RRpΩq, with:

EndGpPΩq � RrX,X�1,Ts{pT`vq.
When Ω has level 0, Guiraud [15] proved that there is a progenerator PΩ, and that the com-

putation of its endomorphism algebra reduces to the case where n1 � � � � � nr and ρ1 � � � � � ρr
(with the notation of the beginning of the paragraph).

Lecture 3.

In this lecture, our goal is the classification of all irreducible representations of G � GLmpDq
having given (super)cuspidal support. For complex representations, this has been done by Zele-
vinski [32] for GLnpFq, and by Tadić [26] for its inner forms.

3.1. Reduction to the (super)unipotent case

Assume G � GLnpFq for simplicity. The indecomposable block corresponding to the inertial
class Ω1 of the pair pF�n, 1bn

F�
q is called the unipotent block.

An irreducible representation pπ,Vq of G is unipotent if it has supercuspidal support in Ω1,
that is, if π is a subquotient of U pΩ1q � indG

I p1q where I denotes the standard Iwahori subgroup
of G.

An irreducible representation pπ,Vq of G is superunipotent if cusppπq P Ω1, that is, if VI is
nonzero.

Theorem 3.1 ([23]). — Let s be a cuspidal support in G. It writes uniquely as s1 � � � � � st
such that (a) sj , sk have inertially equivalent terms in common if and only if j � k, and (b) any
two terms in sj are inertially equivalent, for all j. Then:

(1) The map pπ1, . . . , πtq Ñ π1 � � � � � πt induces a bijection:

cusp�1ps1q � � � � � cusp�1pstq Ñ cusp�1psq.
(2) Assume that the terms of s are supercuspidal. Then the same map induces a bijection:

scusp�1ps1q � � � � � scusp�1pstq Ñ scusp�1psq.
We are thus reduced to describe cusp�1pΩρq and scusp�1pΩρq where Ωρ is the inertial class of

pGLn{rpFqr, ρbrq and ρ a (super)cuspidal irreducible representation of GLn{rpFq, r dividing n.

Theorem 3.2 ([23]). — Let ρ be a cuspidal irreducible representation of GLn{rpFq.
(1) There are a finite extension F1{F of degree dividing n and a bijective map from cusp�1pΩρq

to the set of superunipotent representations of GLrpF1q.
(2) Assume ρ is supercuspidal. Then there is a bijective map from scusp�1pΩρq to the set of

unipotent representations of GLrpF1q.
Moreover, these bijections preserve the (super)cuspidal support in the following sense. Given

an unramified character χ of G, it writes χ � ξ � det where ξ is an unramified character of F�.
Then write χ1 for the unramified character ξ1 � det of G1 � GLrpF1q, where ξ1 is the unramified
character of F1� whose value at a uniformizer of F1 is the same as that of ξ at a uniformizer of F.
We get a bijective map χ ÞÑ χ1 between unramified characters of G and unramified characters
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of G1. Then an irreducible representation π P cusp�1pΩρq has cuspidal support ρχ1 � � � � � ρχr
if and only if it corresponds to a superunipotent representation π1 of G1 having cuspidal support
χ11 � � � � � χ1r. There is a similar statement for the supercuspidal support in the case where ρ is
supercuspidal.

Therefore we are reduced to classify (super)unipotent representations of GLnpFq.

3.2. Classification of (super)unipotent representations, I

We write HRpG, Iq for the Hecke-Iwahori R-algebra, that is the space of functions f : G Ñ R
with compact support and such that fpxgx1q � fpgq for all g P G, x, x1 P I, endowed with the
convolution product with respect to the Haar measure on G giving measure 1 to I.

For all smooth representation pπ,Vq, the space:

VI � HomGpC8c pIzG,Rq,Vq
is made into a right module over the Iwahori-Hecke algebra HRpG, Iq by the formula:

v � f �
¸
fpgqπpg�1qv

for v P VI and f P HRpG, Iq, where g ranges over a set of representatives of IzG in G.
If R has characteristic ` different from 0, p, the functor V ÞÑ VI from smooth representations

of G to right modules over HRpG, Iq need not be exact (more precisely, this functor is exact if
and only if ` does not divide q� 1). Thus C8c pIzG,Rq need not be projective as a representation
of G, but it has the following crucial property.

Theorem 3.3 ([28]). — (1) The representation C8c pIzG,Rq is quasi-projective, that is, for
any surjective G-homomorphism C8c pIzG,Rq Ñ V, the restriction HRpG, Iq Ñ VI is also surjec-
tive.

(2) The functor V Ñ VI induces a bijection between the isomorphism classes of superunipotent
representations of G and the isomorphism classes of simple right modules over HRpG, Iq.

But this functor kills all unipotent non-superunipotent representations. In order to deal with
these representations as well as the superunipotent ones, Vignéras has introduced the following
affine Schur algebra. Write:

V �à
P

C8c pPzG,Rq

where P ranges over all standard parahoric subgroups (that is, I � P � K) and their conjugates
by the G-normalizer of I.

The endomorphism algebra SRpG, Iq � EndGpVq is called the affine Schur algebra (see [30]).
Fix a Haar measure µ on G and let HRpG, µq denote the space C8c pG,Rq endowed with the

convolution product with respect to µ. Any smooth R-representation pπ,Vq is given a structure
of left HRpG, µq-module by:

f � v �
»
G

fpgqπpgqv dµpgq.

Let J � JRpGq be the ideal of HRpG, µq that annihilates the representation C8c pIzG,Rq.
Theorem 3.4 ([30]). — (1) There is a functor from RRpGq to the category of right SRpG, Iq-
modules inducing an equivalence between the full subcategory of RRpΩ1q made of all representa-
tions that are killed by J and the category of right SRpG, Iq-modules.
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(2) This induces a bijection between the isomorphism classes of unipotent representations of
G and the isomorphism classes of simple modules over SRpG, Iq.

(3) There is an integer N ¥ 1 such that J N annihilates the whole block RRpΩ1q.

3.3. Classification of (super)unipotent representations, II

We now classify unipotent representations of GLnpFq by multisegments.

Definition 3.5. — (1) A segment is a pair pξ, nq P R� � Z¡0.
(2) A multisegment is a formal finite sum of segments.
(3) The integer n is called the length of the segment pξ, nq, and the length of a multisegment

is the sum of the lengths of its segments.

Given a segment pξ, nq, write Zpξ, nq for the character:

g ÞÑ ξ�valpdetpgqq

of the group GLnpFq. For a multisegment m � pξ1, n1q � � � � � pξr, nrq of length n ¥ 1, we want
to define an irreducible subquotient Zpmq of:

Ipmq � Zpξ1, n1q � � � � � Zpξr, nrq.
Let U be the subgroup of upper triangular unipotent matrices of GLnpFq. Let us fix a smooth
nontrivial character ψF of F, and set ψpuq � ψFpu1,2 � � � � � un�1,nq for all u P U.

Definition 3.6. — An irreducible representation pπ,Vq of G is generic if the space HomUpπ, ψq
is nonzero. (This notion does not depend on the choice of ψF.)

Given a multisegment m of length n ¥ 1 as above, write µm for the partition of n conjugate
to pn1 ¥ n2 ¥ . . . ¥ nrq.
Proposition 3.7. — (1) µm is the unique maximal partition (for the dominance order) of n
such that the parabolic restriction rµmpIpmqq contains a generic irreducible subquotient.

(2) Such a generic irreducible subquotient is unique, and occurs with multiplicity 1.

Write Zpmq for the unique irreducible subquotient of Ipmq such that the parabolic restriction
rµmpZpmqq contains a generic irreducible subquotient.

Theorem 3.8 ([22]). — The map m ÞÑ Zpmq is a bijection between multisegments of length n
and isomorphism classes of unipotent representations of GLnpFq.

This bijection does not depend on the choice of
?
q P R�.

Proof. — For injectivity, µm can be recovered by the uniqueness property in Proposition 3.7(1).
Then m can be recovered by looking at the generic irreducible subquotient in rµmpZpmqq.

For surjectivity, one uses a counting argument that is based on the classification of all simple
modules over HRpG, Iq by aperiodic multisegments [1, 12].

Now write ` for the characteristic of R and define an integer e ¥ 0 by:

e �
"

0 if ` � 0,
the smallest k ¥ 2 such that 1� q � � � � � qk�1 � 0 if ` ¡ 0.
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Then the multisegment m writes uniquely as:

m � a�
¸
u¥0

¸
n¥1

¸
ξ

cpξ, n, uq � pξ, nqu

where ξ ranges over a set of representatives of R�{qZ in R� and:
(1) pξ, nqu is the multisegment:

pξ, nq � pξq, nq � � � � � pξqe`u�1, nq
where e is as above, and cpξ, n, uq is an integer in t0, 1, . . . , `� 1u;

(2) a is q-aperiodic, which means that for all segments pζ, dq and all v ¥ 0, the multisegment
pζ, dqv does not occur in a (when ` � 0, any multisegment is q-aperiodic thus a � m);

Given an integer u ¥ 0, the induced representation 1�ν�� � ��νe`u�1 (where ν is the absolute
value x ÞÑ |x|) possesses a unique cuspidal irreducible subquotient, denoted ρu. Given ξ P R�,
we also write χξ,u for the unramified character Zpξ, e`uq of GLe`upFq.
Theorem 3.9 ([22]). — The cuspidal support of Zpmq is:

scusppZpaqq �
¸
u¥0

¸
n¥1

¸
ξ

n � cpξ, n, uq � ρuχξ,u.

We finally have the following decomposition theorem.

Theorem 3.10 ([22]). — Let m be a multisegment. Then the semisimplification of Ipmq writes:

Zpmq �
¸
n

dm,n � Zpnq

where n ranges over all multisegments and dm,n P Z¥0, with the following property: if dm,n � 0,
then µn is smaller than µm (for the dominance order).

Remark 3.11. — When G is a non-split inner form of GLnpFq, there is no theory of generic
representations for G. In order to define the irreducible representation Zpmq of G, we introduce
the notion of residually generic representation (see [22]) by using the functor W ÞÑ WK1 defined
in Paragraph 2.1 (and more general functors coming from type theory to deal with positive level
representations).

3.4. Comments

When R is the field of complex numbers, the map m ÞÑ Zpmq gives Zelevinski’s classification of
all irreducible representations having nonzero Iwahori-fixed vectors. When the segments of m are
put in a suitable order, the representation Zpmq can be characterized as the unique irreducible
subrepresentation of Ipmq.

There is also a Langlands classification m ÞÑ Lpmq where Lpmq is uniquely determined as the
unique irreducible quotient of Jpmq � Lpξ1, n1q � � � � � Lpξr, nrq when the segments are put in a
suitable order, and where Lpξ, nq is the unique generic irreducible representation with the same
cuspidal support as Zpξ, nq. These two classifications are exchanged by the Zelevinski involution.

When R has nonzero characteristic ` � p, it is also possible to define a Langlands classification
m ÞÑ Lpmq and a mod ` Zelevinski involution that exchanges Z and L. However Lpξ, nq need not
be generic anymore.
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Lecture 4.

In this section, G is the group GLnpFq.

4.1. Reduction mod `

Let us fix a prime number ` � p and an algebraic closure Q` of the field of `-adic numbers. The
residue field F` of its ring of integers Z` is an algebraic closure of a finite field of characteristic
`.

Definition 4.1. — An irreducible Q`-representation pπ,Vq of G is said to be integral if V has
a G-stable lattice L, that is a free Z`-module generated by a Q`-basis of V.

Then L b F` is a smooth F`-representation of finite length of G, and its semisimplification
does not depend on the choice of L; it is denoted r`pπq (see [31] and [27, II.5.11]).

We fix a square root of q in Z�
` � Q�

` . By reducing mod the maximal ideal of Z`, it gives us
a square root of q in F�` .

We write MSpRq for the semigroup of multisegments made of segments pξ, nq with ξ P R� and
ZR for the bijection from MSpRq to the set of isomorphism classes of unipotent representations.

A multisegment m � pξ1, n1q � � � � � pξr, nrq P MSpQ`q is integral if the ξi’s belong to Z�
` . If

m as above is integral, define:

r`pmq � pξ1, n1q � � � � � pξr, nrq P MSpF`q
where ξ denotes the image of ξ P Z�

` in F�` .

Lemma 4.2. — (1) Let m P MSpQ`q. Then Zpmq is integral if and only if m is integral.
(2) Let π be an integral unipotent Q`-representation of G. Then all irreducible subquotients

of r`pπq are unipotent.

Proof. — For 2, let m � pξ1, n1q� � � ��pξr, nrq P MSpQ`q be an integral multisegment such that
π is isomorphic to Zpmq. By construction, π is an irreducible subquotient of:

Ipmq � ZQ`
pξ1, n1q � � � � � ZQ`

pξr, nrq.
Since reduction mod ` commutes with parabolic induction, all irreducible subquotients of r`pπq
are subquotients of:

r`pIpmqq � ZQ`
pξ1, n1q � � � � � ZQ`

pξr, nrq � Ipr`pmqq.
The result follows.

Theorem 4.3. — Let m P MSpQ`q be an integral multisegment. Then:

r`pZQ`
pmqq � ZF`

pr`pmqq �
¸
n

apm, nq � ZF`
pnq

where n ranges over all multisegments and apm, nq P Z¥0, with the property: if apm, nq is nonzero,
then µn is smaller than µm (for the dominance order).

Example 4.4. — Assume G � GL2pQ5q and ` � 3 (see Example 1.11). Thus we have q � 5.
The unipotent Q`-representation corresponding to p1, 2q P MSpQ`q is the trivial Q`-character

of G, whose reduction mod ` is the trivial F`-character of G, that corresponds to the multiseg-
ment p1, 2q P MSpF`q.
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Now consider m � p1, 1q � pq, 1q P MSpQ`q. We write St for the Steinberg Q`-representation
of G and π for the cuspidal subquotient of the F`-representation V of Example 1.11. We have
the following diagram:

p1, 1q � pq, 1q
r`

��

ZQ` // StZQ`
p?q, 2q
r`

��
p1, 1q � p�1, 1q

ZF`

// π � ZF`
p�1, 2q

and π � ZF`
pp1, 1q � p�1, 1qq is unipotent but not superunipotent.

4.2. The local Langlands correspondence

Let us fix a separable closure F of F. Its residue field k is a separable closure of the residue
field k of F. The Galois group ΓF � GalpF{Fq acts on k such that there is a surjective group
homomorphism:

γF : ΓF Ñ Galpk{kq.
The group ΓF is profinite, and IF � KerpγFq is a closed subgroup. Let FrobF P Galpk{kq be the
Frobenius automorphism x ÞÑ xq. Then write:

WF � tg P ΓF | γFpgq P FrobZ
Fu.

It is called the Weil group of F. There is a unique topology on WF such that:
(1) the topology of IF induced by WF and that induced by ΓF coincide;
(2) the subgroup IF is open in WF.

Note that this is not the topology on WF induced by ΓF (for which (2) is not satisfied).

Remark 4.5. — The group WF is locally compact, and its element 1 has a basis of neighbor-
hoods made of compact open pro-p-subgroups. There is a notion of smooth R-representation of
WF, just as for the group G. There is also a notion of reduction mod ` for (integral) finite-dim-
ensional Q`-representations of WF.

Now write:

G 0
n pFq � {isomorphism classes of n-dimensional irreducible C-representations of WF},

A 0
n pFq � {isomorphism classes of irreducible cuspidal C-representations of GLnpFq}.

The local Langlands correspondence [20, 17, 18] asserts that there exists a unique family of
bijections:

π0
n : G 0

n pFq Ñ A 0
n pFq, n ¥ 1

satisfying certain specific conditions that we do not give explicitely here.
Now choose an isomorphism α : C Ñ Q`. By extension of scalars, any smooth complex rep-

resentation of WF,G gives rise to a smooth Q`-representation of WF,G. It also gives bijections:

απ
0
n : G 0

n pF,Q`q Ñ A 0
n pF,Q`q, n ¥ 1

depending on α, because π0
n for n even depends on the choice of

?
q P C�.

Theorem 4.6 ([29]). — (1) For any ρ P A 0
n pF,Q`q, the reduction r`pρq is irreducible and

cuspidal.
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(2) The map:
r` : A 0

n pF,Q`qint Ñ A 0
n pF,F`q

is surjective, where A 0
n pF,Q`qint denotes the subset of integral representations in A 0

n pF,Q`q.
(3) A representation σ P G 0

n pF,Q`q is integral if and only if απ
0
npσq is integral.

(4) Assume σ, σ1 P G 0
n pF,Q`q are integral. Then:

r`pσq � r`pσ1q ô r`pαπ0
npσqq � r`pαπ0

npσ1qq.
(5) r`pσq is irreducible if and only if r`pαπ0

npσqq is supercuspidal.
(6) This induces a bijection απ

0
n between isomorphism classes of irreducible n-dimensional F`-

representationsof WF and isomorphism classes of irreducible supercuspidal F`-representations of
G.

References

[1] S. Ariki – On the decomposition numbers of the Hecke algebra of Gpm, 1, nq, J. Math. Kyoto Univ.
36 (1996), no. 4, p. 789-808.

[2] J. Bernstein. – Le centre de Bernstein, in Representations of reductive groups over a local field,
Travaux en Cours, p. 1-32. Hermann, Paris, 1984. Written by P. Deligne.

[3] , Representations of p-adic groups, Lectures at Harvard University, 1992. Written by
K. E. Rumelhart.

[4] J. Bernstein & A. Zelevinski – Induced representations of reductive p-adic groups. I, Ann. Sci.
École Norm. Sup. (4) 10 (1977), no. 4, p. 441-472.

[5] C. Blondel – Basic representation theory of reductive p-adic groups, in p-adic representations, theta
correspondence and the Langlands-Shahidi method, 2013, Science Press.
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in Mathematics, vol. 137, Birkhäuser Boston Inc., Boston, MA, 1996.

[28] , Induced R-representations of p-adic reductive groups, Selecta Math. (N.S.) 4 (1998), no. 4,
p. 549-623. With an appendix by Alberto Arabia.

[29] , Correspondance de Langlands semi-simple pour GLpn, F q modulo ` � p, Invent. Math. 144
(2001), no. 1, p. 177-223.

[30] , Schur algebras of reductive p-adic groups I, Duke Math. J. 116 (2003), no. 1, p. 35-75.
[31] , “On highest Whittaker models and integral structures, in Contributions to Automorphic

forms, Geometry and Number theory: Shalikafest 2002, John Hopkins Univ. Press, 2004, p. 773-801.
[32] A. Zelevinski – Induced representations of reductive p-adic groups. II. On irreducible representa-
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de Versailles, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
E-mail : vincent.secherre@math.uvsq.fr


	1. 
	2. 
	3. 
	4. 
	References

