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Abstract. — Let F be a non-Archimedean locally compact field of residue characteristic p and R
be an algebraically closed field of characteristic ` different from p. Let G be the group GLn, n > 1,
over F, or one of its inner forms. In this article, we classify the unramified irreducible smooth
R-representations of G(F): more precisely we prove that they are those representations that are
irreducibly induced from an unramified character of a Levi subgroup. We deduce that any smooth
irreducible unramified F`-representation of G(F) can be lifted to Q`, which proves a conjecture by
Vignéras.

Introduction

The classification of representations of reductive groups over local fields is a fundamental
problem in harmonic analysis, with various applications in the theory of automorphic forms and
in number theory. The class of irreducible unramified representations is of particular importance:
indeed, if G is a connected reductive group defined over a number field k, and if Π is a complex
admissible irreducible representation of the adelic group G(Ak), then, at almost all finite place
v, the local component Πv is an unramified irreducible complex representation of G(kv).

Complex unramified representations of G(kv) are well understood (see [2, 3, 10]). In partic-
ular, if G = GLn, Tadić [11] proved that a complex irreducible representation is unramified if
and only if it is irreducibly induced from a unramified character of a Levi subgroup.

So far we have only been concerned with representations on complex vector spaces. Recently
however, the applications of the representation theory of p-adic reductive groups to number
theory have required considering representations with coefficients in fields of positive character-
istic (for example, see [4] for the modularity lifting problems). Their behaviour is very different
depending on whether this characteristic ` is equal to, or different from p. In this article we will
only deal with the latter case. In this case, the theory of `-modular representations of p-adic
reductive groups has been developed by Vignéras (see [13]).
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(EP/G001480/1). First named author was also partially supported by MTM2010-19298 and FEDER.
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Let F be a non-Archimedean locally compact field of residue characteristic p. We write O for
its ring of integers and q for the cardinality of its residue field. Let ` 6= p be a prime number
and n be a positive integer. Irreducible smooth `-modular representations of the group GLn(F)
have been studied fifteen years ago [14]. Nevertheless, the classification of those irreducible `-
modular representations of GLn(F) that are unramified, that is, that have nonzero GLn(O)-fixed
vectors, remained unknown. Taking GLn(O)-fixed vectors of smooth `-modular representations
of GLn(F) is not, in general, an exact functor. There can be more than one irreducible unramified
subquotient in an unramified principal series, and this makes things complicated. In particular
there might be several unramified `-modular representations having the same Satake parameter
(see [16, Ap. B]).

In this article we classify all irreducible unramified `-modular representations of GLn(F) and
its inner forms. More precisely, we prove the following theorem.

Theorem 0.1 (see Corollary 6.2). — An irreducible smooth `-modular representation of the
group GLn(F) – or one of its inner forms – is unramified if and only if it is irreducibly induced
from an unramified character of a Levi subgroup. In this case, the space of its fixed vectors by
a maximal compact subgroup has dimension 1. Moreover, any irreducible unramified `-modular
representation can be lifted to an irreducible `-adic representation.

This theorem was conjectured in [14, VI.3]. To give more detail on the proof let us introduce
some notation.

Let D be a finite dimensional central division F-algebra. For any integer m ≥ 1, we write
Gm for the group GLm(D). To a cuspidal irreducible `-modular representation ρ of Gm we
attached in [8] an unramified character νρ so that, for any cuspidal irreducible representation ρ′

of Gm′ , m′ ≥ 1, the (normalized) parabolically induced representation ρ× ρ′ is reducible if and
only if m′ = m and ρ′ is isomorphic to ρνρ or ρν−1

ρ . For example, if D = F, the character νρ
is independent of ρ and equals | det |F, where | |F denotes the normalized absolute value on F.
This allows us to define a segment as a sequence of the form:

[a, b]ρ = (ρνaρ , ρν
a+1
ρ , . . . , ρνbρ),

with a, b ∈ Z such that a ≤ b. The support of [a, b]ρ is the multiset (i.e. set with multiplicities)
ρνaρ + ρνa+1

ρ + · · ·+ ρνbρ, and its length is b− a+ 1. If a+ 1 6 b, we write:
−∆ = [a+ 1, b]ρ , ∆− = [a, b− 1]ρ .

To any segment ∆ = [a, b]ρ we have associated in [9], following Zelevinsky and Vignéras, an ir-
reducible subrepresentation Z(∆) of ρνaρ ×ρνa+1

ρ ×· · ·×ρνbρ. It is a representation of Gm(b−a+1).
Let ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ′ be two segments. We say that ∆ and ∆′ are linked if if one

can extract from at least one of the following sequences:

(ρνaρ , . . . , ρν
b
ρ, ρ
′νa
′
ρ′ , . . . , ρ

′νb
′
ρ′) and (ρ′νa

′
ρ′ , . . . , ρ

′νb
′
ρ′ , ρν

a
ρ , . . . , ρν

b
ρ)

a subsequence which is a segment of length greater than those of ∆ and ∆′.
If ∆1, . . . ,∆r are segments we know that the induced representation Z(∆1) × · · · × Z(∆r) is

irreducible if and only if, for all i, j ∈ {1, . . . , r}, i 6= j, the segments ∆i and ∆j are not linked.
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We deduce in section 3 that, if ∆1, . . . ,∆r are segments with support made of unramified
characters and for all i, j ∈ {1, . . . , r}, i 6= j, the segments ∆i and ∆j are not linked, then the
representation Z(∆1)×· · ·×Z(∆r) is irreducible and unramified. The hard task is to prove that
every irreducible unramified `-modular representation is of that form.

It is easy to see, by the Iwasawa decomposition, that such a representation is a subquotient
of a principal unramified series. These representations are parametrized by unramified multiseg-
ments, that is multisets of segments with support made of unramified characters. Let e be the
multiplicative order of the cardinality of the residue field of D modulo `. To prove Theorem 0.1
we distinguish two cases, depending on whether e = 1 or not.

The case when e = 1 is easy, and the proof was already sketched in [14, VI.2]. It relies on
the use of the Hecke-Iwahori algebra. See Section 4 for more details.

The case when e > 1 is more complicated. The key idea is that, in this case, on can distin-
guish irreducible `-modular representations by their proper Jacquet modules. By an inductive
argument carried out in Section 6, one can see that it is enough to prove that, if ∆ = [a, b]ρ and
∆′ = [a′, b′]ρ are two linked segments, with ρ an unramified character of G1, then the irreducible
representation corresponding to the multisegment ∆+∆′, denoted Z(∆+∆′), is not unramified.
We prove this result in Section 5. For this we distinguish several cases and see that Z(∆ + ∆′)
is always a subrepresentation of one of the following induced representations:

1. Z(∆− + ∆′−)× ρνbρ × ρνb
′
ρ , with ∆−, ∆′− linked;

2. Z(∆ + ∆′−)× ρνb′ρ , with ∆, ∆′− linked;
3. ρνaρ × ρνa

′
ρ × Z(−∆ +−∆′), with −∆, −∆′ linked;

4. ρνa
′
ρ × Z(∆ +−∆′), with ∆, −∆′ linked;

and the theorem follows from an inductive argument. See Section 5 for more details.
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1. Notation and preliminaries

1.1. Throughout this article, F is a non-Archimedean locally compact field of residue characte-
ristic p and q is the cardinality of its residue field. Let D be a finite dimensional central division
F-algebra of reduced degree d and let OD be its ring of integers. Let R be an algebraically closed
field of characteristic ` different from p. If ` > 0, we denote by e the order of qd in R×. If ` = 0,
we set e =∞.

1.2. A smooth R-representation of a topological group G is a pair (π,V) where V is a R-vector
space and π is a group homomorphism from G to AutR(V) such that the stabilizer of any vector
in V is an open subgroup in G. In this article all representations will be smooth.

An R-character of G is a group homomorphism from G to R× with open kernel. It is a smooth
representation of dimension 1. Given π an R-representation and χ an R-character of G, we write
χπ or πχ for the representation g 7→ χ(g)π(g).
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We denote by IrrR(G) the set of equivalence classes of irreducible R-representations of G. For
any finite length R-representation π of G we will denote by [π] its semisimplification.

When the coefficient field is clear from the context, we will write character and representation
rather than R-character and R-representation.

1.3. For any m ≥ 1, we write Mm(D) for the F-algebra of m×m matrices with coefficients in
D and Gm = GLm(D) for the group of its invertible elements.

Let Nm denote the reduced norm from Mm(D) to F, and write | |F for the normalized absolute
value of F, giving the value q−1 to any uniformizer of F. As the image of q in R is invertible, this
defines an R-character of F× that we will write | |F,R. The map g 7→ |Nm|F,R is an R-character
of Gm that we denote by ν (the m will be implicit and hopefuly clear from the context).

If π is an R-representation of Gm we will write deg(π) = m, the degree of π.

1.4. Let m be a positive integer. A composition of m is a finite sequence α = (m1, . . . ,mr)
of positive integers of sum m. If mi ≥ mi+1 for all 1 ≤ i ≤ r − 1, we say that α is a partition
of m. To each composition α = (m1, . . . ,mr) of m we naturally associate a unique partition
by rearranging the mi’s. We define a partial order in the set of partitions of the integer m. If
α = (n1, . . . , ns) and β = (m1, . . . ,mr) are two partitions of m, we write α E β if:

n1 + · · ·+ nk 6 m1 + · · ·+mk

for all integers k > 1. We write α / β if we have in addition α 6= β.

Lemma 1.1. — Let α = (n1, . . . , nr) and β = (m1, . . . ,mr) be two partitions of m. Assume
there are two integers 1 ≤ i < j ≤ r such that:

1. nk = mk if k /∈ {i, j}.
2. ni > mi.

Then we have α . β.

Proof. — See that nj = mj +mi−ni. By definition of the order we can suppose first i = 1 and
j = r. Then we can suppose nj = 0. The proof is now straightforward.

1.5. Let α = (m1, . . . ,mr) be a composition of m. We denote by Mα the subgroup of Gm of
invertible matrices which are diagonal by blocks of size m1, . . . ,mr respectively (it is isomorphic
to Gm1 × · · · ×Gmr) and by Pα the subgroup of Gm generated by Mα and the upper triangular
matrices. A standard parabolic subgroup of Gm is a subgroup of the form Pα and its Levi factor
is Mα.

We choose once and for all a square root of q in R. Write rα for the normalized Jacquet func-
tor associated to Pα and iα for its right adjoint functor, that is, normalized parabolic induction.
If π1, . . . , πr are smooth representations of Gm1 , . . . ,Gmr respectively, we write:

(1.1) π1 × π2 × · · · × πr = iα(π1 ⊗ π2 ⊗ · · · ⊗ πr).
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1.6. In this paragraph we give a combinatorial version of the Geometric Lemma of Bernstein-
Zelevinsky [1] (see also [13, II.2.19]). Let α = (m1, . . . ,mr) and β = (n1, . . . , ns) be two com-
positions of an integer m > 1. For every i ∈ {1, . . . , r}, let πi be an irreducible R-representation
of Gmi , and let π = π1 ⊗ · · · ⊗ πr ∈ IrrR(Mα). Denote by M α,β the set of matrices B = (bi,j)
with non-negative coefficients such that:

s∑
j=1

bi,j = mi, i ∈ {1, . . . , r},
r∑
i=1

bi,j = nj , j ∈ {1, . . . , s}.

Fix B ∈M α,β and denote by αi = (bi,1, . . . , bi,s) and βj = (b1,j , . . . , br,j) which are compositions
of mi and nj respectively. For all i ∈ {1, . . . , r}, set:

σ
(k)
i = σ

(k)
i,1 ⊗ · · · ⊗ σ

(k)
i,s , σ

(k)
i,j ∈ Irr(Gbi,j ), k ∈ {1, . . . , ri},

the different composition factors of rαi(πi). For all j ∈ {1, . . . , s} and all sequences of integers
(k1, . . . , kr) such that 1 6 ki 6 ri, we define the representation σj of Gnj by:

σj = iβj

(
σ

(k1)
1,j ⊗ · · · ⊗ σ

(kr)
r,j

)
.

Then we have:
[rβ ◦ iα(π)] =

∑
B∈Mα,β , (k1,...,kr)

[σ1 ⊗ · · · ⊗ σs].

1.7. An irreducible representation π of Gm is said to be cuspidal if it is not a subrepresen-
tation (or equivalently a quotient) of an induced representation of the form (1.1) with r ≥ 2
and π1, . . . , πr all irreducible. It is said to be supercuspidal if it is not a subquotient of a rep-
resentation of the form (1.1) with r ≥ 2 and π1, . . . , πr irreducible. A supercuspidal irreducible
representation is always cuspidal but, in general, the converse is not true. Write CR(Gm) and
SR(Gm) for the subsets of IrrR(Gm) made of equivalence classes of cuspidal and supercuspidal
representations of Gm. We write CR and SR for the disjoint union of CR(Gm) and SR(Gm)
respectively, for m > 1.

Given a set X, write N(X) for the commutative semigroup of maps from X to N with finite
support, and 6 for the natural partial order on N(X).

For any irreducible representation π of Gm there exists a composition α = (m1, . . . ,mr) of m
and cuspidal (resp. supercuspidal) representations π1, . . . , πr of Gm1 , . . . ,Gmr such that π is a
subrepresentation (resp. a subquotient) of π1 × π2 × · · · × πr. The sum:

[π1] + [π2] + · · ·+ [πr]

in N(CR) (resp. in N(SR)) is unique and called the cuspidal (resp. supercuspidal) support of π
(see [9, Théorèmes 2.1 et 8.16]).

1.8. We write:
K0 = GLm(OD)

for the subgroup of Gm made of those elements g ∈Mm(OD) such that Nm(g) is a unit in O×D.
Any maximal compact subgroup of Gm is conjugate to K0, and any such subgroup is open.
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An R-representation of Gm is said to be unramified (or spherical) if it has a non-zero K-fixed
vector for a maximal compact subgroup K of Gm. The notion of unramified representation does
not depend on the choice of K because all maximal compact subgroups are conjugated in Gm.

An R-character of G1 = D× is unramified if and only if it is trivial on the unit subgroup O×D.
Every unramified character of G1 is of the form χ ◦N1 with χ an unramified character of F× (it
is determined by the image of any uniformizer of D).

2. On the classification of irreducible R-representations of Gm

In this section, we recall the classification of irreducible representations of Gm, with m > 1,
in terms of multisegments (see [9]).

2.1. Let m ≥ 1 be an integer and ρ be an irreducible cuspidal R-representation of Gm. In [8]
we associate to ρ an unramified character νρ of Gm such that, if ρ′ is an irreducible cuspidal
representation of Gm′ for some m′ ≥ 1, the induced representation ρ×ρ′ is reducible if and only
if m′ = m and ρ′ is isomorphic to ρνρ or ρν−1

ρ . We set:

(2.1) Zρ = {[ρνiρ] | i ∈ Z}.

In the case where the characteristic of R is non-zero, this set is finite and we denote by e(ρ) its
cardinality. If the characteristic of R is zero, Zρ is an infinite set and we write e(ρ) =∞.

Example 2.1. — If ρ is the trivial representation of G1, or more generally, if ρ is a character
of G1 then e(ρ) = e (see Paragraph 1.1) and νρ = νd.

Definition 2.2. — A segment is a finite sequence of the form:

(2.2) (ρνaρ , ρν
a+1
ρ , . . . , ρνbρ)

where ρ is as above and a, b ∈ Z are two integers such that a 6 b. Such a sequence is denoted
[a, b]ρ.

If ∆ = [a, b]ρ is a segment, we write:

(2.3) l(∆) = b− a+ 1, deg(∆) = (b− a+ 1)m,

respectively the length and the degree of ∆. If a+ 1 6 b, we set:

(2.4) −∆ = [a+ 1, b]ρ , ∆− = [a, b− 1]ρ .

The support of ∆, denoted supp(∆), is the sum:

(2.5) supp(∆) = [ρνaρ ] + · · ·+ [ρνbρ]

in N(CR).

Definition 2.3. — Let ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ′ be two segments.
1. We say that ∆ precedes ∆′ if one can extract from the sequence:

(ρνaρ , . . . , ρν
b
ρ, ρ
′νa
′
ρ′ , . . . , ρ

′νb
′
ρ′)

a subsequence which is a segment of length greater than l(∆) and l(∆′).
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2. We say that ∆ and ∆′ are linked if ∆ precedes ∆′ or if ∆′ precedes ∆.
3. We say that ∆ and ∆′ are equivalent if they have the same length and ρνaρ is isomorphic

to ρ′νa
′
ρ′ .

Remark that, if ∆ and ∆′ are linked or equivalent, then Zρ = Zρ′ . Conversely, when Zρ = Zρ′ ,
we have the following results.

Lemma 2.4. — Let ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ be two segments. Then ∆ precedes ∆′ if and
only if the two following conditions are fulfilled:

1. There is a c′ ∈ Z such that a′ 6 c′ 6 b′ and c′ ≡ b+ 1 (mod e(ρ)).
2. There is a c ∈ Z such that a 6 c 6 b and c ≡ a′ − 1 (mod e(ρ)).

Remark 2.5. — Note that Condition 1 is enough when l(∆) > l(∆′), and Condition 2 is enough
when l(∆) 6 l(∆′).

Proof. — By Remark 2.5, the two conditions imply that ∆ precedes ∆′. Assume that ∆ precedes
∆′. There are integers a 6 c1 < c2 < · · · < cs 6 b and a′ 6 cs+1 < cs+2 < · · · < cr 6 b′ such
that:

1. one has ci+1 ≡ ci + 1 (mod e(ρ)) for all i ∈ {1, . . . , r − 1};
2. the integer r is greater than l(∆) and l(∆′).

By adding the integers that may be missing, we may assume that {c1, . . . , cs} = {a, a+1, . . . , cs}
and that {cs+1, . . . , cr} = {cs+1, . . . , b

′−1, b′}. Thus we have cs = a+s−1 and cs+1 = b′+1−r+s.
Since l(∆) < r, we get b − cs < r − s. Then c′ = cs+1 + b − cs satisfies Condition 1. Similarly,
since l(∆′) < r, we get cs+1 − a′ < s. Then c = cs + a′ − cs+1 satisfies Condition 2.

We deduce the following corollary.

Corollary 2.6. — Let ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ be two segments such that l(∆) > l(∆′).
Then ∆ and ∆′ are linked if and only if there is a c′ ∈ Z such that a′ 6 c′ 6 b′ and c′ is congruent
to b+ 1 or a− 1 mod e(ρ).

We write Seg = SegR for the set of equivalence classes of segments.

Definition 2.7. — A multisegment is a multiset of equivalence classes of segments, that is an
element in N(Seg). We write Mult = MultR for the set of multisegments.

Let m = ∆1 + · · ·+ ∆r be a multisegment. The length, degree and support can be extended
additively to Mult, that is we will write:

l(m) =
∑

16i6r

l (∆i) , deg (m) =
∑

16i6r

deg (∆i) , supp(m) =
∑

16i6r

supp (∆i) ,

the length, the degree and the support of m respectively.

Definition 2.8. — A segment ∆ = [a, b]ρ is said to be supercuspidal if ρ is supercuspidal, and
unramified if ρ is an unramified character of G1.

We say that m is supercuspidal if ∆i is supercuspidal for all 1 ≤ i ≤ r, and that m is unramified
if ∆i is unramified for all 1 ≤ i ≤ r.
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2.2. Let m ≥ 1 be a positive integer and ρ be a cuspidal representation of Gm. To any segment
∆ = [a, b]ρ of degree n, we associate in [9, §7.2] a representation:

Z(∆)

of Gn which is a subrepresentation of ρνaρ × ρνa+1
ρ × · · · × ρνbρ. This representation satisfies the

property:
r(m,n−m) (Z(∆)) = ρνaρ ⊗ Z

(−∆
)

and, if e(ρ) ≥ 2, this property characterises Z(∆) inductively. See [9, §7.2] for more details.
By a slight abuse of notation, we will consider the case where b is equal to a−1 and associate

to [a, a− 1]ρ the one-dimensional representation of the trivial group, denoted G0.

Example 2.9. — Suppose that ρ is the trivial representation of G1, denoted 1. Then Z([a, b]1)
is the unramified character ν(a+b)/2 of Gb−a+1. By [9, §7.2], if χ is a character of F×, we have:

Z([a, b]χ◦N1
) = (χ ◦Nb−a+1) Z([a, b]1).

In particular, if µ is a character of G1, the representation Z([a, b]µ) is a character of Gb−a+1.

One of the main ingredients we will use in this article is the following theorem.

Theorem 2.10 (see Théorème 7.23 in [9]). — Let r > 1 be an integer and let ∆1, . . . ,∆r

be segments. The following statements are equivalent:

1. For all i, j ∈ {1, . . . , r}, i 6= j, the segments ∆i and ∆j are not linked.
2. The induced representation Z(∆1)× · · · × Z(∆r) is irreducible.

If one of these conditions is fulfilled, then for any permutation σ ∈ Sr, the irreducibly induced
representations Z(∆1)× · · · × Z(∆r) and Z(∆σ(1))× · · · × Z(∆σ(r)) are isomorphic.

We classified in [9] the irreducible representations of Gn, for all n > 1, in terms of multiseg-
ments. More precisely, we defined a map:

(2.6) m 7→ Z(m)

that associates to any multisegment m = ∆1 + · · ·+ ∆r an irreducible subquotient Z(m) of the
induced representation:

Z(∆1)× · · · × Z(∆r)

that satisfies one condition that will not be very important to us in this article. See [9, §9] for
more details; we will explicit the construction in the case where r = 2 in the next paragraph.
This map induces a bijection between supercuspidal multisegments of degree n and irreducible
representations of Gn.

2.3. We need to give more details about the construction of Z(m) from the multisegment m.
To do so, we introduce the notion of residually nondegenerate representation [9, §8]. We will
need the definition only in the case of representations with cuspidal support of cardinality at
most two, a very simple case. Then we will explain how to define Z(m) when the multisegment
m has exactly two segments.
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2.3.1. The concept of residually non-degenerate representation generalizes to inner forms of
GLn(F) the notion of non-degenerate representation (developed in [13] for R-representations).
In particular a cuspidal irreducible representation is always residually non-degenerate.

Let m,m′ be two positive integers and let ρ and ρ′ be respectively two cuspidal representations
of Gm and Gm′ . We define an irreducible representation St(ρ, ρ′) of Gm+m′ as follows:

1. If ρ′ is not isomorphic to ρνρ nor to ρν−1
ρ (see Paragraph 2.1), the induced representation

ρ× ρ′ is irreducible, and we set St(ρ, ρ′) = ρ× ρ′.
2. If ρ′ is isomorphic to ρνρ, then Z([0, 1]ρ) is a submodule of ρ× ρ′ and:

– if e(ρ) ≥ 3, then ρ × ρ′ has length 2, and we write St(ρ, ρ′) for its unique irreducible
quotient;

– if e(ρ) = 2 or if ` = 2, then ρ × ρ′ has length 3, with Z([1, 2]ρ) as a unique quotient,
and with a cuspidal irreducible subquotient, which we write St(ρ, ρ′);

– if e(ρ) = 1 and ` 6= 2, then ρ× ρ′ is a semisimple representation of length 2: we write
St(ρ, ρ′) for the unique irreducible subquotient which is not isomorphic to Z([0, 1]ρ).

In all cases we have defined an irreducible representation St(ρ, ρ′): this is the unique irreducible
residually non-degenerate subquotient of ρ× ρ′ in the sense of [9].

If α = (m1, . . . ,mr) is a composition of m, a residually non-degenerate representation of the
Levi subgroup Mα of Gm is a tensor product of residually non-degenerate representations of the
various Gmi ’s.

2.3.2. Let m be a positive integer and let ρ be a cuspidal representation of Gm. Let a, b, a′, b′

some integers such that a ≤ b and a′ ≤ b′. Write ∆ = [a, b]ρ and ∆′ = [a′, b′]ρ. Let l and l′ be
the lengths of ∆ and ∆′ respectively and suppose that l ≥ l′. We define two compositions:

α<∆,∆′ = (m,m, . . . ,m︸ ︷︷ ︸
l−l′ times

, 2m, 2m, . . . , 2m︸ ︷︷ ︸
l′ times

),

α>∆,∆′ = (2m, 2m, . . . , 2m︸ ︷︷ ︸
l′ times

,m,m, . . . ,m︸ ︷︷ ︸
l−l′ times

)

of (l + l′)m and write τ<∆,∆′ and τ>∆,∆′ for the representations of Mα<
∆,∆′

and Mα>
∆,∆′

defined by:

τ<∆,∆′ = ρνaρ ⊗ ρνa+1
ρ ⊗ · · · ⊗ ρνb+b′−a′−1

ρ ⊗ St(ρνb+b
′−a′

ρ , ρνa
′
ρ )⊗ · · · ⊗ St(ρνbρ, ρν

b′
ρ ),

τ>∆,∆′ = St(ρνaρ , ρν
a′
ρ )⊗ · · · ⊗ St(ρνb

′−a′+a
ρ , ρνb

′
ρ )⊗ ρνb′−a′+a+1

ρ ⊗ · · · ⊗ ρνbρ.

Then the irreducible representation associated to the multisegment ∆ + ∆′, denoted Z(∆ + ∆′),
is the unique irreducible subquotient π of:

Z(∆)× Z(∆′)

such that one of the following equivalent conditions is fulfilled:

1. τ<∆,∆′ is a subquotient of rα<
∆,∆′

(π);

2. τ>∆,∆′ is a subquotient of rα>
∆,∆′

(π);

3. there are a composition α of (l + l′)m with associated partition α>∆,∆′ and a residually
non-degenerate representation τ of Mα occurring as a subquotient of rα(π).
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The next lemma follows also from the classification theorem of [9].

Lemma 2.11. — Let ∆ and ∆′ be two supercuspidal segments such that deg(∆) > deg(∆′). Let
π be an irreducible subquotient of Z(∆)×Z(∆′) different from Z(∆+∆′). Let m = ∆1 + · · ·+∆r

be the supercuspidal multisegment attached to π, and assume that ∆1, . . . ,∆r are ordered so that
deg(∆1) > . . . > deg(∆r). Then r ≤ 2 and (deg(∆1),deg(∆2)) . (deg(∆), deg(∆′)) (see §1.4).

Proof. — This is a consequence of [9, 7.4].

3. Complements on unramified representations of Gm

In this section we prove preliminary results that will be used in the proof of Theorem 0.1. We
fix a positive integer m.

Lemma 3.1. — Let α be a composition of m and ρ be a smooth representation of the standard
Levi subgroup Mα. Then ρ is unramified if and only if the representation iα(ρ) is unramified. If
this is the case, we have:

(3.1) dimR(ρK0∩Mα) = dimR(iα(ρ)K0) = 1.

Proof. — This follows from the isomorphism:

(3.2) iα(ρ)K0 ' ρK0∩Mα

given by [13, I.5.6].

The following lemma is a straightforward consequence of the fact that the functor of K-fixed
vectors is left exact (see [13, I.4.5]).

Lemma 3.2. — Let Π be a smooth representation of Gm and K be a compact subgroup of Gm.
Suppose that Π does not have any nonzero vector fixed by K. Then no subrepresentation of Π
has a nonzero vector fixed by K.

Lemma 3.3. — If an irreducible representation is unramified then its cuspidal support is an
unramified multisegment (that is, is made of unramified characters of D×).

Proof. — Let π be an unramified representation of Gm. Let ρ1, . . . , ρr ∈ CR be some cuspidal
representations such that π is a subrepresentation of:

(3.3) ρ1 × · · · × ρr.

By Lemma 3.2, we deduce that (3.3) is an unramified representation and then by Lemma 3.1
that for all 1 ≤ i ≤ r, ρi is an unramified representation. By [8] (see Exemple 2.26 and Remarque
2.27), a cuspidal representation of Gr with r ≥ 2 does not have any vector fixed by the Iwahori
subgroup and hence it is never unramified. This implies that ρi is unramified if and only if it is
an unramified character of G1. The lemma follows.

Another consequence is the following proposition.
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Proposition 3.4. — Let m = ∆1 + · · · + ∆r be an unramified multisegment such that for all
1 ≤ i 6= j ≤ r, ∆i and ∆j are not linked. Then Z(m) is an unramified representation.

Proof. — By definition, Z(m) is a subquotient of the induced representation:

(3.4) Z(∆1)× · · · × Z(∆r).

By Proposition 2.10 and our hypothesis, (3.4) is irreducible. We deduce that Z(m) is isomorphic
to (3.4). By Example 2.9, for all 1 ≤ i ≤ r, the representation Z(∆i) is unramified. Lemma 3.1
implies then that Z(m) is unramified.

4. The case e = 1

In this section, we assume that e = 1, that is, the image of qd in R is 1. In this case, the proof
of Theorem 0.1 was sketched in [14, VI.2] for d = 1.

Let I be the standard Iwahori subgroup of Gm contained in K0. Write H(Gm, I) for the Hecke-
Iwahori algebra made of compactly supported functions from Gm to R that are bi-invariant under
I. This algebra has generators S1, . . . ,Sm−1 and X1, (X1)−1, . . . ,Xm, (Xm)−1 with relations:

(Si + 1)(Si − 1) = 0, i ∈ {1, . . .m− 1},
SiSj = SjSi, |i− j| > 2,

SiSi+1Si = Si+1SiSi+1, i ∈ {1, . . .m− 2},
XiXj = XjXi, i, j ∈ {1, . . . ,m},
XjSi = SiXj , i /∈ {j, j − 1},

SiXiSi = Xi+1, i ∈ {1, . . . ,m− 1},

and Xj(Xj)−1 = (Xj)−1Xj = 1 for all j ∈ {1, . . . ,m}.
According to Sections 2 and 6 of [15], the map π 7→ πI induces a bijection between irreducible

representations of Gm having nonzero I-invariant vectors and simple modules over H(Gm, I).

Proposition 4.1. — The trivial character is the unique unramified irreducible representation
of Gm having cuspidal support 1 + · · ·+ 1 (m times).

Proof. — Let π be an unramified irreducible representation of Gm which embeds in 1× · · · × 1.
Then π has nonzero invariant vectors by I. The space πI is a simple module over H(Gm, I). The
generators X1, . . . ,Xm act as the identity on πI, due to the condition on the cuspidal support of
π. Therefore πI can be considered as a simple module over H(Gm, I)/(X1 − 1), that identifies
with the spherical Hecke algebra H(K0, I) generated by S1, . . . ,Sm−1. But πK0 is stable under
H(K0, I) and the Si’s act trivially on it. As πI is simple, we get πI = πK0 is the trivial character
of H(K0, I), thus of H(Gm, I). By the bijectivity property of the map π 7→ πI, we deduce that
π is the trivial character of Gm.

Proposition 4.2. — Let π an unramified irreducible representation of Gm. Then there are
unramified characters χ1, . . . , χr of D× and positive integers n1, . . . , nr such that n1+· · ·+nr = m

and π = (χ1 ◦Nn1)× · · · × (χr ◦Nnr).
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Proof. — Let π be an unramified irreducible representation of Gm which embeds in 1× · · · × 1.
Then π has nonzero invariant vectors by I. The space πI is a simple module over H(Gm, I),
and it is a submodule of the module M of I-invariant vectors of 1 × · · · × 1. Since e = 1, the
generators X1, . . . ,Xm act as the identity on M, thus on πI. Therefore πI can be considered as a
simple module over H(Gm, I)/(X1−1), that identifies with the spherical Hecke algebra H(K0, I)
generated by S1, . . . ,Sm−1. But πK0 is stable under H(K0, I) and the Si’s act trivially on it.
As πI is simple, we get πI = πK0 is the trivial character of H(K0, I), thus of H(Gm, I). By the
bijectivity property of the map π 7→ πI, we deduce that π is the trivial character of Gm.

5. The case of two segments and e > 1

In this section, we assume that e > 1 and we treat the case where the representation π is of
the form Z(∆ + ∆′), with ∆ and ∆′ some segments.

5.1. The proof of Theorem 0.1 uses the Jacquet functor technique. In the case where e > 1,
we can distinguish irreducible representations by their proper Jacquet functors. First we need
to adapt [6, Théorème 5.1] to our situation.

Lemma 5.1. — Let π be an irreducible representation of Gn with n ≥ 1 and χ be a character
of G1. Let a ≥ 1 be a positive integer. Then the induced representation:

π × χ× χ× · · · × χ︸ ︷︷ ︸
a times

(resp. χ× χ× · · · × χ︸ ︷︷ ︸
a times

×π)

has a unique irreducible subrepresentation.

Proof. — To simplify notation, for every i ≥ 1, we write:

χ×i = χ× χ× · · · × χ︸ ︷︷ ︸
i times

.

As we have e(χ) = e ≥ 2, Theorem 2.10 implies that χ×i is an irreducible representation of
Gi. Let’s prove that π × χ×a has a unique irreducible subrepresentation (the proof of the other
assertion is similar). First, we reduce to the case where the cuspidal support of π is made of
elements of Zχ. Indeed, if this is not the case, then according to [9, Proposition 5.5] we can
write π = π0 × π1, where the cuspidal support of π1 is made of elements of Zχ and that of π0

does not contain any element of Zχ. If π1 × χ×a has a unique irreducible subrepresentation σ,
then π0×σ is the unique irreducible subrepresentation of π×χ×a. Thus we may and will assume
that the cuspidal support of π is made of elements of Zχ.

Let t be the largest integer i ≥ 0 such that π has an irreducible quotient of the form τ × χ×i
for some τ ∈ Irr(Gn−i).

Lemma 5.2. — Let t′ be the largest integer i ≥ 0 such that r(n−i,i)(π) possesses an irreducible
subquotient of the form τ ′ ⊗ χ×i for some τ ′ ∈ Irr(Gn−i). Then we have t′ = t.
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Proof. — By Frobenius reciprocity, we have t ≤ t′. Given an integer i ≥ 0, assume that there is
an irreducible representation τ ′ of Gn−i such that τ ′⊗χ×i appears as an irreducible subquotient
of r(n−i,i)(π). Write r for the Jacquet functor r(1,...,1) and recall that the cuspidal support of τ ′

is made of elements of Zχ. If we apply r, then we get that r(π) has an irreducible subquotient
of the form % = χ1 ⊗ · · · ⊗ χt ⊗ χ ⊗ · · · ⊗ χ, where t = n − i and χ1, . . . , χt ∈ Zχ. Since r(π)
has finite length, it decomposes into a finite direct sum of indecomposable summands. Let V be
an indecomposable summand of r(π) that contains % as a subquotient. Since % is a character
of the minimal Levi subgroup M0 = G1 × · · · ×G1 of Gn, it does not have nontrivial extensions
with other characters %′ 6= % of M0. It follows that the irreducible subquotients of V are all
isomorphic to %. We thus have a surjective map:

r(π)→ %.

By Frobenius reciprocity, we have a nonzero map from r(n−i,i)(π) to χ1 × · · · × χt ⊗ χ×i, and
thus a surjective map from r(n−i,i)(π) to τ ⊗ χ×i, where τ is an irreducible subquotient of the
product χ1 × · · · × χt.

Choose τ ∈ Irr(Gn−t) such that HomGn(π, τ × χ×t) 6= 0. By Lemma 5.2, the representations
τ and χ×(t+a) satisfy the conditions of [7, Proposition 2.1]. Thus τ × χ×(t+a) has a unique
irreducible subrepresentation. As π × χ×a is a subrepresentation of τ × χ×(t+a), the lemma
follows.

Remark 5.3. — We expect that Lemma 5.1 can be generalized by replacing χ by any super-
cuspidal representation ρ of Gr, r ≥ 1. For this, we need to prove that ρ does not have nontrivial
extensions by nonisomorphic unramified twists of ρ. Such a question is investigated (in greater
generality) in [12]. Note that, when R has positive characteristic, a supercuspidal representation
need not be projective mod centre.

5.2. Let χ be an unramified character of G1 = D×. Let ∆ = [a, b]χ and ∆′ = [a′, b′]χ be two
segments. Write l and l′ for the lengths of ∆ and ∆′ respectively, and suppose that l ≥ l′. The
condition e ≥ 2 means (see Example 2.1) that e(χ) ≥ 2. See also that in this case νχ = νd.

We have the following theorem (see Definition 2.3(2) for the definition of linked segments).

Theorem 5.4. — The segments ∆,∆′ are linked if and only if Z(∆ + ∆′) is not unramified.

This paragraph is devoted to the proof of this theorem. One implication follows from Propo-
sition 3.4. We prove the other one by induction on the sum m = l + l′. We suppose henceforth
that ∆ and ∆′ are linked.

Since the map (2.6) is compatible with unramified twists (see for instance Example 2.9), and
since an irreducible representation is unramified if and only if all its unramified twists are, one
may assume that χ = 1. In this case, ∆ and ∆′ are just denoted [a, b] and [a′, b′].

Assume that m = 2 and say a′ = a+ 1. If e > 2, the pro-order of K0 is invertible in R× and
hence the functor of K0-invariant vectors is exact [13, I.4.6]. The representation νda × νda′ has
a unique irreducible unramified subquotient Z([a, a′]), which differs from Z([a, a] + [a′, a′]). We
deduce that the latter representation is not unramified.
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If e = 2, then the representation Z([a, a] + [a′, a′]) of G2, by [17], is cuspidal, thus is not
unramified.

Suppose that m ≥ 3 and that the theorem is true for all segments ∆,∆′ such that l(∆+∆′) is
smaller than m. We use the notation of Section 2. Up to equivalence of segments, we distinguish
the following cases:

1. b = b′ and ∆− and ∆′− are linked.
2. b = b′ and ∆− and ∆′− are not linked.
3. a = a′ and −∆ and −∆′ are linked.
4. a = a′ and −∆ and −∆′ are not linked.
5. a 6≡ a′ (mod e) and b 6≡ b′ (mod e).

In each of these cases we will exhibit a representation V, which will not be unramified thanks
to our inductive argument, and which will have a unique irreducible subrepresentation π thanks
to Lemma 5.1. We will prove that π is isomorphic to Z(∆ + ∆′): it will follow from Lemma 3.2
that the latter is not unramified. For this, we will prove (see Paragraph 2.3.2) that π occurs
as a subquotient in Z(∆) × Z(∆′) and that, for a suitable choice of a composition α of m, the
Jacquet module rα(π) contains a suitable residually non-degenerate irreducible factor.

5.2.1. We start with Case 1. Suppose thus that b = b′ and ∆−,∆′− are linked, and write:

V = Z(∆− + ∆′−)× νdb × νdb.

The inductive hypothesis together with Lemma 3.1 imply that V is not unramified. By Lemma
5.1, V has a unique irreducible subrepresentation π. We are going to prove that π ' Z(∆ + ∆′).
The theorem will thus follow from Lemma 3.2.

For this (see Paragraph 2.3.2) it is enough to prove that π is a subquotient of Z(∆)× Z(∆′)
and that τ<∆,∆′ is a subquotient of rα<

∆,∆′
(π). First, by Frobenius reciprocity, we have:

Z(∆− + ∆′−)⊗ (νdb × νdb) ≤ [r(m−2,2)(π)].

Then, by definition of Z(∆− + ∆′−) and exactness of the Jacquet functor, we have:

τ<∆−,∆′− ⊗ (νdb × νdb) ≤ [rα<
∆,∆′

(π)].

But, as e ≥ 2, we have νdb × νdb = St(νdb, νdb) by Paragraph 2.3.1. Thus τ<∆,∆′ is a subquotient
of rα<

∆,∆′
(π) as expected. Note that V is a subrepresentation of:

W = Z(∆−)× Z(∆′−)× νdb × νdb.

The representation τ<∆,∆′ occurs with multiplicity 1 in rα<
∆,∆′

(Z(∆)× Z(∆′)). By the geometric

lemma, and thanks to the fact that e ≥ 2, it also occurs in rα<
∆,∆′

(W) with multiplicity 1. If π

is not a subquotient of Z(∆)× Z(∆′), then:

[π] + [Z(∆)× Z(∆′)] ≤ [W].

Thus, by exactness of the Jacquet functor, τ<∆,∆′ occurs in rα<
∆,∆′

(W) with multiplicity 2: con-
tradiction.
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5.2.2. We now treat Case 2. Suppose that b = b′ and ∆−,∆′− are not linked. Remark that
we have a 6 a′ 6 b.

Lemma 5.5. — We have l′ 6 e and e divides l.

Proof. — According to Corollary 2.6, there is a c′ ∈ Z such that a′ 6 c′ 6 b and c′ is congruent
to b+ 1 or a− 1 mod e, and there is no d′ ∈ Z such that a′ 6 d′ 6 b− 1 and d′ is congruent to
b or a− 1 mod e. The second condition implies that b− a′ < e, or equivalently l′ 6 e.

Assume that a′ 6 c′ < b. Then c′ ≡ b + 1 (mod e) which contradicts the fact that l′ 6 e. It
follows that c′ = b. Thus b ≡ a− 1 (mod e), or equivalently e divides l.

In other words, we have b− e+ 1 ≤ a′ ≤ b and there is a t ≥ 1 such that a = b− te+ 1. We
now distinguish two cases: l′ > 2 and l′ = 1.

5.2.2.1. Let us first assume that a′ 6= b, that is l′ > 2, and write:

V = νda
′ × Z(−∆′ + ∆).

It has a unique irreducible subrepresentation π and, since −∆′,∆ are linked, it is not unramified.
We will prove that π is isomorphic to Z(∆+∆′). For this, we will show that there is a composition
α of m, with associated partition α>∆,∆′ , and a residually non-degenerate representation τ of Mα

occurring as a subquotient of rα(π). Then we will prove that π occurs as a subquotient of
Z(∆)× Z(∆′). By Frobenius reciprocity, we have:

νda
′ ⊗ Z(−∆′ + ∆) ≤ [r(1,m−1)(π)].

By definition of Z(−∆′ + ∆) and exactness of the Jacquet functor, νda
′ ⊗ τ<

∆,−∆′ occurs as a
subquotient of rα(π), where α is the composition:

α = (1, 1, . . . , 1︸ ︷︷ ︸
a′−a+2

, 2, 2, . . . , 2︸ ︷︷ ︸
b−a′

).

Thus the irreducible representation:

νda
′ ⊗ νda ⊗ νd(a+1) ⊗ · · · ⊗ νda′ ⊗ St(νd(a′+1), νd(a′+1))⊗ · · · ⊗ St(νdb, νdb)

denoted τ , occurs as subquotient of rα(π). Write α0 for the composition of m defined by:

α0 = (2, 1, 1, . . . , 1︸ ︷︷ ︸
a′−a

, 2, 2, . . . , 2︸ ︷︷ ︸
b−a′

).

Then there is an irreducible representation ρ of G2 such that νda
′ ⊗ νda occurs as a subquotient

of r(1,1)(ρ) and:

ρ⊗ νd(a+1) ⊗ · · · ⊗ νda′ ⊗ St(νd(a′+1), νd(a′+1))⊗ · · · ⊗ St(νdb, νdb)

denoted τ0 occurs as a subquotient of rα0(π). Since a′ 6= b and by Paragraph 2.3.1, ρ is isomor-
phic to St(νda

′
, νda). This proves our first assertion. We prove now that π is a subquotient of

Z(∆)× Z(∆′). We write W = νda
′ × Z(∆)× Z(−∆′).
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Suppose that a′ 6= a. Then τ appears with multiplicity 1 in rα(Z(∆) × Z(∆′)) and rα(W).
Since V is a subquotient of W, we have that π is a subquotient of W. Hence, if π is not a
subquotient of Z(∆)× Z(∆′), then:

[π] + [Z(∆)× Z(∆′)] ≤ [W].

By exactness of the Jacquet functor, τ appears in rα(W) with multiplicity 2: contradiction.
Suppose that a′ = a, thus t = 1 and ∆′ = ∆. We write:

X = νda × νda × Z(−∆)× Z(−∆′).

The representation τ0 appears with multiplicity 1 in rα0(Z(∆)× Z(∆′)) and rα0(X). Since V is
a subquotient of X, we have that π is a subquotient of X. Hence, if π is not a subquotient of
Z(∆)× Z(∆′), then:

[π] + [Z(∆)× Z(∆′)] ≤ [X].

By exactness of the Jacquet functor, τ0 appears in rα0(X) with multiplicity 2: contradiction.

5.2.2.2. Suppose now that a′ = b, that is ∆′ = [b, b] has length 1. This case is particular and
we treat it by a different method. We write V = Z([a, b])× νdb and π = Z([a, b] + [b, b]). Write
K1 for the normal subgroup of K0 made of those matrices that are congruent to the identity
mod the maximal ideal of OD. We identify the quotient K0/K1 with the general linear group
GLm(k) where k is the residue field of D, which has cardinality qd. Thus the space of K1-fixed
vectors of any smooth representation of G is naturally endowed with an action of GLm(k). Note
that m = l + 1. Write X for the projective space of km.

Lemma 5.6. — VK1 identifies with the representation of GLm(k) on the space of functions
from X to R.

Proof. — Let P be the standard parabolic subgroup P(l,1) of G. Restricting functions from G
to K0 induces a bijective and K0-equivariant map from VK1 to the representation of K0 induced
from the trivial character of P∩K0. The latter representation identifies with the representation
of GLm(k) on the space of functions from X to R, since (P ∩K0)\K0 identifies with X.

Lemma 5.7. — The representation VK1 is semisimple of length 2, and the trivial character 1m
of GLm(k) occurs with multiplicity 1 in it.

Proof. — We identify VK1 with the space S of functions from X to R, which is the representation
of GLm(k) parabolically induced from the trivial character of the standard Levi subgroup of
GLm(k) associated with the composition (l, 1).

According to James’s classification [5] (see also [9, §3.3]), S is made of a nontrivial irreducible
subquotient S0, occuring with multiplicity 1, and of the trivial character 1m, occuring with some
multiplicity n > 1. Given f ∈ S, write ψ(f) for the sum of the values of f in R. Then ψ is a
homomorphism from S to the trivial character 1m.

Lemma 5.8. — The trivial character 1m does not occur as a subrepresentation of Ker(ψ).
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Proof. — Assume that 1m occurs as a subrepresentation of Ker(ψ), and write f1 for the constant
function equal to 1. Then ψ(f1) is equal to the cardinality of X, thus we have:

0 = ψ(f1) =
qmd − 1
qd − 1

in R. It follows that qmd is congruent to 1 mod `, that is e divides m = l+ 1. The contradiction
follows from Lemma 5.5.

It follows that the socle of Ker(ψ) is equal to S0. Since S is selfcontragredient, S0 is selfcon-
tragredient too, 1m occurs as a subrepresentation of S and S0 as a quotient of S. Thus 1m and
S0 are direct summands in S, that is we have S = S0 ⊕ S′ for some subrepresentation S′ of S
which is made of 1m with multiplicity n, and 1m is a direct summand in S′. This gives us:

Ker(ψ) = S0 ⊕ (Ker(ψ) ∩ S′).

If Ker(ψ) is not reduced to S0, then 1m occurs as a subrepresentation of Ker(ψ), which contradicts
Lemma 5.8.

We thus have:

V K1 = Z([a− 1, b])K1 ⊕ πK1 = 1m ⊕ πK1 = 1m ⊕ S0.

It follows that πK1 = S0 is irreducible nontrivial, thus πK0 is zero and π is not unramified.

5.2.3. The proof in Case 3 is similar to that of Case 1, using τ>∆,∆′ instead of τ<∆,∆′ .

5.2.4. The proof in Case 4 is similar to that of Case 2. Note that a ≤ b′ ≤ a + e − 1 and
there is an integer t ≥ 1 such that b = a+ te− 1.

5.2.5. We now treat Case 5. This case itself decomposes into seven subcases:

1. l > l′ and ∆ precedes ∆′.
2. l > l′ and ∆′ precedes ∆.
3. l = l′ and a 6≡ a′ − 1 (mod e) and −∆,∆′ are linked.
4. l = l′ and a′ 6≡ a− 1 (mod e) and −∆′,∆ are linked.
5. l = l′ and b 6≡ b′ + 1 (mod e) and ∆−,∆′ are linked.
6. l = l′ and b′ 6≡ b+ 1 (mod e) and ∆−,∆′ are linked.
7. l = l′ and e = 2.

Note that Subcases 4 and 6 follow respectively from 3 and 5 by exchanging ∆ and ∆′ and
will not be treated.

We write V = νda×Z(−∆+∆′) and W = νda×Z(−∆)×Z(∆′) and π for the unique irreducible
subrepresentation of V. By Frobenius reciprocity, νda ⊗ Z(−∆ + ∆′) occurs as a subquotient of
the Jacquet module r(1,m−1)(π).

Subcase 1: In this first subcase, −∆ precedes ∆′. By definition of Z(−∆ + ∆′) and exactness
of the Jacquet functor, we have:

νda ⊗ τ<−∆,∆′ ≤ [rα<
∆,∆′

(π)].
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Hence τ<∆,∆′ occurs in rα<
∆,∆′

(π) with multiplicity 1. Thanks to the fact that a 6≡ a′ (mod e), it

also occurs with multiplicity 1 in rα<
∆,∆′

(W) and rα<
∆,∆′

(Z(∆)×Z(∆′)). If π is not a subquotient

of Z(∆)× Z(∆′) then:
[π] + [Z(∆)× Z(∆′)] ≤ [W].

By exactness of the Jacquet functor, τ<∆,∆′ appears in rα<
∆,∆′

(W) with multiplicity 2: contradic-
tion.

Subcase 2: The proof is the same as in the previous case, using now τ>∆,∆′ instead of τ<∆,∆′ .
Subcase 3: Suppose that l = l′ and a 6≡ a′ − 1 (mod e) and −∆,∆′ are linked. We have:

νda ⊗ τ<−∆,∆′ ≤ [rα0(π)],

where α0 is the composition of 2l defined by:

α0 = (1, 1, 2, 2, . . . , 2︸ ︷︷ ︸
l−1

).

Thus, by definition of τ<∆,∆′ , we have:

νda ⊗ νda′ ⊗ St(νd(a+1), νd(a′+1))⊗ · · · ⊗ St(νdb, νdb
′
) ≤ [rα0(π)].

Then there is an irreducible representation ρ of G2 such that νda ⊗ νda′ ≤ [r(1,1)(ρ)] and:

τ = ρ⊗ St(νd(a+1), νd(a′+1))⊗ · · · ⊗ St(νdb, νdb
′
)

occurs as a subquotient of rα0(π). By the classification of irreducible representations of G2 (see
Paragraph 2.3.1) and the assumption a 6≡ a′ − 1 (mod e), we have ρ = St(νda, νda

′
). Thus τ<∆,∆′

occurs as a subquotient of rα<
∆,∆′

(π). Thanks to the fact that a 6≡ a′ (mod e), it occurs also

with multiplicity 1 in [rα<
∆,∆′

(W)] and in [rα<
∆,∆′

(Z(∆) × Z(∆′))]. If π is not a subquotient of

Z(∆)× Z(∆′) then:
[π] + [Z(∆)× Z(∆′)] ≤ [W].

By exactness of the Jacquet functor, τ<∆,∆′ appears in rα<
∆,∆′

(W) with multiplicity 2: contradic-
tion.

Subcase 5: The proof of Subcase 5 is the same as in Subcase 3, using now τ>∆,∆′ instead of
τ<∆,∆′ .

Subcase 7: Suppose that l = l′ and e = 2. This is the easiest subcase. By [9, Théorème
7.32(3)], the cuspidal support of Z(∆ + ∆′) is not made of unramified characters so, by Lemma
3.3, Z(∆ + ∆′) cannot be an unramified representation!

6. The general case

In this section we prove the main theorem of this article.

Theorem 6.1. — Let m = ∆1 + · · · + ∆r be a multisegment and write π = Z(m). Then π is
unramified if and only if m is unramified and, for all 1 ≤ i < j ≤ r, the segments ∆i and ∆j

are not linked.
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Proof. — By Proposition 3.4, the condition on m is sufficient. Suppose that π is unramified. By
Lemma 3.3, the multisegment m is unramified.

If e = 1, the theorem follows from Proposition 4.2. Suppose e > 1 and let I be the set of
sequences (∆′1, . . . ,∆

′
r) of segments such that π is a subrepresentation of Z(∆′1)× · · · × Z(∆′r).

Let (∆′1, . . . ,∆
′
r) ∈ I be so that the partition associated to the composition (l(∆′1), . . . , l(∆′r)) is

minimal. Suppose that there exist 1 ≤ i < j ≤ r, such that ∆′i and ∆′j are linked. By Theorem
2.10, we can suppose that j = i+ 1. Then, by Lemma 2.11, every subquotient of Z(∆′i)×Z(∆′j)
is of the form Z(δ + δ′), where δ + δ′ is a multisegment such that:

– either δ + δ′ = ∆′i + ∆′i+1, or
– the partition associated to the pair (l(δ), l(δ′)) is bigger than the partition associated to the

pair (l(∆′i), l(∆
′
i+1)).

We deduce that π is a subrepresentation of:

(6.1) Z(∆′1)× · · · × Z(∆′i−1)× Z(δ + δ′)× Z(∆i+2)× · · · × Z(∆′r).

with δ + δ′ as above.
If δ and δ′ are linked (in particular in the first case), then Theorem 5.4 implies that Z(δ+ δ′)

is not unramified. By Lemma 3.1, the representation (6.1) is not unramified. By Lemma 3.2 we
deduce that π is not unramified, which contradicts our hypothesis.

If δ and δ′ are not linked (and thus we are in the second case), then Theorem 2.10 implies
that Z(δ + δ′) is isomorphic to Z(δ)× Z(δ′), hence π is a subrepresentation of:

Z(∆′1)× · · · × Z(∆′i−1)× Z(δ)× Z(δ′)× Z(∆i+2)× · · · × Z(∆′r).

This contradicts, by Lemma 1.1, the minimality of the partition associated to (∆′1, . . . ,∆
′
r).

Thus for all 1 ≤ i < j ≤ r, ∆′i and ∆′j are not linked. We deduce that π = Z(∆′1 + · · ·+ ∆′r)
and this finishes the proof of the theorem.

Let ` be a prime number different from p. We denote by Q` the field of `-adic numbers and
F` its residue field. We fix an algebraic closure Q` of Q` and we denote by F` its residue field,
which is an algebraic closure of F`.

We say that an irreducible F`-representation π of Gm, m > 1, can be lifted to Q` if there
exists an integral Q`-representation π̃ such that π is the reduction modulo ` of π̃ (see [9]).

Corollary 6.2. — An irreducible representation π of Gm, m > 1, is unramified if and only if
it is irreducibly induced from an unramified character of a parabolic subgroup. In this case we
have that dimR(πK0) = 1. Every irreducible unramified F`-representation can be lifted to Q`.

This corollary was conjectured in [14, VI.3].

Proof. — The first part of the corollary follows from the fact that isomorphism classes of un-
ramified characters of Gm are in bijection with classes of unramified segments of length m.
The identity (3.2) implies that dim(πK0) = 1. Every F`-character can be lifted to an integral
Q`-character. The last part of the corollary follows then from [9, 1.2.3].
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