
Erratum
Smooth representations of GLmpDq

V: endo-classes

Kazutoshi Kariyama drawn our attention to the fact that an argument is missing in our proof
of [1] Proposition 4.5. We cannot use [1] Theorem 4.2 at the end of the proof, since we do not
know that pd, fF pβ1qq “ pd, fF pβ2qq at this stage.

In this erratum, we explain why [1] Proposition 4.5 can be replaced by the following statement.
We use the notation of [1].

For i “ 1, 2, let pk, βiq be a simple pair over F , let rΛ, ni,mi, ϕipβiqs be a realization of pk, βiq

in A and let θi be a simple character in CpΛ,mi, ϕipβiqq.

Proposition 0.1. — Assume θ1 and θ2 intertwine in Aˆ, and either rF rβ1s : F s “ rF rβ2s : F s
or m1 “ m2.

(1) We have:

n1 “ n2,

eF pβ1q “ eF pβ2q,

fF pβ1q “ fF pβ2q,

kF pβ1q “ kF pβ2q.

(2) There is a simple central F -algebra A1 together with realizations rΛ1, ni,mi, ϕ
1
ipβiqs of the

pairs pk, βiq in A1 (with the same ni and mi), with i “ 1, 2, which are sound and have the same
embedding type, and such that θ11 and θ12 intertwine in A1ˆ, where θ1i P CpΛ1,mi, ϕ

1
ipβiqq denotes

the transfer of θi.

Proof. — Set f “ pfF pβ1q, fF pβ2qq. For i “ 1, 2, let Ki be the unramified subextension of F rβis

over F of degree f . Using [1] Lemma 4.4, we may assume that pF rϕ1pβ1qs,Λq and pF rϕ2pβ2qs,Λq
both have Fröhlich invariant 1. The same holds for pϕ1pK1q,Λq and pϕ2pK2q,Λq. Passing to the
lattice sequence Λ1 “ Λ; for a sufficiently large coefficient l, we may, thanks to [1] Lemma 4.3,
assume that the embeddings pϕ11pK1q,Λ1q and pϕ12pK2q,Λ1q

– have the same Fröhlich invariant (equal to 1),
– and that they are sound and respectively ϕ11pK1q-special and ϕ12pK2q-special.

Since they have the same degree f by construction, [1] Theorem 4.2 implies that they have the
same embedding type. Using the same argument as in the proof of [2] 8.4 (or of [1] Lemma 4.7),
we find that n1 “ n2, denoted n.

Assume that rF rβ1s : F s “ rF rβ2s : F s and m1 ě m2. Following the proof of [1] Lemma 4.7,
we get that the stratum rΛ1, n,m1, ϕ

1
2pβ2qs is simple, θ11 intertwines with the restriction θ10 of θ12

to Hm1`1pΛ1, ϕ12pβ2qq and eF pβ1q “ eF pβ2q, fF pβ1q “ fF pβ2q and kF pβ1q “ kF pβ2q. Also, θ11
is conjugate to θ10. Now we know that rΛ1, n,m1, ϕ

1
1pβ1qs and rΛ1, n,m2, ϕ

1
2pβ2qs are sound and

have the same embedding type, thanks to [1] Theorem 4.2. The fact that θ11 and θ12 intertwine
in A1ˆ follows from [1] Proposition 2.6.
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Assume that m1 “ m2. Applying [3] Theorem 10.3 (see [1] Theorem 1.16) we get eF pβ1q “

eF pβ2q and fF pβ1q “ fF pβ2q. We thus get the identity rF rβ1s : F s “ rF rβ2s : F s and are reduced
to the previous case.

Remark 0.2. — Lemmas 4.7 and 4.14 of [1] are somewhat encapsulated in this new statement
Proposition 0.1: the first one uses the assumption rF rβ1s : F s “ rF rβ2s : F s, the second one uses
the assumption m1 “ m2.

Remark 0.3. — Skodlerack [4] Proposition 5.30 fills a gap in the proof of [3] Proposition 9.1
on which [3] Theorem 10.3 relies: see the comment about it in the proof of [4] Proposition 5.31.
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