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1. Introduction

1.1.

Let F be a non-Archimedean locally compact field of residual characteristic p, let G denote the
F-points of a connected reductive group over F together with a closed subgroup H of G, and let R
be an algebraically closed field of characteristic different from p. Given irreducible smooth rep-
resentations π of G and σ of H with coefficients in R, it is a question of general interest in repre-
sentation theory, known as the branching problem, to understand whether π restricted to H has σ
as a quotient. If R is the field of complex numbers, this question is classical and well understood
is many situations (see for instance [7, 8]). A case of particular interest is when σ is the trivial
representation. In this situation π is said to be H-distinguished if its restriction to H has the tri-
vial representation as a quotient, that is, if π carries a nonzero H-invariant linear form.
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1.2.

In this article, we are interested in the case where G is the general linear group GLnpFq, with
n ¥ 2, and H is the group GLn�1pFq embedded in G via:

x ÞÑ
�
x 0
0 1



.

When R is the field of complex numbers, it is a consequence of a result of Waldspurger [26] that,
for n � 2, any infinite dimensional irreducible representation of G is H-distinguished. The classi-
fication of all H-distinguished irreducible representations of G for n � 3 is due to D. Prasad [16].
For any n ¥ 2, Prasad [16] has also proved that any generic representation of G has every generic
representation of H as a quotient, and Flicker [6] classified all H-distinguished irreducible unitary
representations of G. The classification of all H-distinguished irreducible representations of G for
any n ¥ 3 has been obtained by Venketasubramanian [20], in terms of Langlands parameters.
Thus, when R is the field of complex numbers, the question is well understood. In this paper we
investigate the case where the field R has positive characteristic ` different from p.

1.3.

The representation theory of smooth representations of GLnpFq with coefficients in any alge-
braically closed field R of characteristic ` � 0, p has been initiated by Vignéras [22, 23] in view to
extend the local Langlands program to representations with coefficients in a field (or ring) as ge-
neral as possible (see for instance [24]). It has then been pursued by Dat, Mı́nguez, Stevens and
the first author [4, 12, 13, 14, 15, 17]. In many aspects, it is similar to the theory of complex
representations of this group: the fact that ` is different from p ensures that there is an R-valued
Haar measure on G, the functors of parabolic induction and restriction are exact and preserve
finite length, there is a theory of derivatives, there is a notion of cuspidal support for irreducible
representations and a classification of these representations by mutisegments. However, there
are also important differences: the measure of a compact open subgroup may be zero, and the
notions of cuspidal and supercuspidal representations do not coincide, that is, a representation
whose all proper Jacquet modules are zero may occur as a subquotient of a proper parabolically
induced representation. The combinatorics of multisegments is also much more involved, since
the cardinality q of the residue field of F has finite order in R�.

1.4.

We now come to the main theorem of this article. Let R denote an algebraically closed field
of characteristic different from p (possibly 0) and write e for the order (possibly infinite) of q in
R�. Write ν for the normalized absolute value of F giving value q�1 to any uniformizer. Let us
fix a square root of q in R, denoted

?
q. Given integers k P Z and n ¥ 1, we write:

νk{2n : g ÞÑ p?qq�k�valpdetpgqq

where val is the normalized valuation on F and det is the determinant from G to F�. If π, σ are
smooth representations of GLupFq, GLvpFq respectively, with u� v � n, we denote by π�σ the
normalized parabolic induction of π b σ to G along the standard (upper triangular) parabolic
subgroup. When e ¡ 1, the induced representation:

(1.1) Vn � ν
1{2
n�1 � νpn�1q{2
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has a unique irreducible quotient, denoted Λn (see Example 4.3). Note that, when e divides n,
this representation is the trivial character. Let us write 1n for the trivial representation of G.

Theorem 1.1. — Suppose that n ¥ 2 and e ¡ 1. An irreducible representation of GLnpFq is
GLn�1pFq-distinguished if and only if it belongs to the following list:

(1) the trivial representation 1n;

(2) an irreducible representation of the form ν
�1{2
n�1 � χ with χ a character of GL1pFq;

(3) an irreducible representation of the form 1n�2�τ with τ an infinite dimensional irreducible
representation of GL2pFq;

(4) the representation Λn and its contragredient.

As in the complex case, the proof of Theorem 1.1 is by induction on n. There are two parts
to the proof of Theorem 1.1: proving that the representations in the list offered by the theorem
are H-distinguished is the easier part. The more difficult part is to show the converse, namely
that all irreducible representations which are H-distinguished are in the list.

1.5.

Since our proof is by induction, we first treat the case when n � 2 and obtain a classification
(see Theorem 3.8) of all the GL1pFq-distinguished irreducible representations of GL2pFq. When
e is not 1, the result turns out to be the same as in the complex case: all infinite-dimensional
irreducible representation of GL2pFq are distinguished and their space of GL1pFq-invariant linear
forms has dimension 1. When the characteristic of R divides q � 1 however, this dimension is 2
for certain representations.

1.6.

Assume now that n ¥ 3. As in the complex case, one can show by restricting to the mirabolic
subgroup that none of the cuspidal representations of G are distinguished (Theorem 8.2). Since
any non-cuspidal irreducible smooth representation of G is a quotient of a parabolically induced
representation of the form σ�τ with σ, τ smooth irreducible representations of GLupFq,GLvpFq
for some integers u, v ¥ 1 such that u�v � n, it is natural to study the distinction of σ�τ . This
was carried out in [20] in the complex case. In the modular case, it works as in the complex case:
one gets a set of three necessary conditions for this induced representation to be distinguished
by H, of which two are sufficient (see Lemma 8.9). This is attributed to the existence of three
orbits for the action of H on the homogeneous space made of all subspaces of dimension u in
Fn, out of which two are closed. The induced representations in (2) and (3) of Theorem 1.1 are
shown to satisfy one of the sufficiency conditions coming from Lemma 8.9 (see Corollary 8.13).
The contragredient of Λn, when non-trivial, is realized as a subrepresentation of a distinguished
principal series of length 2, the quotient of which is a nontrivial character and is non-distinguished
(see proof of Lemma 8.12).

1.7.

To prove the converse of Theorem 1.1, we first prove that any H-distinguished representation
of G is a quotient of a representation of the form ρ�χ where ρ is an irreducible representation of
GLn�1pFq and χ a character of F�. In particular, when e ¡ 1, such a quotient is unique. Using
the conditions of Lemma 8.9 mentioned above and the induction hypothesis, we can specify ρ
and χ to be in a list (see Proposition 8.18). Then, when e ¡ 1, we analyze the unique irreducible
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quotient of all these ρ�χ. We show that if the quotient is distinguished, then it must be in our
list. The case when e � 1 presents additional difficulties which we shall touch upon below.

1.8.

We now describe the contents of the article. In Section 2 we set some basic notation, and deal
with the case n � 2 in Section 3. The complete classification for n � 2 is obtained in Theorem
3.8. We begin Section 4 by recalling some general results on `-modular representations of GLnpFq
from [22, 14]. We get a complete description of the subquotients of representations of the form
Zp∆q�Zp∆1q where ∆,∆1 are segments and ∆1 is of length at most 2 (see Propositions 4.10 and
4.13). In particular, Proposition 4.10 may be deemed to be a generalization of [21, Théorème 3].
Moreover, comparing with [27, Proposition 4.6], Propositions 4.10 and 4.13 highlight one of the
essential differences between principal series representations in the complex and modular cases:
a product of two characters has length at most 2 in the complex case, a fact which does not hold
as such in the modular case. The representation Λn, which plays a essential role in the article,
is defined in Example 4.3 for e ¡ 1, and in Definition 5.4 in general. More generally, Section 5
is devoted to the case where e � 1. The avatar Πn of Λn is defined in Example 4.11. In Section
6, we compute the derivatives of Λn and Πn.

In Section 7, we prove a criterion for irreducibility of a product of the form Zp∆q�Lp∆1q where
∆1 has length 2. This is a modular version of a result known in the complex case (Theorem 3.1
in [3]). We begin Section 8 with some basic results on H-distinguished representations of G. The
first tool is to use Lemma 8.9, the conditions that we get from the three orbits that we mentioned
above. This, along with some of its consequences, yields us Proposition 8.18 and we get a list
of representations of the form ρ� χ (see the list following Proposition 8.18): understanding the
distinction of the quotients of representations in this list proves the difficult part of Theorem 1.1.
The second tool in our proof is Proposition 8.8 using the Bernstein-Zelevinski filtration, which
was available for the complex case [6, 16] and holds for R. The computation of the quotients
of ρ� χ in the list obtained from Proposition 8.18 is the content of Sections 9-12.

1.9.

We now explain some of the subtler ideas behind the proof of Theorem 1.1 in this article. Our
proof is different from the one in [20] proved for complex representations. In [20], the main tool
in analyzing the existence of a unique irreducible quotient is the Langlands Quotient Theorem
and certain results of Zelevinski [27]. When these theorems fail to apply, [20] uses Theorem
7.1 of [27]. In fact, we use Lemma 4.2 which is sufficient for us to analyze the representations
coming from the Lemma 8.9 when e ¡ 1. Indeed, if one were to use Lemma 4.2 in the complex
case, then the proof of Theorem 1.1 in [20] simplifies to some extent without having to resort
to Theorem 7.1 of [27], because there we have to analyze all subquotients of a certain induced
representation.

1.10.

However, in the modular case, even if Proposition 4.2 guarantees the existence of a unique ir-
reducible quotient for the representations ρ� χ arising from Proposition 8.18, to explicitly find
this quotient is more difficult. This is due to the fact that, in order to determine whether the
unique irreducible quotient of ρ�χ is in the list offered by Theorem 1.1, we have to realize it as
a quotient of a larger principal series and this larger principal series may not have a unique irre-
ducible quotient. In such a situation, we had but no choice to use the analogue of Theorem 7.1 of
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[27] for the larger principal series in hand. For our purposes, we reduce it to understand the
subquotients of representations of the form Zp∆q �Zp∆1q where the segment ∆1 has length ¤ 2.
These subquotients have certain natural properties (see Section 4, P1 to P6) proved in [14]
which enables us to describe the subquotients. This result is obtained in Propositions 4.10 and
4.13. We then use Proposition 8.8 to rule out the subquotients in the larger principal series
which are not in the list of Theorem 1.1.

1.11.

Let us mention that, when e � 1, the list in Theorem 1.1 is not exhaustive. The first problem is
that the representation (1.1) need not have a unique irreducible quotient. In particular, all its ir-
reducible subquotients are H-distinguished (see Lemma 8.15), which is different behavior when
we compare with the case when e ¡ 1. This forces us to consider more representations in the list
offered by Proposition 8.18 and the tools that we use do not seem to be sufficient to understand
the distinction of the quotients.

1.12.

In this last paragraph, we give a few remarks. First, the theory of p-modular representations
of p-adic reductive groups is very different from the `-modular theory. This is why we chosed to
focus on the case where R has characteristic different from p.

In the complex case, the pair pG,Hq is known to be a Gelfand pair [1], that is, the dimension:

dpπq � dim HomHpπ, 1q
of the space of H-invariant linear forms on π is at most 1 for all irreducible complex representa-
tions π of G. This is no longer true in the modular case: when e � 1 we have dpπq � 2 for certain
irreducible representations (Theorem 3.5 and Remark 8.16). When e ¥ 3, it can be proved using
the same methods as in [20] (see ibid. Remark 7.8) and our Theorem 1.1 that dpπq ¤ 1 for all ir-
reducible `-modular representations π of G. When e � 2 we expect dpπq ¤ 1 still holds, but the
proof in [20] fails (see Theorem 3.8 for n � 2 and Remark 12.13 for more details).

When comparing the results in [20] with Mı́nguez [10], the classification of all H-distinguished
irreducible complex representations of G turns out to be easily expressed in terms of the local
theta correspondence from GL2pFq to GLnpFq. It would be interesting to investigate this in the
modular case, by developing an `-modular theta correspondence (see [11]).

Our last remark is about reduction mod `. It is not difficult to see that the reduction mod `
of an H-distinguished integral irreducible `-adic representation of G contains at least one distin-
guished irreducible component, by reducing mod ` a nonzero invariant linear form. However this
fact is not of much use here, and we do not say more about it.

Acknowledgements

This work was conceived when the second named author was a Post Doctoral Fellow (CNRS)
at Laboratoire de Mathematiques de Versailles, France, during October 2011-September 2012.
Some parts of this work were done while the second named author was a Visiting Fellow at TIFR,
Mumbai during October-November 2012 and he wishes to thank Prof. Dipendra Prasad for the
invitation. He wishes to thank the above organizations as well as Department of Mathematics at
Ben-Gurion University of the Negev for extending financial support and excellent facilities. We
also thank the anonymous referee for pointing out an embarassing error, and suggesting some
improvements to the exposition of the present work.
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2. Notation and preliminaries

In all this article, we fix a locally compact non-Archimedean field F ; we write O for its ring
of integers, p for the maximal ideal of O and q for the cardinality of its residue field. We also
fix an algebraically closed field R of characteristic not dividing q.

We write e for the order (possibly infinite) of the image of q in R� and define:

f �
"

0 if R has characteristic 0,
the smallest positive integer k ¥ 2 such that 1� q � � � � � qk�1 � 0 in R otherwise.

When R has characteristic ` ¡ 0, we have f � e if e ¡ 1 and f � ` if e � 1.
Given a topological group G, a smooth R-representation (or representation for short) of G is a

pair pπ,Vq made of an R-vector space V together with a group homomorphism π : G Ñ GLpVq
such that, for all v P V, there is an open subgroup of G fixing v. In this article, all representations
will be supposed to be smooth R-representations.

A smooth R-character (or character for short) of G is a group homomorphism from G to R�

with open kernel.
Given a representation π and a character χ of G, we write πχ for the twisted representation

g ÞÑ πpgqχpgq.
For n ¥ 1, we write Gn � GLnpFq, and pGn for the set of isomorphism classes of its irreducible

representations. In particular, pG1 will be identified with the group of characters of G1.

Given a representation π of Gn, n ¥ 1 and µ P pG1, we write π � µ � πpµ � detq. If π has finite
length, we write rπs for its semi-simplification.

3. The pair pGL2pFq,GL1pFqq
Write G � GL2pFq and let:

H �
"�

x 0
0 1



; x P F�

*
� G.

Let B denote the Borel subgroup of G made of upper triangular matrices, and write:

s �
�

0 1
1 0



P G.

If X is a locally compact topological space and A is a commutative ring, let C8c pX,Aq denote
the space of all locally constant and compactly supported functions from X to A.

We write dx for the R-valued Haar measure on F� giving measure 1 to the subgroup 1� p of
principal units (see [22, I.2]).

3.1. The principal series

Let α1, α2 be two smooth R-characters of F�. Let:

V � Vpα1, α2q
denote the (non-normalized) parabolic R-induction IndG

Bpα1bα2q, that is the space of all locally
constant R-valued functions f on G such that fpmngq � α1pm1qα2pm2qfpgq for all:

m �
�
m1 0
0 m2



P G, n P

�
1 F
0 1



� G, g P G,
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which is made into a smooth R-representation of G by making G act by right translations. Write
W for the subspace of V made of all functions vanishing at 1 and s. The map:

W Ñ C8c pF�,Rq
which associates to f P W the function:

φ : x ÞÑ f

�
s

�
1 x
0 1




is an isomorphism of R-vector spaces, and becomes an isomorphism of representations of H if
the right hand side is endowed with the action defined by:

a � φ : x ÞÑ α2paqφpxa�1q, x, a P F�.

Up to a nonzero scalar, there is on W a unique nonzero H-invariant linear form, given by:

µ : f ÞÑ
»

F�

f

�
s

�
1 x
0 1




α2pxq�1 dx.

Let α denote the character of B extending α1 b α2. Fix an integer i ¥ 1 such that α1, α2

are trivial on 1� pi, and let Ki be the subgroup of GL2pOq made of matrices congruent to the
identity mod pi. We define two functions f0 and f8 on G:

(1) f0 is supported on BsKi and f0pbsxq � αpbq for all b P B, x P Ki.
(2) f8 is supported on BKi and f8pbxq � αpbq for all b P B, x P Ki.

As α is trivial on BXKi, these functions f0, f8 are well defined. They are in V but not in W.

Lemma 3.1. — Given f P V, there is a unique function wpfq P W such that:

f � fpsqf0 � fp1qf8 � wpfq.
This defines a projection w : V Ñ W with kernel spanned by f0 and f8.

Proof. — This follows from the fact that s does not belong to BKi.

Let λ be an H-invariant linear form on V. It is characterized by λpf0q, λpf8q P R and its
restriction to W. As this restriction is H-invariant, it is of the form cµ for a unique scalar c P R.

Corollary 3.2. — The space V�H of H-invariant linear forms on V has dimension ¤ 3.

Now let λ be a linear form on V extending µ. We search for a necessary and sufficient condi-
tion on λpf0q, λpf8q P R for λ to be H-invariant. By definition, this linear form is H-invariant
if and only if:

λ

��
x 0
0 1



� f


� λpfq

for all x P F� and f P V, and it is enough to check this condition for all x of valuation 1 and
f � f0, f8. Let t P F� be of valuation 1. We have:�

t 0
0 1



� f0 � α2ptqf0 � w

��
t 0
0 1



� f0



,�

t 0
0 1



� f8 � α1ptqf8 � w

��
t 0
0 1



� f8



.
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Thus the condition writes:

p1� α2ptqqλpf0q � µ0ptq and p1� α1ptqqλpf8q � µ8ptq
for all t P F� of valuation 1, where:

µ0ptq � µ

�
w

��
t 0
0 1



� f0




and µ8ptq � µ

�
w

��
t 0
0 1



� f8




.

Lemma 3.3. — We have:

µ0ptq � �α2ptq1�i
»
O�

α2pxq�1 dx and µ8ptq � α1p�1qα1ptqi
»
O�

α1pxq�1 dx.

Proof. — Given x P F�, write m P Z for the valuation of x (normalized in such a way that any
uniformizer has valuation 1) and:

ιpxq �
�

1 x
0 1



.

We have:

(3.1) sιpxq � s

�
1 x
0 1



P BsKi ô m ¥ i

and:

(3.2) sιpxq �
��x�1 1

0 x


�
1 0
x�1 1



P BKi ô m ¤ �i.

Note that:

sιpxq
�
t 0
0 1



� s

�
1 x
0 1


�
t 0
0 1



� s

�
t 0
0 1


�
1 xt�1

0 1



�
�

1 0
0 t



sιpxt�1q.

We have:

µ0ptq �
»

F�

�
f0

�
sιpxq

�
t 0
0 1




� α2ptqf0 psιpxqq

�
α2pxq�1 dx,

µ8ptq �
»

F�

�
f8

�
sιpxq

�
t 0
0 1




� α1ptqf8 psιpxqq

�
α2pxq�1 dx.

Let φ0px, tq and φ8px, tq denote the functions into brackets in the formulas above, respectively.
We use formulas (3.1) and (3.2) above. For φ0px, tq we have the following:

(1) if m ¥ i� 1, then φ0px, tq � α2ptq � α2ptq � 0;
(2) if m � i, then φ0px, tq � �α2ptq;
(3) if m ¤ i� 1, then φ0px, tq � 0.

For φ8px, tq we have:

(1) if m ¥ �i� 2, then φ8px, tq � 0;
(2) if m � �i� 1, then φ8px, tq � α1p�tx�1qα2pxq;
(3) if m ¤ �i, then φ8px, tq � α1p�tx�1qα2pxq � α1p�tx�1qα2pxq � 0.



MODULAR REPRESENTATIONS OF GLpnq DISTINGUISHED BY GLpn� 1q 9

Therefore we have:

µ0ptq � �α2ptq
»
O�

α2ptixq�1 dx and µ8ptq �
»
O�

α1p�t1�p1�iqx�1q dx.

This ends the proof of the lemma.

We now have the following result.

Theorem 3.4. — The linear form µ can be extended to an H-invariant linear form on V if and
only if one of the two conditions below is satisfied:

(1) q � 1 in R and α1, α2 are nontrivial.
(2) q � 1 in R.

Proof. — If α1, α2 are ramified (that is, nontrivial on O�), then:»
O�

α1pxq�1 dx �
»
O�

α2pxq�1 dx � 0.

Thus µ can be extended uniquely to an H-invariant linear form λ on V, by setting λpf0q �
λpf8q � 0. If αi is unramified for some i P t1, 2u, then:»

O�

αipxq�1 dx � q � 1.

Fix a uniformizer $ of F and put zi � αip$q.
(1) If i � 1, the condition on λpf8q writes:

(3.3) p1� z1qλpf8q � zi1pq � 1q.
If z1 � 1, then (3.3) has a unique solution:

λpf8q � zi1 �
q � 1

1� z1
.

If z1 � 1, then (3.3) has a solution if and only if we have q � 1 in R, and in that case any value
of λpf8q in R is a solution.

(2) If i � 2, the condition on λpf0q writes:

(3.4) p1� z2qλpf0q � �z1�i
2 pq � 1q.

If z2 � 1, then (3.4) has a unique solution:

λpf0q � �z1�i
2 � q � 1

1� z2
.

If z2 � 1, then (3.4) has a solution if and only if we have q � 1 in R, and in that case any value
of λpf0q in R is a solution.

This ends the proof of the theorem.

Write dpVq for the dimension of V�H and epVq for that of the subspace of H-invariant linear
forms which are trivial on W.

Theorem 3.5. — Let n denote the number of trivial characters among α1, α2.

(1) If n � 0, then dpVq � 1 and epVq � 0.
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(2) If n ¥ 1 and q � 1 in R, then dpVq � epVq � n.
(3) If n ¥ 1 and q � 1 in R, then dpVq � n� 1 and epVq � n.

Proof. — If q � 1 in R, the result is as in the complex case. If q � 1 in R, then µ can always
be extended to an H-invariant linear form on V, that is, we have an exact sequence:

0 Ñ pV{Wq�H Ñ V�H Ñ W�H Ñ 0

of R-vector spaces and the dimension of W�H is 1. One easily checks that epVq � n. The result
follows.

3.2. The classification of GL1pFq-distinguished irreducible representations of GL2pFq
For the definition of an H-distinguished representation of G, we refer to Definition 8.1.
For any irreducible (smooth) representation π of G, let dpπq denote the dimension of its space

of H-invariant linear forms.
Recall that f denotes the quantum characteristic:

f �
"

0 if R has characteristic 0,
the smallest positive integer k ¥ 2 such that 1� q � � � � � qk�1 � 0 in R otherwise.

An irreducible representation of G is said to be cuspidal if it does not embed in any Vpα1, α2q
with α1, α2 P pG1. Just as in the complex case, we have the following result for cuspidal represen-
tations.

Proposition 3.6. — All cuspidal irreducible representations π of G are H-distinguished, with
dpπq � 1.

Proof. — See Paragraph 8.1 for a proof, where we treat the more general case of Gn, n ¥ 2.

Now let St denote the Steinberg representation of G, that is the unique nondegenerate irre-
ducible subquotient of V � IndG

Bp1b 1q (see [22, III.1]).
For the following lemma, see [14, §6].

Lemma 3.7. — If f � 2, then St � χ is cuspidal for all χ P pG1.

If f � 2, then Proposition 3.6 implies that St � χ is H-distinguished with dpSt � χq � 1 for all

χ P pG1. Assume now that f � 2. Thus V has length 2 and we have an exact sequence:

0 Ñ χ � det Ñ V � χ � IndG
Bpχb χq Ñ St � χÑ 0

of representations of G. If χ is nontrivial, then any H-invariant linear form on V �χ is trivial on
χ � det. We thus have dpSt � χq � dpV � χq � 1. If χ � 1, we have:

dpStq ¤ dpVq ¤ dpStq � 1.

As λ0 and λ8 are H-invariant linear form on V which are nonzero on the subspace of constant
functions, we get dpStq � dpVq � 1. Finally, we have the following result.

Theorem 3.8. — (1) An irreducible representation of G is H-distinguished if and only if it
is not a nontrivial 1-dimensional representation.

(2) Let π be an H-distinguished irreducible representation of G. Then dpπq ¤ 2, with equality
if and only if q � 1 in R and we are in one of the following cases:

(a) π is the Steinberg representation St and R has characteristic ¡ 2 ;

(b) π is a principal series representation Vp1, χq � IndG
Bp1b χq with χ P pG1 nontrivial.
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4. General results on modulo ` representations of Gn

4.1. More notation

Let α � pn1, . . . , nrq be a composition of n, that is, a family of positive integer whose sum is
n. We denote by Mα the subgroup of Gn of invertible matrices which are diagonal by blocks of
size n1, . . . , nr respectively (it is isomorphic to Gn1 � � � � �Gnr) and by Pα the subgroup of Gn

generated by Mα and the upper triangular matrices.
We choose once and for all a square root of q in R. We write rα for the normalized Jacquet

functor associated to pMα,Pαq and iα for its right adjoint functor, that is, normalized parabolic
induction. If π1, . . . , πr are smooth R-representations of Gn1 , . . . ,Gnr respectively, we write:

(4.1) π1 � π2 � � � � � πr � iαpπ1 b π2 b � � � b πrq.
Given a smooth representation π of finite length, we write rπs for its semi-simplification and

π� for its contragredient.
We write ν for the normalized absolute value of F, giving value q�1 to any uniformizer. More

generally, given integers k P Z and n ¥ 1, we write:

νk{2n : g ÞÑ p?qq�k�valpdetpgqq

where
?
q is the square root of q in R that has been fixed above, val is the normalized valuation

on F and det is the determinant map from Gn to F�.
We also write 1n for the trivial character of Gn, n ¥ 1, and 1 for 11.

4.2. The Geometric Lemma

We give here a combinatorial version of Bernstein-Zelevinski’s Geometric Lemma [2] (see also
[22, II.2.19]). Let α � pn1, . . . , nrq and β � pm1, . . . ,msq be two compositions of n ¥ 1. For

each i P t1, . . . , ru, let πi P pGni . Let Bα,β be the set of all matrices B � pbi,jq whose coefficients
are non-negative integers such that:

ş

j�1

bi,j � ni, i P t1, . . . , ru,
ŗ

i�1

bi,j � mj , j P t1, . . . , su.

Fix B P Bα,β and write αi � pbi,1, . . . , bi,sq and βj � pb1,j , . . . , br,jq which are compositions of ni
and mj respectively. For all i P t1, . . . , ru, the semi-simplification of rαipπiq writes:

rrαipπiqs �
ri̧

k�1

σ
pkq
i,1 b � � � b σ

pkq
i,s , σ

pkq
i,j P pGbi,j , ri ¥ 1.

For all j P t1, . . . , su and all r-tuples k � pk1, . . . , krq with 1 ¤ ki ¤ ri, we write:

σ
pkq
j � σ

pk1q
1,j � � � � � σ

pkrq
r,j ,

which is a representation of Gmj . Then we have:

rrβpπ1 � � � � � πrqs �
¸
B

¸
k

σ
pkq
1 b � � � b σpkqs

in the Grothendieck group of finite length representations of Mβ.



12 V. SÉCHERRE & C. G. VENKETASUBRAMANIAN

4.3. Cuspidal support

An irreducible representation of Gn with n ¥ 1 is said to be cuspidal if it does not embed in
any representation of the form (4.1) with r ¡ 1.

By [14, Theorem 2.1], for any irreducible representation π P pGn with n ¥ 1, there are positive

integers n1, . . . , nr and cuspidal irreducible representations ρi P pGni with i P t1, . . . , ru such that
n � n1 � � � � � nr and π embeds in ρ1 � � � � � ρr. Moreover, there is a permutation w of the set
t1, 2, . . . , ru such that π is a quotient of ρwp1q � � � � � ρwprq.

The family pρ1, . . . , ρrq, which depends on the choice of
?
q, is unique up to permutation. Its

class up to permutation, denoted rρ1s � � � � � rρrs, is called the cuspidal support of π.

Proposition 4.1 ([14], Proposition 5.9). — Let π and σ be irreducible representations of Gn

and Gm, respectively. Write rπ1s�� � ��rπrs and rσ1s�� � ��rσss for the cuspidal supports of π and
σ, respectively. Assume that for all i P t1, . . . , ru, j P t1, . . . , su and k P Z, the representations
πi � νk and σj are not isomorphic. Then π � σ is irreducible.

4.4. Three lemmas about irreducibility

The following lemma is a particular case of [13, Lemma 6.1], which will be of crucial impor-
tance to us. Recall that e is the order (possibly infinite) of q in R�.

Lemma 4.2. — Assume that e ¡ 1. Let n ¥ 2, and let ρ P pGn�1, χ P pG1. Then the represen-
tation π � ρ�χ possesses a unique irreducible quotient, denoted Qpπq, and a unique irreducible
subrepresentation, denoted Spπq. There is also a similar result for τ � χ� ρ and we have:

Qpτq � Spπq, Spτq � Qpπq.
Note that, by passing to the contragredient, we have:

Qpρ� χq� � Spρ� � χ�1q, Spρ� χq� � Qpρ� � χ�1q.
From this lemma we deduce the following example.

Example 4.3. — Assume that n ¥ 2, and write:

(4.2) Vn � ν
1{2
n�1 � νpn�1q{2.

If e ¡ 1, Lemma 4.2 implies that Vn has a unique irreducible quotient, denoted Λn. We write:

(4.3) Λn � QpVnq � Qpν1{2
n�1 � νpn�1q{2q, for e ¡ 1.

When e divides n, then Λn is the trivial character (see Proposition 4.10). By taking the contra-

gredient, Λ�
n is the unique irreducible subrepresentation of ν

�1{2
n�1 � ν�pn�1q{2.

The following irreducibility criterion will also be very useful to us.

Lemma 4.4 ([14], Lemme 2.5). — Let π be a smooth representation of Gn, n ¥ 2. Suppose

that there are two irreducible representations σ P pGa and τ P pGb with a, b ¥ 1 and a � b � n,
such that:

(1) π is a subrepresentation of σ � τ and a quotient of τ � σ;
(2) the multiplicity of σ b τ in rpa,bqpσ � τq is 1.

Then the representation π is irreducible.

Finally, we will use the following lemma (which follows from [14, Proposition 2.2]).
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Lemma 4.5. — Assume the induced representation (4.1) is irreducible. Then, for all permuta-
tion w of t1, 2, . . . , nu, there is an isomorphism πwp1q � πwp2q � � � � � πwprq � π1 � π2 � � � � � πr.

4.5. Classification of pGn by multisegments

In [14] Mı́nguez and Sécherre give a classification of the union of all pGn’s in terms of multi-
segments, that generalizes [27, 19, 23]. We will need some properties of this classification, that
we recall below.

Given two half-integers a, b P 1
2Z, we write:

a � b if

"
a� b P eZ if R has positive characteristic,
a � b otherwise.

We write N for the set of nonnegative integers.

Definition 4.6. — (1) A segment is a pair pa, bq of half-integers such that b� a P N.
(2) Two segments pa, bq and pc, dq are equivalent if b� a � d� c and a � c. The equivalence

class of pa, bq will be denoted ra, bs (and just ras if b � a).
(3) A multisegment is a formal finite sum of classes of segments, that is a element in the free

semigroup generated by classes of segments.

Let λ � pλ1, λ2, . . . q and µ � pµ1, µ2, . . . q be two partitions of a given integer n. We say that
λ dominates µ, denoted λ � µ, if:

λ1 � � � � � λk ¥ µ1 � � � � � µk

for all integers k ¥ 1. We write λ� µ if we have in addition λ � µ.
Given a nonzero multisegment m � ra1, b1s� � � �� rar, brs, write ni � bi�ai�1 for all integer

i P t1, . . . , ru and let λpmq denote the partition associated with pn1, n2, . . . , nrq. The length of
m is the sum n � n1 � n2 � � � � � nr.

One of the main results of [14] is the construction of a map m ÞÑ Zpmq that associates to any
multisegment m a class of irreducible representation Zpmq with the following properties:

P1 If m is a segment ra, bs of length n ¥ 1, then Zpra, bsq is the character ν
a�pn�1q{2
n P pGn.

P2 If m � ra1, b1s�� � ��rar, brs, then Zpmq occurs as a subquotient of the representation
Zpra1, b1sq � � � � � Zprar, brsq with multiplicity 1.

P3 If π is an irreducible subquotient of Zpra1, b1sq� � � � �Zprar, brsq, then there exists a
unique multisegment n � rc1, d1s � � � � � rcs, dss such that π � Zpnq. Moreover, we
have λpnq � λpmq and:

ş

i�1

prcis � � � � � rdisq �
ŗ

i�1

prais � � � � � rbisq.

P4 If k is a half-integer, then Zpra1 � k, b1 � ks � � � � � rar � k, br � ksq � Zpmq � νk.
P5 The contragredient of Zpmq is Zpm�q with m� � r�b1,�a1s � � � � � r�br,�ars.

We finally have the following definition and result.

Definition 4.7. — Two segments ra, bs and rc, ds are linked if c�a P Z and at least one of the
following two conditions holds:
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(1) the length of ra, bs is greater than or equal to that of rc, ds, and there exists a half-integer
k such that c ¤ k ¤ d, and either k � b� 1 or k � a� 1;

(2) the length of rc, ds is greater than or equal to that of ra, bs, and there exists a half-integer
k such that a ¤ k ¤ b, and either k � d� 1 or k � c� 1.

Proposition 4.8 ([14], Théorème 7.26). — Let ∆1, . . . ,∆r be segments. The representation
Zp∆1q� � � ��Zp∆rq is irreducible if and only if for all i � j, the segments ∆i,∆j are not linked.

4.6. Product of two characters

Here are some useful properties of the representation Zpra, bsq for a segment ra, bs.
Proposition 4.9. — Let ra, bs be a segment of length n ¥ 2, and let k P t1, . . . , n� 1u.

(1) We have rpk,n�kqpZpra, bsqq � Zpra, a� k � 1sq b Zpra� k, bsq.
(2) We have r̄pk,n�kqpZpra, bsqq � Zpra�n�k, bsqbZpra, a�n�k�1sq where r̄pk,n�kq denotes

the Jacquet functor associated to Mpk,n�kq and the parabolic subgroup opposite to Ppk,n�kq.

(3) Assume that e ¡ 1. Then Zpra, b�1sq�νb has a unique irreducible subrepresentation and
Zpra� 1, bsq � νa has a unique irreducible quotient, both isomorphic to Zpra, bsq.
Proof. — See [14], Propositions 7.16 and 7.17.

Proposition 4.10. — Assume e ¡ 1. Let a ¤ b be integers and write πpa, bq � Zpra, bsq � 1.

(1) If a � 1 and b � �1, then πpa, bq is irreducible.
(2) If a � 1 and b � �1, then πpa, bq has length 2 and we have an exact sequence:

0 Ñ Zpra, bs � r0sq Ñ πpa, bq Ñ Zpra� 1, bsq Ñ 0.

(3) If a � 1 and b � �1, then πpa, bq has length 2 and we have an exact sequence:

0 Ñ Zpra, b� 1sq Ñ πpa, bq Ñ Zpra, bs � r0sq Ñ 0.

(4) If a � 1 and b � �1, then πpa, bq has length 3 with irreducible subquotients Zpra� 1, bsq,
Zpra, b� 1sq and Zpra, bs � r0sq.
Proof. — Case 1 follows from Proposition 4.8. Moreover, the representation Zpra, bs�r0sq always
occurs as a subquotient with multiplicity 1 and the other irreducible subquotients of πpa, bq are
of the form Zpnq with λpnq�pn�1, 1q, where n � b�a�2. Therefore we have λpnq � pnq, which
implies that n is a segment. Moreover, such an n must be of the form ra, b� 1s with b � �1 or
ra� 1, bs with a � 1.

Assume that a � 1 and b � �1. By the geometric lemma, the Jacquet module rpn�1,1qpπpa, bqq
is made of the subquotients Zpra, bsqb 1 and πpa, b� 1qb νb, and both are irreducible. Thus the
representation πpa, bq has length ¤ 2. But Proposition 4.9 shows that Zpra, b � 1sq occurs as a
subrepresentation of πpa, bq. The result follows.

The case where a � 1 and b � �1 is treated in a similar way. Thus it remains to study the
case where a � 1 and b � �1. In this case, πpa, b� 1q has length 2, thus πpa, bq has length ¤ 3.
By Proposition 4.9 we see that the length is actually 3 and we get the expected result.

Example 4.11. — Assume that n ¥ 2 and write:

(4.4) Πn � Z

��
�n� 3

2
,
n� 1

2

�
�
�
n� 1

2

�

.
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Assume e ¡ 1 and look at Example 4.3 for the definition of Λn. Then:

(4.5) Λn �
"

Πn if e does not divide n,
1n if e divides n.

We also get:

Λ�
n �

"
Π�
n � Zpr�n�1

2 , n�3
2 s � r�n�1

2 sq if e does not divide n,
1n if e divides n.

If we want to go further, we need more properties of the representation Zpmq for a multisegment

m. Given χ1, χ2 P pG1, we write Stpχ1, χ2q for the unique nondegenerate irreducible subquotient
of χ1 � χ2 (see [14, §8]). If St2 is the Steinberg representation of G2 as in Paragraph 3.2, then:

Stpχ1, χ2q �
$&%

χ1 � χ2 if χ1 � χ2 is irreducible,

St2 � χ1ν
1{2 if χ2 � χ1ν,

St2 � χ2ν
1{2 if χ1 � χ2ν.

Note that we have Stpχ2, χ1q � Stpχ1, χ2q. The following proposition follows from [13, §3.3.2].

Proposition 4.12. — Let m be a multisegment of length n and of the form ra, bs�rc, ds. Assu-
me that b� a ¥ d� c. Write k � d� c� 1 and:

µpmq � p1, . . . , 1, 2, . . . , 2q with 1 occurring n� 2k times and 2 occurring k times,

Stpmq � νa b � � � b νa�n�2k�1 b Stpνa�n�2k, νcq b � � � b Stpνb, νdq.
Then Zpmq has the following property:

P6 Zpmq is the unique irreducible subquotient of Zpra, bsq�Zprc, dsq whose Jacquet module
with respect to rµpmq contains Stpmq as a subquotient.

Proposition 4.13. — Let a, b P Z with a ¤ b and write πpa, bq � Zpra, bsq � Zpr0, 1sq. Assume
that e ¡ 1.

(1) Zpra, bs � r0, 1sq occurs as a subquotient of πpa, bq with multiplicity 1.
(2) If b � 0, then Zpra, b� 1s � r0sq occurs as a subquotient of πpa, bq with multiplicity 1.
(3) If a � 1, then Zpra� 1, bs � r1sq occurs as a subquotient of πpa, bq with multiplicity 1.
(4) If b � �1, then Zpra, b� 2sq occurs as a subquotient of πpa, bq.
(5) If a � 2, then Zpra� 2, bsq occurs as a subquotient of πpa, bq.
(6) If b � 0 and a � 1, then Zpra� 1, b� 1sq occurs as a subquotient of πpa, bq.

Any irreducible subquotient of πpa, bq is one of the representations occuring in Cases 1 to 6. More-
over, if e ¡ 2, the multiplicities in Cases 4, 5 and 6 are equal to 1.

Proof. — Case 1 follows from P2. Write n � b � a � 3. The other irreducible subquotients of
πpa, bq are of the form Zpnq with λpnq� pn� 2, 2q. Thus we have λpnq � pn� 1, 1q or λpnq � pnq.
If b � 0 (resp. a � 1) then Zpra, b� 1sq� 1 (resp. Zpra� 1, bsq� ν) is a subquotient of πpa, bq by
[14, Lemme 7.34]. It follows from Proposition 4.10 that the representations in Cases 2, 3 and
6 occur in πpa, bq. Cases 4 and 5 are treated similarly. We now show that these are the only
possible subquotients of πpa, bq and they appear with the specified multiplicity.

Assume first that n � rc, ds � rhs with d� c� 1 � n� 1. Then:

µpnq � p1, . . . , 1, 2q,
Stpnq � νc b νc�1 b � � � b νd�1 b Stpνd, νhq.
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By using the geometric lemma, the semi-simplification of rpn�2,2qpπpa, bqq is equal to:

Zpra, bsq b Zpr0, 1sq � pZpra, b� 1sq � 1q b pνb � νq � πpa, b� 2q b Zprb� 1, bsq.
If Zpnq occurs as a subquotient of πpa, bq, then Stpnq occurs in rµpnqppZpra, b�1sq�1qbpνb�νqq
and Stpνd, νhq occurs in νb� ν with multiplicity 1, which implies that Stpνd, νhq � Stpνb, νq and
that Zpnq occurs in πpa, bq with multiplicity 1. By the geometric lemma, we get:

rp1,...,1qpZpra, b� 1sq � 1q �
n�3̧

k�0

νa b � � � b νa�k�1 b 1b νa�k b � � � b νb�1.

Thus there is a k P t0, . . . , nu such that:

νc b νc�1 b � � � b νd�1 � νa b � � � b νa�k�1 b 1b νa�k b � � � b νb�1.

Since e ¡ 1, comparing the exponents in the left hand side and the right hand side shows that
k must be either 0 or n� 3 � b� a. If k � 0, then:

νc b νc�1 b � � � b νd�1 � 1b νa b � � � b νb�1.

Thus we have c � 0, a � 1, d � b and h � 1. It follows that n � ra � 1, bs � r1s. If k � n � 3,
then:

νc b νc�1 b � � � b νd�1 � νa b � � � b νb�1 b 1.

Thus we have c � a, b � 0, d � 1 and h � 0. It follows that n � ra, b� 1s � r0s.
Assume now that n � rc, ds is a segment. Thus:

µpnq � p1, . . . , 1q,
Stpnq � νc b νc�1 b � � � b νd.

By using the geometric lemma, we get:

rµpnqpπpa, bqq �
¸

0¤r¤s¤n

νa b � � � b νa�r�1 b 1b νa�r b � � � b νa�s�1 b ν b νa�s b � � � b νb.

If Zpnq occurs as a subquotient of πpa, bq, there are integers r ¤ s in t0, . . . , nu such that:

νc b � � � b νd � νa b � � � b νa�r�1 b 1b νa�r b � � � b νa�s�1 b ν b νa�s b � � � b νb.

If e ¡ 2, comparing the exponents in the left hand side and the right hand side shows that the
only possible values for r, s are:

(1) r � s � 0 (thus a � 2);
(2) r � s � n (thus b � �1);
(3) r � 0 and s � n (thus a � 1 and b � 0).

In all these cases, Stpnq occurs with multiplicity 1.
If e � 2, there are more possible values for r, s (the condition is that s� r is even) and Stpnq

may occur with multiplicity greater than 1.
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4.7. Derivatives

By [22, III.1], there is a theory of derivatives for mod ` representations of Gn, n ¥ 1 just as in
the complex case. Given a smooth representation π of Gn, n ¥ 1 and an integer k P t0, . . . , nu,
we will write πpkq for its kth derivative, which is a smooth representation of Gn�k (where G0

stands for the trivial group in the case k � n.)
The kth derivative functor is exact from the category of smooth `-modular representations of

Gn to that of smooth `-modular representations of Gn�k, for all k P t0, . . . , nu. It is compatible

with twisting by a character, that is, we have pπ �χqpkq � πpkq �χ for any representation π of Gn,

any character χ P pG1 and any k P t0, . . . , nu.
Recall that rπs denotes the semi-simplification of a finite length representation π.

Lemma 4.14. — (1) Given a cuspidal irreducible representation ρ of Gn, its kth derivative

is zero for all k P t1, . . . , n� 1u, and we have ρpnq � 1 for k � n.
(2) Given a segment ra, bs, the first derivative of Zpra, bsq is Zpra, b�1sq, and its kth derivative

is zero for all k P t2, . . . , nu.
(3) Let π, σ be finite length representations of Gn,Gm respectively, with m ¥ n ¥ 1. Then :

rpπ � σqpkqs � rπ � σpkqs � rπp1q � σpk�1qs � � � � � rπpiq � σpk�iqs
for all k P t0, . . . , n�mu, where i � minpn, kq.
Proof. — Points (1) and (2) follows from V.9.1 (a) and (b) in [23]. For (3), see [22, III.1.10].

5. On the e � 1 case

In this section, we assume that e � 1 and n ¥ 2. Write Kn � GLnpOq and let Knp1q be the
normal subgroup of Kn made of all matrices that are congruent to 1 mod p. Both are compact
open subgroups of Gn, and the quotient Kn{Knp1q is canonically isomorphic to the finite group
GLnpqq of n� n invertible matrices with entries in the residue field of O.

Given a smooth representation pπ,Wq of Gn, write W for the space of Knp1q-fixed vectors of
W and write π for the representation of GLnpqq on W.

This defines an exact functor from the category of smooth R-representations of Gn to that of
R-representations of GLnpqq.

We have defined two representations Vn and Πn in (4.2) and (4.4). Note that Vn � C8c pX,Rq
with X � Ppn�1,1qzGn. Its contains Πn as a subquotient with multiplicity one, 1n with some
multiplicity and no other irreducible subquotient. It is a selfdual representation of Gn.

Thanks to the Iwasawa decomposition Gn � Ppn�1,1qKn, the restriction of Vn to Kn is Wn �
C8c pY,Rq with Y � pKn X Ppn�1,1qqzKn. Therefore we have:

Vn � C8c pY{Knp1q,Rq,
which identifies with the space of R-valued functions on X � Ppn�1,1qpqqzGLnpqq, where we write
Ppn�1,1qpqq for the standard maximal parabolic subgroup of GLnpqq corresponding to pn� 1, 1q.
Lemma 5.1. — For n ¥ 2, there exists a unique irreducible representation πn of GLnpqq having
the following properties:

(1) If ` does not divide n, then Vn is semisimple of length 2, with irreducible subquotients 1̄n
and πn.
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(2) If ` divides n, then Vn is indecomposable of length 3, with irreducible subquotients 1̄n
(with multiplicity 2) and πn.

Proof. — Note that 1̄n occurs as a subrepresentation of Vn (the space of R-valued constant func-
tions on X). Write ψ for the GLnpqq-invariant linear form on Vn that associates to a function
the sum of its values on X. The set X has cardinality:

pGLnpqq : Ppn�1,1qpqqq �
qn � 1

q � 1
� 1� q � � � � � qn�1

which is 0 in R if and only if ` divides n. Thus the constant functions belong to the kernel of ψ
if and only if ` divides n. According to [9, 11], we have the following properties:

(1) The kernel Sn of ψ (denoted Spn�1,1q in [9], whereas Vn is denoted Mpn�1,1q) has a unique
irreducible quotient πn.

(2) The semi-simplification of Vn contains πn with multiplicity 1 and 1̄n with some multiplicity
¥ 1, and no other irreducible subquotient.

By [9, 20.7], the multiplicity of 1̄n in Vn is 1 if ` does not divide n, and 2 otherwise. It remains
to prove that Vn has the expected structure.

We first assume that ` does not divide n. Since 1̄n occurs as a subrepresentation of Vn, πn
must be a quotient of Vn. Since Vn is selfdual, it follows that πn is selfdual, thus it also occurs
as a subrepresentation of Vn. We thus have two nonzero maps πn Ñ Vn and Vn Ñ πn, whose
composition is nonzero (or else it would contradict the fact that πn occurs with multiplicity 1).
Therefore Vn is semisimple.

Assume now that ` divides n. By [9], the representation Sn is indecomposable (it has length 2
and a unique irreducible quotient). Since Vn is selfdual, it implies that Vn is indecomposable.

Proposition 5.2. — (1) The representation Πn is irreducible and isomorphic to πn.
(2) If ` does not divide n, the representation Vn is semisimple of length 2.
(3) If ` divides n, the representation Vn is indecomposable of length 3, with irreducible sub-

quotients 1n (with multiplicity 2) and Πn.

Proof. — By [22], II.5.8 and II.5.12, all irreducible subquotients of Vn have level 0, thus they
are not killed by the functor π ÞÑ π.

We first assume that ` does not divide n. By Lemma 5.1, the representation Vn has length
2, with irreducible subquotients Πn and 1n, thus Πn must be irreducible and isomorphic to πn.
The same argument as in the proof of Lemma 5.1 shows that Vn is semisimple.

Assume now that ` divides n. By Lemma 5.1 the representation Vn has length ¤ 3. Assume
it has length 2. Then the argument of the proof of Lemma 5.1 implies that Vn � 1n`Πn. Thus
the one-dimensional space HomGnpVn, 1nq is generated by a linear form λ which is nonzero on
the subspace of constant functions. Since Knp1q is a pro-p-group, Knp1q-invariant and Knp1q-co-
invariant vectors of Vn are canonically identified. The Kn-invariant linear form λ thus induces a
GLnpqq-invariant linear form on Vn, which is equal to ψ upto a nonzero scalar. But ψ is zero on
constant functions, which contradicts the fact that λ is nonzero. This gives us a contradiction,
and thus Vn has length 3. Now since Vn is indecomposable, it follows that Vn is indecomposable.
We also get that Πn must be irreducible and isomorphic to πn.
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Definition 5.3. — Assume e � 1 and let n ¥ 2. In parallel with Example 4.11, we define:

Λn �
"

Πn if ` does not divide n,
1n if ` divides n.

In conclusion, if we summarize Example 4.11 and Definition 5.3, we get the following definition
of Λn.

Definition 5.4. — Assume e is arbitrary, and recall that f is the quantum characteristic (see
Paragraph 3.2). For n ¥ 2, we define:

(5.1) Λn �
"

Πn � Zpr�n�3
2 , n�1

2 s � rn�1
2 sq if f does not divide n,

1n if f divides n.

Thanks to Example 4.11, note that we also have:

(5.2) Λ�
n �

"
Π�
n � Zpr�n�1

2 , n�3
2 s � r�n�1

2 sq if f does not divide n,
1n if f divides n.

If we look at Proposition 5.2, we also have the following property (for arbitrary e ¥ 1).

Remark 5.5. — For n ¥ 2, if f does not divide n, then Λn is an irreducible quotient of Vn.

6. Computing the derivatives of Λn and Πn

In this section, we assume that e is arbitrary. Remind (see (4.2), (4.4) and (5.1)) that we have
defined representations Vn, Πn and Λn for all n ¥ 2. By Propositions 4.10 and 5.2, we have:

(6.1) rVns �
"

Πn � νn if f does not divide n,
Πn � νn � 1n if f divides n,

in the Grothendieck group of finite length representations of Gn. Let us compute the derivatives
of Πn.

Lemma 6.1. — Suppose that n ¥ 2.

(1) If f � n � 2, the derivative Π
p1q
2 is zero.

(2) Otherwise we have:

Πp1q
n �

"
1n�2 � νpn�1q{2 if f does not divide n,

Λ�
n�1 � ν1{2 if f divides n.

(3) We have Π
p2q
n � 1n�2 and Π

pkq
n is zero for all k ¥ 3.

Proof. — By Leibniz’s rule (see Lemma 4.14(3)), we have:

rVp1q
n s � r1n�2 � νpn�1q{2s � ν

1{2
n�1

in the Grothendieck group of finite length representations of Gn�1. Since the kth derivative of a

character is zero for k ¥ 2, we have V
p2q
n � 1n�2 and V

pkq
n is zero for all k ¥ 3. The kth derivative

functors being exact, the expected result follows from (6.1) together with Propositions 4.10 and
5.2.

Corollary 6.2. — Suppose that n ¥ 2.
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(1) We have:

Λp1q
n �

#
1n�2 � νpn�1q{2 if f does not divide n,

ν
�1{2
n�1 if f divides n.

(2) The second derivative Λ
p2q
n is equal to 1n�2 if f does not divide n, and is zero otherwise.

(3) The kth derivative Λ
pkq
n is zero for all k ¥ 3.

Remark 6.3. — Since Π�
n � Πn � ν�1 by Properties P4 and P5, we get the derivatives of Π�

n

and Λ�
n from Lemma 6.1 and Corollary 6.2.

Example 6.4. — (1) We have St2 � Zpr�1{2s � r1{2sq � Π2 � ν�1. If f � 2, the representa-

tion St2 is cuspidal thus its first derivative is zero. Otherwise, we have pSt2qp1q � ν1{2.
(2) Let St3 denote the nondegenerate irreducible subquotient of ν�1 � 1� ν, that is:

St3 � Zpr�1s � r0s � r1sq
(see [14, §8]). If f � 3, then St3 is cuspidal ([14, §6]) thus its first and second derivatives are
zero. If f � 3, then:

rν�1 � 1� νs � 13 � Λ3 � ν�1 � pΛ3q� � ν � St3

in the Grothendieck group of finite length representations of G3. We thus get pSt3qp1q � St2 �ν1{2

and pSt3qp2q � ν.

7. A modular version of Badulescu-Lapid-Mı́nguez’s juxtaposition criterion

In Paragraph 4.5 we have defined Zp∆q for ∆ a segment. In [14] an irreducible representation
Lp∆q is also introduced. We will need it only for segments of length ¤ 2.

Definition 7.1. — Let a be a half-integer. Then Lprasq � Zprasq � νa and:

Lpra, a� 1sq �
"

Qpνa � νa�1q if e ¡ 1,

Λ2 � νa�1{2 if e � 1.

Remark 7.2. — Note that we have rp1,1qpLpra, a� 1sqq � νa�1 b νa for all a P 1
2Z.

If we write St2 for the Steinberg representation of G2 as in Paragraph 3.2, then we have:

Lpra, a� 1sq �
"

St2 � νa�1{2 if f � 2,

νa�1{2 if f � 2.

Note that Λ2 � St2 � ν if f � 2.

Lemma 7.3 ([14], Théorème 7.26). — Let ∆, ∆1 be two segments of length ¤ 2. Then the
representation Lp∆q � Lp∆1q is irreducible if and only if ∆ and ∆1 are not linked.

Following [3, Définition 2.1], say that two segments ra, bs and rc, ds are juxtaposed if we have
c � b� 1 or a � d� 1 (see the notation of Paragraph 4.5).

Proposition 7.4. — Assume that e ¡ 2. Let ∆,∆1 be two segments, with ∆1 of length 2. Then
Zp∆q � Lp∆1q is reducible if and only if ∆ and ∆1 are juxtaposed.

Remark 7.5. — If e ¤ 2, we have Lpra, a� 1sq � Zpra� 1, asq for any half-integer a. It follows
from Proposition 4.8 that Zp∆q � Lp∆1q is always reducible when e ¤ 2.
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Proof. — By twisting by a character, we may and will assume that ∆1 � r0, 1s. We first assume
that ∆ and r0, 1s are juxtaposed. We thus have ∆ � ra, bs with a ¤ b integers such that b � �1
or a � 2. Let us prove that π � Zp∆q � Lpr0, 1sq is reducible.

First note that π is a subquotient of ξ � Zpra, bsq�1�ν. Since e ¡ 2 the representation 1�ν
has length 2, with irreducible subquotients Zpr0, 1sq and Lpr0, 1sq. By P2 and Proposition 4.13,
the irreducible representation Zpra, bs� r0s� r1sq occurs in ξ but not in Zpra, bsq�Zpr0, 1sq, thus
it occurs in π.

Let us assume that a � 2 and b � �1. Since Lpr0, 1sq is the unique irreducible subrepresenta-
tion of ν�1, it follows that π embeds in ξ1 � Zpra, bsq�ν�1. Since Zpra, bsq�ν is irreducible, ξ1

is isomorphic to ν � Zpra, bsq � 1 and has a unique irreducible subrepresentation by Lemma 4.2.
By Proposition 4.9 (3), the unique irreducible subrepresentation of Zpra, bsq � 1 is Zpra, b� 1sq.
Thus we have:

Spξ1q � Spν � Zpra, b� 1sqq � Zpra, b� 1s � r1sq
by Proposition 4.10. Since π embeds in ξ1, it follows that π contains Zpra, b� 1s � r1sq. Since it
also contains Zpra, bs � r0s � r1sq, it cannot be irreducible.

The case where a � 2 and b � �1 is similar, using ξ instead of ξ1.
It remains to treat the case where a � 2 and b � �1. In that case, it follows from Proposition

4.13 that Zpra, bsq � Zpr0, 1sq has length 3, with irreducible subquotients:

Zpra, bs � r0, 1sq, Zpra, b� 2sq, Zpra� 2, bsq.
But ξ also contains Zpra, bs � r0s � r1sq and Zpra� 1, b� 1sq, thus π has length at least 2. Thus,
in any case, π is reducible when ra, bs and r0, 1s are juxtaposed.

We now have to prove that π is irreducible when ∆ and r0, 1s are not juxtaposed. Let us write
∆ � ra, bs with a ¤ b and 2a P Z. If a R Z, then Zp∆q�Lpr0, 1sq is irreducible by Proposition 5.9
of [14]. We thus may assume that a, b are integers such that b � �1 and a � 2. The proof is by
induction on n � b� a� 1.

If n � 1 then π � νa�Lpr0, 1sq and the result follows from Lemma 7.3 since the segments ras
and r0, 1s are not linked.

Assume now that n ¥ 2. Our goal is to find irreducible representations σ, τ , of degree u, v res-
pectively, such that π occurs as a subrepresentation of σ�τ and as a quotient of τ �σ, and such
that σ b τ occurs with multiplicity 1 in rpu,vqpσ � τq. We will distinguish the following cases:

(1) a � �1, 1
(2) a � �1
(3) a � 1 and b � 0, 2
(4) a � 1 and b � 0, 2 and e ¡ 3
(5) a � 1 and b � 0 and e � 3

In Case 1, since a � 1 and thanks to the inductive hypothesis, π embeds in:

(7.1) νa � Zpra� 1, bsq � Lpr0, 1sq � νa � Lpr0, 1sq � Zpra� 1, bsq
and νa�Lpr0, 1sq is irreducible because a � �1. Since Zpra, bsq is a quotient of Zpra�1, bsq�νa,
we can choose σ � νa � Lpr0, 1sq and τ � Zpra� 1, bsq. We compute the multiplicity of σ b τ in
rp3,n�1qpσ � τq by applying the geometric lemma. For this multiplicity to be 1, it is enough to
prove that σ does not occur as a subquotient of the following representations:

(1.1) νa � 1� νa�1;
(1.2) Lpr0, 1sq � νa�1;
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(1.3) νa � Zpra� 1, a� 2sq;
(1.4) ν � Zpra� 1, a� 2sq;
(1.5) Zpra� 1, a� 3sq.

This follows from [14, Théorème 8.16].
In Case 2, Equation (7.1) in addition with the fact that Lpr0, 1sq embeds in ν� 1 implies that

π is a subrepresentation of:
ν�1 � ν � 1� Zpra� 1, bsq.

But π is also a quotient of:

Zpra, bsq � 1� ν � 1� Zpra, bsq � ν

which itself is a quotient of the representation 1� Zpra� 1, bsq � ν�1 � ν. We thus can choose
σ � ν�1 � ν and τ � 1 � Zpra � 1, bsq. Again, by the geometric lemma, it is enough to prove
that σ does not occur as a subquotient of ν�1 � 1, ν � 1, Zpr0, 1sq or 1� 1, which follows easily.

In Case 3, we embed Zpra, bsq into Zpra, b� 1sq � νb and show by a similar argument that we
can choose σ � Zpr1, b� 1sq � Lpr0, 1sq and τ � νb. By using the geometric lemma, it is enough
to prove that νb is different from 1 and νb�1, which is immediate.

In Case 4, we prove the following more general lemma.

Lemma 7.6. — Assume e ¡ 3. Then Zpr1, bsq � Lpr0, 1sq is irreducible for any b ¥ 1, b � �1.

Proof. — We first treat the case where b � 2 (the case where b � 1 has already been done). We
embed π � Zpr1, 2sq � Lpr0, 1sq in:

Zpr1, 2sq � ν � 1 � ν � Zpr1, 2sq � 1 ãÑ ν � ν � ν2 � 1

and we choose σ � ν � ν and τ � ν2 � 1.
Now assume b ¥ 3. We embed Zpr1, bsq in Zpr1, 2sq � Zpr3, bsq and then choose σ � Zpr1, 2sq

and τ � Zpr3, bsq�Lpr0, 1sq. By the geometric lemma, it is enough to prove σ does not occur in:

(4.1) ν � ν3;
(4.2) ν � ν;
(4.3) Lpr0, 1sq;
(4.4) ν3 � ν;
(4.5) Zpr3, 4sq.

This is immediate.

In Case 5, n is of the form 3k for some k ¥ 1, and we write Ωk � Zpr1, 3ksq.
Lemma 7.7. — The representation Ω1 � Lpr0, 1sq is irreducible.

Proof. — Let ξ be an irreducible subquotient of π � Ω1 � Lpr0, 1sq. It is thus a subquotient of
the representation Zpr1, 3sq � ν � 1. By using Properties P2 and P3, we deduce that ξ is of the
form Zpmq where m is a multisegment in the following list:

(5.1) m � r0, 4s;
(5.2) m � r0, 3s � r1s;
(5.3) m � r1, 4s � r0s;
(5.4) m � r0, 2s � r3, 4s;
(5.5) m � r2, 4s � r0, 1s;
(5.6) m � r1, 3s � r0, 1s;
(5.7) m � r1, 3s � r0s � r1s.
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We will prove that Case 5.7 is the only possible case, which implies that Ω1�Lpr0, 1sq is irredu-
cible and equal to Zpr1, 3s � r0s � r1sq. By the geometric lemma, we get:

rrp3,2qpπqs � Zpr1, 3sq b Lpr0, 1sq � pZpr1, 2sq � νq b p1� 1q � pν � Lpr0, 1sqq b Zpr2, 3sq
and each of these three subquotients is irreducible. Since rp3,2qpZpr0, 4sqq � Zpr0, 2sq b Zpr3, 4sq,
we see that Zpr0, 4sq cannot occur as a subquotient of π.

Now the semi-simplification of rp1,2,2qpπq is equal to:

ν b Zpr2, 3sq b Lpr0, 1sq � ν b Lpr0, 1sq b Zpr2, 3sq � ν b pν � 1q b Zpr2, 3sq
� ν b Zpr1, 2sq b p1� 1q � ν b pν2 � νq b p1� 1q.

By using Proposition 4.12, we see that Cases 5.4, 5.5 and 5.6 cannot occur.
Now the semi-simplification of rp1,1,1,2qpπq is equal to:

ν b 1b ν b Zpr2, 3sq � ν b ν2 b 1b Lpr0, 1sq � ν b ν2 b ν b p1b 1q
� 2 � �ν b ν b 1b Zpr2, 3sq�� 2 � �ν b ν b ν2 b p1� 1q�.

By using Proposition 4.12, we see that Case 5.2 cannot occur.
It remains to treat Case 5.3. The semi-simplification of rp1,1,3qpZpr1, 4sq � 1q is equal to:

ν b ν2 b pZpr0, 1sq � 1q � 1b ν b Zpr2, 4sq � ν b 1b Zpr2, 4sq.
By Proposition 4.10(2) and the geometric lemma, we get:

rrp1,1,3qpZpr1, 4sq � r0sqs � ν b ν2 b pZpr0, 1sq � 1q � ν b 1b Zpr2, 4sq.
On the other hand, the semisimplification of rp1,1,3qpπq is equal to:

ν b 1b Zpr1, 3sq � 2 � pν b ν b pZpr2, 3sq � 1qq � ν b ν2 b p1� Lpr0, 1sqq
and each of the individual subquotients is irreducible. Therefore, Case 5.3 cannot occur.

The proof is now by induction on k. We embed Ωk�1 into Ω1 � Ωk and choose σ � Ω1 and
τ � Lpr0, 1sq � Ωk. By using the geometric lemma, we have to prove that, for all 0 ¤ i ¤ 2, the
factor σ b τ does not occur as a subquotient of any of these three representations:

(5.A) Zpr1, isq � Lpr0, 1sq � Zpr1, 1� isq b Zpri� 1, 3sq � Zpr2� i, 3ksq;
(5.B) Zpr1, isq � ν � Zpr1, 2� isq b Zpri� 1, 3sq � 1� Zpr3� i, 3ksq;
(5.C) Zpr1, isq � Zpr1, 3� isq b Zpri� 1, 3sq � Lpr0, 1sq � Zpr4� i, 3ksq.

This follows by using Property P3. (Notice that the term (5.A) does not appear if i � 2).
This ends the proof of Proposition 7.4.

8. Distinguished representations

For n ¥ 2, we write Hn for the subgroup of Gn made of all matrices of the form:�
g 0
0 1



, g P Gn�1.

Definition 8.1. — Assume that n ¥ 2. A smooth R-representation pπ,Vq of Gn is said to be
Hn-distinguished if V possesses a nonzero Hn-invariant linear form.

If the space HomHnpV,Rq has finite dimension over R, we denote this dimension by dpπq.
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8.1. Cuspidal representations

Just as in the complex case (see [16]), we have the following result.

Theorem 8.2. — Let n ¥ 2 and let ρ P pGn be a cuspidal representation. Then ρ is distinguished
if and only if n � 2. When it is the case, we have dpρq � 1.

Proof. — Write Pn for the mirabolic subgroup of Gn, that is the subgroup made of all matrices
with last row p0, . . . , 0, 1q. By [22, III,Theorem 1.1], the restriction of ρ to Pn is isomorphic,
just as in the complex case, to the compact R-induction:

indPn
Un
pψnq

of a generic character ψn of the standard maximal unipotent subgroup Un of Gn. As Pn � HnUn,
the restriction of ρ to Hn is isomorphic to the compact R-induction indHn

HnXUn
pψnq, which carries

a nonzero Hn-fixed R-linear form if and only if ψn is trivial on Hn X Un. This happens if and
only if n � 2, in which case we have dpρq � dim HomH2XU2pψ2, 1q � 1.

8.2. Distinction and contragredient

We have the very useful following result. Assume n ¥ 2.

Proposition 8.3. — Let π P pGn. Then π is Hn-distinguished if and only π� is.

This proposition will follow from the following one.

Proposition 8.4. — Let us write σ for the involution on G defined by g ÞÑ transpose of g�1.

Let π P pGn. Then π� is isomorphic to π � σ.

Proof. — In the complex case, this is well-known and due to Gelfand and Kazhdan. When R has
characteristic not 2, their argument still holds (see [14, Remarque 2.7]). We will need Proposition
8.4 when R has characteristic not 2 only, but we give below a proof in the general case, provided
to us by the anonymous referee (whom we thank for this).

Let us write ` for the characteristic of R, and suppose that ` ¡ 0. It is enough to prove the
proposition when R is an algebraic closure of a finite field with ` elements, denoted F`. We thus
have a reduction mod ` homomorphism:

r` : RpG,Q`qint Ñ RpG,F`q
where RpG,F`q is the Grothendieck group of finite length F`-representations of G and RpG,Q`qint

is the subgroup generated by integral representations in the Grothendieck group of finite length
Q`-representations of G (see [22]). Let us define an involutive group homomorphism π ÞÑ π� �σ
on RpG,F`q, denoted α. Write rα for its analogue on RpG,Q`q. Since passing to the contragre-
dient preserves integral representations and is compatible with reduction mod `, we have:

α � r` � r` � rα.
Since rα is trivial by Gelfand-Kazhdan, and since r` is surjective by [5] Corollaire 2.2.7 and [14]
Théorème 9.40, it follows that α is trivial.

Remark 8.5. — Note that the condition e ¡ 1 implies that the characteristic of R is not 2.

Proposition 8.6. — Write n � n1 � n2 where n1, n2 are positive integers, and let πi P pGni for
i � 1, 2. Then π1 � π2 is Hn-distinguished if and only if π�2 � π�1 is.
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Proof. — As in [27, 1.9] we define a group automorphism s of Gn by:

g ÞÑ Jn � tg�1 � J�1
n

where tg is the transpose of g and Jn is the matrix whose pi, jqth entry is p�1qiδi,n�1�j . As in
the complex case, s maps Ppn1,n2q to Ppn2,n1q and π1�π2 to spπ2q�spπ1q, and we have spπq � π�

for all irreducible representations π of Gn by Proposition 8.4. Since s maps Hn to a conjugate
of Hn, we get:

HomHnpπ1 � π2,Rq � HomHnpπ�2 � π�1 ,Rq
and our claim follows.

8.3. The Bernstein-Zelevinski filtration

For i P t0, 1, . . . , nu, we write Ri,n for the subgroup of matrices of Gn of the form:�
g �
0 h



such that g P Gi and h is an upper triangular and unipotent matrix of Gn�i. In particular, R0,n

is the standard maximal unipotent subgroup Un of Gn and Rn�1,n is the mirabolic subgroup Pn
of Gn. Fix a nontrivial smooth character ψ : F Ñ R� and, for i P t0, 1, . . . , n� 1u, write ψi for
the generic character of Ui defined by:

ψiphq � ψph1,2 � � � � � hi�1,iq
for all h P Ui. From [22, III.1.3], we have the following result.

Theorem 8.7. — Let V be a representation of Gn. There are Pn-stable subspaces V0, . . . ,Vn

of V such that t0u � V0 � V1 � � � � � Vn � V and:

Vi�1{Vi � indPn
Ri,n

pVpn�iqν
1{2
i b ψn�iq

for all i P t0, ..., n� 1u.
As in the complex case (see page 54 of [6] and [16, Proposition 1]), we get the following result

by using the Bernstein-Zelevinski filtration.

Lemma 8.8. — Let π be a smooth representation of Gn with n ¥ 3, and assume that:

(1) πp1q does not have any quotient isomorphic to ν
�1{2
n�1 ;

(2) πp2q does not have any quotient isomorphic to 1n�2.

Then π is not distinguished.

8.4. The Three Orbits Lemma

As in the complex case [20], we have the following very useful lemma.

Lemma 8.9. — Let n ¥ 2 and k P t1, . . . , n � 1u be integers, and let ρ P pGk and τ P pGn�k.
Assumme ρ� τ is Hn-distinguished. Then at least one of the following conditions is satisfied:

(A) ρ � ν
pn�2�kq{2
k and τ � νk{2 is Hn�k-distinguished.

(B) ρ � ν�pn�kq{2 is Hk-distinguished and τ � ν
�pk�2q{2
n�k .

(C) ρp1q � ν�pn�1�kq{2 and τ�p1q � ν�pk�1q{2 have a trivial quotient.

Conversely, if ρ P pGk and τ P pGn�k satisfy pAq or pBq, then ρ� τ is Hn-distinguished.
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Proof. — The proof in just as in the complex case (see [20, Section 5]).

Remark 8.10. — Notice that if τ is smooth (not necessarily irreducible), we still have condi-
tions similar to Lemma 8.9. We will have the occasion to use this in the case where:

ρ � ν
1{2
n�3, τ � St2 � ν�pn�2q{2 � χ, χ P pG1.

In this case, ρ� τ is Hn-distinguished if and only if τ � νpn�3q{2 is H3-distinguished.

Corollary 8.11. — Let n ¥ 3, and let π P pGn be Hn-distinguished. Then one of the following
properties holds:

(1) π � 1n�2 � τ for some irreducible cuspidal representation τ P pG2.
(2) The cuspidal support of π is made of characters of G1.

Proof. — There are irreducible cuspidal representations τ1, . . . , τr such that π is a quotient of
τ1 � � � � � τr. Since n ¥ 3, Theorem 8.2 implies that π is not cuspidal, which implies that r ¥ 2.
Let k denote the largest integer among the degpτiq’s and let τi have degree k with i maximal for
this property. Then by [15] and Lemma 4.5, one may assume that i � r. Now write τ � τr and
let ρ be an irreducible subquotient of τ1 � � � � � τr�1 such that π is a quotient of ρ� τ . Since π
is distinguished, so ρ� τ is. Apply Lemma 8.9 to this product. According to Theorem 8.2, we
obtain that k must be ¤ 2. Moreover, if k � 2, then ρ � 1n�2.

8.5. Distinction of the twists of Λn and Πn

We first determine which twists of Λn are distinguished.

Lemma 8.12. — Let n ¥ 2 and χ P pG1. Then Λn � χ is distinguished if and only if χ � 1.

Proof. — If f divides n, then Λn is the trivial character and the result is immediate. If f does
not divide n, then we have the exact sequence:

0 Ñ νn � χÑ Vn � χ � pν1{2
n�1 � χq � νpn�1q{2χÑ Λn � χÑ 0

By Lemma 8.9 with k � n� 1, the representation Vn � χ, and hence Λn � χ, is non-distinguished
for χ R t1, ν�1u. If χ � ν�1 is non-trivial (which forces e ¡ 1), then Lemma 8.8 together with
Corollary 6.2 imply that Λn � ν�1 is not distinguished. Now assume that χ � 1.

If e ¡ 1, the contragredient V�
n is distinguished by Lemma 8.9 (A) but ν�1

n is not. Thus V�
n

carries a nonzero invariant linear form vanishing on ν�1
n . It thus gives a nonzero invariant linear

form on the subrepresentation Λ�
n. By Proposition 8.3, the representation Λn is distinguished.

If e � 1, then Vn � 1n ` Λn by Proposition 5.2. By Lemma 8.9, we have dpVnq ¥ 2 since
Conditions (A) and (B) are fulfilled. Thus Λn is distinguished with dpΛnq � dpVnq � 1.

Corollary 8.13. — Assume that e ¡ 1. All the irreducible representations of Gn, n ¥ 3 in the
list given by Theorem 1.1 are distinguished.

Proof. — When applied with k � n� 1 and k � n� 2 respectively, Lemma 8.9 gives the result

for ν
�1{2
n�1 �χ and 1n�2� τ . By passing to the contragredient (Proposition 8.3), we get the result

for the representation ν
1{2
n�1 � χ when e ¡ 1.

By Lemma 8.12, Λn is distinguished. By passing to the contragredient, we get the result for
Λ�
n when e ¡ 1. (Note that Λn is selfdual when e � 1.) This finishes the proof.
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We now determine which twists of Πn are distinguished. This is done in Lemma 8.12 when f
does not divide n. We now treat the case where f divides n.

Lemma 8.14. — Assume that e is not 1 and divides n. For χ P pG1, the representations Πn �χ
and Π�

n � χ are not distinguished.

Proof. — By Proposition 8.3, it is enough to prove it for Π�
n � χ. By Lemma 8.8, for Π�

n � χ to

be distinguished, it is necessary that at least one of the derivatives pΠ�
n � χqpiq for i � 1, 2 has a

character as a quotient. We have:

pΠ�
n � χqp1q � Λ�

n�1 � χν�1{2, pΠ�
n � χqp2q � ν�1

n�2 � χ.
By Lemma 8.8, we conclude that Π�

n �χ is not distinguished when χ � ν. It remains to consider
Π�
n � ν, or rather its contragredient Πn � ν�1. Its second derivative is ν�1

n�2. By Lemma 8.8, our
claim follows.

Lemma 8.15. — Assume that e � 1 and ` divides n. For χ P pG1, the representation Πn � χ is
distinguished if and only if χ � 1.

Proof. — When e � 1, the representation Πn is selfdual thus the first part of the proof of Lemma
8.14 still holds. Thus Πn � χ is not distinguished for any χ � 1. However, the second derivative
of Πn is 1n�2, thus Lemma 8.8 is not sufficient to determine whether or not Πn is distinguished.

Let Hn act on X � Ppn�1,1qzGn. There are two closed orbits A, B in X, where A is reduced
to a point and B is isomorphic to Ppn�2,1qzGn�1 (see [20, 5]). Since q is congruent to 1 mod the
characteristic of R, the modulus R-character of Ppn�1,1q is trivial. By [22, Proposition I.2.8],
there is a non-zero Gn-invariant linear form µX on Vn. Similarly, there is a non-zero Hn-inva-
riant linear form on C8c pB,Rq. Composition by the restriction from X to B gives us a non-zero
Hn-invariant linear form µB on Vn. Finally, for f P C8c pX,Rq, we write µApfq for the value of f
at A. We thus get three Hn-invariant linear forms on Vn.

The form µX is actually Gn-equivariant; its image is 1n, and its kernel Wn has length 2, with
socle 1n (the space of R-valued constant functions on X) and irreducible quotient Πn. We claim
that these three linear forms are linearly independent. Granting the claim, there is no nontrivial
linear combination of µA,µB that vanishes on Wn. Moreover, if f0 denotes the constant function
taking value 1, and if µB is chosen so that µBpf0q � 1, then:

pµA � µBqpf0q � 0.

Therefore, µA � µB is a nonzero Hn-invariant linear form on Wn that vanishes on the space
of constant functions; it thus induces a nonzero Hn-invariant linear form on Πn. Thus, Πn is
Hn-distinguished when e � 1 and ` divides n.

It remains to prove the claim. Let U denote the unique open Hn-orbit in X, so that X is the

disjoint union of A, B and U, and let pU be its preimage in Gn. Let µ be a Haar measure on Gn.

Since Gn is locally pro-p, there is a compact open subset Ω � pU with nonzero measure. Write φ
for the characteristic function of the image of Ω in X. By [22, §2.8], there exists a α P R� such
that:

µXpφq � α � µp1Ωq � 0.

On the other hand, we have µApφq � µBpφq � 0 and hence the linear forms µX,µA and µB are
linearly independent.
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Remark 8.16. — Suppose e � 1 and ` does not divide n. It follows from the proof of Lemma
8.15 that dpVnq is at least 3. On the other hand, the conditions of Lemma 8.9 implies that there
is at most one Hn-invariant linear form upto scalars on each of three orbits A,B and U. Thus,
dpVnq � 3. Since Vn � 1n `Πn, it follows that dpΠnq � 2.

8.6. First reduction of the problem

Thanks to Corollary 8.11, we are already reduced to studying those Hn-distinguished irredu-
cible representations of Gn, with n ¥ 3, whose cuspidal support is made of characters.

Lemma 8.17. — Let ρ P pGk be such that ρp1q � ν�pn�1�kq{2 has a trivial quotient. Then ρ is
one of the following representations:

(1) ν
pn�k�1q{2
k�1 � µ with µ P pG1 � tνpn�2k�1q{2, νpn�1q{2u;

(2) ν
pn�kq{2
k ;

(3) Λ�
k � νpn�kq{2.

Proof. — We follow the proof given in the complex case in [20, Lemma 6.2]. The condition on
ρ is equivalent to saying that ρ embeds into a representation of the form:

Vpµq � ν
pn�1�kq{2
k�1 � µ, µ P pG1.

If µ R tνpn�2k�1q{2, νpn�1q{2u, this representation is irreducible (see Proposition 4.1) thus ρ is as
in Case 1. Assume that e ¡ 1. Thanks to Lemma 4.2, Proposition 4.10 and (5.2), we have:

(1) Vpνpn�1q{2q has a unique irreducible subrepresentation, which is ν
pn�kq{2
k . Thus ρ is as in

Case 2.
(2) Vpνpn�2k�1q{2q has a unique irreducible subrepresentation, which is Λ�

k � νpn�kq{2. Thus ρ
is as in Cases 2 or 3.

Assume now that e � 1. Then, by Proposition 5.2, any subrepresentation ρ of Vpνpn�1q{2q is as
in Case 2 or 3. Note that, in the case where f divides k, the representation Vk is indecomposable,

thus ρ must be the character ν
pn�kq{2
k . This finishes the proof of Lemma 8.17.

In conclusion, we have the following result.

Proposition 8.18. — Assume n ¥ 3. Let π P pGn be Hn-distinguished. Then there are ρ P pGn�1

and χ P pG1 such that π is an irreducible quotient of ρ � χ and at least one of the following
conditions holds:

(1) One has ρ � ν
�1{2
n�1 or ρ � ν

1{2
n�1.

(2) One has ρ � Λ�
n�1 � ν1{2.

(3) One has ρ � 1n�2 � µ for some µ P pG1 � tν�pn�1q{2, νpn�1q{2u.
(4) The representation ρ � ν�1{2 is Hn�1-distinguished and χ � ν�pn�3q{2.

Moreover, if e ¡ 1, then π is the unique irreducible quotient of ρ� χ.

In order to prove our main theorem 1.1, our strategy is to study, by induction on n ¥ 2, the
irreducible quotients of ρ� χ in all these cases when e ¡ 1, and to prove that they are either in
the list of Theorem 1.1 or non-distinguished.

Assuming that Theorem 1.1 holds for Gn�1 with n ¥ 3, we thus have to study the distinction
of the following representations:
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Case 1: the irreducible quotients of ν
�1{2
n�1 � χ and ν

1{2
n�1 � χ for χ P pG1;

Case 2: the irreducible quotients of 1n�2 � µ� χ for µ P pG1 � tν�pn�1q{2, νpn�1q{2u, χ P pG1;

Case 3: the irreducible quotients of Λ�
n�1 � ν1{2 � χ for χ P pG1;

Case 4: the irreducible quotients of ρ� ν�pn�3q{2 where ρ is:

(4.a) the character ν
1{2
n�1 (included in Case 1 above);

(4.b) a representation 1n�2 � µ with µ P pG1 � tν�pn�1q{2, νpn�1q{2u (included in Case 2);

(4.c) a representation νn�2 � µ with µ P pG1 � tν�pn�3q{2, νpn�1q{2u;
(4.d) a representation ν

1{2
n�3 � τ with τ P pG2 infinite-dimensional;

(4.e) one of the representations Λn�1 � ν1{2 or Λ�
n�1 � ν1{2 (see Case 3 above);

Cases 1 and 4.c are treated in Section 9 for arbitrary e ¥ 1, and Case 4.d is treated in Section
11 for e ¡ 1.

We reduce Case 2 to studying Qpµ�Λn�1 �ν�1{2q for µ P pG1�tν�pn�1q{2, νpn�1q{2u in Section
10, when e ¡ 1.

In Section 12, we do the remaining cases when e ¡ 1.

9. Computing the irreducible quotients of ν
1{2
n�1 � χ for χ P pG1

Lemma 9.1. — Assume e ¡ 1. Let a, b P Z with a ¤ b. For χ P pG1, write Vpχq � Zpra, bsq�χ.

(1) If χ R tνa�1, νb�1u, then Vpχq is irreducible.
(2) Assume that χ � νb�1 and e does not divide n. Then Vpνb�1q has length 2 and we have

the following exact sequence:

0 Ñ Zpra, b� 1sq Ñ Vpνb�1q Ñ Zpra, bs � rb� 1sq Ñ 0.

(3) Assume that χ � νa�1 and e does not divide n. Then Vpνa�1q has length 2 and we have
the following exact sequence:

0 Ñ Zpra, bs � ra� 1sq Ñ Vpνa�1q Ñ Zpra� 1, bsq Ñ 0.

(4) If e divides n, then νa�1 � νb�1 and Vpνb�1q has length 3 with:

SpVpνb�1qq � Zpra, b� 1sq, QpVpνb�1qq � Zpra� 1, bsq.

Proof. — Case 1 follows from Propositions 4.1 and 4.8. The other cases reduce to Proposition
4.10 by twisting by the character χ�1, since Vpχq � ν�c � Zpra� c, b� csq � χν�c for c P Z.

From Lemma 9.1 we get the following proposition.

Proposition 9.2. — Assume e ¡ 1. For all n ¥ 1, we have:

Qpν1{2
n�1 � χq �

$&% ν
1{2
n�1 � χ if χ R tν�pn�1q{2, νpn�1q{2u,

1n if χ � ν�pn�1q{2,

Λn if χ � νpn�1q{2.

Twisting by ν�1, we get the following.
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Proposition 9.3. — Assume e ¡ 1. For all n ¥ 1, we have:

Qpν�1{2
n�1 � χq �

$&% ν
�1{2
n�1 � χ if χ R tν�pn�1q{2, νpn�1q{2u,
ν�1
n if χ � ν�pn�1q{2,

Λn � ν�1 if χ � νpn�1q{2.

By duality, we get the following.

Proposition 9.4. — Assume e ¡ 1. For all n ¥ 1, we have:

Spν�1{2
n�1 � χq �

$&% ν
�1{2
n�1 � χ if χ R tν�pn�1q{2, νpn�1q{2u,

1n if χ � νpn�1q{2,

Λ�
n if χ � ν�pn�1q{2.

Twisting by ν, we get the following.

Proposition 9.5. — Assume e ¡ 1. For all n ¥ 1, we have:

Spν1{2
n�1 � χq �

$&% ν
1{2
n�1 � χ if χ R tν�pn�1q{2, νpn�1q{2u,
νn if χ � νpn�1q{2,

Λ�
n � ν if χ � ν�pn�1q{2.

In the case where e � 1, we summarize below the results obtained in Section 5.

Proposition 9.6. — Assume e � 1.

(1) If χ � νpn�1q{2, then ν
1{2
n�1 � χ is irreducible.

(2) If ` does not divide n, the irreducible quotients of ν
1{2
n�1 � νpn�1q{2 are 1n and Πn.

(3) If ` divides n, the irreducible quotient of ν
1{2
n�1 � νpn�1q{2 is 1n.

Thus we have treated Case 1 of Proposition 8.18.

Corollary 9.7. — Let e ¡ 1 and µ P pG1 � tν�pn�3q{2, νpn�1q{2u. Then:

Qpνn�2 � µ� ν�pn�3q{2q �
#
µ� ν

1{2
n�1 if µ � ν�pn�1q{2,

Λ�
n � ν if µ � ν�pn�1q{2.

Proof. — By assumption on µ, the representation νn�2 � µ is irreducible. It is thus isomorphic
to µ� νn�2. It thus suffices to consider the representation πpµq � Qpµ� νn�2 � ν�pn�3q{2q. By
Proposition 9.2, we have:

Qpνn�2 � ν�pn�3q{2q � ν
1{2
n�1

thus πpµq is equal to Qpµ� ν1{2
n�1q. By assumption on µ, the representation µ� ν1{2

n�1 is reducible

if and only if µ � ν�pn�1q{2. Finally, the representation:

πpν�pn�1q{2q � Qpν�pn�1q{2 � ν
1{2
n�1q � Spν1{2

n�1 � ν�pn�1q{2q
is equal to Λ�

n � ν by Proposition 9.3. By Lemma 8.12, it is not distinguished.

Thus we have treated Case 4.c of Proposition 8.18.



MODULAR REPRESENTATIONS OF GLpnq DISTINGUISHED BY GLpn� 1q 31

10. Computing Qp1n�2 � µ� χq for µ P pG1 � tν�pn�1q{2, νpn�1q{2u and χ P pG1

In this section, we fix a character µ P pG1 different from ν�pn�1q{2 and νpn�1q{2, and we assume

that e ¡ 1. Note that this implies that 1n�2 � µ � µ� 1n�2 is irreducible. For χ P pG1, write:

Wpχq � 1n�2 � µ� χ.

We record below two facts in the form of the following lemma which will be used repeatedly in
what follows.

Lemma 10.1. — The representation Wpχq has unique irreducible subrepresentation and unique
irreducible quotient. Moreover, one has:

Qpχ� χνq �
"

St2 � χν1{2 if e ¡ 2,

12 � χν�1{2 if e � 2.

In particular, when e ¥ 2, the representations 1n�2 � St2 � µν1{2 and 1n�2 � 12 � µν�1{2 have a
unique irreducible quotient.

Proof. — The first statement follows from Lemma 4.2 and the second one from Lemma 9.1. To
prove the final statement, observe that 1n�2 � St2 � µν1{2 is a quotient of Wpµνq if e ¡ 2. Since

Wpµνq has a unique irreducible quotient, the claim follows. For e � 2, 1n�2�St2 �µν1{2 is itself

irreducible by Proposition 4.8. Similarly, for e ¥ 2, 1n�2 � 12 � µν�1{2 is a quotient of Wpµν�1q,
which has a unique irreducible quotient. This completes the proof of the proposition.

Lemma 10.2. — For any χ R tµν, µν�1, ν�pn�1q{2, νpn�1q{2u, the representation Wpχq is irre-
ducible and distinguished.

Proof. — By Proposition 4.8, Wpχq is irreducible. It satifies Condition (A) of Lemma 8.9 with
k � n� 2, thus it is distinguished.

Lemma 10.3. — One has:

QpWpµνqq �
"

Qp1n�2 � St2 � µν1{2q if e ¡ 2,

Qp1n�2 � 12 � µν�1{2q if e � 2,

and QpWpµν�1qq � Qp1n�2 � 12 � µν�1{2q.
Proof. — First observe that, by Lemma 10.1, Wpµνq has 1n�2�St2 �µν1{2 as a quotient if e ¡ 2

and Wpµν�1q has 1n�2 � 12 � µν�1{2 as a quotient if e ¥ 2. Once again, applying Lemma 10.1
the statement is proved.

Proposition 10.4. — Write Ypµq � Qp1n�2 � St2 � µν1{2q. Then:

Ypµq �
"

1n�2 � St2 � µν1{2 if µ � ν�pn�1q{2 or e � 2,

Λ�
n if µ � ν�pn�1q{2 and e does not divide n and e ¡ 2.

Proof. — The statement follows from Proposition 4.8 if e � 2, and it follows from Proposition
7.4 if µ � ν�pn�1q{2. Assume that µ � ν�pn�1q{2 and e does not divide n and e ¡ 2. We have:

Ypν�pn�1q{2q � QpWpν�pn�1q{2qq
� Qpν�pn�1q{2 � 1n�2 � ν�pn�1q{2q
� Qpν�pn�1q{2 � ν

�1{2
n�1 q
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which is equal to Λ�
n by applying respectively Lemma 10.3, Lemma 4.5 (since e does not divide n,

the representation 1n�2� ν�pn�1q{2 is irreducible by Proposition 4.8), Lemma 9.1 and (5.2).

Proposition 10.5. — Write Ppµq � Qp1n�2 � 12 � µν�1{2q. For µ � ν�pn�3q{2, the representa-
tion Ppµq is not distinguished, and we have:

Ppν�pn�3q{2q �
"
ν
�1{2
n�1 � ν�pn�3q{2 if e does not divide n� 2 and e ¡ 2,

Λ�
n if e � 2 and n is odd.

Proof. — The first assertion follows form Lemma 8.9. Assume now that µ � ν�pn�3q{2. If e ¡ 2
does not divide n� 2, then Ppν�pn�3q{2q � QpWpν�pn�1q{2q by Lemma 10.3. By Lemma 9.1 and
Proposition 4.8, we have:

QpWpν�pn�1q{2q � ν
�1{2
n�1 � ν�pn�3q{2.

Assume now that e � 2 and n is odd. By a similar argument as above, we deduce that:

Ppν�pn�3q{2q � Qpν�pn�3q{2 � ν
�1{2
n�1 q.

By Proposition 9.4 and the observation following Lemma 4.2, we get Ppν�pn�3q{2q � Λ�
n.

Note that 1n�2 � µ� χ � µ� 1n�2 � χ. Thus:

QpWpνpn�1q{2qq �
#

Qpµ� Λn�1 � ν�1{2q if e does not divide n� 1,

Qpµ� ν
�1{2
n�1 q if e divides n� 1,

QpWpν�pn�1q{2qq � Qpµ� ν
�1{2
n�1 q.

We have the following proposition.

Proposition 10.6. — One has:

QpWpν�pn�1q{2qq �
#
ν
�1{2
n�1 � µ if µ � ν�pn�1q{2,

Λ�
n if µ � ν�pn�1q{2 and e does not divide n.

Proof. — This follows from Propositions 9.4 and 9.5.

It remains to study:

QpWpνpn�1q{2qq � Qpµ� Λn�1 � ν�1{2q
when e does not divide n� 1. This will be done in Section 12.

11. Computing Qpν1{2
n�3 � τ � ν�pn�3q{2q for τ P pG2 infinite dimensional

In this section, we assume that e ¡ 1. We consider all those infinite dimensional τ P pG2 such

that ν
1{2
n�3 � τ is irreducible, that is:

(1) τ is cuspidal;

(2) τ is a Steinberg representation St2 � µν1{2 with µ R tν�pn�1q{2, νpn�1q{2u and e ¡ 2;

(3) τ is a principal series λ� µ with λµ�1 R tν�1, νu and λ, µ R tν�pn�3q{2, νpn�1q{2u.
In all these cases, we study the unique irreducible quotient:

(11.1) Upτq � Qpν1{2
n�3 � τ � ν�pn�3q{2q.

We first have the following results.
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Lemma 11.1. — For all these τ as above, we have Upτq � Qpτ � 1n�2q.

Proof. — It follows from the fact that ν
1{2
n�3� τ � τ �ν1{2

n�3 and Qpν1{2
n�3�ν�pn�3q{2q � 1n�2.

Proposition 11.2. — Assume that τ is cuspidal. Then Upτq � τ � 1n�2.

Proof. — This follows from the fact that τ � 1n�2 is irreducible when τ is cuspidal.

We now treat the cases where τ is not cuspidal.

Proposition 11.3. — Assume τ � λ�µ with λµ�1 R tν�1, νu and λ, µ R tν�pn�3q{2, νpn�1q{2u.
Then we have:

Upτq � λ� µ� 1n�2 for all λ, µ � ν�pn�1q{2

and, if µ � ν�pn�1q{2 and e does not divide n� 1, then Upτq is not distinguished.

Proof. — The first assertion follows from Proposition 4.8. Assume now that µ � ν�pn�1q{2 and
e does not divide n� 1. It follows from Proposition 9.4 that:

Upτq � Qpλ� Λ�
n�1 � ν1{2q,

which is not distinguished by Lemma 8.9 with k � 1.

Proposition 11.4. — Assume e ¡ 2 and τ � St2 � µν1{2 with µ R tν�pn�1q{2, νpn�1q{2u. Then:

Upτq � τ � 1n�2 for all µ � ν�pn�1q{2

and Upτq is not distinguished for µ � ν�pn�1q{2.

Remark 11.5. — If we assume that e � 2 in Lemma 11.4, then τ is cuspidal and this case has
already been done in Lemma 11.2.

Proof. — Write τ � Lpr0, 1sq � µ. By Proposition 7.4, the representation τ � 1n�2 is irreducible
unless µ � νk with k a half-integer and the segments r�pn� 3q{2, pn� 3q{2s and rk, k � 1s are

juxtaposed, that is µ � νpn�1q{2 (which is not allowed) or µ � ν�pn�1q{2.

Assume µ � ν�pn�1q{2 and e does not divide n (thus µ � νpn�1q{2). Let L be the unique ir-

reducible quotient of St2 �µν1{2�ν�pn�3q{2. If e ¡ 3, note that St3 �ν�1 is the unique irreducible
quotient of St2 � ν�3{2 � 1 (see p. 168 of [16] and the exact sequence (3.5) in [20]). Twisting by

ν�pn�3q{2, we see that L � St3 � ν�pn�1q{2. Moreover, by [16, Theorem 2] or [20, Remark 6.7],
no twist of L is distinguished. If e � 3, L is equal to a twist of Π3, which is not distinguished
by Lemma 8.14. Hence, no twist of L is distinguished. Applying Lemma 8.9 with k � n� 3 to

ν
1{2
n�3 � L yields that it is not distinguished, and so Upτq is not distinguished.

12. The remaining cases

In this section, we assume that e ¡ 1 as in Sections 10 and 11. It remains for us to study the
distinction of the following representations:

(1) the irreducible quotients of µ� Λn�1 � ν�1{2 for µ P pG1 � tν�pn�1q{2, νpn�1q{2u;
(2) the irreducible quotients of Λ�

n�1 � ν1{2 � χ for χ P pG1;

(3) the irreducible quotient of Λn�1 � ν1{2 � ν�pn�3q{2.
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Note that we may assume e does not divide n� 1 (or else Λn�1 would be the trivial character).
The first case is the one that remains from Section 10, the second one corresponds to Case 3

of Paragraph 8.6 and the third one corresponds to the part of Case 4.e of Paragraph 8.6 which
does not belong to Case 3.

12.1. Distinction of µ� Λn�1 � ν�1{2 and Λ�
n�1 � ν1{2 � χ

In this paragraph, we show that, if Λ�
n�1 � ν1{2 � χ is distinguished, then χ must be equal to

ν�pn�3q{2. Given this, it will follow by Proposition 8.6 that µ � Λn�1 � ν�1{2 is distinguished if
and only if µ � νpn�3q{2.

Lemma 12.1. — Let χ P pG1 and e ¡ 1. Then the representation St2 �ν�1{2�χ is distinguished
if and only if χ � 1.

Proof. — Write Bpχq � St2 � ν�1{2 �χ. If χ � 1, then Bp1q is distinguished as it satisfies (B) of
Lemma 8.9 for k � 2.

Assume χ R t1, ν, ν�2u. Since χ is nontrivial, Lemma 8.9 implies that Bpχq� is not distingui-
shed. Since χ R tν, ν�2u, Lemma 7.3 shows that Bpχq is irreducible. Thus, by Lemma 8.3, Bpχq
is not distinguished. It remains to consider the case when χ P tν, ν�2u.

If e ¡ 3, then we remind that rSt2 �ν3{2�1s � St3 �ν�Λ3 as in the complex case (see p. 168 of

[16] or (3.5) in [20]). First we twist St2 � ν3{2 � 1 by ν�2. Secondly, we take the contragredient

St2 � ν�3{2 � 1 and twist by ν. These yield:

rBpν�2qs � Λ3 � ν�2 � St3 � ν�1, rBpνqs � Λ�
3 � ν � St3

respectively. None of these subquotients are distinguished.
If e � 2, then St2 is cuspidal, thus Bpνq is irreducible and the result follows from Lemma 8.9.
We finally assume that e � 3. We first claim the principal series ξ � ν�1 � 1� ν has length

7, with subquotients:

13, ν3, ν
�1
3 , Π3, Π3 � ν, Π3 � ν�1 and the cuspidal representation St3.

Indeed, ξ contains 13 and Π3 as well as their twists by ν and ν2, and it also contains the cuspidal
(thus nondegenerate) representation St3 with multiplicity 1. The Jacquet module rp1,1,1qpξq has
length 6, thus our claim follows. Now we have:

rξs � rν�1{2
2 � νs � rBpνqs

� p13 � ν�1
3 �Π3q � rBpνqs

by Proposition 4.10. It follows that:

rBpνqs � ν3 �Π3 �Π3 � ν � St3

in the Grothendieck group of finite length representations of G3.
By Lemma 8.14 and Theorem 8.2, none of these subquotients are distinguished. Since Bpν�2q

is equal to Bpνq, our lemma is proved.

Given χ P pG1, we now write:

Apχq � Λ�
n�1 � ν1{2 � χ.

We study the distinction of Apχq in the following lemma.
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Lemma 12.2. — Assume that e does not divide n� 1, and let χ P pG1. Then Apχq is distingui-

shed if and only if χ � ν�pn�3q{2.

Proof. — First, Lemma 8.9 with k � n� 1 shows that Apν�pn�3q{2q is distinguished.
For the converse, we may assume that n ¥ 4 since we have treated the case when n � 3 in

Lemma 12.1. Assume first that e ¡ 2. By Proposition 10.4, Apχq is a quotient of:

ν
1{2
n�3 � St2 � ν�pn�2q{2 � χ,

which is distinguished by Remark 8.10 if and only if Condition (A) of Lemma 8.9 is satisfied

with k � n�3. This is the case if and only if St2 �ν�1{2�χνpn�3q{2 is distinguished. By Lemma
12.1, this happens if and only if χ � ν�pn�3q{2.

Assume now that e � 2. Note that the characters νpn�1q{2 and νpn�1q{2 are the only ones that
are obtained from ν�pn�3q{2 up to a translation of an integer power of ν.

Assume first that χ R tν�pn�1q{2, νpn�1q{2u. Then Apχq is irreducible by Proposition 4.1, and
Lemma 8.9 implies that Apχq� is not distinguished. By Proposition 8.3, Apχq is not distinguished
either.

It remains to consider the case where χ � ν�pn�1q{2 � νpn�1q{2. We write A � Apνpn�1q{2qq.
By definition, Λ�

n�1 �ν1{2 is the unique irreducible quotient of νpn�1q{2�1n�2. The representation

A is thus a quotient of V � νpn�1q{2 � 1n�2 � νpn�1q{2. Now write the two exact sequences:

(12.1) 0 Ñ ν
�1{2
n�1 Ñ νpn�1q{2 � 1n�2 Ñ Λ�

n�1 � ν1{2 Ñ 0

and:

(12.2) 0 Ñ Λ�
n�1 � ν1{2 Ñ 1n�2 � νpn�1q{2 Ñ ν

�1{2
n�1 Ñ 0.

Computing (12.1)� νpn�1q{2, we get:

0 Ñ W Ñ V
αÝÑ A Ñ 0

where W is the representation ν
�1{2
n�1 �νpn�1q{2, which is irreducible since νpn�1q{2 � νpn�1q{2 and

νpn�1q{2 � ν�pn�1q{2. Thus W is isomorphic to νpn�1q{2� ν�1{2
n�1 . Computing νpn�1q{2� (12.2) we

get:

0 Ñ νpn�1q{2 � Λ�
n�1 � ν1{2 Ñ V

βÝÑ W Ñ 0.

Observe that W is distinguished by Lemma 8.9, thus V is also distinguished. Lemma 8.9 (applied
with k � n� 1) also shows that the space of Hn-invariant forms on V is one-dimensional.

Now we claim A is not distinguished. Assume A is distinguished, and let T denote a nonzero
invariant linear form on V which is trivial on K1 � Kerpαq. Since V has a one-dimensional space
of invariant forms, T is proportional to any nonzero invariant linear form on V which is trivial
on K2 � Kerpβq. Thus, T is zero on K1 �K2. Since T is nonzero, K1 �K2 is different from the
whole space V. Since K1 is irreducible and isomorphic to W, we get that K1 �K2 � K2, thus:

K1 � K2 � νpn�1q{2 � Λ�
n�1 � ν1{2.

It follows that:

W � Spνpn�1q{2 � Λ�
n�1 � ν1{2q � QpAq.

Thus W � ν is the unique irreducible quotient of A � ν. Observe that W � ν � ν
1{2
n�1 � νpn�3q{2 is

isomorphic to W� and hence is distinguished by Proposition 8.3. However, the representation
A � ν � Λ�

n�1 � ν�1{2 � νpn�1q{2 is not distinguished by Lemma 8.9, a contradiction.
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12.2. Distinction of QpΛ�
n�1 � ν1{2 � ν�pn�3q{2q and Qpνpn�3q{2 � Λn�1 � ν�1{2q

By Lemma 12.2, in order to finish Cases 1 and 2 of Section 12 for e ¡ 1, it remains to discuss
the distinction of the irreducible quotients:

QpΛ�
n�1 � ν1{2 � ν�pn�3q{2q and Qpνpn�3q{2 � Λn�1 � ν�1{2q.

Note that the latter is the contragredient of the former, thus it is enough to study the distinction
of the first one. Moreover, if n � 3, then:

QpΛ�
2 � ν1{2 � 1q � St2 � ν�1{2 � 1

is distinguished by Lemmas 7.3 and 12.1. So we will assume that n ¥ 4 in the remainder of this
Section. In what follows, the computation of distinguished quotients will fall into three cases:

(1) e ¡ 2 and e does not divide n� 2;
(2) e ¡ 2 and e divides n� 2 (this implies that e does not divide n);
(3) e � 2 (this implies that e divides n� 2 since e does not divide n� 1).

We start with the following lemma, which follows from Lemma 9.1.

Lemma 12.3. — Assume e ¡ 1. We have:

rν�1{2
n�1 � ν�pn�3q{2s �

$''&''%
ν
�1{2
n�1 � ν�pn�3q{2 if e ¡ 2 and e does not divide n� 2,

1n �Πn � ν�1 if e ¡ 2 and e divides n� 2,
ν�1
n �Π�

n if e � 2 and e does not divide n� 2,
1n � ν�1

n �Π�
n if e � 2 and e divides n� 2.

We now define two irreducible representations of Gn.

Definition 12.4. — Assume e ¡ 1 and n ¥ 4. Define:

Φn � Z

��
�n� 3

2
,
n� 3

2

�
�
�
�n� 1

2
,�n� 3

2

�

,

Ψn � Z

��
�n� 3

2
,
n� 3

2

�
�
�
�n� 1

2
,�n� 1

2

�

.

Observe that Φn is selfdual if e divides n� 2 and Ψn is selfdual if e divides n. We also recall
that Π�

n � Πn � ν�1 if e divides n.

Lemma 12.5. — Assume e ¡ 1 and n ¥ 4, and suppose e does not divide n�1. The irreducible
subquotients of:

(12.3) 1n�2 � 12 � ν�pn�2q{2 � Z

��
�n� 3

2
,
n� 3

2

�

� Z

��
�n� 1

2
,�n� 3

2

�

are:

(1) the representations ν
�1{2
n�1 � ν�pn�3q{2 and Φn if e does not divide n� 2,

(2) the representations 1n, Π�
n � ν, Πn � ν�1 and Φn if e divides n� 2.

Moreover, all subquotients appear with multiplicity 1 if e ¡ 2. If e � 2, only 1n may appear with
multiplicity more than 1.
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Proof. — We apply Proposition 4.13. The irreducible subquotients Φn and:

Z

��
�n� 1

2
,
n� 3

2

�
�
�
�n� 3

2

�

�
"
ν
�1{2
n�1 � ν�pn�3q{2 if e does not divide n� 2,

Πn � ν�1 if e divides n� 2,

always occur in (12.3). The irreducible subquotients Zpr�pn�3q{2, pn�1q{2s�r�pn�1q{2sq and
Zpr�pn�1q{2, pn�1q{2sq � 1n occur if and only if e divides n�2. The irreducible subquotients
Zpr�pn� 3q{2, pn� 1q{2sq � νn and Zpr�pn� 1q{2, pn� 3q{2sq � ν�1

n do not occur, since e does
not divide n� 1 and e ¡ 1.

Similarly, by applying Proposition 4.13, we have the following.

Lemma 12.6. — Assume e ¡ 1 and n ¥ 4, and suppose e does not divide n�1. The irreducible
subquotients of 1n�2 � 12 � ν�n{2 are:

(1) the representations νn and Ψn if e does not divide n,
(2) the representations νn, ν�1

n and Ψn if e divides n.

Moreover, all subquotients appear with multiplicity 1 if e ¡ 2. If e � 2, only νn may appear with
multiplicity more than 1.

Lemma 12.7. — Assume e does not divide n� 2 nor n� 1, thus e ¡ 2. Then:

QpΛ�
n�1 � ν1{2 � ν�pn�3q{2q � 1n�2 � St2 � ν�pn�2q{2.

Proof. — Since e does not divide n � 2, the product 1n�2 � ν�pn�3q{2 is irreducible, thus it is
isomorphic to ν�pn�3q{2� 1n�2. Moreover, the representation ν�pn�1q{2� ν�pn�3q{2� 1n�2 has a
unique irreducible quotient by Proposition 4.2. It follows that this unique irreducible quotient
is St2 � ν�pn�2q{2 � 1n�2, which is irreducible by Proposition 7.4.

Lemma 12.8. — Assume e ¡ 1 and n ¥ 4, and suppose e does not divide n� 1. If the repre-
sentation QpΛ�

n�1 �ν1{2�ν�pn�3q{2q is distinguished, then it is either 1n or 1n�2�St2 �ν�pn�2q{2.

Proof. — If e ¡ 2 and does not divide n�2 we reduce to the case of Lemma 12.7. Therefore, we
need only consider either e � 2 or e divides n�2. The representation B � Λ�

n�1 �ν1{2�ν�pn�3q{2

is a quotient of U � ν�pn�1q{2 � 1n�2 � ν�pn�3q{2. Observe that we have rUs � rPs � rBs where

P � ν
�1{2
n�1 � ν�pn�3q{2. Now U has the same semisimplification as 1n�2 � ν�pn�1q{2 � ν�pn�3q{2,

thus we have:

rUs �
"

1n�2 � St2 � ν�pn�2q{2 � r1n�2 � 12 � ν�pn�2q{2s if e ¡ 2,

1n�2 � St2 � ν�pn�2q{2 � r1n�2 � 12 � ν�pn�2q{2s � r1n�2 � 12 � ν�n{2s if e � 2,

since 1n�2 � St2 � ν�pn�2q{2 is irreducible (this follows from Proposition 7.4 if e ¡ 2, and from
Proposition 4.1 together with the fact that St2 is cuspidal when e � 2.) Since e does not divide

n� 1, the irreducible subquotients occurring in 1n�2 � 12 � ν�pn�2q{2 by Lemma 12.5 are:

1n, νn, Πn � ν�1, Π�
n � ν, Φn.

Moreover, all of them occur with multiplicity 1 except 1n, which may appear with larger multi-
plicity if e � 2. Also, By Lemma 12.6, since e does not divide n�1, the irreducible subquotients
occurring in 1n�2 � 12 � ν�n{2 are νn, ν�1

n and Ψn. Here Ψn always occurs with multiplicity one
and if e � 2 the other factors might appear with larger multiplicity. We will now obtain rBs by
comparing rUs obtained from the two different expressions for rUs above.
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Assume that e ¡ 2 and e divides n � 2. Then by Lemma 12.3 we have rPs � 1n � Πn � ν�1.
Hence we have:

rBs � Φn �Π�
n � 1n�2 � St2 � ν�pn�2q{2.

Next assume that e � 2. Then e necessarily divides n� 2 (since e does not divide n� 1). By
Lemma 12.3, we have rPs � 1n � νn �Π�

n. Recall that if e divides n then Π�
n � Πn � ν�1. Hence

the only possible irreducible subquotients of B are:

1n, νn, 1n�2 � St2 � ν�pn�2q{2, Π�
n � ν, Φn, Ψn.

The proof of Lemma 12.8 will be complete if we prove the following lemma.

Lemma 12.9. — Assume e ¡ 1 and n ¥ 4, and suppose that e does not divide n� 1. For any

character χ P pG1, the twists Φn � χ and Ψn � χ are not distinguished.

Proof. — Observe that Φn �χ and Ψn �χ have only first and second derivatives which are nonzero.
Thus we will use Lemma 8.8.

Assume the first derivative of Φn �χ has a quotient isomorphic to ν
�1{2
n�1 . By Lemma 8.17, this

would imply that Φn � χ is a character, or that the multisegment that corresponds to it is made
of one segment of length n� 1 and one of length 1, which is not the case. The same argument
holds for Ψn � χ.

From Lemma 12.6, we see that the second derivative of Ψn � χ is pν�1{2
n�3 � ν�pn�1q{2q � χ, and

since e does not divide n � 1 it is irreducible for all χ P pG1 by Lemma 9.1. Thus it does not
have any character as a quotient. Now we have:

r1n�2 � 12 � ν�pn�2q{2sp2q � rν�1{2
n�3 � ν�pn�1q{2s

�
"
ν�1
n�2 � 1n�2 �Π�

n�2 if e divides n� 2.
ν�1
n�2 �Π�

n�2 if e does not divide n� 2.

By Lemma 6.1 and Corollary 6.3, we have pΠn �ν�1qp2q � νn�2 and pΠ�
n �νqp2q � 1n�2. Therefore,

we conclude using Lemma 12.5 that the second derivative of Φn is Π�
n�2. By Lemma 8.8, Φn � χ

and Ψn � χ are not distinguished.

This ends the proof of Lemma 12.8.

12.3. Distinction of QpΛn�1 � ν1{2 � ν�pn�3q{2q
We begin this paragraph with a simple lemma which we will need in the sequel. We remind

that n ¥ 4 and e does not divide n� 1.

Lemma 12.10. — Let n ¥ 4. Assume that e ¡ 1 and let λ, µ P pG1 � tν�pn�3q{2u. Then the
induced representation 1n�2 � λ� µ has a unique irreducible quotient.

Proof. — If λ � µ, the result follows from [13, Lemma 6.1]. We thus assume that λ � µ. By
the geometric lemma, the semi-simplification of the Jacquet module rpn�2,1,1qp1n�2 � λ � µq is
the sum of the following representations:

(1) 1n�2 b λb µ,
(2) 1n�2 b µb λ,

(3) rν�1{2
n�3 � λs b νpn�3q{2 b µ,

(4) rν�1{2
n�3 � µs b νpn�3q{2 b λ,
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(5) rν�1{2
n�3 � λs b µb νpn�3q{2,

(6) rν�1{2
n�3 � µs b λb νpn�3q{2,

(7) rν�1
n�4 � λ� µs b νpn�5q{2 b νpn�3q{2,

in the Grothendieck group of finite length representations of the Levi subgroup Gn�2�G1�G1.
If λ, µ � νpn�3q{2 then by [14, Lemme 2.4] the representation 1n�2�λ�µ has a unique irreducible
subrepresentation. The result follows by taking contragredients.

Lemma 12.11. — Assume that e ¡ 2 and e does not divide n� 2. Then:

QpΛn�1 � ν1{2 � ν�pn�3q{2q � Λn.

Proof. — The representation C � Λn�1 � ν1{2 � ν�pn�3q{2 is a quotient of:

W � νn�2 � νpn�1q{2 � ν�pn�3q{2.

If we apply Lemma 12.10 with λ � νpn�1q{2 and µ � ν�pn�1q{2, which is possible since e ¡ 2 and
e does not divide n�2, we deduce that W �ν�1 (thus W) has a unique irreducible quotient. Since

νpn�1q{2 � ν�pn�3q{2 is irreducible, it is isomorphic to ν�pn�3q{2 � νpn�1q{2. Thus ν
1{2
n�1 � νpn�1q{2

is a quotient of W, and it has the unique irreducible quotient Λn.

Lemma 12.12. — Assume that e ¡ 1 and n ¥ 4. If QpΛn�1 �ν1{2�ν�pn�3q{2q is distinguished,
then it is Λn.

Proof. — If e ¡ 2 and does not divide n � 2 we reduce to the case of Lemma 12.11. We may
assume that e � 2 or e divides n � 2. In this proof, W,C are as in Lemma 12.11 and U,P are
as in Lemma 12.8. Assume that e divides n� 2. Then νpn�1q{2 � ν�pn�3q{2 and therefore

W � ν�1 � 1n�2 � ν�pn�3q{2 � ν�pn�1q{2.

Therefore, we have
rWs � rU � νs and rWs � rP� � νs � rCs

where P� � ν � ν
3{2
n�1 � νpn�1q{2.

If e ¡ 2 and e divides n� 2, then we twist the subquotients of U in the proof of Lemma 12.8
by ν to get:

rWs � νn�2 � St2 � ν�pn�4q{2 � Φn � ν �Πn �Πn � ν2 � νn
and rP� � νs � νn �Πn � ν2. It follows that:

rCs � νn�2 � St2 � ν�pn�4q{2 � Φn � ν �Πn.

Hence the only distinguished subquotient is Πn which is the definition of Λn when e does not
divide n.

Now e � 2, which necessarily divides n � 2. Then P� � ν is isomorphic to P. We twist the
subquotients of U in the proof of Lemma 12.8 by ν to conclude that the only possible irreducible
subquotients of W are:

1n, νn, Πn, Π�
n, Φn � ν, Ψn � ν

with all representations except possibly 1n and νn appearing with multiplicity 1. Since rPs �
1n � νn �Π�

n it follows that the only possible irreducible subquotients of C are:

1n, νn, Πn, Φn � ν, Ψn � ν.
Hence the only distinguished subquotient is 1n which is the definition of Λn when e divides n.
This completes the proof of the Lemma.
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Remark 12.13. — In the complex case, it has been proved in [1] that the dimension:

dpπq � dim HomHnpπ,Rq
satisfies dpπq ¤ 1 for all π P pGn. This multiplicity one property does not hold in general when R
has positive characteristic (see Paragraph 1.12). However, when e ¡ 1, we expect that dpπq ¤ 1
for all irreducible `-modular representations π of Gn. When e ¥ 3, this can be proved just as in
[20]. But this approach fails when e � 2 for the irreducible principal series 1� 1� 1 of GL3pFq.
This is due the fact that the proof in [20] is by contradiction and relies on analyzing a reducible
principal series representation of GL4pFq. When e ¥ 3, this particular reducible principal series
has at most one distinguished subquotient, whose multiplicity is one and the proof of that redu-
ces to multiplicity one proved in Theorem 3.8. When e � 2, this is no longer true. The concerned
principal series of GL4pFq has more than one distinguished subquotient and the proof fails.

It is interesting to note the analogy of the situation in the case of e � 1 of Theorem 3.5 with
[18, Corollary 3.3], where the author shows that dpπq ¤ 2 for π an irreducible representation of
GLnpFqq and R an algebraically closed field of characteristic coprime to 2q.
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et Prasad. I. Astérisque No. 346 (2012), 111–170.

[9] G. James, Representations of general linear groups, London Mathematical Society Lecture Note
Series, vol. 94, Cambridge University Press, 1984.

[10] A. Mı́nguez, Correspondance de Howe explicite : paires duales de type II, Ann. Sci. Éc. Norm. Supér.
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of GLpnq, Ann. Sci. École Norm. Sup. (4) 13 (1980), n�2, 165–210.
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