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Abstract. — Let F be a locally compact nonarchimedean local field. In this article, we
extend to any inner form of GLn over F, with n > 1, the notion of endo-class introduced
by Bushnell and Henniart for GLn(F). We investigate the intertwining relations of simple
characters of these groups, in particular their preservation properties under transfer. This
allows us to associate to any discrete series representation of an inner form of GLn(F) an
endo-class over F. We conjecture that this endo-class is invariant under the local Jacquet-
Langlands correspondence.

Résumé. — Soit F un corps commutatif localement compact non archimédien. Dans cet
article, nous étendons à toutes les formes intérieures de GLn sur F, avec n > 1, la notion
d’endo-classe introduite par Bushnell et Henniart pour GLn(F). Nous étudions les propriétés
des caractères simples de ces groupes vis-à-vis de l’entrelacement, et établissons en parti-
culier la permanence de ces propriétés par transfert. Ceci nous permet d’associer à toute
représentation irréductible de la série discrète d’une forme intérieure de GLn(F) une endo-
classe sur F. Nous conjecturons que cette endo-classe est invariante par la correspondance
de Jacquet-Langlands locale.
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Introduction

This is the fifth in a series of articles whose objective is a complete description of the

category of smooth complex representations of GLr(D), with r a positive integer and D

a division algebra over a locally compact nonarchimedean local field. The longer term

aim is an explicit description, in terms of types, of the local Jacquet-Langlands corres-

pondence [14, 1], as begun by Bushnell and Henniart [18, 7, 9], and by Silberger and

Zink [26, 27].

The main object of study in this paper is the notion of endo-equivalence class, or endo-

class, of simple characters. This notion has been introduced by Bushnell and Henniart [6]

for the group GLn(F), with n a positive integer and F a locally compact nonarchimedean

local field: an endo-class is an invariant associated to an irreducible cuspidal representa-

tion of GLn(F), constructed by explicit methods related to the description of this represen-

tation as compactly induced from an irreducible representation of a compact-mod-centre

subgroup of GLn(F) (see [10, 6]). The arithmetic significance of this invariant has been

described in [8], in the case where F is of characteristic zero: if we denote by WF the Weil

group of F (relative to an algebraic closure) and by PF its wild inertia subgroup, there

is a bijection between the set E(F) of endo-classes over F and the set of WF-conjugacy

classes of irreducible representations of PF, which is compatible with the local Langlands

correspondence.

In this article, we extend the notion of endo-class to any inner form of GLn(F), n > 1,

that is, to any group of the form GLr(D), with r a positive integer and D an F-central

division algebra of dimension d2 over F, with n = rd. For this we develop a Shintani lift,

or base change, for simple characters, which is also of independent interest (see below).

If G is an inner form of H = GLn(F), and if D(G) denotes the discrete series of G (that is,

the set of isomorphism classes of essentially square-integrable irreducible representations

of G), we define a map:

ΘG : D(G)→ E(F)
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(see paragraph 9.2) which associates an endo-class over F to any discrete series represen-

tation of G. This map should play an important role in an explicit description of the local

Jacquet–Langlands correspondence:

JL : D(G)→ D(H).

In particular, we expect that JL preserves the endo-class (see Conjecture 9.5), that is:

ΘH ◦ JL = ΘG.

This conjectural property can be seen as a generalization of the fact that the correspon-

dence JL preserves the representations of level zero (see [26]). The notion of endo-class

also plays a central role in:

– the construction of semisimple types, which leads to a complete description of the

structure of the category of smooth complex representations of G (see [25]);

– the study of smooth representations of G with coefficients in a field of non-zero

characteristic different from the residue characteristic of F (see [19]).

Before giving more details, let us mention that there are roughly speaking two main

obstacles to overcome: First, one has to compare simple characters in GLr(D) with simple

characters in GLr′(D
′) where GLr(D) and GLr′(D

′) are two inner forms of GLn(F) with

D and D′ not necessarily isomorphic. It is to overcome this that we need to develop a

Shintani lift, or base change, for simple characters. This process is of independent interest

and may be used to define a Shintani lift for irreducible representations of GLr(D). The

second problem is due to the notion of embedding type, a phenomenon first discovered by

Fröhlich [15]; this problem, and its resolution, will be discussed in more detail below.

One of the objectives of [20], completed in [24], is the construction of simple characters,

which are certain special characters of particular compact open subgroups of G. These

simple characters are attached to data called simple strata, and are a fundamental part of

the construction of more elaborate objects called simple types (see [21, 22]). One knows

from [22, 24] that every irreducible discrete series representation π of G contains a simple

character θ attached to a simple stratum. Neither the simple stratum nor the simple cha-

racter are unique, but every other simple character θ′ contained in π intertwines θ, that

is, there is an element g ∈ G such that θ′ and the conjugate character θg coincide on the

intersection of the compact open subgroups where they are defined. It is this observation

which leads to the notion of endo-class.
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An endo-class is an equivalence class of objects called potential simple characters (or

ps-characters for short), for a relation called endo-equivalence. A ps-character Θ is char-

acterized by giving a simple stratum [Λ, n,m, β] in an F-central simple algebra A and a

simple character θ attached to this simple stratum. The pair ([Λ, n,m, β], θ) is called a

realization of Θ. Another simple stratum [Λ′, n′,m′, β] in another F-central simple alge-

bra A′ (note that β is unchanged) and a simple character θ′ for this stratum define the

same ps-character precisely when θ and θ′ are linked by the transfer map defined in [20]

(see paragraph 1.2 below). Two ps-characters Θ1 and Θ2 are said to be endo-equivalent

(see Definition 1.10) if they can be characterized by giving realizations ([Λ, ni,mi, βi], θi)

in an F-central simple algebra A, for i = 1, 2 (note that A and Λ do not depend on i),

of the same degree and normalized level, and such that the simple characters θ1 and θ2

intertwine in A×.

The properties of endo-equivalence depend on important intertwining properties of

simple characters, notably the preservation of these properties under the transfer map.

This article centres on two important technical results: the property of “preservation of

intertwining” (Theorem 1.11) and the “intertwining implies conjugacy” property (Theo-

rem 1.12). Partial results on these questions were already given by Grabitz [17], notably

a proof of “intertwining implies conjugacy”, but these results are proved under unneces-

sarily restrictive hypotheses: that the simple strata underlying the construction are sound

in the sense of Definition 1.14. We have sought to develop the notion of endo-class in

as general a situation as possible, emphasizing the functorial properties of the objects

involved. However, rather than starting again from scratch, we decided to use the work

of Grabitz as much as possible. We note that, as well as [17], our proofs rely heavily on

the results of Bushnell, Henniart and Kutzko [10, 6] in the split case.

Let us now describe in more detail the results, and the techniques used, in this article.

For i = 1, 2, let Θi be a ps-character defined by a simple stratum [Λ, ni,mi, βi] in an F-

central simple algebra A and a simple character θi ∈ C(Λ,mi, βi) attached to this stratum

(see paragraph 1.1 for the notation). Suppose from now on that the ps-characters Θ1

and Θ2 are endo-equivalent so that, in particular, we may assume the characters θ1 and θ2

intertwine in A×. The “preservation of intertwining” property can be stated as follows:

Theorem (see Theorem 1.11). — For i = 1, 2, let [Λ′, n′i,m
′
i, βi] be a simple stratum

in a simple central F-algebra A′ and θ′i ∈ C(Λ′,m′i, βi) defining the ps-character Θi, that

is, θ′i is the transfer of θi. Then the characters θ′1 and θ′2 intertwine in A′×.
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This means that the property that two simple characters intertwine is invariant under

transfer. The statement above is the same as its analogue [6, Theorem 8.7] in the case

that A is split and Λ is strict. However, we will see that the proof requires new ideas.

One of the important results in [10] is the “intertwining implies conjugacy” property

for simple characters, which expresses the fact that intertwining of simple characters is a

very stringent relation. It is this property which allows a classification “up to conjugacy”

of the irreducible cuspidal representations of GLn(F). This property no longer holds in

the general case, as was already observed in [5] for simple strata. To remedy the situation,

we introduce the notion of embedding type of a simple stratum (see Definition 1.8): two

simple strata [Λ, ni,mi, βi] have the same embedding type if the maximal unramified sub-

extensions of F(βi)/F are conjugate under the normalizer of Λ in A×. With the same

notation and hypotheses as above, we prove the following:

Theorem (see Theorem 1.12). — Suppose that n1 = n2, m1 = m2, and the simple

strata [Λ, ni,mi, βi] have the same embedding type. Write Ki for the maximal unramified

extension of F contained in F(βi) ⊆ A. Then there is an element of the normalizer of Λ

in A× which simultaneously conjugates K1 to K2 and θ1 to θ2.

This result was proved by Grabitz [17, Corollary 10.15] with the additional assumption

that the simple strata [Λ, n,m, βi] are sound. We prove it here without this hypothesis.

Once one has proved that endo-equivalence preserves certain numerical invariants (see

Lemma 4.7), it is not hard to see that the proofs of these two Theorems can be reduced

to the following:

Theorem (see Theorem 1.13). — For i = 1, 2, let [Λ′, n′,m′, βi] be a simple stratum

in a simple central F-algebra A′ and θ′i ∈ C(Λ′,m′, βi) defining the ps-character Θi, that

is, θ′i is the transfer of θi. Assume the simple strata have the same embedding type and

write Ki for the maximal unramified extension of F contained in F(βi) ⊆ A′. Then there

is an element of the normalizer of Λ′ in A′× which simultaneously conjugates K1 to K2

and θ′1 to θ′2.

Now let us describe the scheme of the proof. We begin with our endo-equivalent ps-cha-

racters Θ1 and Θ2, together with realizations ([Λ, ni,mi, βi], θi) in A such that the simple

characters θ1 and θ2 intertwine in A×. In order to use the results of Grabitz, we need

first to produce sound realizations of the ps-characters Θi with the same embedding type,

which intertwine. For sound strata, the embedding type is determined by a single integer,

the Fröhlich invariant, which can also be defined for arbitrary strata (see Definition 4.1).
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One can then realize Θi on the lattice sequence Λ ⊕ Λ in such a way that the Fröhlich

invariant is 1 and the simple characters still intertwine (see Lemma 4.4). In particular,

replacing our original realizations of Θ1 and Θ2 with these new ones, we can assume the

simple strata [Λ, ni,mi, βi] have the same Fröhlich invariant. Now we define a process:

([Λ, n,m, β], θ) 7→ ([Λ‡, n,m, β], θ‡)

from arbitrary realizations to sound realizations, with θ‡ the transfer of θ, which preserves

intertwining and the Fröhlich invariant (see paragraph 2.7). In particular, from θ1 and θ2

one obtains simple characters θ‡1 and θ‡2 on sound simple strata with the same Fröhlich

invariant (so same embedding type) which intertwine. Thus we can apply Grabitz’s

results, together with a reduction to the case m1 = m2, to deduce that θ‡1 and θ‡2 are

conjugate under A‡× (where A‡ is the simple central F-algebra with respect to which the

stratum [Λ‡, n,m, β] is defined). Changing again our realizations of Θ1 and Θ2 we can

suppose we have an equality θ1 = θ2 of simple characters. This is given in Proposition 4.9,

the culmination of the first stage of the proof.

To show that other realizations θ′1 and θ′2 on simple strata in A′ with the same embedding

type are conjugate, we would like to reduce to the split case so that we can use results

from [10, 6]. For this we define an interior lifting (see section 5):

([Λ, n,m, β], θ) 7→ ([Γ, n,m, β], θK)

relative to K/F, the maximal unramified subextension of F(β)/F, where [Γ, n,m, β] is a

simple stratum in the centralizer C of K in the simple central F-algebra A with respect

to which [Λ, n,m, β] is defined. Then we make a base change (see section 7):

([Γ, n,m, β], θK) 7→ ([Γ, n,m, β], θK)

relative to L/K, a finite unramified extension which is sufficiently large so that the al-

gebra C ⊗K L is split. The definition of the base change used here is somewhat subtle:

indeed, it is not clear how to make a good definition which will preserve intertwining and,

when applied to our characters θi, will be independent of i. Moreover, it is necessary to

begin with the interior lift or else the base change process would produce quasi-simple

characters (see [20]), rather than simple characters.

In order to apply these processes, we note that the maximal unramified subextension K

of F(βi)/F in A can be assumed to be independent of i since the simple strata have the

same embedding type. Combining now interior lifting and base change, we get a process:

([Λ, n,m, β], θ) 7→ ([Γ, n,m, β], θK)
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denoted here θ 7→ θ̃ for simplicity, which is both injective and equivariant, so it is enough

to show that θ̃′1 and θ̃′2 are conjugate under A′×. Now the hypothesis θ1 = θ2 implies

θ̃1 = θ̃2 (see Propositions 6.11 and 7.5), so that the ps-characters Θ̃1 and Θ̃2 defined

by θ̃1 and θ̃2 are endo-equivalent. Moreover, for each i, the simple character θ̃′i is the

transfer of θ̃i (see Theorem 6.7), so it is another realization of the ps-character Θ̃i. We

are now in the split case so, modulo a finesse in the case that we do not have strict lattice

sequences, we deduce from endo-equivalence [6] that the characters θ̃′i intertwine. Thus,

from the “intertwining implies conjugacy” property [10], the characters θ̃′1 and θ̃′2 are

conjugate under (C′ ⊗K L)×, where C′ denotes the centralizer of K in A′. Thanks to the

invariance property of the base change under the action of the Galois group Gal(L/K)

(see Proposition 7.7), a cohomological argument (see Lemma 8.1) allows us to show that

they are actually conjugate under C′×. This completes the proof.

Notation

Let F be a nonarchimedean locally compact field. All F-algebras are supposed to be

finite-dimensional with a unit. By an F-division algebra we mean a central F-algebra

which is a division algebra.

For K a finite extension of F, or more generally a division algebra over a finite extension

of F, we denote by OK its ring of integers, by pK the maximal ideal of OK and by kK its

residue field.

For A a simple central algebra over a finite extension K of F, we denote by NA/K and

trA/K respectively the reduced norm and trace of A over K.

For u a real number, we denote by due the smallest integer which is greater than or

equal to u, and by buc the greatest integer which is smaller than or equal to u, that is,

its integer part.

A character of a topological group G is a continuous homomorphism from G to the

group C× of non-zero complex numbers.

All representations are supposed to be smooth with complex coefficients.

1. Statement of the main results

In this section, we recall some well known facts about lattice sequences, simple strata

and simple characters in a simple central F-algebra (see [4, 10, 12, 20, 24] for more

details), and we state the main results of this article.
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1.1. Let A be a simple central F-algebra, and let V be a simple left A-module. The alge-

bra EndA(V) is an F-division algebra, the opposite of which we denote by D. Considering

V as a right D-vector space, we have a canonical isomorphism of F-algebras between A

and EndD(V).

Definition 1.1. — An OD-lattice sequence on V is a sequence Λ = (Λk)k∈Z of OD-lattices

of V such that Λk ⊇ Λk+1 for all k ∈ Z, and such that there exists a positive integer e

satisfying Λk+e = ΛkpD for all k ∈ Z. This integer is called the period of Λ over OD.

If Λk ) Λk+1 for all k ∈ Z, then the lattice sequence Λ is said to be strict.

Associated with an OD-lattice sequence Λ on V, we have an OF-lattice sequence on A

defined by:

Pk(Λ) = {a ∈ A | aΛi ⊆ Λi+k, i ∈ Z}, k ∈ Z.

The lattice A(Λ) = P0(Λ) is a hereditary OF-order in A, and P(Λ) = P1(Λ) is its Jacob-

son radical. They depend only on the set {Λk | k ∈ Z}.

We denote by K(Λ) the A×-normalizer of Λ, that is the subgroup of A× made of all

elements g ∈ A× for which there is an integer n ∈ Z such that g(Λk) = Λk+n for all k ∈ Z.

Given g ∈ K(Λ), such an integer is unique: it is denoted υΛ(g) and called the Λ-valuation

of g. This defines a group homomorphism υΛ from K(Λ) to Z. Its kernel, denoted U(Λ),

is the group of invertible elements of A(Λ). We set U0(Λ) = U(Λ) and, for k > 1, we set

Uk(Λ) = 1 + Pk(Λ).

Let F′ be a finite extension of F contained in A. An OD-lattice sequence Λ on V is

said to be F′-pure if it is normalized by F′×. The centralizer of F′ in A, denoted A′,

is a simple central F′-algebra. We fix a simple left A′-module V′ and write D′ for the

algebra opposite to EndA′(V
′). By [24, Théorème 1.4] (see also [4, Theorem 1.3]), given

an F′-pure OD-lattice sequence on V, there is an OD′-lattice sequence Λ′ on V′ such that:

(1.1) Pk(Λ) ∩ A′ = Pk(Λ
′), k ∈ Z.

It is unique up to translation of indices, and its A′×-normalizer is K(Λ) ∩ A′×.

Definition 1.2. — A stratum in A is a quadruple [Λ, n,m, β] made of an OD-lattice

sequence Λ on V, two integers m,n such that 0 6 m 6 n−1 and an element β ∈ P−m(Λ).

For i = 1, 2, let [Λ, n,m, βi] be a stratum in A. We say these two strata are equivalent

if β2 − β1 ∈ P−m(Λ).



SMOOTH REPRESENTATIONS OF GLm(D), V 9

Given a stratum [Λ, n,m, β] in A, we denote by E the F-algebra generated by β. This

stratum is said to be pure if E is a field, if Λ is E-pure and if υΛ(β) = −n. In this situation,

we denote by:

eβ(Λ)

the period of Λ as an OE-lattice sequence. Given a pure stratum [Λ, n,m, β], we denote

by B the centralizer of E in A. For k ∈ Z, we set:

nk(β,Λ) = {x ∈ A(Λ) | βx− xβ ∈ Pk(Λ)}.

The smallest integer k > υΛ(β) such that nk+1(β,Λ) is contained in A(Λ) ∩ B + P(Λ) is

called the critical exponent of the stratum [Λ, n,m, β], denoted k0(β,Λ).

Definition 1.3. — The stratum [Λ, n,m, β] is said to be simple if it is pure and if we

have m 6 −k0(β,Λ)− 1.

Let [Λ, n,m, β] be a simple stratum in A. In [24] (see paragraph 2.4), one attaches to

this simple stratum a compact open subgroup Hm+1(β,Λ) of A× and a finite set C(Λ,m, β)

of characters of Hm+1(β,Λ), called simple characters of level m, depending on the choice

of an additive character:

(1.2) Ψ : F→ C×

which is trivial on pF but not on OF, and which will be fixed once and for all throughout

this paper. If bn/2c 6 m, then Hm+1(β,Λ) = Um+1(Λ), and the set C(Λ,m, β) reduces to

a single character ΨA
β of Um+1(Λ) defined by:

(1.3) ΨA
β : x 7→ Ψ ◦ trA/F(β(x− 1)),

which depends only on the equivalence class of [Λ, n,m, β]. More generally, for any possible

value ofm, the subgroup Hm+1(β,Λ) and the set C(Λ,m, β) depend only on the equivalence

class of [Λ, n,m, β].

1.2. Let β be a non-zero element of some finite extension of F. We set E = F(β) and:

nF(β) = −υE(β),

eF(β) = e(E : F),

fF(β) = f(E : F),

where e(E : F) and f(E : F) stand for the ramification index and the residue class degree

of E over F respectively, and υE for the valuation map of the field E giving the value 1 to

any uniformizer of E. The lattice sequence i 7→ piE, denoted Λ(E), is the unique (up to
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translation) E-pure strict OF-lattice sequence on the F-vector space E, and its valuation

map coincide with υE on E×. To any integer 0 6 k 6 nF(β) − 1 we can attach the pure

stratum [Λ(E), nF(β), k, β] of the split F-algebra A(E) = EndF(E), the critical exponent

of which we denote by:

kF(β) = k0(β,Λ(E)).

This is an integer greater than or equal to −nF(β). In the case where this integer is equal

to −nF(β), the element β is said to be minimal over F. Let us recall the definition of a

simple pair over F (see [6, Definition 1.5]).

Definition 1.4. — A simple pair over F is a pair (k, β) consisting of a non-zero element

β of some finite extension of F and an integer 0 6 k 6 −kF(β)− 1.

Associated with a simple pair (k, β) over F is the simple stratum [Λ(E), nF(β), k, β] in

A(E) together with a compact open subgroup of A(E)× and a set of simple characters:

Hk+1
F (β) = Hk+1(β,Λ(E)), CF(k, β) = C(Λ(E), k, β).

Now let A be a simple central F-algebra and V be a simple left A-module. A realization

of the simple pair (k, β) in A is a stratum in A of the form [Λ, n,m, ϕ(β)] made of:

(1) a homomorphism ϕ of F-algebra from F(β) to A;

(2) an OD-lattice sequence Λ on V normalized by the image of F(β)× under ϕ;

(3) an integer m such that
⌊
m/eϕ(β)(Λ)

⌋
= k.

The integer −n is then the Λ-valuation of ϕ(β). By [20, Proposition 2.25] we have:

(1.4) k0(ϕ(β),Λ) = eϕ(β)(Λ)kF(β),

which implies that any realization of a simple pair is a simple stratum. According to [20]

again (ibid., paragraph 3.3), for such a realization there is a canonical bijective map:

(1.5) τΛ,m,ϕ : CF(k, β)→ C(Λ,m, ϕ(β))

called the transfer map. Some of its properties have been studied in [24] and some further

properties will be given in sections 6 and 7 of the present article. Given another realization

[Λ′, n′,m′, ϕ′(β)] of the pair (k, β) in some simple central F-algebra A′, we have a transfer

map from C(Λ,m, ϕ(β)) to C(Λ′,m′, ϕ′(β)) by composing τ−1
Λ,m,ϕ with τΛ′,m′,ϕ′ .

Given a simple pair (k, β) over F, we denote by C(k,β) the set of pairs ([Λ, n,m, ϕ(β)], θ)

made of a realization [Λ, n,m, ϕ(β)] of (k, β) in a simple central F-algebra and a simple

character θ ∈ C(Λ,m, ϕ(β)). Hence the surjective map:

([Λ, n,m, ϕ(β)], θ) 7→ τ−1
Λ,m,ϕ(θ) ∈ CF(k, β)



SMOOTH REPRESENTATIONS OF GLm(D), V 11

is well defined on C(k,β) and induces, by its fibers, an equivalence relation on it.

Definition 1.5. — A potential simple character over F (or ps-character for short) is a

triple (Θ, k, β) made of a simple pair (k, β) over F and an equivalence class Θ in C(k,β).

When the context is clear, we will often denote by Θ the ps-character (Θ, k, β). Given

a realization [Λ, n,m, ϕ(β)] of (k, β), we will denote by Θ(Λ,m, ϕ) the simple character θ

such that the pair ([Λ, n,m, ϕ(β)], θ) belongs to Θ.

1.3. We now state the main results which are proved in this article. Our first task is to

extend the notion of endo-equivalence of simple pairs developed by Bushnell and Henniart

in [6]. More precisely, we extend it to realizations in non-necessarily split simple central

F-algebras with non-necessarily strict lattice sequences.

Definition 1.6. — For i = 1, 2, let (ki, βi) be a simple pair over F. We say that these

pairs are endo-equivalent, denoted:

(k1, β1) ≈ (k2, β2),

if k1 = k2 and [F(β1) : F] = [F(β2) : F], and if there exists a simple central F-algebra A

together with realizations [Λ, ni,mi, ϕi(βi)] of (ki, βi) in A, with i = 1, 2, which intertwine

in A.

Recall that two strata [Λ, ni,mi, βi] in A, with i ∈ {1, 2}, intertwine in A if there exists

g ∈ A× such that:

(1.6) (β1 + P−m1(Λ)) ∩ g(β2 + P−m2(Λ))g−1 6= ∅.

As we will see in paragraph 2.5 (see Corollary 2.9), this definition of endo-equivalence

of simple pairs is equivalent to [6, Definition 1.14], although more general in appearance.

We now investigate the intertwining relations among various realizations of given sim-

ple pairs, and in particular their preservation properties. Our first result is the following

proposition, which generalizes [6, Proposition 1.10] and is proved in paragraph 2.6.

Proposition 1.7. — For i = 1, 2, let (k, βi) be a simple pair over F, and suppose these

pairs are endo-equivalent. Let A be a simple central F-algebra and let [Λ, ni,mi, ϕi(βi)] be

a realization of (k, βi) in A, for i = 1, 2. These strata then intertwine in A.

Broussous and Grabitz remarked in [5] that two simple strata [Λ, n,m, βi], i = 1, 2, in

A which intertwine in A may be not conjugate under A×, unlike the case where A is split

(see [10, Theorem 2.6.1] for the case where A is split and Λ is strict). In order to remedy
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this, they introduced the notion of an embedding type (see also Fröhlich [15]). Here we

extend this notion to non-necessarily strict lattice sequences.

We fix a simple central F-algebra A and a simple left A-module V as in paragraph 1.1.

Associated with it, we have an F-division algebra D. An embedding in A is a pair (E,Λ)

made of a finite extension E of F contained in A and an E-pure OD-lattice sequence Λ

on V. Given such a pair, we denote by E� the maximal finite unramified extension of F

which is contained in E and whose degree divides the reduced degree of D over F.

Two embeddings (Ei,Λi), i = 1, 2, in A are said to be equivalent in A if there exists an

element g ∈ A× such that Λ1 is in the translation class of gΛ2 and E�1 = gE�2g
−1. This

defines an equivalence relation on the set of embeddings in A, and an equivalence class

for this relation is called an embedding type in A.

Definition 1.8. — The embedding type of a pure stratum [Λ, n,m, β] is the embedding

type of the pair (F(β),Λ) in A.

This allows us to state the following “intertwining implies conjugacy” theorem, which

generalizes [10, Theorem 2.6.1] and [5, Proposition 4.1.2] and is proved in paragraph 3.3.

Proposition 1.9. — For i = 1, 2, let [Λ, n,m, βi] be a simple stratum in A. Assume that

they intertwine in A and have the same embedding type. Write Ki for the maximal un-

ramified extension of F contained in F(βi). Then there is u ∈ K(Λ) such that K1 = uK2u
−1

and β1 − uβ2u
−1 ∈ P−m(Λ).

1.4. We now extend the notion of endo-equivalence of simple characters developed by

Bushnell and Henniart in [6]. As for simple pairs, we extend it to realizations in non-ne-

cessarily split simple central F-algebras with non-necessarily strict lattice sequences.

Definition 1.10. — For i = 1, 2, let (Θi, ki, βi) be a ps-character over F. We say that

these ps-characters are endo-equivalent, denoted:

Θ1 ≈ Θ2,

if k1 = k2 and [F(β1) : F] = [F(β2) : F], and if there exists a simple central F-algebra A

together with realizations [Λ, ni,mi, ϕi(βi)] of (ki, βi) in A, with i = 1, 2, such that the

simple characters Θ1(Λ,m1, ϕ1) and Θ2(Λ,m2, ϕ2) intertwine in A×.

Recall that two simple characters θi ∈ C(Λ,mi, βi), i = 1, 2, intertwine in A× if there

exists g ∈ A× such that:

(1.7) θ2(x) = θ1(gxg−1), x ∈ Hm2+1(β2,Λ) ∩ g−1Hm1+1(β1,Λ)g.



SMOOTH REPRESENTATIONS OF GLm(D), V 13

As we will see at the end of this article (see Corollary 8.2), this definition of endo-equi-

valence of simple characters is equivalent to [6, Definition 8.6].

We now state the main results of this article concerning properties of simple characters

with respect to intertwining and conjugacy. The following generalizes [6, Theorem 8.7].

Theorem 1.11. — For i = 1, 2, let (Θi, ki, βi) be a ps-character over F, and suppose

that Θ1 ≈ Θ2. Let A be a simple central F-algebra and let [Λ, ni,mi, ϕi(βi)] be realizations

of (ki, βi) in A, for i = 1, 2. Then Θ1(Λ,m1, ϕ1) and Θ2(Λ,m2, ϕ2) intertwine in A×.

The following “intertwining implies conjugacy” theorem for simple characters general-

izes [10, Theorem 3.5.11] and [17, Corollary 10.15] to simple characters in non-necessarily

split simple central F-algebras with non-necessarily strict lattice sequences.

Theorem 1.12. — Let A be a simple central F-algebra. For i = 1, 2, let [Λ, n,m, βi] be

a simple stratum in A, and let θi ∈ C(Λ,m, βi) be a simple character. Write Ki for the

maximal unramified extension of F contained in F(βi). Assume that θ1 and θ2 intertwine

in A× and that the strata [Λ, n,m, βi] have the same embedding type. Then there is an

element u ∈ K(Λ) such that:

(1) K1 = uK2u
−1;

(2) C(Λ,m, β1) = C(Λ,m, uβ2u
−1);

(3) θ2(x) = θ1(uxu−1), for all x ∈ Hm+1(β2,Λ) = u−1Hm+1(β1,Λ)u.

We will see in section 4 (see Corollary 4.8) that the proofs of these two theorems can

be reduced to that of the following statement, which will be proved in section 8.

Theorem 1.13. — For i = 1, 2, let (Θi, ki, βi) be a ps-character over F, and suppose

that Θ1 ≈ Θ2. Let A be a simple central F-algebra, and let [Λ, n,m, ϕi(βi)] be realizations

of (ki, βi) in A, for i = 1, 2. Write Ki for the maximal unramified extension of F contained

in F(βi) and θi for the simple character Θi(Λ,m, ϕi). Assume these strata have the same

embedding type. Then there is an element u ∈ K(Λ) such that:

(1) ϕ1(K1) = uϕ2(K2)u−1;

(2) C(Λ,m, ϕ1(β1)) = C(Λ,m, uϕ2(β2)u−1);

(3) θ2(x) = θ1(uxu−1), for all x ∈ Hm+1(ϕ2(β2),Λ) = u−1Hm+1(ϕ1(β1),Λ)u.

The main ingredient in this reduction step is Lemma 4.7, which states that the endo-

equivalence relation preserves certain numerical invariants attached to a ps-character.
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1.5. As has been explained in the introduction, this article makes a large use of the

results of Bushnell, Henniart and Kutzko in the split case [6, 10] (see paragraphs 1.3 and

1.4), as well as results of Grabitz [17] which are based on the following definition.

Definition 1.14. — A simple stratum [Λ, n,m, β] in A is sound if Λ is strict, A ∩ B is

principal and K(A) ∩ B× = K(A ∩ B), where A is the hereditary OF-order defined by Λ.

More generally, an embedding (E,Λ) in A is sound if the conditions of Definition 1.14

are fulfilled with B the centralizer of E in A.

Remark 1.15. — Note that the condition on A∩B forces A to be a principal OF-order.

In the split case, a simple stratum [Λ, n,m, β] is sound if and only if Λ is strict and A is

principal.

When Λ is strict, its translation class is entirely determined by the hereditary OF-order

A = A(Λ). In this case, we will sometimes write (E,A) and [A, n,m, β] rather than (E,Λ)

and [Λ, n,m, β].

In the case where the simple strata [Λ, n,m, βi], i = 1, 2, are sound, Grabitz has proved

in [17] the “intertwining implies conjugacy” theorem for simple characters (see ibid.,

Theorem 10.3 and Corollary 10.15). More precisely, he has proved the following result.

Given K/F an unramified extension contained in A, a sound simple stratum [Λ, n,m, β]

in A is K-special (see [17, Definition 3.1]) if it is K-pure in the sense of Definition 5.1 and

if (K(β),A(Λ) ∩ C) is a sound embedding in C, where C is the centralizer of K in A.

Theorem 1.16 ([17], Theorem 10.3). — For i = 1, 2, let [Λ, n,m, βi] be a sound sim-

ple stratum in a simple central F-algebra A and let θi ∈ C(Λ,m, βi) be a simple character.

Let f be a multiple of the greatest common divisor of fF(β1) and fF(β2), and let Ki be an

unramified extension of F of degree f contained in A such that [Λ, n,m, βi] is Ki-special.

Assume (K1,Λ) and (K2,Λ) are equivalent embeddings in A, and that θ1 and θ2 intertwine

in A×. Then:

(1) eF(β1) = eF(β2) and fF(β1) = fF(β2);

(2) Ki contains the maximal unramified extension of F contained in F[βi].

Moreover, there exists u ∈ K(Λ) such that:

(3) K1 = uK2u
−1;

(4) C(Λ,m, β1) = C(Λ,m, uβ2u
−1);

(5) θ2(x) = θ1(uxu−1), for all x ∈ Hm+1(β2,Λ) = u−1Hm+1(β1,Λ)u.

We will also need the following result.
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Proposition 1.17 ([17], Propositions 9.1 and 9.9). — For i = 1, 2, let [Λ, n,m,βi]

be a sound simple stratum in A. Assume that C(Λ,m, β1) ∩ C(Λ,m, β2) is not empty.

Then eF(β1) = eF(β2), fF(β1) = fF(β2), kF(β1) = kF(β2) and C(Λ,m, β1) = C(Λ,m, β2).

Note that [17, Proposition 9.1] gives us an equality between [F(β1) : F] and [F(β2) : F],

but the two finer equalities between the ramification indexes and residue class degrees

come from Theorem 1.16.

Our proof of Theorem 1.13 in section 8 is decomposed into two steps. The first step

consists of treating the case where the extensions F(βi)/F are totally ramified, and the

second step consists of reducing to the totally ramified case. In section 5, we develop

an interior lifting process for simple strata and simple characters with respect to a finite

unramified extension K of F, in a way similar to [6] and [17]. Its compatibility with

transfer is explored in section 6. This interior lifting is enough to reduce to the totally

ramified case. The totally ramified case is more subtle. For this we develop an ‘exterior

lifting’ or unramified base change in section 7.

2. Realizations and intertwining for simple strata

In this section, we introduce various constructions which will be used throughout the

paper. More precisely, we describe various processes, preserving intertwining, which as-

sociate to a realization of a simple pair in some simple central F-algebra a realization in

a (possibly different) simple central F-algebra, with additional properties. This allows us

to prove that Definition 1.6 and the definition of endo-equivalence of simple pairs given

in [6] are equivalent (see Corollary 2.9), and to prove Proposition 1.7.

2.1. We fix a simple central F-algebra A and a simple left A-module V. We set:

Ã = EndF(V),

which is a split simple central F-algebra in which the algebra A embeds naturally. To any

stratum [Λ, n,m, β] in A we can attach a stratum [Λ̃, n,m, β] in Ã, where Λ̃ denotes the

OF-lattice sequence defined by Λ. By [20, Théorème 2.23], this latter stratum is simple

if and only the first one is, and in this case they are realizations of the same simple pair

over F. Moreover, we have the following result.

Proposition 2.1. — For i = 1, 2, let [Λ, ni,mi, βi] be a simple stratum in A. Assume

they intertwine in A. Then the strata [Λ̃, ni,mi, βi] intertwine in Ã.
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Proof. — This follows immediately from the definition of intertwining and the fact that

the OF-module Pk(Λ) is contained in Pk(Λ̃) for all k ∈ Z.

2.2. Let [Λ, n,m, β] be a simple stratum in A, which is a realization of a simple pair

(k, β) over F. The affine class of Λ is the set of all OD-lattice sequences on V of the form:

(2.1) aΛ + b : k 7→ Λd(k−b)/ae,

with a, b ∈ Z and a > 1. The period of (2.1) is a times the period e(Λ) of Λ. Given an

integer l > 1, we set V′ = V ⊕ · · · ⊕ V (l times) and A′ = EndD(V′), and embed A in

A′ diagonally. For each j ∈ {1, . . . , l}, we choose a lattice sequence Λj in the affine class

of Λ, and assume the periods of the Λj’s are all equal to a common integer ae(Λ) with

a > 1. We now form the OD-lattice sequence Λ′ on V′ defined by:

(2.2) Λ′ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λl,

and fix a non-negative integer m′ such that:

bm′/ac = m.

If we set n′ = an, this gives us a simple stratum [Λ′, n′,m′, β] in A′, which is a realization

of the simple pair (k, β). In the particular case where l = 1, we have the following result.

Lemma 2.2. — Assume that l = 1, so that Λ′ is in the affine class of Λ. Then we have

Hm′+1(β,Λ′) = Hm+1(β,Λ) and C(Λ′,m′, β) = C(Λ,m, β). Moreover, the transfer map

from C(Λ′,m′, β) to C(Λ,m, β) is the identity map.

Proof. — The first assertion is straightforward by induction on β (that is, on the integer

kF(β) defined in paragraph 1.2). For the second one, see [24, Théorème 2.13].

2.3. Assume now we are given two simple strata [Λ, ni,mi, βi], i = 1, 2, in A. For each

i, we set n′i = ani and fix a non-negative integer m′i such that bm′i/ac = mi, so that we

have a simple stratum [Λ′, n′i,m
′
i, βi] in A′.

Proposition 2.3. — Assume that the strata [Λ, ni,mi, βi], i ∈ {1, 2}, intertwine in A.

Then the strata [Λ′, n′i,m
′
i, βi], i ∈ {1, 2}, intertwine in A′.

Proof. — We start with an element g ∈ A× which intertwines the two strata [Λ, ni,mi, βi],

that is, which satisfies the condition (1.6), and we let ι denote the diagonal embedding of

A in A′ (which we omit from the notation when the context is clear). For j ∈ {1, . . . , l},
write Vj for the jth copy of V in V′ = V ⊕ · · · ⊕ V. Then for each i, we have:

P−m′i(Λ
′) ∩ EndD(Vj) = P−m′i(Λ

j), j ∈ {1, . . . , l},
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which is equal to P−mi(Λ) as can be seen by a direct computation in the case l = 1. This

implies that ι induces an OF-module embedding of P−mi(Λ) in P−m′i(Λ
′), from which we

deduce that g′ = ι(g) ∈ A′× intertwines the strata [Λ′, n′i,m
′
i, βi].

Remark 2.4. — Note that ι induces a group homomorphism of K(Λ) into K(Λ′). There-

fore, if g ∈ K(Λ) intertwines two simple strata [Λ, n,m, βi], i = 1, 2, that is, if we have:

β2 − gβ1g
−1 ∈ P−m(Λ),

and if we set n′ = an and fix a non-negative integer m′ such that bm′/ac = m, then the

element ι(g) ∈ K(Λ′) intertwines the strata [Λ′, n′,m′, βi].

Proposition 2.5. — Assume that the strata [Λ, ni,mi, βi], for i ∈ {1, 2}, have the same

embedding type. Then the strata [Λ′, n′i,m
′
i, βi], i ∈ {1, 2}, have the same embedding type.

Proof. — Given g ∈ K(Λ) which conjugates the unramified extensions F(βi)
�, i ∈ {1, 2},

the element ι(g) ∈ K(Λ′) conjugates the extensions F(ι(βi))
�, i ∈ {1, 2}.

2.4. For i = 1, 2, let θi be a simple character in C(Λ,mi, βi), and let θ′i be its transfer in

C(Λ′,m′i, βi). The following result is an analogue of Proposition 2.3 for simple characters.

Proposition 2.6. — Assume that θ1 and θ2 intertwine in A×. Then θ′1 and θ′2 intertwine

in A′×.

Proof. — The decomposition of V′ into a sum of copies of V defines a Levi subgroup:

(2.3) M = A× × · · · × A×

of A′×. We fix a parabolic subgroup P of A× with Levi factor M and unipotent radical N,

and we write N− for the unipotent radical of the parabolic subgroup of A× opposite to P

with respect to M. According to [24, Théorème 2.17], we have an Iwahori decomposition:

Hm′i+1(βi,Λ
′) =

(
Hm′i+1(βi,Λ

′) ∩ N−
)(

Hm′i+1(βi,Λ
′) ∩M

)(
Hm′i+1(βi,Λ

′) ∩ N
)
,

Hm′i+1(βi,Λ
′) ∩M = Hmi+1(βi,Λ)× · · · × Hmi+1(βi,Λ),

for each integer i = 1, 2. We have the following result.

Lemma 2.7. — The simple character θ′i is trivial on the subgroups Hm′i+1(βi,Λ
′)∩N and

Hm′i+1(βi,Λ
′) ∩ N−, and we have:

θ′i | Hm′i+1(βi,Λ
′) ∩M = θi ⊗ · · · ⊗ θi.
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Proof. — This derives from [24, Théorème 2.17]. Indeed, for j ∈ {1, . . . , l}, the restriction

of θ′i to Hm′i+1(βi,Λ
′)∩AutD(Vj) is the transfer of θ′i to C(Λj,m′i, βi), which is equal to θi

by Lemma 2.2.

Now let g ∈ A× intertwine θ1 and θ2 as in the identity (1.7), and set g′ = ι(g) ∈ M. If

we write Hi = Hmi+1(βi,Λ) and H′i = Hm′i+1(βi,Λ
′) for each integer i ∈ {1, 2}, we get an

Iwahori decomposition:

H′2 ∩ g′−1H′1g
′ =

(
H′2 ∩ g′−1H′1g

′ ∩ N−
)(

H′2 ∩ g′−1H′1g
′ ∩M

)(
H′2 ∩ g′−1H′1g

′ ∩ N
)
,

H′2 ∩ g′−1H′1g
′ ∩M =

(
H2 ∩ g−1H1g

)
× · · · ×

(
H2 ∩ g−1H1g

)
.

According to Lemma 2.7, the simple characters θ′1 and θ′2 are trivial on the two subgroups

H′2 ∩ g′−1H′1g
′ ∩ N and H′2 ∩ g′−1H′1g

′ ∩ N−, and we have:

θ′i | H′2 ∩ g′−1H′1g
′ ∩M =

(
θi | H2 ∩ g−1H1g

)
⊗ · · · ⊗

(
θi | H2 ∩ g−1H1g

)
for each i ∈ {1, 2}. This ensures that g′ intertwines the simple characters θ′1 and θ′2.

2.5. We give an example which will be of particular interest for us. Let [Λ, n,m, β] be a

simple stratum in A, which is a realization of a simple pair (k, β) over F, and let e denote

the period of Λ over OD. We set:

(2.4) Λ† : k 7→ Λk ⊕ Λk+1 ⊕ · · · ⊕ Λk+e−1,

which is a strict OD-lattice sequence on V† = V⊕· · ·⊕V (e times) of the form (2.2). Thus

we can form the simple stratum [Λ†, n,m, β] in A† = EndD(V†), which is a realization of

(k, β). Moreover, the hereditary OF-order A† defined by Λ† is principal, and we have the

following result, which derives from Propositions 2.3 and 2.5.

Proposition 2.8. — For i = 1, 2, let [Λ, ni,mi, βi] be a simple stratum in A. Assume

they intertwine in A (resp. have the same embedding type). Then the strata [Λ†, ni,mi, βi]

intertwine in A† (resp. have the same embedding type).

Note that the operations Λ 7→ Λ̃ (see paragraph 2.1) and Λ 7→ Λ† commute, so that

there is no ambiguity in writing Λ̃† for the strict OF-lattice sequence defined by Λ†.

Corollary 2.9. — Definition 1.6 is equivalent to Definition [6, 1.14].

Proof. — Assume we are given two simple pairs (k, βi), i = 1, 2, which are endo-equivalent

in the sense of Definition 1.6. Then we have [F(β1) : F] = [F(β2) : F], and there exists a

simple central F-algebra A together with realizations [Λ, ni,mi, ϕi(βi)] of (k, βi) in A, with

i = 1, 2, which intertwine in A. By replacing A and Λ by Ã† and Λ̃†, we have realizations
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[Λ̃†, ni,mi, ϕi(βi)] of (k, βi) in Ã†, with i = 1, 2, and these realizations intertwine in Ã†

according to Propositions 2.1 and 2.8. Thus the simple pairs (k, β1) and (k, β2) are endo-

equivalent in the sense of [6, Definition 1.14]. Conversely, two simple pairs which are

endo-equivalent in this sense are clearly endo-equivalent in the sense of Definition 1.6.

2.6. We now prove the preservation property of intertwining for simple strata, that

is, Proposition 1.7. We first prove that the endo-equivalence relation preserves certain

numerical invariants attached to simple pairs. Compare the following proposition with

[6], Property (1.15). See paragraph 1.2 for the notation.

Proposition 2.10. — For i = 1, 2, let (k, βi) be a simple pair over F, and suppose that

(k, β1) and (k, β2) are endo-equivalent. Then we have nF(β1) = nF(β2), eF(β1) = eF(β2),

fF(β1) = fF(β2) and kF(β1) = kF(β2).

Proof. — By Corollary 2.9, we may assume that the pairs (k, βi) are endo-equivalent in

the sense of [6]. The result then follows from [6, Proposition 1.10].

For i = 1, 2, let (k, βi) be a simple pair over F, and suppose that (k, β1) ≈ (k, β2).

Let A be a simple central F-algebra and, for i = 1, 2, let [Λ, ni,mi, ϕi(βi)] be a real-

ization of (k, βi) in A. Let V denote the simple left A-module on which Λ is a lattice

sequence and write D for the F-algebra opposite to EndA(V). For i = 1, 2, let Ei denote

the F-algebra F(βi). We fix a simple right E1 ⊗F D-module S and set A(S) = EndD(S),

and we denote by ρ1 the natural F-algebra homomorphism E1 → A(S). Let S denote the

unique (up to translation) E1-pure strict OD-lattice sequence on S.

Lemma 2.11. — There is a homomorphism of F-algebras ρ2 : E2 → A(S) such that S is

ρ2(E2)-pure, and such that the pairs (ρ1(E1),S) and (ρ2(E2),S) have the same embedding

type in A(S) (see paragraph 1.3).

Proof. — As (k, β1) and (k, β2) are endo-equivalent, Proposition 2.10 gives us the equali-

ties eF(β1) = eF(β2) and fF(β1) = fF(β2). The result follows from [5, Corollary 3.16].

Remark 2.12. — We actually have a stronger result: for any F-algebra homomorphism

ρ2 such that S is ρ2(E2)-pure, the pairs (ρ1(E1),S) and (ρ2(E2),S) have the same em-

bedding type in A(S). Indeed, if ρ2 is such a homomorphism and if η2 is an F-algebra

homomorphism as in Lemma 2.11, the Skolem-Noether theorem gives us g ∈ A(S)× which

conjugates these F-algebra homomorphisms ρ2 and η2. As E1 and E2 have the same degree

over F, the lattice sequence S is the unique (up to translation) ρ2(E2)-pure strict OD-

lattice sequence — and also the unique (up to translation) η2(E2)-pure strict OD-lattice
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sequence — on S. It follows that g normalizes the lattice sequence S and that the pairs

(ρ2(E2),S) and (η2(E2),S) have the same embedding type in A(S).

Let us fix an F-algebra homomorphism ρ2 as in Lemma 2.11. As (k, β1) and (k, β2) are

endo-equivalent, we have nF(β1) = nF(β2) and eF(β1) = eF(β2), so that the S-valuation

of ρi(βi), denoted n0, and the period eρi(βi)(S) do not depend on i ∈ {1, 2}. We set:

m0 = eρi(βi)(S)k.

For each i ∈ {1, 2}, we have a stratum [S, n0,m0, ρi(βi)], which is a realization of (k, βi)

in A(S). By paragraph 2.1, we have a realization [S̃, n0,m0, ρi(βi)] of (k, βi) in the split

simple central F-algebra EndF(S), and the OF-lattice sequence S̃ is strict. Hence we can

apply [6, Proposition 1.10], which implies that these realizations, for i = 1, 2, intertwine in

EndF(S). By our assumption (see Lemma 2.11), the strata [S, n0,m0, ρi(βi)], for i = 1, 2,

have the same embedding type. Here we need to recall the following statement, due to

Broussous and Grabitz.

Proposition 2.13 ([5], Proposition 4.1.3). — For i = 1, 2, let [Σ, n,m, γi] be a sim-

ple stratum in a simple central F-algebra U, where Σ is strict. Assume that they have the

same embedding type, and that the strata [Σ̃, n,m, γi] intertwine in Ũ. Then there exists

an element u ∈ K(Σ) such that γ1 − uγ2u
−1 ∈ P−m(Σ).

Moreover, u can be chosen such that the maximal unramified extension of F contained

in F(γ1) is equal to that of F(uγ2u
−1).

We deduce from Proposition 2.13 that there exists an element g ∈ K(S) such that:

(2.5) ρ1(β1)− gρ2(β2)g−1 ∈ P−m0(S).

We now fix a decomposition:

V = V1 ⊕ · · · ⊕ Vl

of V into simple right E1 ⊗F D-modules (which all are copies of S) such that the lattice

sequence Λ decomposes into the direct sum of the Λj = Λ ∩ Vj, for j ∈ {1, . . . , l}.

Lemma 2.14. — There are isomorphisms of E1 ⊗F D-modules Vj → S, j ∈ {1, . . . , l},
such that the resulting F-algebra homomorphism ι : A(S)→ A satisfies ι ◦ ρ1 = ϕ1.

Proof. — Since each Vj, for j ∈ {1, . . . , l}, is an E1-vector subspace of V, the F-algebra

homomorphism ϕ1 has the form x 7→ (ω1(x), . . . , ωl(x)), where ωj is an F-algebra homo-

morphism from E1 to EndD(Vj). By the Skolem-Noether theorem, one can choose, for

each integer j, a suitable E1 ⊗F D-module isomorphism between Vj and S such that the

resulting F-algebra homomorphism πj between EndD(Vj) and A(S) satisfies the condition
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πj ◦ωj = ρ1. Then the F-algebra homomorphism ι defined by ι(x) = (π−1
1 (x), . . . , π−1

l (x))

for x ∈ A(S) satisfies the required condition.

We now fix isomorphisms of E1 ⊗F D-modules Vj → S, j ∈ {1, . . . , l}, as in Lemma

2.14. Then each Λj is in the affine class of S (see (2.1) and [22, §1.4.8]), and these lattice

sequences all have the same period, equal to that of Λ. Therefore, we are in the situation

of paragraph 2.2. We set:

n = ni, m = eϕi(βi)(Λ)k,

which both do not depend on i ∈ {1, 2}. By (2.5) and Remark 2.4, the element ι(g) nor-

malizes Λ and conjugates [Λ, n,m, ι(ρ2(β2))] into a simple stratum in A which is equivalent

to [Λ, n,m, ϕ1(β1)]. By the Skolem-Noether theorem, there is an element x ∈ A× which

conjugates the F-algebra homomorphisms ι ◦ ρ2 and ϕ2, and thus intertwines the simple

strata [Λ, n,m, ι(ρ2(β2))] and [Λ, n,m, ϕ2(β2)]. Therefore the strata [Λ, n,m, ϕi(βi)] inter-

twine. As m 6 m1,m2, the strata [Λ, ni,mi, ϕi(βi)] intertwine, which ends the proof of

Proposition 1.7.

Remark 2.15. — There is a gap in the proof of the existence of the transfer map given

in [20, Théorème 3.53], in the case where Λ is a strict lattice sequence. To complete this

proof, one has to prove that, given a non-minimal simple pair (k, β) over F together with

a realization [Λ, n,m, ϕ(β)] of this pair in a simple central F-algebra A, there is a simple

pair (k′, γ) over F having realizations in A(E) and A which are approximations of β and

ϕ(β), respectively. More precisely, set q = −k0(β,Λ), and start with a stratum [Λ, n, q, γ]

in A which is simple and equivalent to [Λ, n, q, ϕ(β)]. If we denote by (k′, γ) the simple

pair of which this stratum is a realization, and if we set n0 = nF(β) and q0 = −kF(β), then

we search for a realization [Λ(E), n0, q0, ϕ0(γ)] of (k′, γ) in A(E) which is equivalent to

the pure stratum [Λ(E), n0, q0, β] (see paragraph 1.2). Let us remark that, when passing

to Ã (see paragraph 2.1), we get a stratum [Λ̃, n, q, γ] which is simple and equivalent to

[Λ̃, n, q, ϕ(β)]. Now let [Λ(E), n0, q0, δ] be a stratum in A(E) which is simple and equi-

valent to [Λ(E), n0, q0, β]. By choosing a suitable decomposition of the F-vector space V

into a direct sum of copies of E, we get an F-embedding:

ι : A(E)→ Ã,

thus a stratum [Λ̃, n, q, ι(δ)] in Ã which is simple and equivalent to [Λ̃, n, q, ι(β)]. By the

Skolem-Noether theorem, there exists an element g ∈ Ã× which conjugates ι(β) and ϕ(β),

thus intertwines the strata [Λ̃, n, q, γ] and [Λ̃, n, q, ι(δ)]. The simple pairs (k′, γ) and (k′, δ)

are thus endo-equivalent. Now let [Λ(E), n0, q0, (γ)] be a realization of (k′, γ) in A(E)

which intertwines with [Λ(E), n0, q0, δ]. By the “intertwining implies conjugacy” theorem
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[10, Theorem 3.5.11] in the split simple central F-algebra A(E), there is g ∈ U(Λ(E)) such

that g(γ)g−1 − δ ∈ P(Λ(E))−q0 . The homomorphism of F-algebras ϕ0 : x 7→ g(x)g−1

has the required property.

2.7. Before closing this section, we give a more elaborate example than that of paragraph

2.5, which will be very useful in the sequel. As in paragraph 2.5, let [Λ, n,m, β] be a simple

stratum in A, which is a realization of a simple pair (k, β) over F, and let e denote the

period of Λ over OD. Write B for the centralizer of the field E = F(β) in A, fix a simple left

B-module Vβ and write Dβ for the E-algebra opposite to the algebra of B-endomorphisms

of Vβ. Let Σ denote an ODβ -lattice sequence on Vβ corresponding to Λ by (1.1), and let

e′ denote its period over ODβ . We fix an integer l which is a multiple of e and e′ and set:

(2.6) Λ‡ : k 7→ Λk ⊕ Λk+1 ⊕ · · · ⊕ Λk+l−1,

which is a strict OD-lattice sequence on V‡ = V⊕· · ·⊕V (l times) of the form (2.2). Thus

we can form the simple stratum [Λ‡, n,m, β] in A‡ = EndD(V‡), which is a realization of

(k, β). Moreover, the hereditary OF-order A‡ defined by Λ‡ is principal, and we have the

following result.

Lemma 2.16. — The stratum [Λ‡, n,m, β] is sound (see Definition 1.14).

Proof. — Write B‡ for the centralizer of E in A‡ and Σ‡ for the ODβ -lattice sequence on

Vβ × · · · × Vβ (l times) defined by:

Σ‡ : k 7→ Σk ⊕ Σk+1 ⊕ · · · ⊕ Σk+l−1.

This is a strict lattice sequence, which defines a principal order of B‡. By direct compu-

tation of each block, we get for all k ∈ Z:

(2.7) Pk(Λ
‡) ∩ B‡ = Pk(Σ

‡),

which amounts to saying that Σ‡ is an ODβ -lattice sequence which corresponds to Λ‡ by

(1.1). In particular, its B‡×-normalizer is K(Λ‡) ∩ B‡×. As Λ‡ is strict, its normalizer is

equal to K(A‡), and a similar statement holds for the lattice sequence Σ‡, so that we have

K(A‡)∩B‡× = K(A‡ ∩B‡). Finally, if we choose k = 0 in (2.7), we deduce that A‡ ∩B‡ is

principal.

Note that, unlike (2.4), the process defined by (2.6) depends on E and l, and not only

on the lattice sequence Λ.
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Now let [Λ, ni,mi, βi], for i = 1, 2, be simple strata in A. Let e denote the period of

Λ over OD, and write e′i for the period of the ODβi
-lattice sequence associated with Λ as

above.

Proposition 2.17. — Let l > 1 be a multiple of e′1, e
′
2 and e, and assume that the simple

strata [Λ, ni,mi, βi], i = 1, 2, intertwine in A (resp. have the same embedding type). Then

the simple strata [Λ‡, ni,mi, βi], i = 1, 2, are sound, and intertwine in A‡ (resp. have the

same embedding type).

Proof. — This derives from Propositions 2.3 and 2.5, and Lemma 2.16.

3. Intertwining implies conjugacy for simple strata

In this section, we prove the “intertwining implies conjugacy” property for simple strata,

that is Proposition 1.9. We fix a simple central F-algebra A and a simple left A-module

V as in paragraph 1.1. Associated with it, we have an F-division algebra D.

3.1. We will need the following general lemma on embedding types. Let B be a D-basis

of V, and let L be a maximal unramified extension of F contained in D. The choice of B

defines an isomorphism of F-algebras between A and Mr(D) for some integer r > 1, which

allows us to identify these F-algebras. In particular, we will consider L as an extension of

F contained in A. We write Ir for the identity matrix.

An embedding (K,Λ) in A is said to be standard with respect to the pair (B,L) if K

is a subfield of L and if Λ is split by the basis B in the sense of [3].

Lemma 3.1. — Let (B,L) be a pair as above.

(1) Any embedding in A is equivalent to an embedding which is standard with respect

to the pair (B,L).

(2) Let (K,Λ) be standard with respect to (B,L), and let $ be a uniformizer of D nor-

malizing L. Then conjugation by the diagonal matrix $ · Ir normalizes K and Λ, and any

element of Gal(K/F) is induced by conjugation by a power of $ · Ir.

Proof. — Assertion (2) follows from the fact that the map x 7→ $x$−1, for x ∈ L, is a

generator of the group Gal(L/F). To prove (1), let (E,Λ) be an embedding in A, and set

K = E� (see paragraph 1.3 for the notation). One first notices that one can conjugate the

pair (K,Λ) so that K ⊆ L, which we will assume. Let I be the non-enlarged Bruhat-Tits

building of A× and I ′ be that of the centralizer C× of K× in A×. Since the group C×

identifies with GLr(D
′), where D′ is the centralizer of K in D, the two buildings I and
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I ′ have same dimension r−1. Recall (see [3, Théorème II.1.1]) that there exists a unique

mapping:

j = jK/F : I ′ → I

which is affine and C×-equivariant. Its image is the set of K×-fixed points in I . The basis

B gives rise to an apartment A of I (see e.g. [3, §0]), and points in that apartment are

fixed by diagonal matrices of A× of the form x · Ir, with x ∈ D×. In particular, they are

fixed by K×. It easily follows that there is some apartment A ′ in I ′ such that we have

A = j(A ′).

The affine class of Λ determines a point y of the building I (see [3, I.7]). Since K×

normalizes Λ, this point writes j(x), for some x ∈ I ′. Since C× acts transitively on the

set of all apartments of I ′, and since any point of I ′ is contained in some apartment,

there exists an element h ∈ C× such that h · x ∈ A ′. Its follows that h · y = j(h · x) lies

in A . By [3, Proposition I.2.7], this means that the lattice sequence hΛ is split by the

basis B, i.e. that (hKh−1, hΛ) = (K, hΛ) is standard with respect to the pair (B,L), as

required.

Remark 3.2. — We can rephrase Assertion (1) of the above lemma by saying that, for

any embedding (E,Λ) in A, there is g ∈ A× such that (E�,Λ) is standard with respect to

the pair (gB, gLg−1).

If one writes NA×(K) for the normalizer of K in A×, Assertion (2) can also be rephrased

by saying that conjugation induces a surjective group homomorphism from the intersection

K(Λ)∩NA×(K) onto Gal(K/F). With the notation of the proof of Lemma 3.1, the kernel

of this homomorphism is K(Λ) ∩ C×.

3.2. We will also need the following result, which generalizes [6, Lemma 1.6].

Proposition 3.3. — Let Λ be an OD-lattice sequence on V and E/F a finite extension.

Suppose that there are two homomorphisms ϕi : E→ A of F-algebras, i = 1, 2, such that

the pairs (ϕ1(E),Λ) and (ϕ2(E),Λ) are two equivalent embeddings in A. Then there is an

element u ∈ K(Λ) such that:

(3.1) ϕ1(x) = uϕ2(x)u−1, x ∈ E.

Remark 3.4. — In particular, if K denotes the maximal unramified extension of F con-

tained in E, then u conjugates ϕ2(K) to ϕ1(K).
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Proof. — Since the embeddings (ϕ1(E),Λ) and (ϕ2(E),Λ) are equivalent, there exists an

element g ∈ K(Λ) such that ϕ1(E�) = gϕ2(E�)g−1. Then the mapping:

(3.2) x 7→ gϕ2(ϕ−1
1 (x))g−1

is an F-automorphism of ϕ1(E�). By Lemma 3.1(2), there is h ∈ K(Λ) such that this F-

automorphism is equal to x 7→ hxh−1. We thus have ϕ1(x) = wϕ2(x)w−1, for all x ∈ E�,

where w = h−1g. So replacing ϕ2 by a K(Λ)-conjugate, one may reduce to the case where

ϕ1 and ϕ2 coincide on E�. Assume now that we are is this case, and put K = ϕ2(E�). Let

C be the centralizer of K in A, and write C for the intersection of A = A(Λ) with C.

Lemma 3.5. — There is u ∈ U(C) such that (3.1) holds.

Proof. — We fix an unramified extension L of K such that the degree of L/F is equal

to the reduced degree of D over F, denoted d. The L-algebra C = C ⊗K L is thus split

and, as E/K has residue class degree prime to d, the L-algebra E⊗K L is an extension of

L, denoted E. For each i, the K-algebra homomorphism ϕi extends to a homomorphism

of L-algebras E → C, still denoted ϕi. By applying [6, Lemma 1.6] with the OL-order

C = C⊗OK
OL and the homomorphisms of L-algebras ϕ1 and ϕ2, we get u ∈ U(C) satisfying

(3.1). If we write B for the centralizer of ϕ2(E) in C, then the 1-cocycle σ 7→ u−1σ(u)

defines a class in the Galois cohomology set:

H1(Gal(L/K),U(C) ∩ B×).

This cohomology set is trivial by a standard filtration argument. (For more detail, see e.g.

[5, §6].) Hence we actually may choose u in U(C), which ends the proof of the lemma.

Proposition 3.3 follows immediately from Lemma 3.5.

Remark 3.6. — The conclusion of Proposition 3.3 does not hold if the pairs (ϕ1(E),Λ)

and (ϕ2(E),Λ) are not assumed to be equivalent in A. For instance, take A = M2(D) where

D is a quaternionic algebra over F, and let E/F be an unramified quadratic extension.

One may embed E in M2(F) so that the multiplicative group of the image normalizes the

order M2(OF). This gives an embedding ϕ1 of E in A = M2(D) = M2(F)⊗F D, such that

ϕ1(E×) normalizes M2(OD) = M2(OF)⊗OF
OD. One also may embed E in D. The diagonal

embedding of D in A gives rise to a second embedding ϕ2 such that ϕ2(E×) normalizes

M2(OD). Take Λ to be a strict lattice sequence in D×D defining the order A = M2(OD),

so that:

K(Λ) = K(A) = 〈$〉 · U(A),
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where $ denotes a uniformizer of D and 〈$〉 the subgroup generated by $. One can

check that the pairs (ϕi(E),Λ), i = 1, 2, are inequivalent. Assume for a contradiction that

there is an element u ∈ K(A) such that ϕ1(E) = uϕ2(E)u−1, and write P for the radical of

A. For i = 1, 2, the map ϕi induces an embedding of the residue field kE in the kF-algebra

A/P, which is isomorphic to M2(kD), and the images ϕi(kE), i = 1, 2, are conjugate under

the action of u on the quotient A/P. But this action stabilizes the centre of M2(kD) and

ϕ2(kE) lies in this centre. This implies that ϕ1(kE) is central: a contradiction.

3.3. We now prove the “intertwining implies conjugacy” property for simple strata, that

is, Proposition 1.9. For i = 1, 2, let [Λ, n,m, βi] a simple stratum in A. Assume that

they intertwine in A and have the same embedding type, and write Ki for the maximal

unramified extension of F contained in Ei = F(βi). By Remark 3.4, we may replace β2 by

some K(Λ)-conjugate and assume that K1 and K2 are equal to a common extension K of

F. We write NA×(K) for the normalizer of K in A×. Therefore, we are reduced to proving

that there is an element u ∈ K(Λ) ∩ NA×(K) such that we have β1 − uβ2u
−1 ∈ P−m(Λ).

We proceed as in the proof of proposition 1.7 (see paragraph 2.6). Let us fix a simple

right E1⊗FD-module S and set A(S) = EndD(S). Let us denote by ρ1 the natural F-algebra

homomorphism E1 → A(S). We write S for the unique (up to translation) E1-pure strict

OD-lattice sequence on S and fix an F-algebra homomorphism ρ2 : E2 → A(S) such that

S is ρ2(E2)-pure, and such that (ρ1(E1),S) and (ρ2(E2),S) have the same embedding

type in A(S) (see Lemma 2.11). We also fix a decomposition:

(3.3) V = V1 ⊕ · · · ⊕ Vl

of V into simple right K(β) ⊗F D-modules (which all are copies of S) such that Λ is de-

composed by (3.3) in the sense of [22, Définition 1.13], that is, Λ is the direct sum of the

lattice sequences Λj = Λ ∩ Vj, for j ∈ {1, . . . , l}. By choosing, for each j, an isomor-

phism of K(β)⊗F D-modules between S and Vj, this decomposition gives us an F-algebra

homomorphism:

ι : A(S)→ A.

Using Lemma 2.14, we may assume that this homomorphism satisfies ι(ρ1(β1)) = β1.

For each i ∈ {1, 2}, let (k, βi) be the simple pair of which [Λ, n,m, βi] is a realization.

By putting n0 = nF(βi) and m0 = eρi(βi)(S)k, which do not depend on i by Proposition

2.10, we get a simple stratum [S, n0,m0, ρi(βi)] which is a realization of (k, βi) in A(S).

The proof of [5, Theorem 4.1.2] (see also [17, Lemma 10.5]) gives us an element v ∈ K(S)

such that ρ1(K) = vρ2(K)v−1 and β1 − vβ2v
−1 ∈ P−m0(S). By Proposition 3.3, there is
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w ∈ K(Λ) such that ι(ρ2(x)) = wxw−1 for all x ∈ E2, and, by Remark 3.4, this element

satisfies wKw−1 = ι(ρ2(K)). Thus u = ι(v)w normalizes K and Λ and satisfies the required

condition:

β1 − uβ2u
−1 ∈ P−eβi (Λ)k(Λ) ⊆ P−m(Λ),

which ends the proof of Proposition 1.9.

4. Realizations and intertwining for simple characters

The two main results of this section are Propositions 4.9 and 4.11. The first one asserts

that two endo-equivalent ps-characters have realizations with very special properties, al-

lowing us to use the results of [17]. The second one leads to the rigidity theorem 4.16,

and will also give us an important property of the base change map in paragraph 7.2.

4.1. In this paragraph, we generalize the construction given in paragraph 2.7 by incor-

porating the notion of embedding type. For this, we will need the following definition.

Let [Λ, n,m, β] be a simple stratum in A, which is a realization of a simple pair (k, β)

over F, and set E = F(β). The containment of OE in A(Λ) allows us to identify the residue

field k = kE� with its canonical image in the kF-algebra A = A(Λ)/P(Λ).

Definition 4.1. — The Fröhlich invariant of [Λ, n,m, β] is the degree over kF of the

intersection of k with the centre of A.

Recall that this invariant has been introduced by Fröhlich (see [15]) for sound strata.

In this case, we have the following important property.

Theorem 4.2 ([15], Theorem 2). — For i = 1, 2, let (Ki,Λ) be a sound embedding in

A where Ki/F is an unramified extension contained in A. These embeddings are equivalent

if and only if [K�1 : F] = [K�2 : F] and they have the same Fröhlich invariant.

We will need the two following lemmas.

Lemma 4.3. — Let us fix an integer l > 1, an OD-lattice sequence Λ′ and an integer m′

as in paragraph 2.2, and let us form the simple stratum [Λ′, n′,m′, β] in A′. The simple

strata [Λ, n,m, β] and [Λ′, n′,m′, β] have the same Fröhlich invariant.

Proof. — Let us identify A′ with the matrix algebra Ml(A), and write j for the kF-algebra

homomorphism k→ A′ = A(Λ′)/P(Λ′) induced by the embedding of OE in A(Λ′) (which is

the restriction to OE of the diagonal embedding of E in A′). By a direct computation, we

see that the diagonal blocks of A(Λ′) are equal to A(Λ), and that of its radical P(Λ′) are
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equal to P(Λ). This is enough to prove that j(x) is central in A′ if and only if x is central

in A. Thus the strata [Λ, n,m, β] and [Λ′, n′,m′, β] have the same Fröhlich invariant.

Lemma 4.4. — We set Λ′ = Λ⊕ Λ and m′ = m (thus l = 2). There exists an element

u ∈ A′× such that Λ′ is uF(β)u−1-pure and the simple stratum [Λ′, n,m, uβu−1] in A′ has

Fröhlich invariant 1.

Proof. — We fix a D-basis B of V, a maximal unramified extension L of F contained in D

and a uniformizer $ of D normalizing L (see paragraph 3.1). According to Lemma 3.1, we

may identify A with Mr(D) and assume that the embedding (E�,Λ) is in standard form

with respect to (B,L). The map ϕ : x 7→ $x$−1 defines a generator of Gal(E�/F), and

thus induces on the residue field k = kE� a generator of Gal(k/kF), denoted σ. We write

j for the kF-algebra homomorphism from k to A induced by ϕ, which is the composite of

σ with the canonical embedding of k in A. Thus, one has j(x) = x if and only if x ∈ kF.

We now set:

u =

(
Ir 0

0 $ · Ir

)
∈ M2(A) = A′.

If one identifies the kF-algebra A′ = A(Λ′)/P(Λ′) with M2(A), then the kF-algebra homo-

morphism j′ from k to A′ induced by x 7→ uxu−1 is given by:

x 7→

(
x 0

0 j(x)

)
.

Therefore, j′(x) is central in A′ if and only if x = j(x) is central in A, that is, if and only

if x ∈ kF.

This leads us to the following result. For i = 1, 2, let (k, βi) be a simple pair over F, let

[Λ, ni,mi, ϕi(βi)] be a realization of (k, βi) in A and let θi ∈ C(Λ,mi, ϕi(βi)) be a simple

character.

Proposition 4.5. — Assume θ1 and θ2 intertwine in A×. Then there is a simple central

F-algebra A′ together with realizations [Λ′, ni,mi, ϕ
′
i(βi)] of (k, βi) in A′ (with the same ni

and mi), with i = 1, 2, which are sound and have the same embedding type, and such that

θ′1 and θ′2 intertwine in A′×, where θ′i ∈ C(Λ′,mi, ϕ
′
i(βi)) denotes the transfer of θi.

Proof. — First, we reduce to the case where the strata [Λ, ni,mi, ϕi(βi)] have Fröhlich

invariant 1. Let g ∈ A× intertwine the characters θ1 and θ2 as in (1.7). We set Λ′ = Λ⊕Λ

and A′ = M2(A) and, for each i, we fix an element ui ∈ A′× as in Lemma 4.4 so that

the simple stratum [Λ′, ni,mi, uiϕi(βi)u
−1
i ] has Fröhlich invariant 1. For each i, let θ′i be

the transfer of θi in C(Λ′,mi, ϕi(βi)), and let θ′′i be that of θi in C(Λ′,mi, uiϕi(βi)u
−1
i ),
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which is equal to the conjugate character x 7→ θ′i(u
−1
i xui). By the proof of Proposition

2.6, the element g′ = ι(g) ∈ A′× intertwines θ′1 and θ′2, where ι denotes the diagonal

embedding of A in A′, and it follows that g′′ = u−1
1 g′u2 intertwines θ′′1 and θ′′2 . Thus we

can assume that the strata [Λ, ni,mi, ϕi(βi)] have Fröhlich invariant 1. Using Proposition

2.17 (with some suitable integer l > 1) and Lemma 4.3 together, we see that the simple

strata [Λ‡, ni,mi, ϕi(βi)] are sound with Fröhlich invariant 1. By Theorem 4.2, they have

the same embedding type. Let θ‡i be the transfer of θi in C(Λ‡,mi, ϕi(βi)). The fact that

θ‡1 and θ‡2 intertwine in A‡× follows from Proposition 2.6.

Remark 4.6. — The assumption [F(β1) : F] = [F(β2) : F] is not needed in the proof.

4.2. Before proving the first main result of this section, that is Proposition 4.9, we will

need the following lemmas. Compare the first one with Proposition 2.10.

Lemma 4.7. — For i = 1, 2, let (Θi, k, βi) be a ps-character over F, and suppose that

Θ1 and Θ2 are endo-equivalent. Then nF(β1) = nF(β2), eF(β1) = eF(β2), fF(β1) = fF(β2)

and kF(β1) = kF(β2).

Proof. — By assumption, we have [F(β1) : F] = [F(β2) : F] and there is a simple central

F-algebra A together with realizations [Λ, ni,mi, βi] of (k, βi), for i = 1, 2, such that the

corresponding simple characters θ1 and θ2 intertwine in A×. By Proposition 4.5, we can

assume that these realizations are sound and have the same embedding type. We now

follow the proof of [6, Proposition 8.4]. An argument similar to the first part of this proof

(which we do not reproduce) gives us n1 = n2, denoted n. Now consider the integers

m1,m2. By symmetry, we can assume that m1 > m2. Let us choose a simple stratum

[Λ, n,m1, γ] in A which is equivalent to [Λ, n,m1, β2] and let θ0 denote the restriction of

θ2 to Hm1+1(γ,Λ). The characters θ0 and θ1 still intertwine, which implies, by the “inter-

twining implies conjugacy” theorem [17, Corollary 10.15], the existence of u ∈ K(Λ) such

that C(Λ,m1, β1) = C(Λ,m1, uγu
−1). By Proposition 1.17, we get:

(4.1) kF(β1) = kF(γ), [F(β1) : F] = [F(γ) : F].

By [5, Theorem 5.1(ii)], the equality [F(β2) : F] = [F(γ) : F] implies that [Λ, n,m1, β2] is a

simple stratum in A. By Theorem 1.16, we get eF(β1) = eF(β2) and fF(β1) = fF(β2), and

(4.1) gives us kF(β1) = kF(β2). The remaining equality is a consequence of the identity

ni = eβi(Λ)nF(βi).

Corollary 4.8. — Theorem 1.13 implies Theorems 1.11 and 1.12.
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Proof. — For i = 1, 2, let (Θi, k, βi) be a ps-character over F, and suppose that Θ1 and Θ2

are endo-equivalent. Let A be a simple central F-algebra. For each i, let [Λ, ni,mi, ϕi(βi)]

be a realization of (k, βi) in A, and put θi = Θi(Λ,mi, ϕi). Write n = ni and:

m = eϕi(βi)(Λ)k,

which do not depend on i by Lemma 4.7. As m1,m2 > m, we may assume without loss

of generality that m1 = m2 = m. Let us fix an F-algebra homomorphism ϕ3 : F(β2)→ A

such that the simple strata [Λ, n,m, ϕ1(β1)] and [Λ, n,m, ϕ3(β2)] have the same embedding

type, and let θ3 denote the transfer of θ2 in C(Λ,m, ϕ3(β2)). According to Theorem 1.13,

there is an element u ∈ K(Λ) such that θ3(x) = θ1(uxu−1) for all x ∈ Hm+1(ϕ3(β2),Λ) and,

by the Skolem-Noether theorem, there is an element g ∈ A× such that ϕ3(x) = gϕ2(x)g−1.

Thus g intertwines θ3 and θ2, which proves that θ1 and θ2 intertwine in A× and ends the

proof of Theorem 1.11.

Assume now that the strata [Λ, n,m, ϕi(βi)], i = 1, 2 have the same embedding type.

Then applying Theorem 1.13 gives immediately Theorem 1.12.

We are thus reduced to proving Theorem 1.13, which will be done in section 8. For this

we will have to develop base change methods (see sections 5, 6 and 7). We now state and

prove the first main result of this section.

Proposition 4.9. — For i = 1, 2, let (Θi, k, βi) be a ps-character over F, and suppose

that Θ1 and Θ2 are endo-equivalent. Write Ki for the maximal unramified extension of F

contained in F(βi). Then there exists a simple central F-algebra A together with realiza-

tions [Λ, n,m, ϕi(βi)] of (k, βi), for i = 1, 2, which are sound and have the same embedding

type, and such that:

(1) m is a multiple of k;

(2) ϕ1(K1) = ϕ2(K2);

(3) Θ1(Λ,m, ϕ1) = Θ2(Λ,m, ϕ2).

Proof. — By Proposition 4.5, there is a simple central F-algebra A together with realiza-

tions [Λ, ni,mi, ϕi(βi)] of (k, βi), for i = 1, 2, sound and having the same embedding type,

such that θ1 = Θ1(Λ,m1, ϕ1) and θ2 = Θ2(Λ,m2, ϕ2) intertwine in A×. By Lemma 4.7,

we have n1 = n2, and the integer m = eϕi(βi)(Λ)k does not depend on i.

Lemma 4.10. — For each i, there exists a unique ϑi ∈ C(Λ,m, ϕi(βi)) extending θi, and

the characters ϑ1 and ϑ2 intertwine in A×.
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Proof. — The proof is similar to that of [10, Lemma 3.6.7] and [6, Lemma 8.5] together.

One just has to replace Corollary 3.3.21 of [10] by Proposition 2.16 of [24], and Theorems

3.5.8, 3.5.9 and 3.5.11 of [10] by Corollary 10.15 and Propositions 9.9 and 9.10 of [17].

Therefore we can assume that m1,m2 are both equal to m. The result now follows from

the “intertwining implies conjugacy” theorem [17, Corollary 10.15].

4.3. We now assume that we are in the situation of paragraph 2.4. Let us fix two simple

strata [Λ, n,m, βi], i = 1, 2, in A. We set n′ = an and fix a non-negative integer m′ such

that bm′/ac = m, so that we have simple strata [Λ′, n′,m′, βi], i = 1, 2, in A′, where Λ′ is

defined by (2.2). We fix a simple character θi in C(Λ,m, βi) and write θ′i for its transfer

in C(Λ′,m′, βi). The aim of this paragraph is to prove the following proposition, which is

the second main result of this section.

Proposition 4.11. — Assume that θ1 and θ2 are equal. Then θ′1 and θ′2 are equal.

Proof. — We first prove the following lemma, which generalizes [10, Theorem 3.5.9] and

[17, Proposition 9.10] (see also [13, Lemme 7.9], which gives a similar result in the split

case for semisimple characters and whose proof we follow).

Lemma 4.12. — Assume that m > 1, and that C(Λ,m, β1) ∩ C(Λ,m, β2) is not empty.

Then we have Hm(β1,Λ) = Hm(β2,Λ).

Proof. — We put ν = 2m − 1 and, for i = 1, 2, we choose a simple stratum [Λ, n, ν, γi]

equivalent to [Λ, n, ν, βi] in A. Then, for each i = 1, 2, we have C(Λ, ν, βi) = C(Λ, ν, γi)

and, from [24, Proposition 2.15], we have Hm(βi,Λ) = Hm(γi,Λ). Since the restriction of

a simple character to Hν+1(β1,Λ) = Hν+1(β2,Λ) is still a simple character, the intersection

C(Λ, ν, γ1)∩C(Λ, ν, γ2) is not empty. By computing the intertwining of an element of this

intersection via the formula of [24, Théorème 2.23], we get:

Ωq1−ν(γ1,Λ)B×γ1Ωq1−ν(γ1,Λ) = Ωq2−ν(γ2,Λ)B×γ2Ωq2−ν(γ2,Λ)

with the notations of loc. cit. and where, for each i = 1, 2, we write Bγi for the centralizer

of F(γi) in A and qi = −k0(γi,Λ). Taking the intersection with Pm(Λ) and then its

additive closure, we find that the following set:

(4.2) Qi
m + (Pqi−ν(Λ) ∩ n−ν(γi,Λ))Qi

m + Qi
mJ
dqi/2e(γi,Λ),

is independent of i, where we have put Qi
m = Pm(Λ) ∩ Bγi and where the notations Jk

and Hk, for k > 0, are defined in [24, §2.4]. We claim that the set in (4.2) is contained
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in Hm(γi,Λ) = Hm(βi,Λ). For then, adding Hm+1(γi,Λ) = Hm+1(βi,Λ), which is also

independent of i, we see that:

Hm(βi,Λ) = Hm(γi,Λ) = Qi
m + Hm+1(γi,Λ)

is independent of i, as required. We need the following lemma (see [28, Lemma 3.11(i)]).

Lemma 4.13. — Let [Λ, n,m, β] be a simple stratum in A with q = −k0(β,Λ). For each

integer 1 6 k 6 q − 1, we have:

(n−k(β,Λ) ∩Pq−k(Λ)) Jdk/2e(β,Λ) ⊆ Hbk/2c+1(β,Λ).

Proof. — We write [Λ̃, n,m, β] for the simple stratum in Ã = EndF(V) associated with

[Λ, n,m, β] (see paragraph 2.1). Then we have:(
n−k(β, Λ̃) ∩Pq−k(Λ̃)

)
Jdk/2e(β, Λ̃) ⊆ Hbk/2c+1(β, Λ̃)

by [28, Lemma 3.11(i)]. By taking the intersection with A, we get the expected result.

We now see that:

(Pqi−ν(Λ) ∩ n−ν(γi,Λ))Qi
m ⊆ (Pqi−ν(Λ) ∩ n−ν(γi,Λ)) Jdν/2e(γi,Λ) ⊆ Hm(γi,Λ).

Similarly, we have:

Qi
mJ
dqi/2e(γi,Λ) ⊆

(
Pqi−(qi−m)(Λ) ∩ nm−qi(γi,Λ)

)
Jd(qi−m)/2e(γi,Λ) ⊆ Hb(qi−m)/2c+1(γi,Λ).

Since the left hand side here is clearly also contained in Pm(Λ), we see that it is contained

in Hm(γi,Λ) as required. This also completes the proof of Lemma 4.12.

For each i, write Θi for the ps-character defined by the pair ([Λ, n,m, βi], θi), and recall

that θ1 and θ2 are equal.

Lemma 4.14. — We have eF(β1) = eF(β2) and fF(β1) = fF(β2).

Proof. — By Proposition 4.5, there is a simple central F-algebra A together with real-

izations [Λ0, n,m, ϕ0
i (βi)] of (k, βi), with i = 1, 2, which are sound and have the same

embedding type, and such that Θ1(Λ0,m, ϕ0
1) and Θ2(Λ0,m, ϕ0

2) intertwine in A0×. Let

us write f for the greatest common divisor of fF(β1) and fF(β2) and Ki for the maxi-

mal unramified extension of F contained in F(ϕ0
i (βi)). Then Theorem 1.16 gives us the

expected equality.

Thus the ps-characters Θ1 and Θ2 are endo-equivalent, which allows us to use Lemma

4.7.
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Lemma 4.15. — The characters θ′1 and θ′2 are equal if and only if we have:

(4.3) Hm′+1(β1,Λ
′) = Hm′+1(β2,Λ

′).

Proof. — This follows immediately from Lemma 2.7.

Thus we are reduced to proving equality (4.3), and for this, we claim that it is enough

to prove that:

(4.4) Hq′(β1,Λ
′) = Hq′(β2,Λ

′),

where q′ = −k0(βi,Λ
′) is independent of i by Lemma 4.7. Indeed, assume that (4.4) holds,

and let t′ be the smallest integer in {m′, . . . , q′ − 1} such that:

(4.5) Ht′+1(β1,Λ
′) = Ht′+1(β2,Λ

′).

Suppose that t′ 6= m′. By Lemma 4.15, the characters θ′1 and θ′2 agree on (4.5), that is, the

intersection C(Λ′, t′, β1) ∩ C(Λ′, t′, β2) is not empty. By Lemma 4.12, we get an equality

which contradicts the minimality of t′. Hence t′ = m′ and we are thus reduced to proving

(4.4), which we do by induction on β1. Assume first that β1 is minimal over F. Then so

is β2 by Lemma 4.7, so that we have:

Hq′(β1,Λ
′) = Uq′(Λ

′) = Hq′(β2,Λ
′).

Assume now that β1 is not minimal over F, set q = −k0(βi,Λ), which is independent of

i by Lemma 4.7, and choose a simple stratum [Λ, n, q, γi] in A equivalent to the stratum

[Λ, n, q, βi], for each i ∈ {1, 2}. We then have:

Hq′(βi,Λ
′) = Hq′(γi,Λ

′),

and the restriction ϑi = θi | Hq+1(γi,Λ) belongs to C(Λ, q, γi). As βi − γi ∈ P−q(Λ), the

simple characters ϑ1 and ϑ2 are equal. If we write ϑ′i for the transfer of ϑi to the set

C(Λ′, q′, γi), then the inductive hypothesis implies that ϑ′1 = ϑ′2. Therefore, the intersec-

tion C(Λ′, q′, γ1)∩C(Λ′, q′, γ2) is not empty, and Lemma 4.12 gives us the required equality

(4.4). This ends the proof of Proposition 4.11.

4.4. Before closing this section, we prove the following rigidity theorem for simple char-

acters, which generalizes [10, Theorem 3.5.8] and [17, Proposition 9.9] to simple charac-

ters in non-necessarily split simple central F-algebras with non-necessarily strict lattice

sequences.
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Theorem 4.16. — For i = 1, 2, let [Λ, n,m, βi] be a simple stratum in a simple central

F-algebra A. Assume that the intersection C(Λ,m, β1) ∩ C(Λ,m, β2) is not empty. Then

we have C(Λ,m, β1) = C(Λ,m, β2).

Proof. — For each i ∈ {1, 2}, we fix a simple character θi ∈ C(Λ,m, βi) and assume that

θ1 and θ2 are equal. In particular, we have:

(4.6) Hm+1(β1,Λ) = Hm+1(β2,Λ).

By choosing an integer l as in Proposition 2.17, we have sound simple strata [Λ‡, n,m, βi],

i = 1, 2, in A‡. If we write θ‡i for the transfer of θi to C(Λ‡,m, βi), then it follows from

Proposition 4.11 that the simple characters θ‡1 and θ‡2 are equal, hence that the intersection

C(Λ‡,m, β1)∩C(Λ‡,m, β2) is not empty. By Proposition 1.17, the sets C(Λ‡,m, βi), i = 1, 2,

are equal. As the transfer map from C(Λ‡,m, βi) to C(Λ,m, βi) is the restriction map from

Hm+1(βi,Λ
‡) to Hm+1(βi,Λ), the equality (4.6) implies that C(Λ,m, β1) = C(Λ,m, β2).

It is natural to ask whether the simple strata [Λ, n,m, βi] in Theorem 4.16 have the

same embedding type. We have the following conjecture(1).

Conjecture 4.17. — For i = 1, 2, let [Λ, n,m, βi] be a simple stratum in a simple central

F-algebra A. Assume that the intersection C(Λ,m, β1)∩C(Λ,m, β2) is not empty, and that

Λ is strict. Then these simple strata have the same embedding type.

Note that we know from [5, Lemma 5.2] that two equivalent simple strata (with respect

to a strict lattice sequence) have the same embedding type.

In the case where the strata are sound, we will prove below that this conjecture is true.

First we need a series of lemmas.

Lemma 4.18. — Let E/F be a finite extension with ramification index e, contained in a

simple central F-algebra A, and let B be a principal OE-order of period r in the centralizer

B of E in A. Write A ' Mk(D) for some k > 1 and some F-division algebra D, and write

d for the reduced degree of D over F.

(1) There exists a unique E-pure hereditary OF-order A in A such that B = A∩B and

K(B) = K(A) ∩ B×, and such an order is principal.

(2) The period of A is equal to re/(re, d), where (re, d) denotes the greatest common

divisor of re and d.

(1)This conjecture — and an even more general statement — is proven in [25, Lemma 3.5].
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Proof. — The first part is given by [16, Corollary 1.4(ii)]. Part (2) follows for instance

from the formula given in the proof of [24, Théorème 1.7].

In other words, there exists a unique hereditary OF-order A in A such that A∩B = B

and that (E,A) is a sound embedding in A.

Lemma 4.19. — For i = 1, 2, let Ei be an extension of F contained in A and let A be a

hereditary OF-order in A such that (Ei,A) is a sound embedding in A. Write Bi for the

intersection of A with the centralizer of Ei in A. Let f be the greatest common divisor of

f(E1 : F) and f(E2 : F), and for each i, let Ki be the unramified extension of F of degree

f contained in Ei. Assume E1 and E2 have the same ramification order e and B1 and B2

have the same period r. Then the embeddings (K1,A) and (K2,A) are equivalent in A.

Proof. — Let Ci denote the intersection of A with the centralizer Ci of Ki in A. If we

write Bi for the centralizer of Ei in A, then we have Bi = Ci∩Bi and K(Bi) = K(Ci)∩B×i .

Using Lemma 4.18, the period of Ci is equal to re/(re, di), where di is the reduced degree

of the Ki-division algebra Di such that Ci is isomorphic to Mki(Di) for some ki > 1. Using

for instance [29], we have di = d/(d, f), which does not depend on i. By the Skolem-

Noether theorem, there is g ∈ A× such that gK1g
−1 = K2. Thus gC1g

−1 and C2 are two

principal OK2-orders in C2 with the same period, which implies that there exists h ∈ C×2
such that gC1g

−1 = hC2h
−1. Let us write u = h−1g. Using the unicity property (1) of

Lemma 4.18, we get A = u−1Au, that is u ∈ K(A).

We now prove Conjecture 4.17 in the case where the strata are sound.

Proposition 4.20. — For i = 1, 2, let [Λ, n,m, βi] be a sound simple stratum in a simple

central F-algebra A. Assume that the intersection C(Λ,m, β1)∩ C(Λ,m, β2) is not empty.

Then these simple strata have the same embedding type.

Proof. — For each i, we fix a simple character θi ∈ C(Λ,m, βi) and assume θ1 and θ2 are

equal. Thus we have [F(β1) : F] = [F(β2) : F] by Proposition 1.17. By Lemma 4.7, we

also have eF(β1) = eF(β2) and fF(β1) = fF(β2). If we write IU(Λ)(θi) for the intertwining

of θi in U(Λ), then [20, Théorème 3.50] gives us:

IU(Λ)(θi)U
1(Λ)/U1(Λ) ' U(Bi)/U

1(Bi),

where Bi is the intersection of A = A(Λ) with the centralizer of βi in A. As the stratum

[Λ, n,m, βi] is sound, Bi is a principal OF(βi)-order. Thus there are a finite extension ki of

kF and two positive integers ri, si > 1 such that:

U(Bi)/U
1(Bi) ' GLsi(ki)

ri .



36 P. BROUSSOUS, V. SÉCHERRE & S. STEVENS

Since it does not depend on i, we have r1 = r2. Now write Ki for the maximal unramified

extension of F contained in F(βi). Using Lemma 4.19 with Ei = F(βi), we deduce that

the embeddings (K1,A) and (K2,A) are equivalent in A.

5. The interior lifting

In this section, we develop an interior lifting process for simple strata and characters

with respect to a finite unramified extension K of F, in a way similar to [6] and [17]. The

situation in [6] is somewhat more general than ours, since the authors only assume K/F

to be tamely ramified, but is only concerned with simple strata and characters in split

simple central F-algebras attached to strict lattice sequences. The situation in [17] deals

with any simple central F-algebra, but puts an unnecessarily restrictive condition on the

simple strata (they are supposed to be sound).

5.1. Let A be a simple central F-algebra and K/F be a finite unramified extension cont-

ained in A. Let C denote the centralizer of K in A. We fix a simple left A-module V and

a simple left C-module W. The following definition extends [6, Definition 2.2] to strata

with non-necessarily strict lattice sequences.

Definition 5.1. — A stratum [Λ, n,m, β] in A is said to be K-pure if it is pure, if β

centralizes K and if the algebra K[β] is a field such that K[β]× normalizes Λ.

Given a K-pure stratum [Λ, n,m, β] in A, we can form the pure stratum [Γ, n,m, β],

where Γ is the unique (up to translation) lattice sequence on W defined by:

(5.1) Pk(Λ) ∩ C = Pk(Γ), k ∈ Z.

Note that the C×-normalizer of Γ is equal to K(Λ) ∩ C×. We then get a process:

(5.2) [Λ, n,m, β] 7→ [Γ, n,m, β]

giving an injection, respecting equivalence, between the set of K-pure strata of A and the

set of pure strata of C. The fact that Γ is defined only up to translation makes (5.2) not

well defined, but this will be of no importance in the sequel. We now discuss the image

of simple K-pure strata of A by (5.2).

Proposition 5.2. — (1) Let [Λ, n,m, β] be a K-pure stratum in A. Then:

(5.3) k0(β,Γ) 6 k0(β,Λ).

(2) Suppose moreover that [Λ, n,m, β] is simple. Then the stratum [Γ, n,m, β] given by

the map (5.2) is simple.



SMOOTH REPRESENTATIONS OF GLm(D), V 37

Proof. — As K is unramified over F, the lattice sequences Λ and Γ have the same period

over OF. By (1.4) it is then enough to prove that kK(β) 6 kF(β). Let L denote the strict

OF-lattice sequence on K(β) defined by i 7→ piK(β). By [6, Theorem 2.4], we have:

kK(β) 6 k0(β,L).

On the other hand, we have eβ(L) = 1 as K is unramified over F. By (1.4) again, we get

the expected result. Suppose now that the stratum [Λ, n,m, β] is simple. Then the fact

that [Γ, n,m, β] is simple derives immediately from (5.3).

Remark 5.3. — For a case where the map (5.2) is not surjective, see [24, Exemple 1.6].

Compare with the split case [6, (2.3)].

5.2. Given a simple stratum [Γ, n,m, β] in C in the image of (5.2), the K-pure stratum

of A corresponding to it may not be simple. However, we have the following result, which

generalizes [6, Corollary 3.8].

Proposition 5.4. — Let [Λ, n,m, β] be a K-pure stratum in A such that [Γ, n,m, β] is

simple. Then there exists a simple stratum [Γ, n,m, β′] in C equivalent to [Γ, n,m, β] such

that the stratum [Λ, n,m, β′] is simple.

Moreover, β′ can be chosen such that the maximal unramified extension of F contained

in F(β′) is contained in that of F(β).

Proof. — Let (k, β) denote the simple pair over K of which [Γ, n,m, β] is a realization, fix

a simple right K(β)⊗F D-module S and set A(S) = EndD(S). Write ρ for the natural K-

algebra homomorphism from K(β) to A(S). Let S denote the unique (up to translation)

ρ(K(β))-pure strict OD-lattice sequence on S and n0 the S-valuation of ρ(β), and set:

m0 = eρ(β)(S)k,

so that [S, n0,m0, ρ(β)] is a K-pure stratum in A(S). Write C(S) for the centralizer of

K in A(S), fix a simple left C(S)-module T and let [T, n0,m0, ρ(β)] be the stratum in

C(S) attached to [S, n0,m0, ρ(β)] by (5.2). This stratum is a realization of (k, β) in C(S),

hence this is a simple stratum. According to [6, Theorem 3.7], the simple pair (k, β) is

endo-equivalent to a simple pair (k, α) over K which is a K/F-lift of some simple pair over

F in the sense of [6] (see paragraph 3). By [6, Proposition 1.10], the extensions K(α) and

K(β) have the same ramification index and residue class degree over K, which implies by

[5, Corollary 3.16] that there is a realization [T, n0,m0, ϕ(α)] of (k, α) in C(S), having the

same embedding type as [T, n0,m0, ρ(β)].
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We now pass to the strata [T̃, n0,m0, ϕ(α)] and [T̃, n0,m0, ρ(β)] in the K-algebra

EndK(T) (see paragraph 2.1). By [24] (see Théorème 1.7 and Remarque 1.8), the lattice

sequence T (and thus T̃) is in the affine class of a strict lattice sequence, so that, up to

renormalization, one may consider it as being strict (see Lemma 2.2). By [6, Proposition

1.10], these strata thus intertwine. Hence, using Proposition 2.13, we can replace ϕ by

some K(T)-conjugate and assume that the strata [T, n0,m0, ϕ(α)] and [T, n0,m0, ρ(β)]

are equivalent, and that the maximal unramified extension of K contained in K(ϕ(α)) is

equal to that of K(ρ(β)). We check that the stratum [S, n0,m0, ϕ(α)] is simple as in the

proof of [6, Proposition 4.3]. We now fix a decomposition:

(5.4) V = V1 ⊕ · · · ⊕ Vl

of V into simple right K(β) ⊗F D-modules (which all are copies of S) such that Λ is de-

composed by (5.4) in the sense of [22, Définition 1.13], that is, Λ is the direct sum of the

lattice sequences Λj = Λ ∩ Vj, for j ∈ {1, . . . , l}. By choosing, for each j, an isomor-

phism of K(β)⊗F D-modules between S and Vj, this decomposition gives us an F-algebra

homomorphism:

ι : A(S)→ A.

Using Lemma 2.14, we may assume that this homomorphism satisfies ι(ρ(β)) = β. If we

set β′ = ι(ϕ(α)), then the stratum [Γ, n,m, β′] is simple and satisfies the conditions of the

first part of Proposition 5.4.

In particular, the pure strata [Λ, n,m, β] and [Λ, n,m, β′] are equivalent, and the second

one is simple. By replacing the lattice sequence Λ by Λ† (see paragraph 2.5), we can

apply [5, Theorem 5.1(ii)] and thus get that fF(β′) divides fF(β). Moreover, the maximal

unramified extension of K contained in K(β′) is equal to that of K(β), denoted L. As K/F

is unramified, the extension L/F is unramified. Thus the maximal unramified extension of

F contained in F(β′) and that of F(β) are two finite unramified extensions of F contained

in L. According to the condition on their degrees, it follows that the maximal unramified

extension of F contained in F(β′) in contained in that of F(β).

5.3. Let [Λ, n,m, β] be a K-pure simple stratum in A, and let [Γ, n,m, β] be the stratum

in C given by the map (5.2), which is simple by Proposition 5.2. Recall that one attaches

to these simple strata compact open subgroups Hm+1(β,Λ) of A× and Hm+1(β,Γ) of C×,

respectively.



SMOOTH REPRESENTATIONS OF GLm(D), V 39

Proposition 5.5. — Let [Λ, n,m, β] be a K-pure simple stratum in A, and let [Γ, n,m, β]

correspond to it by (5.2). Then we have:

Hm+1(β,Λ) ∩ C× = Hm+1(β,Γ).

Proof. — It is enough to prove it when m = 0. The proof is by induction on β. Let R

denote the centralizer of K(β) in A. Assume first that β is minimal over F, so that:

H1(β,Λ) = (U1(Λ) ∩ B×)Ubn/2c+1(Λ).

According to (5.1), we get:

H1(β,Λ) ∩ C× = (U1(Γ) ∩ R×)Ubn/2c+1(Γ),

which is equal to H1(β,Γ) as β is minimal over K by Proposition 5.2. Now assume that β

is not minimal over F, set q = −k0(β,Λ) and r = bq/2c+ 1, and choose a simple stratum

[Γ, n, q, γ] equivalent to [Γ, n, q, β] such that [Λ, n, q, γ] is simple and K-pure, which is

possible thanks to Proposition 5.4. We then have:

H1(β,Λ) = (U1(Λ) ∩ B×)Hr(γ,Λ)

and, if we set q1 = −k0(β,Γ) and r1 = bq1/2c+ 1, we have:

H1(β,Γ) = (U1(Γ) ∩ R×)Hr1(γ,Γ).

As −k0(γ,Γ) > q1 > q, the group Hr(γ,Γ) is equal to (Ur(Γ) ∩ R×)Hr1(γ,Γ). It follows

from (5.1) that the group H1(β,Γ) is equal to the intersection H1(β,Λ) ∩ C×. This ends

the proof of Proposition 5.5.

5.4. We now want to lift simple characters. For this, given a simple stratum [Λ, n,m, β]

in A, we will need a characterization of the set C(Λ,m, β) by induction on β, generalizing

[20, Proposition 3.47] to the case where Λ is non-necessarily strict.

Lemma 5.6. — Let [Λ, n,m, β] be a simple stratum in A and θ be a character of the

group Hm+1(β,Λ), and set q = −k0(β,Λ) and m′ = max{m, bq/2c}. Then θ ∈ C(Λ,m, β)

if and only if it is normalized by K(Λ) ∩ B× and satisfies the following conditions:

(1) if β is minimal over F, then θ | Um′+1(Λ) = ΨA
β and θ | Um+1(Λ) ∩ B× = χ ◦NB/E

for some character χ of 1 + pE (see (1.3) for the definition of ΨA
β );

(2) if β is not minimal over F, and if [Λ, n, q, γ] is simple and equivalent to [Λ, n, q, β]

in A, then θ | Hm′+1(β,Λ) = θ0ΨA
β−γ and θ | Hm+1(β,Λ)∩B× = χ ◦NB/E for some simple

character θ0 ∈ C(Λ,m′, γ) and some character χ of 1 + pE.
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Proof. — The proof is similar to that of [20, Proposition 3.11], and we do not repeat it.

Note that [17, Lemma 1.9] is actually not needed in the proof, and that [12, Corollary 5.3]

has to be replaced by [24, Proposition 1.20] and [10, Proposition 3.3.9] by [20, Proposition

3.30].

Let [Λ, n,m, β] be a simple K-pure stratum in A, and let [Γ, n,m, β] correspond to it

by (5.2). We write C(Γ,m, β) for the set of simple characters attached to [Γ, n,m, β] with

respect to the additive character:

(5.5) ΨK = Ψ ◦ trK/F,

which is trivial on pK but not on OK, as K is unramified over F. Compare the following

theorem with [6, Theorem 7.7] and [17, Proposition 7.1].

Theorem 5.7. — Let [Λ, n,m, β] be a simple K-pure stratum in A, and let [Γ, n,m, β]

correspond to it by (5.2). Then, for any θ ∈ C(Λ,m, β), we have:

θ | Hm+1(β,Γ) ∈ C(Γ,m, β).

Proof. — The proof is by induction on β. Let θK denote the restriction of θ to the group

Hm+1(β,Γ) and R the centralizer of K(β) in A. Assume first that β is minimal over F.

By Proposition 5.2, it is also minimal over K. If m > bn/2c, we have C(Λ,m, β) = {ΨA
β }

and C(Γ,m, β) = {ΨC
β }, where ΨC

β denotes the character of Um+1(Γ) defined by:

ΨC
β : x 7→ ΨK ◦ trC/K(β(x− 1)).

So we just need to prove that:

(5.6) ΨA
β | Um+1(Γ) = ΨC

β ,

which is given by [6, Property (7.6)]. If m 6 bn/2c, then any θ ∈ C(Λ,m, β) extends the

character ΨA
β | Ubn/2c+1(Λ) and its restriction to Um+1(Λ) ∩ B× has the form:

θ | Um+1(Λ) ∩ B× = χ ◦ NB/E

for some character χ of 1 + pE. Therefore the character θK extends ΨC
β | Ubn/2c+1(Γ), and

its restriction to Um+1(Γ) ∩ R× has the form:

θK | Um+1(Γ) ∩ R× = χ ◦ NK(β)/E ◦ NR/K(β).

Finally, the group K(Γ) ∩ R×, which normalizes both θ and the group Hm+1(β,Γ), nor-

malizes θK. It follows from Lemma 5.6 that θK ∈ C(Γ,m, β).

Now assume that β is not minimal over F. We set q = −k0(β,Λ) and r = bq/2c + 1,

and choose a simple stratum [Γ, n, q, γ] equivalent to [Γ, n, q, β] such that [Λ, n, q, γ] is
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simple and K-pure. If m > bq/2c, then any θ ∈ C(Λ,m, β) can be written as θ = θ0ΨA
β−γ

for some simple character θ0 ∈ C(Λ,m, γ). Now we claim that:

(5.7) Hm+1(β,Γ) = Hm+1(γ,Γ).

We write q1 = −k0(β,Γ). If q1 = q, then the equality (5.7) follows by definition. Other-

wise, we have q1 > q by Proposition 5.2. The strata [Γ, n, q, β] and [Γ, n, q, γ] are thus

both simple, and (5.7) follows. We now restrict the character θ to the group given by

(5.7) and get θK = θK
0 ΨC

β−γ, where θK
0 denotes the restriction θ0 | Hm+1(γ,Γ), and this

restriction is in C(Γ,m, γ) by the inductive hypothesis. If q1 = q, then θK is in C(Γ,m, β)

by definition. Otherwise, [Γ, n, q, β] is simple and the result follows from [24, Proposition

2.15]. The case m 6 bq/2c reduces to the previous one exactly as in the minimal case.

6. Interior lifting and transfer

In this section, we define the interior lift of a ps-character. This amounts to studying

the behaviour of the interior lifting process with respect to transfer.

6.1. As in section 5, we are given in this section a simple central F-algebra A and a finite

unramified extension K/F contained in A. We fix a finite unramified extension L of K

such that the L-algebra:

A = A⊗F L

is split. This L-algebra inherits an action of the Galois group of L/F in the obvious way,

and we consider A as being naturally embedded in A by jA : a 7→ a ⊗F 1. We have a

decomposition:

(6.1) K⊗F L = K1 ⊕ · · · ⊕Kf

into simple K⊗F L-modules, where f denotes the degree of K/F. For each i ∈ {1, . . . , f},
we write ei for the minimal idempotent in K ⊗F L corresponding to Ki. The centralizer

of K⊗F L in A, denoted U, is equal to C⊗F L. By identifying it with C⊗K (K⊗F L) and

using (6.1), we get a decomposition:

U = U1 ⊕ · · · ⊕ Uf ,

where the Ki-algebra Ui = eiAei identifies with C⊗K Ki for each i ∈ {1, . . . , f}.

In a similar way, we may consider the centralizer C of K in A as being embedded in

the split L-algebra C = C⊗K L by the K-algebra homomorphism jC : c 7→ c⊗K 1.
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Similarly to the case of simple characters (see paragraph 5.4), we will define the interior

lift of a quasi-simple character by restriction from A to C. For this we need an embedding

of C in A satisfying some conditions with respect to jA and jC (see below), but there is

no canonical such embedding. We choose a set:

(6.2) S = {σ1, . . . , σf} ⊆ Gal(L/F)

of representatives of HomF(K,L) in Gal(L/F), that is a subset of Gal(L/F) such that the

restriction map from L to K induces a bijection from S to HomF(K,L). For simplicity, we

assume that we have ordered the ei’s so that:

(6.3) K1 and L are isomorphic K⊗ L-modules and σi(e
1) = ei for any i ∈ {1, . . . , f}.

This gives us an F-algebra homomorphism:

(6.4) κ : C
'−→ U1 ⊆ U,

and σi ◦ κ is an F-algebra homomorphism from C to Ui for each integer i ∈ {1, . . . , f}.
The following lemma gives us a relationship between (6.4) and the embeddings jA and jC.

Lemma 6.1. — Let jA,C denote the restriction of jA to C, with values in U. Then the

F-algebra homomorphism from C to U defined by:

(6.5) ι = ιS : x 7→ σ1 ◦ κ(x) + · · ·+ σf ◦ κ(x)

satisfies the equality ι ◦ jC = jA,C.

Proof. — We have σi(e
1jA(x)) = eijA(x) for all i ∈ {1, . . . , f} and x ∈ C, which implies

that ι ◦ e1jA,C = jA,C. Note that e1jA,C = jC, so that we get the expected equality.

6.2. Let [Λ, n,m, β] be a simple stratum in A, which is a realization of a simple pair

(k, β) over F. In this paragraph, we assume that Λ is a strict lattice sequence. If we fix a

simple left A-module V, then there is a unique (up to translation) OL-lattice sequence Λ

on V such that:

(6.6) Pk(Λ) = Pk(Λ)⊗OF
OL, k ∈ Z

(see [20, §2.2]). This provides us with a stratum [Λ, n,m, β] in A, called the quasi-simple

L/F-lift of the simple stratum [Λ, n,m, β]. This quasi-simple lift is pure if and only if the

residue class degree of E over F is prime to the degree of L over F, and in this case it is

a simple stratum (ibid.).
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In [20] (see paragraph 3.2.3), one attaches to the stratum [Λ, n,m, β] a compact open

subgroup Hm+1(β,Λ) of A× and a set Q(Λ,m, β) of characters of the group Hm+1(β,Λ),

called quasi-simple characters of level m and depending on an additive character:

(6.7) Ψ : L→ C×

extending the additive character (1.2), being trivial on pL but not on OL. Recall that the

restriction map from Hm+1(β,Λ) to Hm+1(β,Λ) induces a surjective map from Q(Λ,m, β)

to C(Λ,m, β).

Let [Λ′, n′,m′, β] be another realization of (k, β) in a simple central F-algebra A′, with

Λ′ strict. We assume that Λ and Λ′ have the same period and that m = m′ is a multiple

of k. We assume that the extension L/F is chosen such that the L-algebras A and A′ are

both split, and we set:

(6.8) V0 = V ⊕ V′, Λ0 = Λ⊕ Λ′.

Then Λ0 is a strict OL-lattice sequence on the L-vector space V0. Moreover A0 = EndL(V0)

is a split simple central L-algebra, in which E = F(β) is naturally embedded. We write

M for A× × A′× considered as a Levi subgroup of A0×. We have the decomposition:

(6.9) Hm+1(β,Λ0) ∩M = Hm+1(β,Λ)× Hm+1(β,Λ′).

We will need the following characterization of the transfer map.

Proposition 6.2. — Let θ ∈ C(Λ,m, β) and θ′ ∈ C(Λ′,m′, β) be two simple characters.

Assume Λ and Λ′ are strict, have the same period and m = m′ is a multiple of k. Then

θ′ is the transfer of θ if and only if there exists θ0 ∈ Q(Λ0,m, β) such that:

(6.10) θ0 | Hm+1(β,Λ)× Hm+1(β,Λ′) = θ ⊗ θ′.

Proof. — Recall (see [20, §3.3]) that θ and θ′ are transfers of each other if and only if

there exist two quasi-simple characters θ ∈ Q(Λ,m, β) and θ′ ∈ Q(Λ′,m, β), extending θ

and θ′ respectively, which are transfers of each other.

Lemma 6.3. — The map from Q(Λ0,m, β) to Q(Λ,m, β) induced by the restriction from

Hm+1(β,Λ0) to Hm+1(β,Λ) is the transfer.

Proof. — We have a decomposition of the L-algebra E⊗F L into simple E⊗F L-modules

Ej, for j ∈ {1, . . . , s}, where s denotes the greatest common divisor of the degree of L/F

and the residue class degree of E/F. For each j, we write 1j for the minimal idempotent in

E⊗F L corresponding to Ej, as well as Λ0,j for the projection of Λ0 onto V0,j = 1jV0 and

βj for 1jβ. Thus we get a simple stratum [Λ0,j, n,m, βj] in the F-algebra A0,j = 1jA01j
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and, similarly, we get a simple stratum [Λj, n,m, βj] in Aj. By [20, Corollaire 3.34], there

are bijections:

Q(Λ0,m, β)→
s∏
j=1

C(Λ0,j,m, βj), Q(Λ,m, β)→
s∏
j=1

C(Λj,m, βj),

which are compatible with transfer. Therefore, it is enough to prove that, for each j, the

map from C(Λ0,j,m, βj) to C(Λj,m, βj) induced by the restriction from Hm+1(βj,Λ0,j) to

Hm+1(βj,Λj) is the transfer. This is [24, Théorème 2.17].

Assume first that there exists a quasi-simple character θ0 ∈ Q(Λ0,m, β) such that (6.10)

is satisfied, and write θ and θ′ for the restrictions of θ0 to Hm+1(β,Λ) and Hm+1(β,Λ′),

respectively. By Lemma 6.3, these are quasi-simple characters which are transfers of each

other. By (6.10), they extend the simple characters θ and θ′. It follows that θ and θ′ are

transfers of each other.

Conversely, assume that θ and θ′ are transfers of each other. Let θ be a quasi-simple

character in Q(Λ,m, β) extending θ, and let θ0 be its transfer to Q(Λ0,m, β). By Lemma

6.3, the restriction of θ0 to Hm+1(β,Λ′) is the transfer of θ, and thus extends θ′. Therefore,

the identity (6.10) is satisfied.

6.3. Let [Λ, n,m, β] be a K-pure simple stratum in A, and let [Γ, n,m, β] denote the

simple stratum in C associated with [Λ, n,m, β] by (5.2). In this paragraph, we assume

that Λ and Γ are strict lattice sequences.

If we fix a simple left C-module W, we can form the quasi-simple lift [Γ, n,m, β] of the

simple stratum [Γ, n,m, β] with respect to L/K. One attaches to this quasi-simple lift a

compact open subgroup Hm+1(β,Γ) of C× and a set Q(Γ,m, β) of characters of Hm+1(β,Γ)

with respect to the additive character:

(6.11) ΨK = Ψ ◦ (σ1 + · · ·+ σf )

of L, depending on the choice of the set S fixed in (6.2). It is trivial on pL and, thanks to

the condition on S, it extends the character ΨK defined by (5.5); hence it is not trivial on

OL. This comes with a surjective restriction map from Q(Γ,m, β) to C(Γ,m, β).

Lemma 6.4. — The image of Hm+1(β,Γ) by the map ι is contained in Hm+1(β,Λ).

Proof. — First we have to prove that:

κ(Hm+1(β,Γ)) = Hm+1(β,Λ) ∩ U1 = e1Hm+1(β,Λ)e1.
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This follows from the definition of the groups Hm+1(β,Γ) and Hm+1(β,Λ) by induction

on β, and from the fact that e1 commutes to β. According to (6.3), we get:

σi ◦ κ(Hm+1(β,Γ)) = Hm+1(β,Λ) ∩ Ui = eiHm+1(β,Λ)ei

for each i ∈ {1, . . . , f}, and the result follows.

This gives rise to the following result.

Proposition 6.5. — Let θ ∈ C(Λ,m, β) be a simple character, let θ ∈ Q(Λ,m, β) be a

quasi-simple character extending θ, and set:

(6.12) θK(x) = θ(ι(x)), x ∈ Hm+1(β,Γ).

Then θK is a quasi-simple character in Q(Γ,m, β) extending θK = θ | Hm+1(β,Γ).

Proof. — By Lemmas 6.1 and 6.4, the character θK is well defined and extends the simple

character θK. It thus remains to prove that it is in Q(Γ,m, β). The proof is by induction

on β (see [20, Définition 3.22]). Assume first that β is minimal over F. Then it is minimal

over K by Proposition 5.2. If m > bn/2c, the set Q(Λ,m, β) consists of a single element

ΨA
β , which is the character of Um+1(Λ) defined by:

ΨA
β (x) = Ψ ◦ trA/L(β(x− 1)), x ∈ Um+1(Λ),

and the set Q(Γ,m, β) consists of a single element ΨC
β , which is the character of Um+1(Γ)

defined by:

ΨC
β (x) = Ψ ◦ trC/L(β(x− 1)), x ∈ Um+1(Γ).

So we just need to prove that:

(6.13) ΨA
β ◦ ι(x) = ΨC

β (x), x ∈ Um+1(Γ),

which follows from the fact that:

trA/L ◦ ι =

f∑
i=1

trA/L ◦ σi ◦ κ

= (σ1 + · · ·+ σf ) ◦ trA/L ◦ κ = (σ1 + · · ·+ σf ) ◦ trC/L.

If m 6 bn/2c, then θ extends ΨA
β | Ubn/2c+1(Λ) and its restriction to Um+1(Λ) ∩ B

×
has

the form:

(6.14) θ | Um+1(Λ) ∩ B
×

= χ ◦ NB/E⊗FL,

where we write B for the centralizer of E in A and where χ denotes some character of the

subgroup 1 + pE ⊗OL of (E⊗F L)×. Then, if we write R for the centralizer of K(β) in A,
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the character θK extends ΨC
β | Ubn/2c+1(Γ), and its restriction to Um+1(Γ) ∩ R

×
has the

form:

(6.15) θK | Um+1(Γ) ∩ R
×

= χS ◦ NR/K(β)⊗KL

where χS is the product of all the χ ◦ σi’s for all i ∈ {1, . . . , f}, as required.

Assume now that β is not minimal over F. We set q = −k0(β,Λ) and r = bq/2c+1, and

choose a simple stratum [Γ, n, q, γ] equivalent to [Γ, n, q, β] such that [Λ, n, q, γ] is simple

and K-pure. By [5, Theorem 5.1] and Proposition 5.4 together, one may assume that the

maximal unramified extension of F contained in F(γ) is contained in that of F(β), which

implies that the L-canonical decomposition of γ is finer than that of β (see paragraph

2.3.4 and the proof of Lemme 3.16 in [20]). If m > bq/2c, then any θ ∈ Q(Λ,m, β) can be

written as θ = θ0Ψ
A
β−γ for some quasi-simple character θ0 ∈ Q(Λ,m, γ). Now we claim

that:

(6.16) Hm+1(β,Γ) = Hm+1(γ,Γ).

We write q1 = −k0(β,Γ). If q1 = q, then the equality (6.16) follows by definition. Other-

wise, we have q1 > q by Proposition 5.2. The strata [Γ, n, q, β] and [Γ, n, q, γ] are thus

simple, and (6.16) follows. We now form the character θK = θ ◦ ι | Hm+1(β,Γ) and get

the equality θK = θK
0 ΨC

β−γ, where θK
0 denotes the character θ0 ◦ ι | Hm+1(γ,Γ), and this

character is in Q(Γ,m, γ) by the inductive hypothesis. If q1 = q, then θK is in Q(Γ,m, β)

by definition. Otherwise, the strata [Γ, n, q, β] and [Γ, n, q, γ] are simple and the result

follows from [24, Proposition 2.15]. The case m 6 bq/2c reduces to the previous one as

in the minimal case.

It remains to prove that the subgroup K(Γ)∩R× normalizes θK. If g ∈ K(Γ)∩R×, then

we have:

ι(g) · Λk =

f⊕
i=1

σi(κ(g)) · eiΛk =

f⊕
i=1

eiΛk+υ(σi(κ(g)))(6.17)

where υ denotes the valuation map associated with Λ. As all the σi(κ(g)’s have the same

valuation, the equality (6.17) gives us ι(g) ∈ K(Λ)∩B×. Proposition 6.5 now follows from

the fact that K(Λ) ∩ B× normalizes θ.

Remark 6.6. — Note that the interior lifting map from Q(Λ,m, β) to Q(Γ,m, β) defined

by Proposition 6.5 depends on the choice of the set S chosen in (6.2).
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6.4. Let [Λ, n,m, β] and [Λ′, n′,m′, β] be realizations of a simple pair (k, β) over F in

simple central F-algebras A and A′, respectively. Assume further that A and A′ contain

K, that the strata [Λ, n,m, β] and [Λ′, n′,m′, β] are K-pure and that the strata [Γ, n,m, β]

and [Γ′, n′,m′, β] associated with them by (5.2) are realizations of the same simple pair

over K. (This is equivalent to saying that the extensions of K generated by β in A and

A′ are K-isomorphic.) We have the following relation between the transfer maps and the

interior lifting maps.

Theorem 6.7. — Let θ ∈ C(Λ,m, β) and θ′ ∈ C(Λ′,m′, β) be transfers of each other.

Then the simple characters:

θ | Hm+1(β,Γ), θ′ | Hm′+1(β,Γ′)

are transfers of each other.

Proof. — One can assume without loss of generality that m and m′ are multiples of k.

By rescaling the lattice sequences Λ and Λ′, one can also assume that they have the same

period thanks to Lemma 2.2. Thus m = m′ and n = n′. The proof decomposes into two

parts.

(1) First we prove the theorem in the case where all the lattice sequences are strict, so

that we can apply the results of paragraphs 6.2 and 6.3. We fix a quasi-simple character

θ in Q(Λ,m, β) extending θ and write θ′ for its transfer in Q(Λ′,m, β). The restriction

of θ′ to Hm+1(β,Λ′) is thus equal to θ′. By Proposition 6.2, there exists a quasi-simple

character θ0 in Q(Λ0,m, β) extending θ⊗ θ′. We write C and U as in paragraph 6.1, and

use similar notations C′ and U′. We have:

(6.18) Hm+1(β,Λ0) ∩
(
C× × C′×

)
= Hm+1(β,Γ)× Hm+1(β,Γ′).

We define ι by (6.5) and write θK for the quasi-simple character defined by (6.12). We

also define ι′ and θ′K in a similar way. If we restrict the map x 7→ (ι(x), ι′(x)) to the

subgroup (6.18) and then compose it with θ0, then we get the character θK ⊗ θ′K. This

implies that θK and θ′K are transfers of each other. By Propositions 6.5 and 6.2 together,

their restrictions θK | Hm+1(β,Γ) = θK and θ′K | Hm+1(β,Γ′) = θ′K are transfers of each

other.

(2) We now reduce the general case to Case (1). For this we fix a positive integer l as

in Lemma 2.16, and form the sound simple strata [Λ‡, n,m, β] and [Λ′‡, n,m, β]. Write

C‡ for the centralizer of K in A‡ and [Γ‡, n,m, β] for the simple stratum in C‡ associated

with [Λ‡, n,m, β] by (5.2). In a similar way, we have a K-algebra C′‡ and a simple stratum

[Γ′‡, n,m, β]. Then the simple strata [Γ‡, n,m, β] and [Γ′‡, n,m, β] are realizations of the
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same simple pair over K. Write θ‡ for the transfer of θ in C(Λ‡,m, β). In a similar way,

we have a simple character θ′‡. By Case (1), the simple characters:

θ‡ | Hm+1(β,Γ‡), θ′‡ | Hm+1(β,Γ′‡)

are transfers of each other. Thus it remains to prove the following lemma.

Lemma 6.8. — The characters θ | Hm+1(β,Γ) and θ‡ | Hm+1(β,Γ‡) are transfers of each

other.

Proof. — Write M for the Levi subgroup of A‡× defined by the decomposition of V‡ into

copies of V. According to Lemma 2.7, the character θ‡ is characterized by the identity:

θ‡ | Hm+1(β,Λ‡) ∩M = θ ⊗ · · · ⊗ θ.

Thus its restriction to Hm+1(β,Γ‡) ∩M = Hm+1(β,Γ) × · · · × Hm+1(β,Γ) is equal to the

tensor product of l copies of θK.

This ends the proof of Theorem 6.7.

Remark 6.9. — In the case where [Λ, n,m, β] and [Λ′, n′,m′, β] are sound, this theorem

implies that Grabitz’s transfer [17] is the same as the transfer defined in [20].

6.5. Before closing this section, we prove the following result. Let [Λ, n,m, β] be a simple

K-pure stratum in A, and write [Γ, n,m, β] for the simple stratum in C which corresponds

to it by (5.2). Theorem 5.7 gives us a map from C(Λ,m, β) to C(Γ,m, β), called the interior

lifting map, and denoted lK/F : θ 7→ θK. It has the following properties.

Proposition 6.10. — The map lK/F is injective and K(Γ)-equivariant.

Proof. — Note that the second assertion is immediate. Let us fix a positive integer l > 1

as in Lemma 2.16, and form the sound simple stratum [Λ‡, n,m, β]. Write C‡ for the

centralizer of K in A‡ and [Γ‡, n,m, β] for the simple stratum in C‡ associated with the

stratum [Λ‡, n,m, β] by (5.2). Now let θ ∈ C(Λ,m, β) be a simple character and write θ‡

for its transfer in C(Λ‡,m, β). Then, by Lemma 6.8, the transfer of θK to C(Γ‡,m, β) is

equal to θ‡ | Hm+1(β,Γ‡). As the transfer map from C(Λ,m, β) to C(Λ‡,m, β) is bijective,

we may replace Λ by Λ‡ and assume that the stratum [Λ, n,m, β] is sound. In this case,

the injectivity of the map lK/F follows from [17, Proposition 7.1].

Assume we are given two K-pure simple strata [Λ, n,m, βi], i = 1, 2, in A. For each i,

let θi be a simple character in C(Λ,m, βi).
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Proposition 6.11. — Assume that θ1 and θ2 are equal. Then lK/F(θ1) and lK/F(θ2) are

equal.

Proof. — It suffices to verify that the groups Hm+1(βi,Γ), i = 1, 2, are equal. This follows

from Proposition 5.5 and the fact that the groups Hm+1(βi,Λ), i = 1, 2, are equal.

7. The base change

In this section, we develop a base change process for simple strata and characters with

respect to a finite unramified extension K of F, in a way similar to [6].

7.1. Let K/F be an unramified extension of degree f . Given a simple central F-algebra

A, we set:

Â = A⊗F EndF(K).

Then K embeds naturally in Â, and its centralizer, denoted AK, is canonically isomorphic

to A⊗F K as a K-algebra. Let V be a simple left A-module. Then V̂ = V⊗F K is a simple

left Â-module and, if we fix an F-basis of K, we have a decomposition:

(7.1) V̂ = V ⊕ · · · ⊕ V

of V̂ into a sum of f copies of V, so that we are in the situation of paragraph 2.2.

Let [Λ, n,m, β] be a simple stratum in A and set E = F(β). Let us form the simple

stratum [Λ̂, n,m, β] in Â, where Λ̂ = Λ⊕ · · · ⊕ Λ is the direct sum of f copies of Λ. This

simple stratum is not K-pure in general. We have a decomposition:

E⊗F K = E1 ⊕ · · · ⊕ Es

into simple E ⊗F K-modules, where s denotes the greatest common divisor of f and the

residue class degree of E over F. For each j ∈ {1, . . . , s}, we write cj for the minimal

idempotent in E⊗F K corresponding to Ej, and we set:

βj = cjβ, j ∈ {1, . . . , s}.

These are the various K/F-lifts of β. If we write Λ̂j for the projection of Λ̂ onto the space

V̂j = cjV̂ for each j, we get a simple stratum [Λ̂j, n,m, βj] in the F-algebra Âj = cjÂcj,

which is K-pure for the natural embedding of K in Âj. Thus one can form the interior

lift [Γ̂j, n,m, βj] in the centralizer of K in Âj (see paragraph 5.1).

Given a simple character θ ∈ C(Λ,m, β), let θ̂ denote its transfer to C(Λ̂,m, β) and

write θ̂j for the transfer of θ̂ to C(Λ̂j,m, βj), that is the restriction of θ̂ to Hm+1(βj, Λ̂j).
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Let us denote by θjK the restriction of θ̂j to Hm+1(βj, Γ̂j), which belongs to C(Γ̂j,m, βj)

by Theorem 5.7. We have the following definition.

Definition 7.1. — The process:

bK/F : θ 7→ {θjK, j = 1, . . . , s}

is the K/F-base change for simple characters. For each j, the simple character θjK is called

the K/F-lift of θ corresponding to the K/F-lift βj of β.

Now let (Θ, k, β) be a ps-character over F. Let [Λ, n,m, ϕ(β)] be a realization of the pair

(k, β) in a simple central F-algebra A, and let θ denote the simple character Θ(Λ,m, ϕ).

Let (k, βj), for j ∈ {1, . . . , s}, be the various K/F-lifts of the pair (k, β), and let ϕj denote

the homomorphism of K-algebras from K(βj) to the centralizer of K in Âj induced by ϕ.

Thus the sum of the ϕj’s is the K-algebra homomorphism ϕ ⊗ idK from E ⊗F K to AK.

For each j, let us denote by (Θj
K, k, β

j) the ps-character defined by ([Γ̂j, n,m, βj], θjK).

Definition 7.2. — The process:

bK/F : (Θ, k, β) 7→ {(Θj
K, k, β

j), j = 1, . . . , s}

is the K/F-base change for ps-characters, and Θj
K is called the K/F-lift of Θ corresponding

to the K/F-lift βj of β.

This definition does not depend on the choice of the realization [Λ, n,m, ϕ(β)]. Indeed,

let [Λ′, n′,m′, ϕ′(β)] be another realization of (k, β) in a simple central F-algebra A′, and

let us write θ′ for the transfer of θ to C(Λ′,m′, ϕ′(β)). Then it follows from Theorem 6.7

that, for each j, the K/F-lifts θjK and θ′jK are transfers of each other.

7.2. In this paragraph, we study in more details the case where s = 1, that is the case

where the residue class degree of F(β)/F is prime to f . In this case, the simple pair (k, β)

has exactly one K/F-lift. If we write ΛK for the OK-lattice sequence defined by Λ̂, then

the base change process gives rise to a map:

(7.2) bK/F : C(Λ,m, β)→ C(ΛK,m, β)

having the following properties.

Proposition 7.3. — The map bK/F is injective and K(Λ)-equivariant.

Proof. — As bK/F is the composite of the transfer map from C(Λ,m, β) to C(Λ̂,m, β) and

the interior lifting from C(Λ̂,m, β) to C(ΛK,m, β), this follows from Proposition 6.10.
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Assume we are given two simple strata [Λ, ni,mi, βi], i = 1, 2, in A, such that fF(β1)

and fF(β2) are prime to f . For each i, let θi be a simple character in C(Λ,mi, βi).

Proposition 7.4. — Assume θ1 and θ2 intertwine in A×. Then bK/F(θ1) and bK/F(θ2)

intertwine in A×K.

Proof. — Assume θ1 and θ2 are intertwined by g ∈ A×. By the proof of Proposition 2.6,

the characters θ̂1 and θ̂2 are intertwined by ι(g), where ι denotes the diagonal embedding

of A in Â = Mf (A). As ι(g) is actually in A×K, we deduce that the characters bK/F(θ1)

and bK/F(θ2) intertwine in A×K.

We now suppose that n1 = n2 and m1 = m2.

Proposition 7.5. — Assume that θ1 and θ2 are equal. Then bK/F(θ1) and bK/F(θ2) are

equal.

Proof. — If θ1 and θ2 are equal, then Proposition 4.11 gives us θ̂1 = θ̂2 and Proposition

6.11 gives us the expected equality.

Let [Λ, n,m, β] and [Λ′, n′,m′, β] be two realizations of the simple pair (k, β), let θ be

a simple character in C(Λ,m, β) and let θ′ be its transfer in C(Λ′,m′, β). The following

proposition is a special case of Theorem 6.7.

Proposition 7.6. — The character bK/F(θ′) is the transfer of bK/F(θ) in C(Λ′K,m
′, β).

Finally, we will need the following result. Note that Gal(K/F) acts naturally on AK.

Proposition 7.7. — Let θ ∈ C(ΛK,m, β) be a simple character. For any σ ∈ Gal(K/F),

we have θ ◦ σ ∈ C(ΛK,m, β).

Proof. — One checks by induction on β that the image of C(ΛK,m, β) by θ 7→ θ ◦ σ is

the set of simple characters attached to the image of [ΛK, n,m, β] by σ−1 with respect to

the additive character ΨK ◦ σ. The result follows from the fact that this stratum and the

additive character ΨK are invariant by σ.

7.3. We prove the following theorem, which generalizes [10, Corollary 3.6.3].

Theorem 7.8. — For i = 1, 2, let (ki, βi) be a simple pair over F. Let us fix two real-

izations [Λ, n,m, βi] and [Λ′, n′,m′, βi] of (ki, βi). Assume C(Λ,m, βi) and C(Λ′,m′, βi) do

not depend on i. Then the transfer map τ i : C(Λ,m, βi) → C(Λ′,m′, βi) does not depend

on i.

Proof. — The proof decomposes into three steps.
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(1) In the first step, we reduce to the case where the strata are all sound. For this, we

fix an integer l as in Proposition 2.17 which is large enough for Λ and Λ′. Write ai for

the transfer map from C(Λ,m, βi) to C(Λ‡,m, βi). There is also a map a′i for Λ′. Thus we

have a commutative diagram:

C(Λ‡,m, βi)
τ ‡i // C(Λ′‡,m′, βi)

C(Λ,m, βi) τ i
//

ai

OO

C(Λ′,m′, βi)

a′i

OO

where τ ‡i denotes the transfer map from C(Λ‡,m, βi) to C(Λ′‡,m′, βi). By Proposition 4.11,

the vertical maps ai and a′i do not depend on i, and Proposition 1.17 implies that the

sets C(Λ‡,m, βi) and C(Λ′‡,m′, βi) do not depend on i. Since a′i is bijective, the equality

τ ‡1 = τ ‡2 implies that τ 1 = τ 2. We thus may replace Λ by Λ‡ and Λ′ by Λ′‡ and assume

that all the strata are sound.

(2) We now assume that all the strata are sound, and we reduce to the case where the

extensions F(βi)/F are totally ramified. By Proposition 4.20, for each i, the simple strata

[Λ, n,m, βi] and [Λ′, n′,m′, βi] have the same embedding type. Write Ki for the maximal

unramified extension of F contained in F(βi), and fix θi ∈ C(Λ,m, βi). Assume that the

characters θ1 and θ2 are equal. Using the “intertwining implies conjugacy” theorem [17,

Corollary 10.15], one may assume that K1 = K2, denoted K. Write li for the interior

lifting map from C(Λ,m, βi) to C(Γ,m, βi). There is also a map l′i for Λ′. By Theorem

6.7, we have a commutative diagram:

C(Γ,m, βi)
τK
i // C(Γ′,m′, βi)

C(Λ,m, βi) τ i
//

li

OO

C(Λ′,m′, βi)

l′i

OO

where τK
i denotes the transfer map from C(Γ,m, βi) to C(Γ′,m′, βi). By Proposition 6.11,

the vertical maps li and l′i do not depend on i, and Theorem 4.16 implies that the sets

C(Γ,m, βi) and C(Γ′,m′, βi) do not depend on i. By the same argument as above, using

that the map l′i is injective (see Proposition 6.10), we may assume that F(βi) is totally

ramified over F.

(3) We now assume that fF(β1) = fF(β2) = 1, and reduce to the split case. Let us fix

a finite unramified extension L/F such that the L-algebras A and A′ are split. Write bi
for the base change map from C(Λ,m, βi) to C(Λ,m, βi). There is also a map b′i for Λ′.



SMOOTH REPRESENTATIONS OF GLm(D), V 53

By Proposition 7.6, we have a commutative diagram:

C(Λ,m, βi)
τ i // C(Λ′,m′, βi)

C(Λ,m, βi) τ i
//

bi

OO

C(Λ′,m′, βi)

b′i

OO

where τ i denotes the transfer map from C(Λ,m, βi) to C(Λ′,m′, βi). By Proposition 7.4,

the maps bi and b′i do not depend on i. Thus [10, Theorem 3.5.8] (the rigidity theorem for

simple characters in the split case) implies that the sets of simple characters C(Λ,m, βi)

and C(Λ′,m′, βi) do not depend on i. By the same argument as above, using that the map

b′i is injective (see Proposition 7.3), we may assume that A is split and Λ is strict.

The result then follows from [10, Corollary 3.6.3].

8. Endo-equivalence of simple characters

8.1. In this paragraph, we prove Theorem 1.13 in the totally ramified case. For i = 1, 2,

let (Θi, k, βi) be a ps-character over F with fF(βi) = 1, and suppose that Θ1 and Θ2

are endo-equivalent. Let A be a simple central F-algebra and let [Λ, n,m, ϕi(βi)] be

realizations of (k, βi) in A, with i = 1, 2. Write θi for the simple character Θi(Λ,m, ϕi).

We have to prove that θ1 and θ2 are conjugate under K(Λ).

For each i, we write Ei for the F-algebra F(βi), which is a totally ramified finite extension

of F. By assumption, we have [E1 : F] = [E2 : F]. Using Proposition 4.9, there exists a

simple central F-algebra A′ together with sound realizations [Λ′, n′,m′, ϕ′i(βi)] of (k, βi),

with i = 1, 2, such that k divides m′ and θ′1 = θ′2, where we write θ′i = Θi(Λ
′,m′i, ϕ

′
i).

Now let A be a simple central F-algebra and [Λ, n,m, ϕi(βi)] be realizations of (k, βi) in

A, for i = 1, 2. Let V denote the simple left A-module on which Λ is a lattice sequence and

write D for the F-algebra opposite to EndA(V). Let us fix a finite unramified extension

L of F such that the L-algebra A = A ⊗F L is split and a simple left A-module V. As

Ei is totally ramified over F, the quasi-simple lift [Λ, n,m, βi] is a simple stratum in A

(see [20, Théorème 2.30] and [24, Remarque 2.9]). We denote by C(Λ,m, βi) the set of

simple characters attached to this quasi-simple lift with respect to the character Ψ◦ trL/F.

The base change process developed in paragraph 7.2 gives rise to an injective and K(Λ)-

equivariant map:

bL/F : C(Λ,m, βi)→ C(Λ,m, βi),
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simply denoted b. We use similar notations for A′. For each i, we write θi for the simple

character Θi(Λ,m, ϕi). By Proposition 7.4, we have b(θ′1) = b(θ′2). By Proposition 7.6, for

each i, the lifts b(θi) and b(θ′i) are transfers of each other. At this point, we cannot apply

[6, 10] to deduce that b(θ1) and b(θ2) are K(Λ)-conjugate, because the lattice sequence

Λ is not necessarily strict.

Let us fix a simple right E1 ⊗F D-module S. We set A(S) = EndD(S), and denote by

ρ1 the natural F-algebra homomorphism E1 → A(S). Let S denote the unique (up to

translation) E1-pure strict OD-lattice sequence on S, and let us fix an F-algebra homo-

morphism ρ2 : E2 → A(S) such that S is ρ2(E2)-pure. Write n0 for the S-valuation of

ρi(βi) and:

m0 = eρi(βi)(S)k,

which do not depend on i. We thus can form the stratum [S, n0,m0, ρi(βi)], which is a

realization of (k, βi) in A(S). Write ϑi for the simple character Θi(S,m0, ρi). We now

form the simple stratum [S, n0,m0, ρi(βi)] in the split simple central L-algebra A(S)⊗F L.

It is a realization of (k, βi) over L, and the OL-lattice sequence S is strict. We thus can

apply [6, Theorem 8.7] and [10, Theorem 3.5.11], which imply together that there exists

u ∈ K(S) such that:

b(ϑ2)(x) = b(ϑ1)(uxu−1), x ∈ Hm+1(ρ2(β2),S) = u−1Hm+1(ρ1(β1),S)u.

We need the following lemma.

Lemma 8.1. — We may assume that u ∈ K(S).

Proof. — By Proposition 7.7, the map σ 7→ u−1σ(u) is a 1-cocycle on Gal(L/F) with

values in the U(S)-normalizer of b(ϑ2), which is equal to J(ρ2(β2),S) according to [10].

This cocycle defines a class in the cohomology set:

H1(Gal(L/F), J(ρ2(β2),S)).

We claim this cohomology set is trivial. According to [20, Proposition 2.39], it is enough

to prove that:

H1(Gal(L/F), J(ρ2(β2),S)/J1(ρ2(β2),S))

is trivial, which is given by a standard filtration argument (see [5, §6]).

Using Proposition 7.3, we thus may replace ρ2 by a K(S)-conjugate and assume that

the characters ϑ1 and ϑ2 are equal. We now fix a decomposition:

V = V1 ⊕ · · · ⊕ Vl
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of V into simple right E1 ⊗F D-modules (which all are copies of S) such that the lattice

sequence Λ decomposes into the direct sum of the Λj = Λ ∩ Vj, for j ∈ {1, . . . , l}. By

choosing, for each j, an isomorphism of K(β)⊗F D-modules between S and Vj, this gives

us an F-algebra homomorphism:

ι : A(S)→ A.

Using Lemma 2.14, we may assume that ι ◦ ρ1 = ϕ1, and, by Lemma 3.5, on may replace

ϕ2 by a K(Λ)-conjugate and assume that ι ◦ ρ2 = ϕ2. We now remark that, for each i, the

map ϑi 7→ θi corresponds to the process described in paragraph 2.4. The equality θ1 = θ2

thus follows from Proposition 4.11.

8.2. In this paragraph, we reduce the proof of Theorem 1.13 to the totally ramified case,

which has been treated in paragraph 8.1. For i = 1, 2, let (Θi, k, βi) be a ps-character over

F, set Ei = F(βi) and write Ki for the maximal unramified extension of F contained in Ei,

and suppose that Θ1 ≈ Θ2. Then we have [E1 : F] = [E2 : F] and, using Proposition 4.9,

there is a simple central F-algebra A together with realizations [Λ, n,m, ϕi(βi)] of (k, βi),

with i = 1, 2, which are sound and have the same embedding type, with k dividing m

and such that ϕ1(K1) = ϕ2(K2), denoted K, and θ1 = θ2, where θi = Θi(Λ,mi, ϕi). Let

C denote the centralizer of K in A and write [Γ, n,m, βi] for the stratum in C associated

with [Λ, n,m, βi] by (5.2). By Proposition 6.11, the K/F-lifts θK
1 and θK

2 are equal.

Now let A′ be a simple central F-algebra and [Λ′, n′,m′, ϕ′i(βi)] be realizations of (k, βi)

in A, with i = 1, 2, having the same embedding type. By Remark 3.4, we may conjugate

ϕ′2 by K(Λ′) and assume that the maximal unramified extensions of F contained in ϕ′1(E1)

and ϕ′2(E2) are equal to a common extension K′ of F, say. Moreover, by Lemma 3.1, we

may conjugate again ϕ′2 by K(Λ′) and assume that the F-algebra isomorphisms ϕ′1 ◦ ϕ−1
1

and ϕ′2 ◦ϕ−1
2 agree on K (and thus identify K and K′). Let C′ denote the centralizer of K′

in A′ and write [Γ′, n′,m′, ϕ′i(βi)] for the stratum in C associated with [Λ′, n′,m′, ϕ′i(βi)]

by (5.2). Thus the simple strata [Γ, n,m, ϕi(βi)] and [Γ′, n′,m′, ϕ′i(βi)] are realizations of

the same simple pair over K. For each i, we write θ′i for the character Θi(Λ
′,m′, ϕ′i). By

Theorem 6.7, for each i, the K/F-lifts θK
i and θ′Ki are transfers of each other. Therefore,

by paragraph 8.1, there exists u ∈ K(Γ′) such that:

θ′K2 (x) = θ′K1 (uxu−1), x ∈ Hm+1(ϕ′2(β2),Γ′) = u−1Hm+1(ϕ′1(β1),Γ′)u.

The equality θ′u1 = θ′2 follows from Proposition 6.10.

Corollary 8.2. — Definition 1.10 is equivalent to [6, Definition 8.6].
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Proof. — Assume we are given two ps-characters (Θi, k, βi), i = 1, 2, which are endo-

equivalent in the sense of Definition 1.10, and let A be a simple central split F-algebra

together with realizations [Λ, ni,mi, ϕi(βi)] of (k, βi) in A, with i = 1, 2, such that Λ is

strict. By Theorem 1.11, the simple characters Θi(Λ,mi, ϕi) intertwine in A×, that is, the

ps-characters (Θi, k, βi) are endo-equivalent in the sense of [6, Definition 8.6]. Conversely,

two simple pairs which are endo-equivalent in this sense are clearly endo-equivalent in the

sense of Definition 1.10.

Corollary 8.3. — The relation ≈ on ps-characters is an equivalence relation.

Proof. — This comes from [6, Corollary 8.10] together with Corollary 8.2.

9. The endo-class of a discrete series representation

9.1. Let A be a simple central F-algebra, and let V be a simple left A-module. Associated

with it, there is an F-division algebra D. We write d for the reduced degree of D over F

and m for the dimension of V as a right D-vector space. We set G = A×, identified with

GLm(D).

Let π be an irreducible smooth representation of G, and assume that its inertial class (in

the sense of Bushnell and Kutzko’s theory of types [11]), denoted s(π), is homogeneous.

Thus there is a positive integer r dividing m, an irreducible cuspidal representation ρ of

the group G0 = GLm/r(D) and unramified characters χi of G0, with i ∈ {1, . . . , r}, such

that π is isomorphic to a quotient of the normalized parabolically induced representation

ρχ1 × · · · × ρχr (see for instance [2] for the notation).

In this section, we associate with π an endo-class Θ(π) over F, and show that it depends

only on the inertial class s = s(π).

9.2. Let π be a representation of G as above, and write s = s(π) for its inertial class.

According to [24, Théorème 5.23], this inertial class possesses a type in the sense of

[11]. Such a type is a pair (J, λ) formed of a compact open subgroup J of G and of an

irreducible smooth representation λ of J such that an irreducible smooth representation

of G has inertial class s if and only if λ occurs in its restriction to J. More precisely, (J, λ)

can be chosen to be a simple type in the sense of [22]. We won’t give a precise description

of simple types; the only property of interest for us is the following fact, which is a weak

form of [24, Théorème 5.23].
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Fact 9.1. — There is a simple stratum [A, n, 0, β] in A together with a simple character

θ ∈ C(A, 0, β) such that the order A∩B (with B the centralizer of F(β) in A) is principal

of period r and the character θ occurs in the restriction of π to H1(β,A).

Neither [A, n, 0, β] nor the character θ are uniquely determined. We let (Θ, 0, β) be the

ps-character defined by the pair ([A, n, 0, β], θ) and we denote by Θ its endo-class.

Theorem 9.2. — The endo-class Θ depends only on the inertial class s.

Proof. — We have to prove that Θ does not depend on the choice of the simple stratum

[A, n, 0, β] and the simple character θ satisfying the conditions of Fact 9.1. For i = 1, 2,

let [Ai, ni, 0, βi] be a simple stratum and θi be a simple character satisfying the conditions

of Fact 9.1, and let (Θi, 0, βi) denote the ps-character that it defines. Let A′i denote the

unique principal OF-order in A such that the pair (Ei,A
′
i) is a sound embedding in A (see

Lemma 4.18) and let θ′i denote the transfer of θi in C(A′i, 0, βi). By a standard argument

using [24, Théorème 2.13], the character θ′i occurs in the restriction of π to H1(βi,A
′
i).

Therefore, we can assume without changing Θi that (Ei,Ai) is sound.

Lemma 9.3. — The extensions E1/F and E2/F have the same ramification index.

Proof. — We are going to prove that this ramification index is determined by the irredu-

cible cuspidal representation ρ of paragraph 9.1. Let n(ρ) denote the number of unramified

characters χ of G0 such that ρχ is equivalent to ρ. Write q for the cardinality of the residue

field of F and | · |F for the absolute value on F giving the value q−1 to any uniformizer.

Let s(ρ) denote the unique positive real number such that ρ × ρνρ is reducible, where

νρ is the unramified character g 7→ |NA/F(g)|s(ρ)
F (see section 4 of [23] for more details).

By using [23, Theorem 4.6], the product n(ρ)s(ρ) is equal to the quotient of md by the

ramification index of Ei/F, for any i = 1, 2.

By Lemma 4.18, the principal orders A1 and A2 have the same period (as Ai ∩ Bi has

period r). Thus one may conjugate ([A1, n1, 0, β1], θ1) by an element of G and assume that

A1 = A2, denoted A. For each i, we have θi ∈ C(A, 0, βi) and θi occurs in the restriction

of π to the subgroup H1(βi,A). Thus the characters θ1 and θ2 intertwine in A×. To prove

that Θ1 and Θ2 are endo-equivalent, it remains to prove that F(β1) and F(β2) have the

same degree over F. By copying the beginning of the proof of Lemma 4.7, we get n1 = n2.

We now write f for the greatest common divisor of fF(β1) and fF(β2) and Ki for the

maximal unramified extension of F contained in F(βi). Then Theorem 1.16 gives us the

expected equality.

We call the class Θ the endo-class of π (or of s). We have actually obtained more.
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Theorem 9.4. — Let π be an irreducible representation with inertial class s as above,

and let [A, n, 0, β] and θ satisfy the conditions of Fact 9.1. Assume moreover [A, n, 0, β]

is sound. The following objects are invariants of the inertial class s:

(1) the ramification index eF(β) and the residue class degree fF (β);

(2) the G-conjugacy class of the order A;

(3) the embedding type of (F(β),A).

Proof. — Assertions (1) and (2) have already been proved. Assertion (3) follows imme-

diately from Lemma 4.19.

9.3. Recall that an irreducible smooth representation π of G is essentially square inte-

grable if there is a character χ of G such that πχ is unitary and has a non-zero coefficient

which is square integrable on G/Z, where Z denotes the centre of G. We write D(G) for

the set of isomorphism classes of essentially square integrable representation of G. Accor-

ding to [2, §2.2], any essentially square integrable representation of G has an inertial class

which is homogeneous in the sense of paragraph 9.1. Thus the construction of paragraph

9.2 gives us a map:

(9.1) ΘG : D(G)→ E(F)

from D(G) to the set of endo-classes of ps-characters over F.

We now write H = GLmd(F), and let JL denote the Jacquet-Langlands correspondence

(see [1, 14]) from D(G) to D(H). We have the following conjecture.

Conjecture 9.5. — For any π in D(G), we have:

(9.2) ΘH(JL(π)) = ΘG(π).

This conjecture generalizes the fact that, for any level zero representation π in D(G),

the representation JL(π) has level zero. It allows one to refine the correspondence JL by

fixing the endo-class: given Θ an endo-class over F, Conjecture 9.5 implies that we have

a bijective map:

JLΘ : D(G,Θ)→ D(H,Θ)

where we write D(G,Θ) for the set of isomorphism classes of essentially square integrable

representations of G of endo-class Θ.
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[15] A. Fröhlich – “Principal orders and embedding of local fields in algebras”, Proc. London
Math. Soc. (3) 54 (1987), no. 2, p. 247–266.

[16] M. Grabitz – “Continuation of hereditary orders in local central simple algebras”, J.
Number Theory 77 (1999), no. 1, p. 1–26.

[17] , “Simple characters for principal orders in Mm(D)”, J. Number Theory 126 (2007),
no. 1, p. 1–51.

[18] G. Henniart – “Correspondance de Jacquet-Langlands explicite. I : Le cas modéré de
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