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Abstract. — Let k be a non-Archimedean locally compact field of residue characteristic p,
let G be a connected reductive group defined over k, let σ be an involutive k-automorphism
of G and H an open k-subgroup of the fixed points group of σ. We denote by Gk (resp. Hk)
the group of k-points of G (resp. H). In this paper, we obtain an analogue of the Cartan
decomposition for the reductive symmetric space Hk\Gk in the case where G is k-split and
p is odd. More precisely, we obtain a decomposition of Gk as a union of (Hk,K)-double
cosets, where K is the stabilizer of a special point in the Bruhat-Tits building of G over
k. This decomposition is related to the Hk-conjugacy classes of maximal σ-anti-invariant
k-split tori in G. In a more general context, Benoist and Oh obtained a polar decomposition
for any p-adic reductive symmetric space. In the case where G is k-split and p is odd, our
decomposition makes more precise Benoist-Oh’s polar decomposition and generalizes results
of Offen for GLn.

Résumé. — Soit k un corps localement compact non archimédien de caractéristique rési-
duelle p, soit G un groupe réductif connexe défini sur k, soit σ un k-automorphisme involutif
de G et soit H un k-sous-groupe ouvert du groupe des points de G fixes par σ. On note
Gk (resp. Hk) le groupe des k-points de G (resp. H). Dans cet article, nous obtenons un
analogue de la décomposition de Cartan pour l’espace symétrique réductif Hk\Gk lorsque G
est déployé sur k et p est impair. Plus précisément, nous obtenons une décomposition de Gk

sous la forme d’une réunion de doubles classes modulo (Hk,K), où K désigne le stabilisateur
d’un point spécial de l’immeuble de Bruhat-Tits de G sur k. Cette décomposition est liée
aux classes de Hk-conjugaison des tores k-déployés σ-anti-invariants maximaux de G. Dans
un cadre plus général, Benoist et Oh ont obtenu une décomposition polaire pour les espaces
symétriques réductifs p-adiques quelconques. Dans le cas où G est déployé sur k et où p est
impair, notre décomposition précise la décomposition polaire de Benoist et Oh et généralise
des résultats de Offen pour GLn.

1. Introduction

Let k be a non-Archimedean locally compact field of odd residue characteristic. Let G

be a connected reductive group defined over k, let σ be an involutive k-automorphism of

G and let H be an open k-subgroup of the fixed points group of σ. We denote by Gk (resp.
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Hk) the group of k-points of G (resp. H). Harmonic analysis on the reductive symmetric

space Hk\Gk is the study of the action of Gk on the space of complex square integrable

functions on Hk\Gk. This study is related to the classification of Hk-distinguished rep-

resentations of Gk, that is representations having a non-zero space of Hk-invariant linear

forms. Offen [19] has investigated the harmonic analysis of spherical functions in some

cases related to GLn. Blanc and Delorme [3] have studied Hk-distinguishedness for fami-

lies of parabolically induced representations of Gk. Lagier [16], and independently Kato

and Takano [15], have introduced the notion of relative cuspidality for irreducible Hk-dis-

tinguished representations of Gk and constructed “Jacquet maps” at the level of invariant

linear forms. In this paper, we investigate the geometry of the reductive symmetric space

Hk\Gk.

Connected reductive groups can be considered as reductive symmetric spaces. Indeed,

if G′ is such a group, the map:

σ : (x, y) 7→ (y, x)

defines a k-involution of G = G′ × G′ whose fixed points group H is the diagonal image

of G′ in G, and the reductive symmetric space Hk\Gk naturally identifies with G′k via the

map (x, y) 7→ x−1y. Moreover, if K′ is a subgroup of G′k, and if we set K = K′ ×K′, then

this map induces a bijective correspondence:

{(Hk,K)-double cosets of Gk} ↔ {K′-double cosets of G′k}.

In particular, if K′ is the G′k-stabilizer of a special point in the Bruhat-Tits building of G′

over k, the decomposition of Hk\Gk into K-orbits corresponds to the Cartan decomposi-

tion of G′k relative to K′ (see [6, Proposition 4.4.3]).

In this paper, we obtain an analogue of the Cartan decomposition for Hk\Gk when the

group G is k-split. In a more general context (k any non-Archimedean locally compact

field of odd characteristic and G any connected reductive group over k), Benoist and Oh

[2] have obtained a polar decomposition for Hk\Gk. In the case where k has odd residue

characteristic and G is k-split, our decomposition is a refinement of Benoist-Oh’s polar

decomposition (see paragraph 4.6). This decomposition can be seen as a p-adic analogue of

the Cartan decomposition for real reductive symmetric spaces (see [10, Theorem 4.1]). It

generalizes the decompositions obtained by Offen (see [19, Proposition 3.1]) for G = GL2n

in Cases 1 and 3 (ibid.).

Let {Aj | j ∈ J} be a set of representatives of the Hk-conjugacy classes of maximal σ-

anti-invariant k-split tori of G (called maximal (σ, k)-split tori in [11], see also Definition
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4.1). These tori, as well as related entities, have been studied by A. Helminck, G. Helminck

and Wang [11, 12, 13]. In particular, the set J is finite and the Aj, j ∈ J, are all conjugate

under Gk. Let S be a σ-stable maximal k-split torus of G containing a maximal (σ, k)-split

torus A. For each j ∈ J, we choose yj ∈ Gk such that yjAy
−1
j = Aj. Our main result is

the following theorem (see Theorem 4.9).

Theorem 1.1. — Assume G is k-split. Let K be the stabilizer in Gk of a special point

in the apartment attached to S. Then:

(1.1) Gk =
⋃
j∈J

HkyjSkK.

If one compares with Offen’s decompositions [19, Proposition 3.1], one sees that in each

of his Cases 1 and 3 (where G = GL2n for n > 1), the set J reduces to a single element

and yj can be chosen to be trivial. In general however, one cannot avoid to have several

non-Hk-conjugate maximal σ-anti-invariant k-split tori of G appearing in (1.1).

To prove Theorem 1.1, we make a large use of the Bruhat-Tits theory [6, 7]. First, let

G be any connected reductive group over k, and let B be its Bruhat-Tits building. It is

endowed with an action of σ. Then we have (see Proposition 3.4):

Proposition 1.2. — B is the union of its σ-stable apartments.

Note that in the case where G = G′×G′ and σ(x, y) = (y, x) as above, then the building

B identifies with the product of two copies of the building of G′ over k and Proposition

1.2 simply says that two arbitrary points in the building of G′ are always contained in a

common apartment.

When G is k-split, we obtain the following refinement of Proposition 1.2 (see Proposition

4.5).

Proposition 1.3. — Assume G is k-split, and let x be a special point of B. There is a

σ-stable maximal k-split torus S of G such that the apartment corresponding to S contains

x and the maximal σ-anti-invariant subtorus of S is a maximal (σ, k)-split torus of G.

As we will see in paragraph 5.3, Proposition 1.3 is no longer true for non-split groups.

In section 2, we recall the main properties of the Bruhat-Tits building attached to a

connected reductive group defined over k.

In section 3, we study the set of all apartments containing a given σ-stable subset of

the building, and we prove Proposition 1.2.
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In section 4, we prove our main theorem for G a k-split group.

In section 5, we study in more details the case of Gk = GLn(k) and σ(g) = transpose

of g−1, and the case of Gk = GLn(k′) with k′ quadratic over k and id 6= σ ∈ Gal(k′/k).

When n = 2 and k′ is totally ramified over k, the second case provides an example of a

non-split group for which Proposition 1.3 is not satisfied.

We thanks F. Courtès, B. Lemaire, G. Rousseau, S. Stevens for stimulating discussions.

Particular thanks to J. Bernstein for having suggested to the first author the use of the

Bruhat-Tits building, and to J.-P. Labesse for answering numerous questions.

2. The Bruhat-Tits building

Let k be a non-Archimedean non-discrete locally compact field, and let ω be its normal-

ized valuation. In this section, we recall the main properties of the Bruhat-Tits building

attached to a connected reductive group defined over k. The reader may refer to Bruhat-

Tits [6, 7] or to more concise presentations [17, 21, 23].

If G is a linear algebraic group defined over k, the group of its k-points will be denoted

by Gk or G(k), and its neutral component will be denoted by G◦. If X is a subset of G,

then NG(X) (resp. ZG(X)) denotes the normalizer (resp. the centralizer) of X in G, and,

given g ∈ G, we write gX for gXg−1.

2.1. Let G be a connected reductive group defined over k, and let S be a maximal k-split

torus of G. We denote by X∗(S) = Hom(S,GL1) (resp. by X∗(S) = Hom(GL1, S)) the

group of algebraic characters (resp. cocharacters) of S. We define a map:

(2.1) X∗(S)× X∗(S)→ Z

as follows. If λ ∈ X∗(S) and χ ∈ X∗(S), then χ◦λ is an endomorphism of the multiplicative

group GL1, which corresponds to an endomorphism of the ring Z[t, t−1]. It is of the form

t 7→ tn for some n ∈ Z. This integer n is denoted by 〈λ, χ〉. The map (2.1) defines a

perfect duality (see [4, §8.6]).

2.2. Let N (resp. Z) denote the normalizer (resp. the centralizer) of S in G. If we extend

the map (2.1) by R-linearity, there exists a unique group homomorphism:

(2.2) ν : Zk → X∗(S)⊗Z R

such that the condition:

〈ν(z), χ〉 = −ω(χ(z))
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holds for any z ∈ Zk and any k-rational character χ ∈ X∗(Z)k (see [23, §1.2]). According

to [17, Proposition 1.2], the kernel of (2.2) is the maximal compact subgroup of Zk.

2.3. Let C denote the connected centre of G and let X∗(C) be the group of its algebraic

cocharacters. It is a subgroup of the free abelian group X∗(S). We denote by A the space:

V = (X∗(S)⊗Z R)/(X∗(C)⊗Z R)

considered as an affine space on itself and by Aff(A ) the group of its affine automorphisms.

By making V act on A by translations, we can think of V as a subgroup of Aff(A ). It

is the kernel of the natural group homomorphism Aff(A ) → GL(V) which associates to

any affine automorphism its linear part.

2.4. The map (2.2) induces a homomorphism:

(2.3) Zk → Aff(A )

which we still denote by ν. Its image is contained in V. An important property of this

homomorphism is that it extends to a homomorphism Nk → Aff(A ) (see [23, §1.2]).

It does not extend in a unique way, but two homomorphisms extending (2.3) to Nk are

conjugated by a unique element of Aff(A ) (see [17, Proposition 1.8]).

2.5. The affine space A endowed with an action of Nk defined by a group homomorphism

ν : Nk → Aff(A ) extending the homomorphism (2.3) is called the (reduced) apartment

attached to S. It satisfies the conditions:

A1 A is an affine space on V;

A2 ν is a group homomorphism Nk → Aff(A ) extending the canonical homomorphism

Zk → V.

It has the following unicity property: if (A ′, ν ′) satisfies A1 and A2, then there is a

unique affine and Nk-equivariant isomorphism from A ′ to A .

Remark 2.1. — As in Tits [23], one obtains the non-reduced apartment Anr by replacing

V by X∗(S)⊗ZR. It is not as canonical as the reduced one: two homomorphisms extending

the map νnr : Zk → Aff(Anr) to Nk are conjugated by an element of Aff(Anr) which is not

necessarily unique (see [17, §1] and also [23, §1.2]).
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2.6. Let Φ = Φ(G, S) denote the set of roots of G relative to S. It is a subset of X∗(S).

Therefore, any root a ∈ Φ can be seen as a linear form on X∗(S)⊗Z R which is trivial on

the subspace X∗(C)⊗Z R, hence as a linear form on V (see [17, §1]).

For a ∈ Φ, we denote by Ua the root subgroup associated to a, which is a unipotent

subgroup of G normalized by Z (see [4, Proposition 21.9]), and by sa the reflection corre-

sponding to a, considered as an element of GL(V) — or, more precisely, of the quotient

of ν(Nk) by ν(Zk).

2.7. Let a ∈ Φ and u ∈ Ua(k)− {1}. The intersection:

(2.4) U−a(k)uU−a(k) ∩ Nk

consists of a single element, called m(u), whose image by ν is an affine reflection the

linear part of which is sa (see [5, §5]). The set Ha,u of fixed points of ν(m(u)) is an affine

hyperplane of A , which is called a wall of A .

A chamber of A is a connected component of the complementary in A of the union of

its walls. Note that a chamber is open in A .

A point x ∈ A is said to be special if, for all root a ∈ Φ, there is a root b ∈ Φ ∩R+a

and an element u ∈ Ub(k)− {1} such that x ∈Hb,u (see [18, §1.2.3] and also [23, §1.9]).

2.8. Let θ(a, u) denote the affine function A → R whose linear part is a and whose

vanishing hyperplane is the wall Ha,u of fixed points of ν(m(u)). We fix a base point in

A , so that A can be identified with the vector space V. For r ∈ R, we set:

Ua(k)r = {u ∈ Ua(k)− {1} | θ(a, u)(x) > a(x) + r for all x ∈ A } ∪ {1}.

Thus we obtain a filtration of Ua(k) by subgroups. If we change the base point in A , this

filtration is only modified by a translation of the indexation.

2.9. Let Ω be a non-empty subset of A . We set:

NΩ = {n ∈ Nk | ν(n)(x) = x for all x ∈ Ω},

and we denote by UΩ the subgroup of Gk generated by all the Ua(k)r such that the affine

function x 7→ a(x) + r is non-negative on Ω. According to [17, §12], this subgroup is

compact in Gk, and we have nUΩn
−1 = Uν(n)(Ω) for n ∈ Nk. In particular, NΩ normalizes

UΩ. The subgroup PΩ = NΩUΩ is open in Gk (loc.cit., Corollary 12.12).
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2.10. Let Φ = Φ− ∪ Φ+ be a decomposition of Φ into positive and negative roots. We

denote by U+ and U−) the subgroup of Gk generated by the Ua for all a ∈ Φ+ (resp. for

all a ∈ Φ−). Then the group PΩ has the following Iwahori decomposition:

(2.5) PΩ = (UΩ ∩ U−) · (UΩ ∩ U+) · NΩ

(see [17, Corollary 12.6] and also [6, §7.1.4]).

2.11. In [6, 7], Bruhat and Tits associate to the apartment (A , ν) a Gk-set B = B(G, k)

containing A , called the (reduced) building of G over k and satisfying the following

conditions:

B1 The set B is the union of the g ·A for g ∈ Gk.

B2 The subgroup Nk is the stabilizer of A in Gk, and n · x = ν(n)(x) for all x ∈ A

and n ∈ Nk.

B3 For all a ∈ Φ and r ∈ R, the subgroup Ua(k)r defined in paragraph 2.8 fixes the

subset {x ∈ A | a(x) + r > 0} pointwise.

The building has the following unicity property: if B′ is a Gk-set containing A and

satisfying B1, B2 and B3, then there is a unique Gk-equivariant bijection from B′ to B

(see [23, §2.1] and also [20, §1.9]).

2.12. The subsets of B of the form g ·A with g ∈ Gk are called apartments. According

to B1, the building is the union of its apartments. For g ∈ Gk, the apartment g · A
can be naturally endowed with a structure of affine space and an action of gNk by affine

isomorphisms. Up to unique isomorphism, it is the apartment attached to the maximal

k-split torus gS (see paragraph 2.5). This defines a unique Gk-equivariant map:

(2.6) S′ 7→ A (S′) ⊆ B

between maximal k-split tori of G and apartments of B, such that S maps to A .

Note that the building B does not depend on the maximal k-split torus S. Indeed, let

S′ be a maximal k-split torus of G, let (A ′, ν ′) be the apartment attached to S′ and B′

be the building of G over k relative to this apartment (see paragraph 2.11). If we identify

A ′ with the unique apartment of B corresponding to S′ via (2.6), then B′ = B.

2.13. The building has the following important properties (see [6, §7.4] and [17, §13]):

(1) Let Ω be a non-empty subset of A . Then PΩ is the subgroup of Gk made of those

elements fixing Ω pointwise.

(2) Let g ∈ Gk. There is n ∈ Nk such that g · x = n · x for any x ∈ A ∩ g−1 ·A .

In particular, Property (1) together with B2 imply that NΩ = Nk ∩ PΩ.
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2.14. Let σ be a k-automorphism of G. There is a unique bijective map from B to itself,

still denoted σ, such that:

(1) the condition:

σ(g · x) = σ(g) · σ(x)

holds for any g ∈ Gk and x ∈ B;

(2) the map σ permutes the apartments and, for any apartment A , the restriction of

σ to A is an affine isomorphism from A to σ(A ).

This makes (2.6) into a σ-equivariant map. In particular, an apartment is σ-stable if and

only if its corresponding maximal k-split torus of G is σ-stable (see [7, §4.2.12]).

3. Existence of σ-stable apartments

From now on, k will be a non-Archimedean locally compact field of odd residue char-

acteristic. Let G be connected reductive group defined over k and let σ be a k-involution

on G. According to paragraph 2.14, the building B of G over k is endowed with an

action of σ. In this section, we prove that, given x ∈ B, there exists a σ-stable apartment

containing x. We keep using notation of Section 2.

3.1. Let Ω be a non-empty σ-stable subset of B contained in some apartment, and let

Ap(Ω) be the set of all apartments of B containing Ω. It is a non-empty set on which

the group PΩ acts transitively (see [17, Corollary 13.7]). Because Ω is σ-stable, both PΩ

and Ap(Ω) are σ-stable. Note that the σ-stable apartments containing Ω are exactly the

σ-fixed points in Ap(Ω).

3.2. Let us fix an apartment A ∈ Ap(Ω) and an element u ∈ PΩ such that σ(A ) = u·A .

Let N denote the normalizer in G of the maximal k-split torus of G corresponding to A .

As σ is involutive, we have:

(3.1) σ(u)u ∈ PΩ ∩ Nk = NΩ.

The map ρ : g 7→ g · A induces a PΩ-equivariant bijection between the homogeneous

spaces PΩ/NΩ and Ap(Ω). The automorphism:

θ : x 7→ u−1σ(x)u

of the group Gk stabilizes PΩ and NΩ. Indeed σ(Nk) = uNku
−1, and:

θ(NΩ) = u−1σ(PΩ ∩ Nk)u = PΩ ∩ u−1σ(Nk)u = NΩ.
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Note that the condition (3.1) implies that θ ◦ θ is conjugation by some element of NΩ. As

NΩ is θ-stable, the map:

(σ, gNΩ) 7→ uθ(gNΩ), g ∈ PΩ,

defines an action of σ on PΩ/NΩ, making ρ into a σ-equivariant bijection. Note that this

action differs from the natural action of σ on PΩ/NΩ (which obviously has fixed points).

3.3. Let Ω be a non-empty σ-stable subset of B contained in some apartment.

Proposition 3.1. — Assume that Ω contains a point of a chamber of B. Then Ω is

contained in some σ-stable apartment.

Proof. — We describe the quotient PΩ/NΩ as a projective limit of finite σ-sets. Accord-

ing to [9, §1.2], Example (f), the group Gk is locally compact and totally disconnected.

Therefore we can choose a decreasing filtration (Qi)i>0 of the open subgroup PΩ of Gk

satisfying the following properties:

(A) The intersection of the Qi is reduced to {1}.
(B) For any i > 0, the subgroup Qi is compact open and normal in PΩ.

For i > 0, let PΩ,i denote the intersection NΩQi ∩ θ(NΩQi). These subgroups form a de-

creasing filtration of PΩ, and we claim that this filtration satisfies the following properties:

(1) The intersection of the PΩ,i is reduced to NΩ.

(2) For any i > 0, the subgroup PΩ,i is θ-stable and of finite index in PΩ.

As NΩ is θ-stable, it is contained in the intersection of the PΩ,i. Let g be in this intersection.

For any i > 0, there exist ni ∈ NΩ and qi ∈ Qi such that g = niqi. Because of Property

(A) above, qi converges to 1. Therefore ni converges to a limit contained in the closed

subgroup NΩ, and this limit is g. This proves Property (1).

Now recall that θ ◦ θ is conjugation by some element of NΩ. This implies that PΩ,i is

θ-stable. As PΩ,i is open in PΩ and contains NΩ, the quotient PΩ/PΩ,i can be identified

with the quotient of UΩ, which is compact, by some open subgroup. This gives us the

expected result.

Because of Property (2), the map:

(σ, gPΩ,i) 7→ uθ(gPΩ,i), g ∈ PΩ,

defines an action of σ on the finite quotient PΩ/PΩ,i, which gives us a projective system

(PΩ/PΩ,i)i>0 of finite σ-sets. As PΩ is complete, and thanks to Property (1), the natural

σ-equivariant map from PΩ/NΩ to the projective limit of the PΩ/PΩ,i is bijective.
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Lemma 3.2. — Let (Xi)i>0 be a projective system of finite σ-sets. For all i > 0, assume

the transition maps ϕi : Xi+1 → Xi to be surjective and Xi to have odd cardinality. Then

the projective limit X has a σ-fixed point.

Proof. — For each i > 0, the set Xσ
i of σ-fixed points of Xi is non-empty, since Xi has odd

cardinality. This defines a projective system (Xσ
i )i>0 whose transition maps may not be

surjective. For each i > 0, let Yi denote the intersection in Xi of the images of the Xσ
i+n,

for n > 0. Then Yi is non-empty, and the transition maps ϕi : Yi+1 → Yi are surjective.

Therefore, the projective limit Y = Xσ ⊆ X of the system (Yi)i>0 is non-empty.

Let p denote the residue characteristic of k.

Lemma 3.3. — Let K be a normal subgroup of finite index in PΩ containing NΩ. Then

the index of K in PΩ is a power of p.

Proof. — Let S be the maximal k-split torus associated to A , let Φ be the set of roots of

G relative to S and let Φ = Φ− ∪ Φ+ be a decomposition of Φ into positive and negative

roots. According to (2.5), the group PΩ has the following Iwahori decomposition:

PΩ = (UΩ ∩ U−) · (UΩ ∩ U+) · NΩ.

The fact that Ω contains a point of a chamber of B implies that the group NΩ is reduced

to Ker(ν), hence normalizes the groups V+ = UΩ ∩U+ and V− = UΩ ∩U−. The index of

K in PΩ can be decomposed as follows:

(PΩ : K) = (PΩ : V+K) · (V+K : K).

In a first hand, the index:

(V+K : K) = (V+ : V+ ∩K)

is a power of p, as V+ is a pro-p-group. On the other hand, the index:

(PΩ : V+K) = (V− : V− ∩ V+K)

is a power of p as V− is a pro-p-group. The result follows.

According to Lemma 3.3, the cardinality of each PΩ/PΩ,i, with i > 0, is odd (recall

that p is different from 2). Proposition 3.1 now follows from Lemma 3.2.
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3.4. We now prove the first main result of this section.

Proposition 3.4. — For any x ∈ B, there exists a σ-stable apartment containing x.

Proof. — Let x be a point in B, and let y be a point of a chamber of B whose adherence

contains x. The set Ω = {y, σ(y)} is a σ-stable subset of B satisfying the conditions of

Proposition 3.1. Hence we get a σ-stable apartment of B containing y. Such an apartment

contains the adherence of the chamber of y. In particular, it contains x.

3.5. Let S be a σ-stable maximal k-split torus, and let N (resp. Z) denote the normalizer

(resp. the centralizer) of S in G. Let X = X(S) denote the set of all g ∈ Gk such that

g−1σ(g) ∈ Nk, let A denote the σ-stable apartment corresponding to S and, given x ∈ A ,

let Px denote the subgroup PΩ (see paragraph 2.10) with Ω = {x}.

Proposition 3.5. — X is a finite union of (Hk,Zk)-double cosets and Gk = XPx.

Proof. — Let us fix a minimal parabolic k-subgroup P of G containing the torus S. Ac-

cording to [13, Proposition 6.8], the map g 7→ HkgPk induces a bijection between the

(Hk,Zk)-double cosets in X and the (Hk,Pk)-double cosets in Gk. The first part of the

proposition then follows from [13, Corollary 6.16].

Note that we have g ∈ X if and only if g ·A is σ-stable. For g ∈ Gk, we set x′ = g · x.

According to Proposition 3.4, there is a σ-stable apartment A ′ containing x′. Let g′ ∈ X

be such that A ′ = g′ ·A . According to Property (2) of paragraph 2.13, there is n ∈ Nk

such that we have g′−1g · x = n · x. Hence we get g ∈ XNkPx. As XNk = X, we obtain

the expected result.

4. Decomposition of Hk\Gk

In all this section, we assume that G is k-split. Let H be an open k-subgroup of the

fixed points group Gσ. Equivalently, H is a k-subgroup of Gσ containing (Gσ)◦ (see [1]).

4.1. If T is a σ-stable torus in G, we write T+ for the neutral component of T ∩ H and

T− for the neutral component of the subgroup {t ∈ T | σ(t) = t−1}. The torus T is the

almost direct product of T+ and T−, that is T = T+T− and the intersection T+ ∩ T− is

finite (see [4, xi]).

Definition 4.1 (Helminck-Wang [13], §4.4). — A σ-stable torus T of G is said to

be (σ, k)-split if it is k-split and if T = T−.
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By [13, Proposition 10.3], two arbitrary maximal (σ, k)-split tori of G are Gk-conju-

gated.

4.2. Let DG denote the derived subgroup of G, and recall that C denotes the connected

centre of G. This latter subgroup is a k-split torus of G.

Lemma 4.2. — Let T be a k-split torus of G.

(1) There is a k-subtorus T′ of C such that the groups T ·DG and T′ ·DG are equal.

(2) If T is (σ, k)-split, then any T′ satisfying (1) is (σ, k)-split.

(3) Assume that DG is contained in H and T is (σ, k)-split. Then any T′ satisfying (1)

is (σ, k)-split and has the same dimension as T.

Proof. — We set G̃ = G/DG and, for any k-subgroup K of G, we write K̃ for the image

of K in G̃. According to [4, Proposition 14.2], the group G is the almost direct product of

C and DG, which means that G is equal to the product C ·DG and that the intersection

C∩DG is finite. This implies that C̃ = G̃. Let f denote the k-rational map C→ C̃. It is

surjective with finite kernel. Hence G̃ is a k-split torus, and we denote by σ̃ the involutive

k-automorphisme of G̃ induced by σ. We now prove the lemma in three steps.

(1) By [4, Proposition 8.2(c)], the neutral component of the inverse image f−1(T̃) is a

k-split subtorus of C which we denote by T′. It has finite index in f−1(T̃). The image

f(T′) is then a subtorus of finite index in the connected group T̃, so that T̃′ = T̃.

(2) Now assume that T is (σ, k)-split, and let T′ satisfy (1). Let us consider the map

t 7→ tσ(t) from T′ to itself. As T̃′ = T̃ is a (σ̃, k)-split torus, the image of this map is a

connected k-subgroup contained in the kernel of f , which is finite.

(3) Assume that DG is contained in H and T is (σ, k)-split. Then the map T→ T̃ has

finite kernel, which implies that T and T̃ have the same dimension. Now let T′ satisfy (1).

According to (2), such a torus is (σ, k)-split, and it has the same dimension as T̃′ = T̃.

This ends the proof of Lemma 4.2.

4.3. Let S be a σ-stable maximal (k-split) torus of G, let A be the apartment corre-

sponding to S and let Φ be the set of roots of G relative to S. Let x ∈ A be a special

point (see paragraph 2.7), and write Ux for UΩ (see paragraph 2.10) with Ω = {x}. Let

a ∈ Φ be a σ-invariant root, which means that a ◦ σ = a.

Lemma 4.3. — Assume that U−a(k) is contained in {g ∈ Gk | σ(g) = g−1}. Then there

are n ∈ Nk and c ∈ Ux such that n = c−1σ(c) and ν(n) is the affine reflection of A which

let x invariant and whose linear part is sa.
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Proof. — We fix a base point in the apartment A , so that it can be identified with the

vector space V. For any b ∈ Φ, this defines a filtration of the group Ub(k) (see paragraph

2.8). For u ∈ Ub(k)− {1}, we denote by ϕb(u) the greatest real number r ∈ R such that

u ∈ Ub(k)r. Let us choose w ∈ U−a(k)− {1} such that x is contained in the wall H−a,w.

Thus ν(m(w)) is the affine reflection of A which fixes x and whose linear part is sa, and

we can set:

n = m(w) ∈ Nk.

Moreover θ(−a, w), which is the unique affine function from A to R whose linear part is

−a and whose vanishing hyperplane is H−a,w, vanishes on x. Therefore it is equal to:

y 7→ −a(y) + a(x),

which implies that ϕ−a(w) = a(x). According to B3 (see paragraph 2.11), it follows that

w fixes x.

The group U−a(k) is isomorphic to the additive group of k. Thus, for r ∈ R, the

subgroup U−a(k)r corresponds through this isomorphism to a non-trivial sub-O-module

of k, where O denotes the ring of integers of k (see [17, Proposition 7.7]). Therefore, there

is a unique element v ∈ U−a(k) such that w = v2 and ϕ−a(v) = ϕ−a(w), hence v ∈ Ux.

The map Ua(k)×Ua(k)→ Gk defined by (u, u′) 7→ uwu′ is injective and the intersection

given by (2.4) consists of a single element, which is n. If we choose u, u′ ∈ Ua(k) such

that uwu′ = n, then the element:

σ(u′)−1wσ(u)−1 = σ(n)−1

is contained in the intersection (2.4). Hence σ(n)−1 is equal to n, and the unicity property

implies that u′ = σ(u)−1. Moreover, according to [17, Lemma 7.4(ii)], the real numbers

ϕa(u) and ϕa(σ(u)) are both equal to−ϕ−a(w). This implies that u and σ(u) are contained

in Ux. Since v is σ-anti-invariant and w = v2, we get the expected result by choosing

c = (uv)−1.

Remark 4.4. — Note that σ(c) ∈ Ux. Indeed we have σ(v) = v−1 ∈ Ux and σ(u) ∈ Ux.

Hence n = c−1σ(c) ∈ Nk ∩ UΩ, which is contained in NΩ with Ω = {x, σ(x)}.

4.4. Let B denote the building of G over k.

Proposition 4.5. — Let x be a special point of B. There is a σ-stable maximal k-split

torus S of G such that the apartment corresponding to S contains x and such that S− is

a maximal (σ, k)-split torus of G.
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Remark 4.6. — In paragraph 5.3, we give an example of a non-split k-group G such

that Proposition 4.5 does not hold.

Proof. — Let A be a σ-stable apartment containing x (see Proposition 3.4) and let S

be the corresponding maximal k-split torus of G. Assume that A has been chosen such

that the dimension of the (σ, k)-split torus S− is maximal. If it is a maximal (σ, k)-split

torus of G, then Proposition 4.5 is proved. Assume that this is not the case, and let A

be a maximal (σ, k)-split torus of G containing S−. The dimension of A is greater than

dim S− (if not, the containment S− ⊆ A would imply that S− = A). Let G′ be the neutral

component of the centralizer of S− in G. It is a k-split connected reductive subgroup of

G containing S and A, which is naturally endowed with a non-trivial action of σ. Let C′

denote the connected centre of G′.

Lemma 4.7. — There is a ∈ Φ(G′, S) such that the corresponding root subgroup U′a is

not contained in H, and such a root is σ-invariant.

Proof. — Assume that U′a ⊆ H for each root a ∈ Φ(G′, S). Then the derived subgroup

DG′, which is generated by the U′a for a ∈ Φ(G′, S), is contained in H (see [14, Theorem

27.5(e)]). According to Lemma 4.2(iii), there exists a (σ, k)-subtorus A′ of C′ such that

A · DG′ = A′ · DG′ and dim(A) = dim(A′). The subgroup generated by C′ and S is a

k-torus of G′. As G′ is k-split, S is a maximal torus of G′, hence it contains C′. Therefore

S− contains A′ which has the same dimension as A, and this dimension is greater than

dim S−. This gives us a contradiction.

Now let a be a root in Φ(G′, S) such that U′a is not contained in H. The root a and

its conjugate a ◦ σ coincide on S+ and are both trivial on S−. As S is the almost direct

product of S+ and S− (see paragraph 4.1), they are equal. Therefore a is σ-invariant.

This ends the proof of Lemma 4.7.

Let a ∈ Φ(G′, S) as in Lemma 4.7. If we think of a as a root in Φ(G, S), then Ua is

σ-stable and is not contained in H. Moreover, we have the following result.

Lemma 4.8. — Ua(k) is contained in {g ∈ Gk | σ(g) = g−1}.

Proof. — As G is k-split, Ua is k-isomorphic to the additive group. Thus the action of

σ on Ua(k) corresponds to an involutive automorphism of the k-algebra k[t]. It has the

form t 7→ λt for some λ ∈ k× with λ2 = 1. As Ua is not contained in H, we have λ = −1.

This gives us the expected result.
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According to Lemma 4.3, there are n ∈ Nk and c ∈ Ux such that n = c−1σ(c) and ν(n)

is the affine reflection of A which let x invariant and whose linear part is sa. For any

t ∈ S, note that we have:

σ(ctc−1) = cnσ(t)n−1c−1

= csa(σ(t))c−1.

Let A ′ denote the apartment c ·A and let S′ = cS be the corresponding maximal k-split

torus of G. Then A ′ contains x and is σ-stable. Moreover, as the root a is trivial on S−

and sa fixes the kernel of a pointwise, the conjugate c(S−) is a (σ, k)-split subtorus of S′.

Thus S′− has dimension not smaller than dim S−.

Now let Sa denote the maximal k-split torus in the set of all t ∈ S such that sa(t) = t−1.

As a is σ-invariant, such a torus is σ-stable. Moreover, it is one-dimensional and its inter-

section with Ker(a) is finite. Therefore cSa is a non-trivial (σ, k)-split subtorus of S′ which

is not contained in c(S−). Thus the dimension of S′−, which contains c(SaS
−), is greater

than dim S−, which contradicts the maximality property of A . This ends the proof of

Proposition 4.5.

4.5. Let A be a maximal (σ, k)-split torus of G, let S be a σ-stable maximal k-split torus

of G containing A and let A denote the apartment corresponding to S. Let {Aj | j ∈ J}
be a set of representatives of the Hk-conjugacy classes of maximal (σ, k)-split tori in G.

According to [13], the set J is finite. Let x ∈ A be a special point and write K for its

stabilizer in Gk.

Theorem 4.9. — For j ∈ J, let yj ∈ Gk such that yj A = Aj. We have:

Gk =
⋃
j∈J

HkyjSkK.

Proof. — By Proposition 4.5, for any g ∈ Gk, there is a σ-stable maximal k-split torus

S′ of G such that the apartment corresponding to it contains g · x and such that S′−

is a maximal (σ, k)-split torus of G. Let j ∈ J be such that S′− is Hk-conjugate to Aj.

According to [12, Lemma 2.2], there is h ∈ Hk such that S′ = hyj S. Hence g ·x is contained

in hyj · A . According to Property (2) of paragraph 2.13, there exists n ∈ Nk such that

g · x = hyjn · x. Therefore Gk is the union of the HkyjNkK for j ∈ J. As x is special, we

have NkK = SkK and we get the expected result.
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4.6. In the case where G is not necessarily k-split, we have the following result. For each

j, let WGk
(Aj) (resp. WHk

(Aj)) be the quotient of the normalizer of Aj in Gk (resp. in

Hk) by its centralizer. According to [13], the group WGk
(Aj) is the Weyl group of a root

system. For j ∈ J, let Nj ⊆ NGk
(Aj) be a set of representatives of:

WHk
(Aj)\WGk

(Aj)

and let yj ∈ Gk be such that yj A = Aj. Let P be a minimal parabolic k-subgroup of G

containing S and such that P ∩ σ(P) is a Levi component of P (see [13, §4]). Let $ be

a uniformizer of k, and write Λ for the lattice made of the images of $ by the various

algebraic cocharacters of A and Λ− for the subset of anti-dominant elements of Λ relative

to P. Then one can derive from Proposition 3.5 the existence of a compact subset Q of

Gk such that:

(4.1) Gk =
⋃
j∈J

⋃
n∈Nj

HknyjΛ
−Q.

Benoist and Oh [2] have obtained a similar decomposition of Gk, with a weaker condition

on the base field k (they assume k to have odd characteristic).

Remark 4.10. — In the split case, starting from Theorem 4.9, one can obtain a sharper

result than the decomposition (4.1).

Let us mention that the question of the disjointness of the various components appearing

in the decomposition (4.1) has been investigated by Lagier [16].

5. Examples

Let k be a non-Archimedean locally compact field of odd residue characteristic. Let O

be its ring of integers and p be the maximal ideal of O.

5.1. In this paragraph, we consider the k-split reductive group G = GLn, n > 1, endowed

with the k-involution σ : g 7→ tg−1, where tg denotes the transpose of g. We set K =

GLn(O) and H = Gσ, and write S for the diagonal torus of G.

We start with the following lemma.

Lemma 5.1. — Let V be a finite dimensional k-vector space and B a symmetric bilinear

form on V. Then any free O-submodule of finite rank of V has a basis which is orthogonal

relative to B.
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Proof. — Let Λ be a free O-submodule of finite rank of V. The proof goes by induction

on the rank of Λ. If B is null, then the result is trivial. If not, we denote by BΛ the

restriction of B to Λ × Λ. Its image is of the form pm for some integer m ∈ Z. If $ is a

uniformizer of k, then the form B0
Λ = $−mBΛ has image O on Λ×Λ. Therefore, it defines

a non trivial bilinear form:

B̄0
Λ : Λ/pΛ× Λ/pΛ→ O/p.

Let e ∈ Λ be a vector whose reduction modulo p is not isotropic relative to B̄0
Λ, which

means that B0
Λ(e, e) is a unit of O. Then Λ is the direct sum of Oe and Λ ∩ ke⊥, where

ke⊥ denotes the orthogonal of ke in V. Indeed, it follows from the decomposition:

x =
B(e, x)

B(e, e)
e+

(
x− B(e, x)

B(e, e)
e
)

for any x ∈ Λ. As Λ∩ ke⊥ is a free O-submodule of finite rank of V whose rank is smaller

than the rank of Λ, we conclude by induction.

We introduce the set Y of all g ∈ Gk such that tgg ∈ Sk. Using Lemma 5.1, we get the

following decomposition of Gk.

Proposition 5.2. — We have Gk = YK.

Proof. — We make Gk act on the quotient Gk/K, which can be identified to the set of

all O-lattices (that is, cocompact free O-submodules) of the k-vector space V = kn. Let

B denote the symmetric bilinear form on V making the canonical basis of V into an or-

thonormal basis. According to Lemma 5.1, for any g ∈ Gk, the O-lattice Λ corresponding

to the class gK has a basis which is orthogonal relative to B. This means that there

exists u ∈ K such that the element g′ = gu−1 ∈ gK maps the canonical basis of V to an

orthogonal basis of Λ. Therefore we have g′ ∈ Y, thus g ∈ YK.

We now investigate the maximal (σ, k)-split tori of G. Note that S is a maximal (σ, k)-

split torus of G.

Proposition 5.3. — The map g 7→ gS induces a bijection between (Hk,Nk)-double cosets

of Y and Hk-conjugacy classes of maximal (σ, k)-split tori of G.

Proof. — One immediately checks that this map is well defined and injective. For g ∈ Gk,

the conjugate gS is a maximal (σ, k)-split torus of G if anf only if g−1σ(g) ∈ Sk, which

amounts to saying that g ∈ Y and proves surjectivity.
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Let Q denote the set of all equivalence classes of non-degenerate quadratic forms on

kn. For a = diag(a1, . . . , an) ∈ Sk we denote by Qa the diagonal quadratic form a1X2
1 +

· · ·+ anX2
n. Note that the map a 7→ Qa induces a surjective map from Sk to Q.

We write H0 and H1 for the set of σ-fixed points and the first set of nonabelian coho-

mology of σ, respectively.

Proposition 5.4. — (1) The map g 7→ tgg induces an injection ι from the set of

(Hk,Nk)-double cosets of Y to H1(Nk).

(2) Given a ∈ Sk, the class of a in H1(Nk) is in the image of ι if and only if Qa ∼
X2

1 + · · ·+ X2
n.

Proof. — We have an exact sequence:

Hk → H0(Gk/Nk)→ H1(Nk)→ H1(Gk),

where the map from H0(Gk/Nk) to H1(Nk) is induced by g 7→ tgg. As the set of (Hk,Nk)-

double cosets of Y is a subset of Hk\H0(Gk/Nk), we get the first assertion. To obtain the

second one, it is enough to remark that H1(Gk) canonically identifies with Q.

Remark 5.5. — Recall (see [22, IV §2.3]) that for a, b ∈ Sk, the quadratic forms Qa,Qb

are equivalent if, and only if they have the same discriminant and the same Hasse invariant.

Proposition 5.6. — Let {aj | j ∈ J} ⊆ Sk form a set of representatives of Im(ι) in

H1(Nk). For j ∈ J, we choose yj ∈ Y such that tyjyj = aj. Then:

Gk =
⋃
j∈J

HkyjSkK.

Proof. — Propositions 5.2 and 5.3 imply that Gk is the union of the components HkyjNkK

for j ∈ J. As NkK = SkK, we get the expected result.

Example 5.7. — In the case where n = 2, we give an explicit description of Im(ι). Let

$ denote a uniformizer of O and ξ ∈ O× a non square unit of O, so that {1, ξ,$, ξ$} is a

set of representatives of k× modulo k×2. The set of elements of k× which are represented

by the quadratic form Q1 = X2 + Y2 depends on the image of p in Z/4Z. If p ≡ 1 mod. 4,

all elements of k× are represented by Q1. If p ≡ 3 mod. 4, an element of k× is represented

by Q1 if and only if its normalized valuation if even. We set:

J =

{
{1, ξ,$, ξ$} if p ≡ 1 mod. 4,

{1, ξ} if p ≡ 3 mod. 4.

For each j ∈ J, set aj = diag(j, j). Then the elements aj form a set of representatives of

Im(ι) in H1(Nk).
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5.2. In this paragraph, we consider the connected reductive k-group G = Resk′/kGLn,

where k′ is a quadratic extension of k, endowed with the involutive k-automorphism σ of

G induced by the non-trivial element of Gal(k′/k).

We set H = Gσ, so that we have Gk = GLn(k′) and Hk = GLn(k). We denote by S the

diagonal torus of G and by K the maximal compact subgroup GLn(O′) of Gk, where O′

denotes the ring of integers of k′. Note that S is σ-invariant.

As usual, N (resp. Z) denotes the normalizer (resp. the centralizer) of S in G. Let Sn

denote the group of permutation matrices in Gk, so that Nk is the semidirect product of

Sn by Zk. Note that Sk (resp. Zk) is the subgroup of all diagonal matrices of Gk with

entries in k (resp. in k′).

Lemma 5.8. — H1(Nk) can be identified with the set of conjugacy classes of elements

of Sn of order 1 or 2.

Proof. — According to Hilbert’s Theorem 90, the group H1(Zk) is trivial. Therefore we

have an exact sequence:

(5.1) 1→ H1(Nk)→ H1(Nk/Zk).

As σ acts trivially on Nk/Zk ' Sn, the set H1(Nk/Zk) can be identified to the set of Sn-

conjugacy classes of Hom(Z/2Z,Sn), that is, to the set of conjugacy classes of elements

of Sn of order 1 or 2. This proves that H1(Nk) can be naturally embedded in the set of

conjugacy classes of elements of Sn of order 6 2.

Now two elements w,w′ ∈ Sn define the same class in H1(Nk) if and only if they are

conjugate in Sn, thus if and only if wZk and w′Zk define the same class in H1(Nk/Zk).

Therefore (5.1) is a bijection.

Proposition 5.9. — (1) The number of Hk-conjugacy classes of σ-stable maximal k-

split tori in Gk is [n/2] + 1.

(2) There is a unique Hk-conjugacy class of maximal (σ, k)-split tori in Gk.

Proof. — (1) Let X denote the set of all g ∈ Gk such that g−1σ(g) ∈ Nk. Then the map

g 7→ gS defines an injective map from the set of (Hk,Nk)-double cosets of X to H1(Nk).

Therefore we are reduced to proving that this map is surjective, and the first assertion

will follow from Lemma 5.8. For n = 2, let τ denote the non-trivial element of S2 and

choose an element a ∈ k′ which is not in k. Then the element:

(5.2) u =

(
a σ(a)

1 1

)
∈ GL2(k′)
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satisfies the relation u−1σ(u) = τ . For an arbitrary integer n > 2, let w ∈ Sn have order

6 2. Then there is an integer 0 6 i 6 [n/2] such that w is conjugate to the element:

τi = diag(τ, . . . , τ, 1, . . . , 1) ∈ GLn(k′),

where τ ∈ GL2(k′) appears i times and 1 ∈ GL1(k′) appears n− 2i times. Thus:

(5.3) ui = diag(u, . . . , u, 1, . . . , 1) ∈ GLn(k′)

satisfies the relation u−1
i σ(ui) = τi. Therefore any 1-cocycle in Nk is Gk-cohomologous to

the neutral element 1 ∈ Gk, which proves the first assertion.

(2) For any 0 6 i 6 [n/2], the dimension of the (σ, k)-split torus (uiS)− is equal to i.

According to (1), the map:

HkgNk 7→ class of g−1σ(g) in H1(Nk)

is a bijection from the set of (Hk,Nk)-double cosets of X to H1(Nk), and the elements of

this latter set are the classes of the τi for 0 6 i 6 [n/2]. This gives us the expected result.

This ends the proof of Proposition 5.9.

Proposition 5.10. — For 0 6 i 6 [n/2], let ui denote the element defined by (5.2) and

(5.3). Then we have:

Gk =

[n/2]⋃
i=0

HkuiZkK.

Proof. — According to the proof of Proposition 5.9, the set X is the union of the double

cosets HkuiNk with 0 6 i 6 [n/2]. The result then follows from Proposition 3.5 and from

the fact that NkK = ZkK.

5.3. In this paragraph, we give an example (due to Bertrand Lemaire) of a non-split

k-group such that Proposition 4.5 does not hold. We set G = Resk′/kGL2, where k′ is now

a ramified quadratic extension of k. The k-involution σ is still induced by the non-trivial

element of Gal(k′/k) and we set H = GL2. Let B′ (resp. B) denote the building of G

(resp. H) over k.

Bruhat and Tits [8] give a description of the faces of B in terms of hereditary O-orders

of M2(k). More precisely, there is a bijective correspondence:

F 7→MF

between the faces of B and the hereditary O-orders of M2(k), such that the stabilizer

of F in GL2(k) in the normalizer of MF in GL2(k). For x ∈ B, we will denote by Mx

the hereditary order corresponding to the face of B which contains x. We have a similar
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correspondence between faces of B′ and hereditary O′-orders of M2(k′). Moreover, as k′

is tamely ramified over k, there is a bijective correspondence j from the set B′σ of σ-fixed

points of B′ to B such that, for any x ∈ B′σ, we have:

Mj(x) = Mx ∩M2(k).

Let q denote the cardinality of the residue field of k. As k′ is totally ramified over k,

any vertex of B (resp. B′) has exactly q + 1 neighbours in B (resp. in B′). Let x be

a σ-invariant point of B′. Recall that, according to Proposition 3.4, it is contained in a

σ-stable apartment.

• If j(x) is in a chamber of B, then x has q+ 1 neighbours in B′ but only two σ-fixed

ones. Thus x has non-σ-fixed neighbours.

• If j(x) is a vertex of B, then x has q + 1 neighbours in B′ as in B. Therefore any

neighbour of x in B′ is σ-invariant, which implies that any σ-stable apartment containing

x is σ-invariant. For instance, this is the case of the vertex x corresponding to the O′-order

M2(O′), as its image j(x) corresponds to the maximal O-order M2(O′) ∩M2(k) = M2(O).

For such a special point, Proposition 4.5 does not hold.
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