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Introduction

The purpose of this course is to present the one-parameter semigroup theory in
relation with the resolution of several standard linear partial differential equa-
tions, like the heat equation and the Klein-Gordon equation. The last three
Chapters present applications of this theory to nonlinear variants of these equa-
tions together with some qualitative results on the long time behavior of the
solutions.

The present text is largely inspired by the books [6, 12] and by the first
Chapters of the book [7], with several simplifications and omissions to make
the content more adequate to our goals and to the expected knowledge of the
students. The author has also used [5, 8, 10] to prepare this course.

Several appendices, listed below, give a summary on some prerequisites to
follow the course. This may be useful to refresh memory on specific issues, but
it is strongly advised to study other references, for instance the ones mentionned
below.

A. Elements of topology and functional analysis. See [3, 4, 14, 15].

B. Lebesgue integral and Lp spaces. See [1, 2].

C. Sobolev spaces. See [1, 8, 9, 11, 13].

D. Ordinary differential equations. See [15].
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Chapter 1

The finite-dimensional case

A large part of this course is devoted to the study of applications S(t) for t ≥ 0
satisfying the equation{

S(t+ s) = S(t)S(s) for all t, s ≥ 0,

S(0) = 1.
(1.1)

In this Chapter, we concentrate on the scalar case S : [0,∞) → C and the
matrix case S : [0,∞) → Mn(C).

1.1 Scalar case

It is obvious that for any a ∈ C, the exponential function t 7→ eta satisfies (1.1).
Conversely, the following result states that exponential functions are the only
continuous maps [0,∞) → C satisfying (1.1).

Theorem 1.1. Let S : [0,∞) → C be a continuous function satisfying (1.1).
Then there exists a unique a ∈ C such that S(t) = eta for all t ≥ 0.

Remark 1.2. Recall that exponential functions are differentiable and satisfy
the differential equation 

d

dt
S(t) = aS(t) for t ≥ 0,

S(0) = 1.
(1.2)

The fact that a continuous function satisfying (1.1) has to be differentiable and
to satisfy (1.2) is actually a part of the proof of the Theorem.

Proof. Reduction to (1.2). Let S satisfy the assumptions of the Theorem. The
function V defined by

V (t) =

∫ t

0

S(s) ds, t ≥ 0

is differentiable and satisfies d
dtV (t) = S(t). This implies

lim
t↓0

V (t)

t
=

d

dt
V (0) = S(0) = 1.

1



Therefore, for some t0 > 0, V (t0) ̸= 0. We use the assumption (1.1) to write,
for any t ≥ 0,

S(t) = V (t0)
−1V (t0)S(t) = V (t0)

−1

∫ t0

0

S(t+ s) ds

= V (t0)
−1

∫ t+t0

t

S(s) ds = V (t0)
−1(V (t+ t0)− V (t)).

Hence, S is differentiable, with derivative

d

dt
S(t) = lim

h↓0

S(t+ h)− S(t)

h

= lim
h↓0

S(h)− S(0)

h
S(t) =

d

dt
S(0)S(t).

This shows that S satisfies (1.2) with a = d
dtS(0).

Uniqueness of the solution of (1.2). Define T : [0, t] 7→ C by

T (s) = esaS(t− s) for 0 ≤ s ≤ t,

for some fixed t > 0. Then, T is differentiable and satisfies d
dsT (s) = 0. This

implies that T (t) = T (0) and thus eta = S(t).

1.2 Matrix semigroup

1.2.1 Matrix-valued exponential

We denote by Mn(C) the space of complex n×n matrices with complex entries.
A linear dynamical system on Mn(C), or matrix semigroup is a function

S : [0,∞) → Mn(C)

satisfying the equation{
S(t+ s) = S(t)S(s) for all t, s ≥ 0,

S(0) = I.
(1.3)

Given any initial state g ∈ Mn(C), the evolution of this state through this
system is given by u(t) = S(t)g and {S(t)g : t ≥ 0} is called the orbit of g under
S. As a key consequence of (1.3) on the evolution, we observe that an initial
state g arrives after time t + s at the same state as the initial state h = S(s)g
after time t.

We wish to extend Theorem 1.1 to this context. First, we recall the notion
of matrix-valued exponential function.

Definition 1.3. For any A ∈ Mn(C) and t ∈ R, the matrix exponential etA is
defined by

etA =

∞∑
k=0

tkAk

k!
. (1.4)

2



As a finite dimensional vector space, all norms on Mn(C) are equivalent,
and we may equip it with any norm ∥ · ∥. It is also clear that the partial sums
of the series in (1.4) form a Cauchy sequence for any t ≥ 0, and Mn(C) being
complete, the series converges and satisfies the inequality, for all t ≥ 0,∥∥etA∥∥ ≤ et∥A∥.

Here, ∥ · ∥ denotes the norm for matrices corresponding to the norm ∥ · ∥:

∥A∥ = sup
g∈Cn,∥g∥=1

∥Ag∥.

Moreover, we have the following properties.

Proposition 1.4. For any A ∈ Mn(C), the map

t ∈ [0,∞) 7→ etA ∈ Mn(C)

is continuous and satisfies{
e(t+s)A = etAesA for all t, s ≥ 0,

e0A = I.
(1.5)

Proof. By the convergence of the series
∑∞
k=0

1
k! t

k∥A∥k, one justifies the follow-
ing computation (using the binomial expansion) ∞∑

j=0

tjAj

j!

( ∞∑
l=0

slAl

l!

)
=

∞∑
n=0

n∑
k=0

tn−kskAn

(n− k)!k!
=

∞∑
n=0

(t+ s)nAn

n!
= e(t+s)A.

This proves (1.5).
Next, we see that for any t, h ∈ R,

e(t+h)A − etA = etA
(
ehA − I

)
and thus

∥e(t+h)A − etA∥ ≤ ∥etA∥∥ehA − I∥.
To prove the continuity, we only have to prove that limh→0 ∥ehA− I∥ = 0. This
follows from the bound

∥ehA − I∥ =

∥∥∥∥∥
∞∑
k=1

hkAk

k!

∥∥∥∥∥ ≤
∞∑
k=1

|h|k∥A∥k

k!
= e|h|∥A∥ − 1

and the continuity of x 7→ ex.

Remark 1.5. More generally, if A and B commute, then eA+B = eAeB .

We can rephrase these properties as follows: the map t ∈ [0,∞) 7→ etA ∈
Mn(C) is a homomorphism from the additive semigroup ([0,∞),+) into the
multiplicative semigroup (Mn(C), ·). In particular, we introduce the following
terminology.

Definition 1.6. We call (etA)t≥0 the (one-parameter) semigroup generated by
the matrix A ∈ Mn(C).

Remark 1.7. In this definition, there is no need to restrict the time to t ∈
[0,∞). We call the (etA)t∈R the one-parameter group generated by the matrix
A ∈ Mn(C).

3



1.2.2 Examples

1. The semigroup generated by the diagonal matrix A = diag(a1, . . . , an) is
given by

etA = diag
(
eta1 , . . . , eta2

)
.

2. Define the k × k Jordan block

Jk,λ =



λ 1 0 . . . 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 . . . . . . 0 λ


with eigenvalue λ ∈ C. Decompose A into the sum A = D + N , where
D = λI. Note that Nk = 0, and

etN =



1 t t2

2 . . . tk−1

(k−1)!

0 1 t . . . tk−2

(k−2)!

...
. . .

. . .
. . .

...
...

. . .
. . . t

0 . . . . . . 0 1


.

Since D and N commute, we obtain etA = etλetN .

3. Recall that any matrix A ∈ Mn(C) is similar to a block diagonal matrix

J =


Jk1,λ1

0 . . . 0

0 Jk2,λ2

. . .
...

...
. . .

. . . 0
0 . . . 0 Jkp,λp


called the Jordan normal form of A. In the formula above, several λj can
have the same value.

4. The Jordan normal form and the next lemma relating the exponentials
of similar matrices allow to reduce to cases (1) and (2) starting with any
matrix.

Lemma 1.8. Let A ∈ Mn(C) and take an invertible matrix P ∈ Mn(C).
Then, the semigroup generated by the matrix B = P−1AP is given by

etB = P−1etAP.

Proof. Observe that for any k, Bk = P−1AkP and thus

etB =

∞∑
k=0

tkBk

k!
=

∞∑
k=0

tkP−1AkP

k!

= P−1

( ∞∑
k=0

tkAk

k!

)
P = P−1etAP.

4



1.2.3 Differential equation

Proposition 1.9. Let S(t) = etA for some A ∈ Mn(C). Then the function
S : [0,∞) → Mn(C) is differentiable and satisfies the differential equation

d

dt
S(t) = AS(t) for t ≥ 0,

S(0) = I.
(1.6)

Conversely, every differentiable function S : [0,∞) → Mn(C) satisfying (1.6) is
of the form S(t) = etA for some A ∈ Mn(C). Finally, it holds d

dtS(0) = A.

Proof. We start by showing that S(t) = etA satisfies (1.6). By (1.5), it holds,
for any t, δ ∈ R,

S(t+ δ)− S(t)

δ
=
S(t)− I

δ
S(t).

Thus, it is sufficient to prove that limδ→0
S(t)−I
δ = A. This follows from the

estimate∥∥∥∥S(t)− I

δ
−A

∥∥∥∥ =

∥∥∥∥∥
∞∑
k=2

δk−1Ak

k!

∥∥∥∥∥ ≤
∞∑
k=2

|δ|k−1∥A∥k

k!

≤ e|δ|∥A∥ − 1

|δ|
− ∥A∥ → 0 as δ → 0.

The remaining assertions are proved as in Theorem 1.1, replacing the complex
number a by the matrix A.

1.2.4 Characterization of continuous semigroups on Cn

Theorem 1.10. Let S : [0,∞) → Mn(C) be a continuous function satisfying
(1.3). Then, there exists A ∈ Mn(C) such that

S(t) = etA for all t ≥ 0.

Proof. Since S is continuous and S(0) = I is invertible, the matrices

V (t0) =

∫ t0

0

S(s) ds

are invertible for sufficiently small t0 > 0. Now, we follow the computations of
the proof of Theorem 1.1.

1.2.5 Asymptotic and spectral properties

Definition 1.11. We say that a continuous one-parameter semigroup (etA)t≥0

is bounded if there exists M ≥ 1 such that for all t ≥ 0, ∥etA∥ ≤M .
We say that a continuous one-parameter semigroup (etA)t≥0 is stable if

lim
t→∞

∥etA∥ = 0.

The stability property is directly related to the spectral properties of A.

5



Theorem 1.12. The following assertions are equivalent.

1. The semigroup (etA)t≥0 is stable.

2. All eigenvalues of A have negative real part.

We also have the following related result.

Theorem 1.13. The following assertions are equivalent.

1. The semigroup (etA)t≥0 is bounded.

2. All eigenvalues of A have nonpositive real part and all eigenvalues with
zero real part have trivial Jordan blocks (kj = 1).

1.3 Exercises for Chapter 1

Exercise 1.1. Compute the exponential of the following matrices

A =

(
0 1
−1 0

)
, B =

(
0 1
1 0

)
, C =

(
1 1
−1 −1

)
.

Exercise 1.2. Prove Theorem 1.12.

Exercise 1.3. Prove Theorem 1.13.

Exercise 1.4. A semigroup (etA)t≥0 for A ∈ Mn(C) is said to be hyperbolic if
there exists a direct decomposition Cn = Xs⊕Xu where Xs and Xu are vector
subspaces invariant by A, and constants M ≥ 1 and γ > 0 such that

∀x ∈ Xs, t ≥ 0, ∥etAx∥ ≤Me−γt∥x∥,
∀y ∈ Xu, t ≥ 0, ∥etAy∥ ≥Meγt∥y∥.

Prove the equivalence of the following assertions:

1. The semigroup (etA)t≥0 is hyperbolic.

2. Any eigenvalue of A has a non zero real part.

Exercise 1.5. For t ≥ 0, we consider the time-dependent matrix A(t) defined
by

A(t) =

(
0 t
0 1

)
1. Compute explicitly exp

( ∫ t
0
A(s) ds

)
.

2. Compute explicitly the solution U(t) of{
U ′(t) = A(t)U(t) t ≥ 0,

U(0) = I.

3. Compare.
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Chapter 2

Uniformly continuous
versus strongly continuous
semigroups

Let (X, ∥ · ∥) be a Banach space over K = R or C.

2.1 Uniformly continuous operator semigroups

2.1.1 Definitions

Definition 2.1. A family (S(t))t≥0 of bounded linear operators on a Banach
space X is called a (one-parameter) semigroup on X if it satisfies{

S(t+ s) = S(t)S(s) for all t, s ≥ 0,

S(0) = I.
(2.1)

If (2.1) holds for all t, s ∈ R, (S(t))t∈R is called a (one-parameter) group on X.

The interpretation of (2.1) as the property of a dynamical system is the
same as in §1.2.1.

As in the previous chapter, the typical examples of (one-parameter) semi-
groups of operators are operator-valued exponential functions, as defined in the
following proposition.

Proposition 2.2. For any A ∈ L(X) the series
∑
k≥0

1
k!A

k defines a bounded

linear operator, denoted by eA, which satisfies ∥eA∥ ≤ e∥A∥. Moreover,

1. If A, B ∈ L(X) commute, then eA+B = eAeB.

2. For fixed A ∈ L(X), the function t 7→ etA belongs to C1(R,L(X)) and we
have

d

dt
etA = etAA = AetA.

for all t ∈ R.
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3. For any T > 0 and any g ∈ X, u(t) = etAg is the unique solution in
C1([0, T ], X) of the following problem:

d

dt
u(t) = Au(t), for all t ∈ [0, T ],

u(0) = g.

Proof. The proofs of (1) and (2) are the same as the ones of Proposition 1.9.
We prove (3). We know by (2) that u(t) = etAg is a solution. Let v be another
solution on some time interval [0, T ] where T > 0, and set z(t) = e−tAv(t).
Then, we have

z′(t) = e−tA(Av(t))−A(e−tAv(t)) = 0,

which implies z(t) = z(0) = g, and so v(t) = etAg.

Now, we ask whether the analogue of the characterization Theorem 1.10
holds for continuous semigroups of bounded linear operators. The answer de-
pends on the notion of continuity.

Definition 2.3. A one-parameter semigroup (S(t))t≥0 on a Banach space X is
called uniformly continuous if

t ∈ [0,∞) 7→ S(t) ∈ L(X)

is continuous with respect to the uniform operator topology on L(X).

With this rather restrictive notion of continuity, we have the following ana-
logue of Theorem 1.10.

Theorem 2.4. Every uniformly continuous semigroup (S(t))t≥0 on a Banach
space X is of the form S(t) = etA, t ≥ 0, for some bounded operator A ∈ L(X),
called the generator of S.

Proof. The proof follows the same arguments as in the scalar and matrix-valued
cases. Define for t ≥ 0,

V (t) =

∫ t

0

S(s) ds.

Since
1

t
V (t)− S(0) =

1

t

∫ t

0

(S(s)− S(0)) ds,

we see that 1
tV (t) converges in norm to S(0) = I as t ↓ 0. In particular, using

Lemma A.39, the operator V (t) is invertible for t > 0 small enough. As in the
proof of Theorem 1.1, we compute

S(t) = V (t0)
−1(V (t+ t0)− V (t)).

In particular, t 7→ S(t) is differentiable and using

S(t+ h)− S(t)

h
=
S(h)− S(0)

h
S(t)−→

h↓0

(
d

dt
S(0)

)
S(t)

it satisfies d
dtS(t) = AS(t), where A = d

dtS(0). By Proposition 2.2, it follows
that S(t) = etA.
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2.1.2 Asymptotic behavior

Definition 2.5. A semigroup (S(t))t≥0 on a Banach spaceX is called uniformly
exponentially stable if there exist constants γ > 0 andM ≥ 1 such that ∥S(t)∥ ≤
Me−γt, for all t ≥ 0.

Proposition 2.6. For uniformly continuous semigroup (S(t))t≥0 the following
assertions are equivalent.

1. (S(t))t≥0 is uniformly exponentially stable.

2. limt→∞ ∥S(t)∥ = 0.

3. There exists t0 > 0 such that ∥S(t0)∥ < 1.

4. There exists t1 > 0 such that r(S(t1)) < 1, where r(S(t)) is the spectral
radius of S(t) (see (A.2)).

Proof. The implications (1) =⇒ (2) =⇒ (3) are obvious. Moreover, r(S(t0)) ≤
∥S(t0)∥ says that (3) =⇒ (4).

Since r(S(t1)) = limn→∞ ∥S(nt1)∥
1
n (see Proposition A.41), we see that (4)

implies (3).
Now, we prove (3) =⇒ (1). Let α = ∥S(t0)∥ < 1 andM = sup0≤s≤t0 ∥S(s)∥.

For any t ≥ 0, decompose t = kt0 + s with s ∈ [0, t0]. Then,

∥S(t)∥ ≤ ∥S(s)∥ · ∥S(kt0)∥ ≤M∥S(t0)∥k

≤Mαk ≤Me
t−t0
t0

logα =
M

α
et

log α
t0 ,

where we have used k ≥ t−t0
t0

.

For the reader information, we state without proof the spectral mapping
theorem.

Theorem 2.7. For every uniformly continuous semigroup (S(t))t≥0, with gen-
erator A ∈ L(X), it holds, for all t ≥ 0,

σ(S(t)) = etσ(A) =
{
etλ : λ ∈ σ(A)

}
.

In particular, this implies the following result.

Theorem 2.8. For the uniformly continuous semigroup (S(t))t≥0 with gener-
ator A, assertions (1)-(4) of Proposition 2.6 are equivalent to ℜλ < 0 for all
λ ∈ σ(A).

2.2 Strongly continuous semigroups

2.2.1 Definition and examples

Example 2.9. Let X = L2(R) and for all t ≥ 0, define the translation semi-
group S(t) = τt, where for all g ∈ X,

τyg(x) = g(x− y) for all x, y ∈ R.
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We check that S is indeed a semigroup on X in the sense of Definition 2.1.
Now, for any t > 0, x ∈ R, let

gt(x) = t−
1
21[t,2t](x)

so that

∥gt∥L2 = 1, ∥S(t)gt − gt∥L2 =
√
2 and so ∥S(t)− I∥L(L2) ≥

√
2.

This shows that the map t ∈ [0,∞) 7→ S(t) ∈ (L(L2), ∥·∥L(L2)) is not continuous
at t = 0. However, it is known that given g ∈ L2(R) (see Proposition B.27)

lim
t↓0

∥τtg − g∥L2 = 0.

This leads us to the following definition of strongly continuous semigroup.

Definition 2.10. A strongly continuous (one-parameter) semigroup of linear
operators on X is a map

S : [0,∞) → L(X)

satisfying the following properties

1. for all t, s ∈ [0,∞), S(t+ s) = S(t)S(s);

2. S(0) = I;

3. for all g ∈ X, the function t ∈ [0,∞) 7→ S(t)g ∈ X is continuous.

Remark 2.11. Example 2.9 illustrates that property (3) of Definition 2.10 does
not imply in general that S : [0,∞) → (L(X), ∥ · ∥L(X)) is continuous.

2.2.2 Basic properties of strongly continuous semigroups

Proposition 2.12. Let S be a strongly continuous semigroup on X.

1. For all t0 > 0, there exists M0 ≥ 1 such that

sup
t∈[0,t0]

∥S(t)∥ < M0.

2. There exist M ≥ 1 and γ ≥ 0 such that for all t ∈ [0,∞),

∥S(t)∥ ≤Meγt.

Proof. (1) From (3) of Definition 2.10, for all g ∈ X, it holds

sup
t∈[0,t0]

∥S(t)g∥ <∞.

Using the Uniform Boundedness Principle (Theorem A.34), there existsM0 ≥ 1
such that

sup
t∈[0,t0]

∥S(t)∥ ≤M0.
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(2) Let M ≥ 1 be such that supt∈[0,1] ∥S(t)∥ ≤ M . Let any t ∈ [0,∞). Let
n = ⌊t⌋ be the integer part of t and s = t− n ∈ [0, 1). Then, by Definition 2.1,
it holds

S(t) = S(s)S(n) = S(s)S(1)n.

In particular, using n ≤ t,

∥S(t)∥ ≤ ∥S(s)∥∥S(1)∥n ≤M1+n ≤Met logM ,

which implies the desired estimate with γ = logM .

Definition 2.13. A contraction semigroup S on X is a semigroup satisfying
the additional condition: for all t ≥ 0, ∥S(t)∥ ≤ 1.

The Hille-Yosida-Phillips theory in the next Chapter is stated for contraction
semigroups, which does not restrict the generality thanks to the following result.

Proposition 2.14. Let S be a strongly continuous semigroup on X. There exist
γ > 0 and a norm ∥ · ∥γ on X, equivalent to ∥ · ∥, such that Sγ(t) = e−γtS(t) is
a contraction semigroup on (X, ∥ · ∥γ).

Proof. By Proposition 2.12, there exist M ≥ 1 and γ > 0 such that Sγ(t) =
e−γtS(t) satisfies supt≥0 ∥Sγ(t)∥ ≤M . For all g ∈ X, set

∥g∥γ = sup
t≥0

∥Sγ(t)g∥.

We check that ∥ · ∥γ is a norm on X. Moreover, ∥ · ∥ and ∥ · ∥γ are equivalent:
for any g ∈ X, ∥g∥γ ≥ ∥g∥ is clear from Sγ(0) = I and ∥g∥γ ≤ M∥g∥ follows
from supt≥0 ∥Sγ(t)∥ ≤M .

Last, for any s ≥ 0, we see that ∥Sγ(s)g∥γ = supt≥0 ∥Sγ(s + t)g∥ ≤ ∥g∥γ ,
which proves that Sγ(s) is a contraction.

Now, we claim that the strong continuity of a semigroup is equivalent to an
apparently weaker property.

Proposition 2.15. Let (S(t))t≥0 be a semigroup on a Banach space X. Assume
that the following two properties hold

1. There exists t0 > 0 and M ≥ 1 such that for all t ∈ [0, t0], ∥S(t)∥ ≤M ;

2. There exists a dense set D ⊂ X such that limt↓0 S(t)g = g for all g ∈ D.

Then (S(t))t≥0 is a strongly continuous semigroup.

Proof. See Exercise 2.9.

2.3 Generator of strongly continuous semigroup

Definition 2.16. Let S be a strongly continuous semigroup on X. We call
infinitesimal generator of S (or simply generator) the couple (D(A), A), where
D(A) is the set of vectors g ∈ X such that

S(δ)g − g

δ
has a limit in X as δ ↓ 0,

and for all g ∈ D(A),

Ag = lim
δ↓0

S(δ)g − g

δ
.
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Remark 2.17. The condition defining the set D(A) in the above definition is
exactly the right-differentiability of the function t 7→ S(t)g at t = 0, and for
g ∈ D(A),

Ag =
d

dt
(S(t)g)|t=0+ .

Observe that A : D(A) 7→ X is a linear map. The above result motivates the
introduction of the notion of linear unbounded operator in the next Chapter.

Example 2.18. The generator of the translation semigroup introduced in Ex-
ample 2.9 is given by

D(A) = H1(R), Ag =
d

dx
g

where d
dxg is the derivative of g in the distributional sense. See Exercise 2.10.

Proposition 2.19. Let S be a semigroup on X and (A,D(A)) be its generator.
Then, for all t ≥ 0, D(A) is stable by S(t) and for all g ∈ D(A),

AS(t)g = S(t)Ag.

Moreover,

1. The domain D(A) is dense in X;

2. The graph of A defined by

G(A) = {(g, w) ∈ X ×X : g ∈ D(A) and w = Ag}

is closed in X ×X.

Proof. Let t ≥ 0 and g ∈ D(A). For all δ > 0, it holds

S(δ)− I

δ
S(t)g =

S(t+ δ)− S(t)

δ
g

= S(t)
S(δ)− I

δ
g−→
δ↓0

S(t)Ag,

by continuity of S(t). This implies that S(t)g ∈ D(A) and AS(t)g = S(t)Ag.
We need the following lemma to prove the second part of Proposition 2.19.

Lemma 2.20. For all ε > 0, for all g ∈ X, let

Jεg =
1

ε

∫ ε

0

S(t)g dt.

Then, Jε : X → X is a bounded linear map and limε↓0 Jεg = g. Moreover, it
holds

1. For any δ ≥ 0, ε > 0,

S(δ)− I

δ
Jε =

S(ε)− I

ε
Jδ = Jδ

S(ε)− I

ε
. (2.2)

2. For any ε ≥ 0 and g ∈ X, ∫ ε

0

S(t)g dt ∈ D(A);
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3. For any ε ≥ 0 and g ∈ X,

S(ε)g − g = A

∫ ε

0

S(t)g dt;

4. For any ε ≥ 0 and g ∈ D(A),

S(ε)g − g =

∫ ε

0

S(t)Ag dt.

Proof of Lemma 2.20. The fact that limε↓0 Jεg = g follows from S(0)g = g and
the continuity of t 7→ S(t)g at t = 0. The map Jε is clearly linear since S(t) is
a linear map. The inequality

∥Jεg∥ ≤ 1

ε

∫ ε

0

∥S(t)g∥ dt,

and Proposition 2.12 (1) implies the bound ∥Jεg∥ ≤ Cε∥g∥.
(1) For δ > 0, it holds

S(δ)− I

δ
Jεg =

1

εδ

[
S(δ)

∫ ε

0

S(t)g dt−
∫ ε

0

S(t)g dt

]
=

1

εδ

[∫ ε

0

S(δ + t)g dt−
∫ ε

0

S(t)g dt

]
=

1

εδ

[∫ δ+ε

δ

S(t)g dt−
∫ ε

0

S(t)g dt

]

=
1

εδ

[∫ δ+ε

ε

S(t)g dt−
∫ δ

0

S(t)g dt

]
,

where the last equality is deduced from Chasles relation:
∫ δ+ε
0

=
∫ ε
0
+
∫ δ+ε
ε

=∫ δ
0
+
∫ δ+ε
δ

. This computation shows that the roles of δ and ε can be changed.
We deduce from this computation the identity

S(δ)− I

δ
Jεg =

S(ε)− I

ε
Jδg.

The last identity in (2.2) follows from the fact that Jδ and S(ε) commute.
(2)-(3). Let g ∈ X and ε > 0. Passing to the limit δ ↓ 0 in the identity given

by Lemma 2.2, we obtain

S(δ)− I

δ
Jεg =

S(ε)− I

ε
Jδg−→

δ↓0

S(ε)− I

ε
g.

It follows that Jεg ∈ D(A), with

AJεg =
S(ε)− I

ε
g.

(4) Note that the second part of (2.2) and the continuity of Jδ then yield,
for all g ∈ D(A),

JδAg = AJδg =
S(δ)− I

δ
g.

This completes the proof of the lemma.
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We continue the proof of Proposition 2.19. Proof of (1). Since limε↓0 Jεg = g,
it follows that D(A) is dense in X.

Proof of (2). We use the sequential characterization of closed sets. Let
(gn, wn) ∈ G(A) be such that

lim
n→∞

gn = g, lim
n→∞

wn = w,

where (g, w) ∈ X ×X. Passing to the limit as n→ ∞ in the identity

Jδwn = JδAgn =
S(δ)− I

δ
gn

we obtain

Jδw =
S(δ)− I

δ
g.

Passing to the limit in δ ↓ 0, this shows that g ∈ D(A) and w = Ag. Thus,
G(A) is closed in X ×X.

2.4 Generators of contraction semigroups

Definition 2.21. A contraction semigroup (S(t))t≥0 on X is a strongly contin-
uous semigroup of linear operators on X satisfying in addition

∥S(t)∥ ≤ 1 for all t ≥ 0.

Remark 2.22. Recall that by Proposition 2.14, there is no loss of generality
to restrict to contraction semigroups.

Proposition 2.23. Let S be a contraction semigroup on X and let A be its
generator. Then, A satisfies the following properties

1. For all g ∈ D(A) and λ ≥ 0, it holds

∥g − λAg∥ ≥ ∥g∥.

2. For all h ∈ X, there exists g ∈ D(A) such that

g −Ag = h.

Remark 2.24. The above remarkable properties of the generator associated to
a contraction semigroup motivates the introduction of the notion of maximal
dissipative unbounded operators in the next Chapter.

Proof. Proof of (1). For all g ∈ D(A), λ ≥ 0 and δ > 0, using ∥S(δ)∥ ≤ 1, the
homogeneity property of the norm ∥ ·∥ and the triangle inequality, one sees that∥∥∥∥g − λ

S(δ)g − g

δ

∥∥∥∥ =

∥∥∥∥(1 + λ

δ

)
g − λ

δ
S(δ)g

∥∥∥∥
≥
(
1 +

λ

δ

)
∥g∥ − λ

δ
∥S(δ)g∥ ≥ ∥g∥.
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Passing to the limit as δ ↓ 0, since limδ↓0
S(δ)g−g

δ = Ag in X, for g ∈ D(A), we
obtain ∥g − λAg∥ ≥ ∥g∥.

Proof of (2). We define a bounded linear operator R on X by setting, for all
h ∈ X,

Rh =

∫ ∞

0

e−tS(t)hdt.

Since ∥e−tS(t)h∥ ≤ e−t∥h∥, the integral above has a sense as∫ ∞

0

e−tS(t)hdt = lim
T→∞

∫ T

0

e−tS(t)hdt,

and ∥Rh∥ ≤
∫∞
0

e−t∥S(t)h∥ dt ≤ ∥h∥. It follows that R is indeed a bounded
linear operator with ∥R∥ ≤ 1.

Now, we compute, for h ∈ X and δ > 0,

S(δ)− I

δ
Rh =

1

δ

∫ ∞

0

e−t (S(t+ δ)h− S(t)h) dt

=
1

δ

∫ ∞

δ

e−(t−δ)S(t)h− 1

δ

∫ ∞

0

e−tS(t)hdt

=
eδ − 1

δ

∫ ∞

0

e−tS(t)hdt− eδ

δ

∫ δ

0

e−tS(t)hdt

=
eδ − 1

δ
Rh− eδ

δ

∫ δ

0

e−tS(t)hdt.

We observe that limδ↓0
eδ−1
δ = 1 and

lim
δ↓0

eδ

δ

∫ δ

0

e−tS(t)hdt = h.

Therefore, we have proved that Rh ∈ D(A) and

ARh = Ah− h =⇒ (I −A)Rh = h,

which means that I −A : D(A) → X is bijective and R = (I −A)−1.

2.5 Exercises for Chapter 2

Exercise 2.1. Let A,B be continuous operators on a Banach space X. Prove
that

∑∞
k=0

1
k!A

k defines a continuous linear operator onX which satisfies ∥eA∥ ≤
e∥A∥. Prove that if A and B commute, then eA+B = eAeB . Moreover, for a
given A, prove that the function t 7→ etA belongs to C∞(R,L(X)) and satisfies

d

dt
etA = etAA = AetA,

for all t ∈ R.

Exercise 2.2. Let A,B be continuous operators on a Banach space X. Show
that if for all t ∈ R,

et(A+B) = etAetB

then A and B commute.
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Exercise 2.3. Let A be a continuous operator on a Banach space X. We
suppose that there exists t0 > 0 such that ∥et0A∥ < 1. Prove that the semigroup
(etA)t≥0 is uniformly exponentially stable, i.e. there exists M ≥ 1 and γ > 0
such that, for all t ≥ 0,

∥etA∥ ≤Me−γt.

Exercise 2.4. We consider X = ℓp(C) pour 1 ≤ p ≤ ∞, and the right shift
operator, represented by the infinite matrix (ai,j)i,j≥0,

ai,j =

{
1 if j = i+ 1

0 otherwise.

Compute the spectrum of A. Compute etA for all t ≥ 0.

Exercise 2.5 (Uniformly continuous semigroups on a Hilbert space). Let H be
a Hilbert space, with associated scalar product (· | ·). For A ∈ L(H), we denote
A∗ the adjoint of A, i.e. the unique operator satisfying (Ag|h) = (g|A∗h), for
any g, h ∈ H.

Let S(t) = etA for t ∈ R be the uniformly continuous group associated to A.

1. Prove that S(t)∗ defines a uniformly continuous group and for all t ∈ R,

S(t)∗ = etA
∗
.

An operator T ∈ L(H) is unitary if T−1 = T ∗. An operator A ∈ L(H) is
skew-adjoint if A∗ = −A.

2. Prove that S(t) is unitary for all t ∈ R if, and only if A is skew-adjoint.

Exercise 2.6. Let X be a Banach space. Let t ∈ [0,∞) 7→ A(t) ∈ L(X) be a
C1 function with values in L(X). Prove that

d

dt
eA(t) =

∫ 1

0

esA(t)

(
d

dt
A(t)

)
e(1−s)A(t) ds.

Exercise 2.7 (Multiplication semigroups on C0(RN )). Let

C0(RN ) =

{
f ∈ C(RN ) :

for all ε > 0, there exists a compact Kε ⊂ RN

such that |f(x)| ≤ ε for all x ∈ RN \Kε

}
.

We equip C0(RN ) with the sup-norm on RN

∥f∥ = sup
x∈RN

|f(x)|.

1. Justify that (C0(RN ), ∥ · ∥) is a Banach space.

Let q : RN → C be a continuous function and define for all t ≥ 0,
f ∈ C0(RN ),

S(t)f = etqf in the sense that for all x ∈ RN , [S(t)f ](x) = etq(x)f(x).
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2. Prove that for t > 0, S(t) is a bounded linear operator on C0(RN ) if and
only if

sup
x∈RN

ℜq(x) <∞. (⋆)

3. Prove that (S(t))t≥0 defines a uniformly continuous semigroup on C0(RN )
if and only if q is bounded on RN .

4. Prove that under assumption (⋆), (S(t))t≥0 defines a strongly continuous
semigroup on C0(RN ).

Exercise 2.8. Let X be a Banach space. Let L be a compact set of R and let
F : L → L(X). Assume that F is uniformly bounded on L, and assume that
there exists a dense set D ⊂ X such that for any g ∈ D, t ∈ L 7→ F (t)g ∈ X is
continuous.

Prove that for any compact set K of X, the map

(t, g) ∈ L×K 7→ F (t)g ∈ X

is uniformly continuous.

Exercise 2.9 (Application of the previous exercise). Let (S(t))t≥0 be a semi-
group on a Banach space X. Assume that the following two properties hold

1. There exists t0 > 0 and M ≥ 1 such that for all t ∈ [0, t0], ∥S(t)∥ ≤M ;

2. There exists a dense set D ⊂ X such that limt↓0 S(t)g = g for all g ∈ D.

Prove the following:

(a) limt↓0 S(t)g = g, for all g ∈ X,

(b) (S(t))t≥0 is a strongly continuous semigroup.

Exercise 2.10 (Translation semigroup). On L2(R), define the (right-) trans-
lation semigroup

S(t) = τt, ∀t ≥ 0

where
τyg(x) = g(x− y) for all x, y ∈ R.

1. Prove that (S(t))t≥0 is a strongly continuous semigroup on L2(R).

2. Prove that the generator (D(A), A) of (S(t))t≥0 is

D(A) = H1(R), Ag = g′.

Hint: use Exercises C.2-C.4.

Exercise 2.11. Let (D,A) be the generator of a contraction semigroup denoted
by (S(t))t≥0 on X. Define

D(A2) = {g ∈ D : Ag ∈ D}.

1. Prove that for all g ∈ D(A2),

∥Ag∥2 ≤ 4∥A2g∥∥g∥.

(Hint: Justify and use the formula S(t)g = g+tAg+
∫ t
0
(t−s)S(s)A2g ds.)
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2. If in addition (S(t))t∈R is a group of isometries then for all g ∈ D(A2),

∥Ag∥2 ≤ 2∥A2g∥∥g∥.

Exercise 2.12. Consider the Banach space (C0(R), ∥ · ∥∞). Let (S(t))t≥0 be a
strongly continuous semigroup on X with generator (D,A). Prove the equiva-
lence of the following statements.

1. For all f, g ∈ X, and all t ≥ 0, S(t)(f · g) = S(t)f · S(t)g.

2. D is a subalgebra of X and for all f, g ∈ D,

A(f · g) = Af · g + f ·Ag.
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Chapter 3

Unbounded operators

3.1 Unbounded operators in Banach spaces

Definition 3.1. A linear unbounded operator in X is a pair (D,A), where D
is a linear subspace of X and A is a linear mapping D → X.

We say that A is bounded if there exists C > 0 such that

∥Ag∥ ≤ C,

for all g ∈ {h ∈ D : ∥h∥ ≤ 1}. Otherwise, A is not bounded.

Remark 3.2. The terminology unbounded operator is unfortunate, but it is of
general use. In what follows, for simplicity, a linear unbounded operator is just
called linear operator or operator. Note that when one defines an operator, it is
absolutely necessary to define its domain.

An element of L(X) will still be called a bounded linear operator.

Definition 3.3. Let (D,A) be an operator. We set

G(A) = {(g, h) ∈ X ×X : g ∈ D and h = Ag},
A[D] = {h ∈ X : there exists g ∈ D such that h = Ag},

respectively called the graph and the range of A.

Remark 3.4. When D = X, from the Closed Graph Theorem A.35, A ∈ L(X)
if and only if G(A) is closed in X ×X.

Definition 3.5. An operator (D,A) is said to be closed if G(A) is closed in
X ×X.

3.2 Maximal dissipative operators

Definition 3.6. Let (D,A) be an operator.

1. We say that A is dissipative if for all g ∈ D and all λ ≥ 0,

∥(I − λA)g∥ ≥ ∥g∥.
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2. We say that A is maximal dissipative if it is dissipative and for all h ∈ X,
there exists g ∈ D such that (I −A)g = h.

Remark 3.7. If A is maximal dissipative, it is clear from the definition that,
for any h, there exists a unique solution g of g−Ag = h. Indeed, if g and g̃ are
two such solutions, then (g − g̃)−A(g − g̃) = 0 and by (1), ∥g − g̃∥ = 0 so that
g = g̃. Moreover, the operator A being dissipative, it holds

∥h∥ = ∥(I −A)g∥ ≥ ∥g∥,

and thus, denoting R = (I −A)−1, we have R ∈ L(X) and ∥R∥ ≤ 1.

Proposition 3.8. Let (D,A) be a maximal dissipative operator on X. Then,

1. for any λ ≥ 0, the operator λA is maximal dissipative;

2. A is closed.

Remark 3.9. In practice, assertion (1) of Proposition 3.8 can greatly simplify
the verification that a given operator is maximal dissipative.

Proof. Proof of (1). It is clear for any λ > 0 that λA is dissipative. Given λ > 0
and h ∈ X, the equation (I − λA)g = h is equivalent to

g −Ag =
1

λ
h+

(
1− 1

λ

)
g ⇐⇒ g = F (g),

where we have set

F (g) = R

(
1

λ
h+

(
1− 1

λ

)
g

)
.

For λ > 1
2 , we have

|F (g1)− F (g2)| ≤
∣∣∣∣1− 1

λ

∣∣∣∣ ∥g1 − g2∥ ≤ k∥g1 − g2∥,

where 0 ≤ k < 1. Applying the Banach Fixed-Point Theorem A.26, there
exists a solution g ∈ X of g = F (g). Thus, for any λ > 1

2 , the operator λA
is maximal dissipative. Iterating this argument n times, the operator λA is
maximal dissipative for any λ > 2−n. Since n is arbitrary, the operator λA is
maximal dissipative for any λ > 0.

Proof of (2). Let {gn}∞n=0 be a sequence of D such that limn→∞ gn = g
and limn→∞Agn = h. We need to check that g ∈ D and Ag = h. We have
limn→∞ gn − Agn = g − h. Since R ∈ L(X) and gn = R(gn − Agn), we obtain
by passing to the limit n → ∞, g = R(g − h), which means that g ∈ D and
g −Ag = g − h and thus Ag = h.

Corollary 3.10. Let (D,A) be a maximal dissipative operator on X. For any
u ∈ D, let

∥u∥D = ∥u∥+ ∥Au∥.
Then, (D, ∥ · ∥D) is a Banach space and A ∈ L(D,X).

Remark 3.11. From Proposition 3.8, if A is a maximal dissipative operator, for
any λ > 0, λA is also a maximal dissipative operator. As a consequence, using
Remark 3.7 on λA, one can define the operators Rλ ∈ L(X) and Aλ ∈ L(X) as
in the next definition.
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Definition 3.12. Let (D,A) be a maximal dissipative operator on X. For any
λ > 0, we set

Rλ = (I − λA)−1 and Aλ =
1

λ
(Rλ − I),

respectively called the resolvent of A and the Yosida approximation of A.

Remark 3.13. From Remarks 3.7 and 3.11, it follows that Rλ ∈ L(X), Aλ ∈
L(X) and ∥Rλ∥ ≤ 1. Moreover, for any λ, µ > 0, since I − λA and I − µA
commute, Rλ, Aλ, Rµ and Aµ all commute. We also observe that

Aλ = ARλ = RλA. (3.1)

Proposition 3.14. Let (D,A) be a maximal dissipative operator with dense
domain D on X. Then,

1. For all g ∈ X, limλ↓0 ∥Rλg − g∥ = 0.

2. For all g ∈ D, limλ↓0 ∥Aλg −Ag∥ = 0.

Proof. Proof of (1). Let u ∈ D. We have

Rλu− u = Rλ(u− (I − λA)u) = λRλAu.

Thus, ∥Rλu − u∥ = λ∥RλAu∥ ≤ λ∥Au∥ → 0 as λ ↓ 0. For any u ∈ X, since
∥Rλ − I∥ ≤ ∥Rλ∥+ ∥I∥ ≤ 1, we argue by density.

Proof of (2). Let u ∈ D. From (1), we have

lim
λ↓0

∥RλAu−Au∥ = 0.

By the definition of Aλ, we have Aλ = ARλ = RλA and thus,

∥Aλu− u∥ = ∥RλAu−Au∥,

which implies the desired result.

3.3 Extrapolation

The next result shows that any maximal dissipative operator (D,A) with dense
domain D on X can be extended to a maximal dissipative operator (DB , B) on
a larger space Y , with domain DB = X. This will be useful to formulate the
notion of weak solution in the next Chapters.

Proposition 3.15. Let (D,A) be an maximal dissipative operator with dense
domain D on X. There exists a Banach space (Y, ∥ · ∥Y ) and a maximal dissi-
pative operator (DB , B) on Y such that

1. X ⊂ Y with dense embedding;

2. for all g ∈ X, ∥g∥Y = ∥Rg∥, with R = (I −A)−1;

3. DB = X with equivalent norms;

4. for all g ∈ D, Bg = Ag;

21



5. if g ∈ X satisfies Bg ∈ X, then g ∈ D and Bg = Ag.

Proof. We define a norm on X by setting, for any g ∈ X,

|||g||| = ∥Rg∥ ≤ ∥g∥.

In general, the norm ||| · ||| is not equivalent to ∥ ·∥. We define Y as the (Banach)
completion of the normed space (X, |||·|||) (see §A.4). Then (Y, |||·|||) is a Banach
space containing a dense subspace that is isometric with X, which we denote
by X ⊂ Y with dense embedding.

For all g ∈ D, by definition of R we have RAg = Rg − g, which implies the
bound

|||Ag||| = ∥Rg − g∥ ≤ |||Rg|||+ ∥g∥ ≤ 2∥u∥.

This means that A can be extended to a linear map Ã ∈ L(X,Y ). We define
the linear operator (DB , B) on Y by

DB = X, Bg = Ãg for all g ∈ DB .

All the properties (1)-(4) are checked.
Now, we prove that B is maximal dissipative for (Y, ||| · |||). Let λ > 0, g ∈ D

and h = Rg, so that
h− λAh = R(g − λAg).

Since A is dissipative, we have

|||g − λAg||| = ∥h− λAh∥ ≥ ∥h∥ = |||g|||.

By density, and continuity of Ã, we obtain, for all g ∈ X, |||g − λBg||| ≥ |||g|||,
which means that B is dissipative for (Y, ||| · |||).

Let f ∈ Y and a sequence {fn}∞n=0 of X such that limn→∞ fn → f in Y .
Let un = Rfn. Since {fn}∞n=0is a Cauchy sequence in Y , {un}∞n=0 is a Cauchy
sequence in X, which implies the existence of a limit u in X. Since Ã ∈ L(X,Y ),
passing to the limit in fn = un − Ãun proves that f = u − Ãu = u − Bu. In
particular, B is maximal dissipative.

Finally, we prove (5). Let g ∈ X and assumeBg ∈ X so that f = g−Bg ∈ X.
Since A is maximal dissipative, there exists h ∈ D with h−Bh = h− Ah = f .
Thus, (g − h) − B(g − h) = 0 and since B is maximal dissipative, we have
g = h ∈ D.

3.4 Unbounded operators in Hilbert spaces

In this section, we work on a real Hilbert space (H, (· | ·)).

3.4.1 Adjoint

Two (unbounded) operators (D,A), (D̃, Ã) on H are said to be adjoint if

for all g ∈ D, h ∈ D̃, (Ag | h) = (g | Ãh).

Without any additional condition on A, it may admit several adjoint operators.
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Definition 3.16. Let (D,A) be an operator on G with dense domain. We
define a subspace of H by setting

D∗ = {h ∈ H : there exists f ∈ H such that for all g ∈ D, (Ag | h) = (g | f)}.

For h ∈ D∗, set A∗h = f where f is given above.

Note by density of D in H that only one vector f is associated to a given h.

Proposition 3.17. For (D,A) an operator on H with dense domain, the above
definition defines an operator (D∗, A∗), called the adjoint of (D,A).

Remark 3.18. From the Riesz Representation Theorem, the domain of A∗ is
given by

D∗ = {h ∈ H : there exists C > 0, for all g ∈ D, |(Ag | h)| ≤ C∥g∥}.

Moreover, from the definition it holds

for all g ∈ D, h ∈ D∗, (Ag | h) = (g | A∗h).

Note that the domain D∗ of A∗ is not necessarily dense. See Exercises.

We equip H ×H of the natural scalar product and we define J : H ×H →
H ×H by

J(g, h) = (−h, g).

Observe that J is isometric and satisfies J2 = −I. In particular, we check that
for all A ⊂ H ×H, it holds J(A⊥) = (J(A))⊥.

Lemma 3.19. For (D,A) an operator on H with dense domain, it holds

G(A∗) = J(G(A))⊥, J(G(A∗))⊥ = G(A).

In particular, the graph of A∗ is closed.

Proof. We see that

(g, h) ∈ J [G(A)]⊥ ⇐⇒ ∀f ∈ D, (g | −Af) + (h | f) = 0

⇐⇒ ∀f ∈ D, (Af | g) = (f | h)
⇐⇒ g ∈ D∗, h = A∗g ⇐⇒ (g, h) ∈ G(A∗).

Since G(A)⊥ is a vector space and J2 = −I, it follows that J(G(A∗)) = G(A)⊥

and thus J(G(A∗))⊥ = G(A).

Lemma 3.20. For (D,A) an operator on H with dense domain, it holds

(A[D])⊥ = {h ∈ D∗ : A∗h = 0}.

Proof. Indeed,

h ∈ (A[D])⊥ ⇐⇒ ∀g ∈ D, (Ag | h) = 0 ⇐⇒ (h, 0) ∈ G(A∗).

The last property means h ∈ D∗ and A∗h = 0.
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3.4.2 Maximal dissipative operators in the Hilbert case

Proposition 3.21. An operator (D,A) is dissipative on H if, and only if for
all g ∈ D, (Ag | g) ≤ 0. This property is also written A ≤ 0.

Proof. First, we see that if (D,A) is dissipative, then for all λ > 0, for all g ∈ D,

0 ≤ ∥g − λAg∥2 − ∥g∥2 = λ2∥Ag∥2 − 2λ(Ag | g).

Dividing by λ and passing to the limit as λ ↓ 0, we obtain (Ag | g) ≤ 0.
Second, if λ > 0, g ∈ D and (Ag | g) ≤ 0 then

∥g − λAg∥2 = ∥g∥2 + λ2∥Ag∥2 − 2λ(Ag | g) ≥ ∥g∥2,

which proves that (D,A) is dissipative.

Proposition 3.22. The domain of a maximal dissipative operator (D,A) is
dense in H. In particular, Proposition 3.14 applies to any maximal dissipative
operator on a Hilbert space H.

Proof. Let h ∈ D⊥ and g = Rh ∈ D. Then

0 = (g | h) = (g | g −Ag) and thus ∥g∥2 = (Ag | g) ≤ 0.

It follows that g = 0 and thus h = 0. Thus, D⊥ = {0} and D is dense in X.

Proposition 3.23. Let (D,A) be a dissipative operator on H with dense do-
main. Then, (D,A) is maximal dissipative if, and only if (D∗, A∗) is dissipative
and G(A) is closed.

Proof. First, assume that A is maximal dissipative. By Proposition 3.8 (2), A
is closed. For h ∈ D∗ and λ > 0, we have

(A∗h | Rλh) = (h | ARλh) = (h | Aλh)

=
1

λ
(h | Rλh− h) =

1

λ

{
(h|Rλh)− ∥h∥2

}
≤ 0.

Passing to the limit λ ↓ 0 and using Proposition 3.21, we have proved that
(D∗, A∗) is dissipative.

Second, we assume that (D∗, A∗) is dissipative and G(A) is closed. Then,
(I − A)[D] is closed in H. Indeed, consider a sequence {xn − Axn}∞n=0, where
xn ∈ D, converging to some y ∈ X. Since A is dissipative, ∥xn − xm∥ ≤
∥(xn − xm)−A(xn − xm)∥ and thus {xn}∞n=0 is a Cauchy sequence in X. Thus
xn → x. Since G(A) is closed, we have x ∈ D and Axn → Ax, so that
xn −Axn → x−Ax = y.

By Proposition 3.20, we have

(I −A)[D]⊥ = {h ∈ D∗ : h−A∗h = 0} = {0},

since (D∗, A∗) is dissipative. Therefore, (I −A)[H] = H which means that A is
maximal dissipative.

Definition 3.24. Let (D,A) be an operator with dense domain.

1. We say that A is self-adjoint if D∗ = D and A∗ = A;

24



2. We say that A is skew-adjoint if D∗ = D and A∗ = −A.

Proposition 3.25. Let (D,A) be an operator with dense domain.

1. If A is self-adjoint and dissipative, then A is maximal dissipative.

2. If A is maximal dissipative and G(A) ⊂ G(A∗), then A is self-adjoint.

Proof. (1) We know that G(A∗) is closed by Proposition 3.19. Since A = A∗,
G(A) is closed and the conclusion is deduced from Proposition 3.23.

(2) Let (g, h) ∈ G(A∗) and f = g − h = g − A∗g. Since A is maximal
dissipative, f = g̃ − Ag̃, for some g̃ ∈ D, and since G(A) ⊂ G(A∗), we have
g̃ ∈ D∗ and f = g̃ − A∗g̃. Since A∗ is dissipative (see Proposition 3.23), it
follows that g = g̃. Thus, (g, h) ∈ G(A) and A = A∗.

Proposition 3.26. Let (D,A) be an operator with dense domain. Then A and
−A are maximal dissipative if, and only if A is skew-adjoint.

Proof. First, assume that A is skew-adjoint. Let g ∈ D. We have

(Ag | g) = (g | A∗g) = −(g | Ag).

Thus, (Ag | g) = 0 and by Proposition 3.21, both A and −A are dissipative. We
prove that A and −A are maximal dissipative as in the proof of Proposition 3.25.

Second, assume that A and −A are maximal dissipative. By Proposition 3.21
applied to A and −A, we have (Ag | g) = 0 for all g ∈ D. Now, for all g, h ∈ D,
we compute

(Ag | h) + (Ah | g) = (A(g + h) | g + h)− (Ag | g)− (Ah | h) = 0.

Therefore, G(−A) ⊂ G(A∗). It remains to show that G(A∗) ⊂ G(A). Let
(g, f) ∈ G(A∗) and h = g − A∗g = g − f . Since −A is maximal dissipative,
there exists g̃ such that h = g̃+Ag̃, and since G(−A) ⊂ G(A∗), we have g̃ ∈ D∗

and h = g̃ − A∗g̃. Since A∗ is dissipative (by Proposition 3.23), it follows that
g = g̃. Thus, (g, f) ∈ G(A∗) and A = −A∗.

3.5 Complex Hilbert spaces

In this section, we show how from a complex Hilbert space, we can reduce to
the case of a real Hilbert space. Let (H, ⟨· | ·⟩) be a complex Hilbert space,
which means that ⟨· | ·⟩ satisfies

⟨λg | h⟩ = λ̄ ⟨g | h⟩, for all λ ∈ C, for all g, h ∈ H;

⟨g | h⟩ = ⟨h | g⟩, for all g, h ∈ H;

⟨g | g⟩ = ∥g∥2, for all g ∈ H.

Define
(g | h) = ℜ ⟨g | h⟩.

One can check that (· | ·) is a real scalar product on H and that (H, (· | ·)) is a
real Hilbert space. In this course, we will systematically work in this framework.

Let A be a linear operator on the real Hilbert space (H, (· | ·)). If A is
C-linear, then one can define iA as a linear operator on the real Hilbert space
(H(· | ·)).
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Proposition 3.27. Assume that (D,A) is an operator with dense domain on
(H, (· | ·)). Assume that A is C-linear. Then, A∗ is also C-linear and

(iA)∗ = −iA∗.

In particular, if A is self-adjoint, then iA is skew-adjoint.

Proof. Let g ∈ D, h = A∗g and let z ∈ C. For all f ∈ D, one has

(zh | f) = (h | z̄f) = (g | A(z̄f)) = (g | z̄Af) = (zg | Af).

Thus, zg ∈ D∗ and zh = A∗(zg). It follows that A∗ is C-linear.
In addition,

(−ih | f) = (g | A(if)) = (g | iAf),
for all (g, h) ∈ G(A∗) and all f ∈ D. Thus, G(−iA∗) ⊂ G((iA)∗). Applying this
result to the operator iA, it follows that

G(−i(iA)∗) ⊂ G((i · iA)∗) = G(−A∗).

Therefore, G((iA)∗) ⊂ G(−iA∗), and so G((iA)∗) = G(−iA∗).
If A is self-adjoint, then (iA)∗ = −iA∗ = −iA, which means that iA is

skew-adjoint.

3.6 Examples in PDE theory

We focus here on second order differential operators. We refer to Exercises 3.4-
3.6 for examples with first order differential operators (see also Exercise 2.10),
and to Exercise 3.8 for a third order operator.

3.6.1 The Laplacian with Dirichlet condition in L2

In this section, H = L2(U) equipped with the canonical scalar product. Define{
D = {g ∈ H1

0 (U) : ∆g ∈ L2(U)}
Ag = ∆g for all g ∈ D.

Proposition 3.28. The operator (D,A) is self-adjoint and maximal dissipative
with dense domain in H.

Proof. We recall that for all g ∈ H1
0 (U) with ∆g ∈ L2(U) and all h ∈ H1

0 (U), it
holds ∫

U
h∆g dx = −

∫
U
∇h · ∇g dx. (3.2)

(This is proved by density, see §C.3.) It is well-known that C∞
c (U) is dense in

L2 (see §B.9.1-B.9.3), so D is also dense in L2. Applying (3.2) to h = g, we find

(g,∆g) = −(∇g,∇g) ≤ 0,

and thus (D,A) is dissipative.
To prove that (D,A) is maximal dissipative, we apply Lax-Milgram Theo-

rem A.58. Let

a(φ,ψ) =

∫
(φψ +∇φ · ∇ψ) dx.
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The coercivity of the bilinear mapping a for the norm of H1
0 is clear. Given

f ∈ L2(U), it is clear that φ 7→ (f | φ) is a linear form on H1
0 . Thus, there

exists a unique h ∈ H1
0 such that for all φ ∈ H1

0 ,∫
(φh+∇φ · ∇h) dx =

∫
fhdx.

In particular, h −∆h = f holds in the sense of distributions. By this identity,
and since h, f ∈ L2, we deduce that ∆h ∈ L2, and thus h ∈ D. It follows that
h−Ah = f and this proves that (D,A) is maximal dissipative.

Formula (3.2) also proves that for all g, h ∈ D,

(Ag | h) = (g | Ah),

but this means that G(A) ⊂ G(A∗), which is enough to say that A is self-adjoint
using (2) of Proposition 3.25.

3.6.2 The Laplacian in C0
We suppose that U is a bounded domain of RN , with C1 boundary (see §C.3).
Let X = C0(U) equipped with the norm ∥ · ∥L∞ . Define{

D = {g ∈ X ∩H1
0 (U) : ∆g ∈ X}

Ag = ∆g for all g ∈ D.

Proposition 3.29. The operator (D,A) is maximal dissipative with dense do-
main in X.

Remark 3.30. We will admit the following fact, for U with C1 boundary,

{g ∈ H1
0 (U) ∩ L∞(U) : ∆g ∈ L∞(U)} ⊂ C0(U).

Proof. Let λ > 0, f ∈ L∞(U) andM = ∥f∥L∞ . Since the domain U is bounded,
f ∈ L∞(U) ⊂ L2(U). We consider the (unique) solution g ∈ H1

0 (U) of

g − λ∆g = f

given by the proof of Proposition 3.28.
Now, we show that g ∈ L∞ and ∥g∥L∞ ≤ M . We fix a function G ∈ C1(R)

such that

• |G′| ≤ 1 on R;

• G is increasing on (0,∞);

• G = 0 on (−∞, 0].

Let h = G(g−M). Then, h ∈ L2 and ∇h = G′(g−M)∇g ∈ L2, so that h ∈ H1.
Moreover, since g|∂U = 0 almost everywhere on ∂U , we have h|∂U = G(−M) = 0
almost everywhere on ∂U , which means h ∈ H1

0 (U). By the weak formulation,
we have ∫

|∇g|2G′(g −M) +

∫
gG(g −M) =

∫
fG(g −M),
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which rewrites∫
|∇g|2G′(g −M) +

∫
(g −M)G(g −M) =

∫
(f −M)G(g −M),

Observe that f −M ≤ 0, G(g−M) ≥ 0 and and G′(u−M) ≥ 0 so that it holds∫
(g −M)G(g −M) ≤ 0.

The function s 7→ sG(s) being non negative, it follows that (g−M)G(g−M) = 0
almost everywhere on U . Thus g ≤ M almost everywhere. Changing g in
−g, one proves that g ≥ −M . In particular, it follows that for any g ∈ D,
∥g − λ∆g∥L∞ ≥ ∥g∥L∞ .

Moreover, we have just seen that any f ∈ L∞(U), there exists a solution g ∈
H1

0 (U)∩L∞(U) of g−∆g = f , which satisfies in addition ∆g = g−f ∈ L∞(U).
By Remark 3.30, it follows that g ∈ C0(U) and thus ∆g ∈ C0(U), which implies
that g ∈ D. This proves that (D,A) is maximal dissipative.

Finally, note that the domain is dense in X since it contains C∞
c (U).

3.6.3 The Schrödinger operator with Dirichlet condition
in L2

Let H = L2(U ;C), considered as a real Hilbert space. Define{
D = {g ∈ H1

0 (U) : ∆g ∈ L2(U)}
Ag = i∆g for all g ∈ D.

Proposition 3.31. The operator (D,A) is skew-adjoint and maximal dissipa-
tive with dense domain in H.

Proof. Using the abstract general statement in Proposition 3.27, the result is a
direct consequence of Proposition 3.28.

3.6.4 The Klein-Gordon operator in H1
0 × L2

In this section, U is any open subset of RN . Let H = H1
0 (U)×L2(U). We equip

H with the scalar product

((g, h) | (g̃, h̃)) =
∫
(∇g · ∇g̃ + gg̃ + hh̃) dx.

Define {
D = {(g, h) ∈ H : ∆g ∈ L2(U), h ∈ H1

0 (U)}
A(g, h) = (h,∆g − g) for all (g, h) ∈ D.

Proposition 3.32. The operator (D,A) is skew-adjoint and maximal dissipa-
tive with dense domain in H.

Proof. As before, since C∞
c (U)×C∞

c (U) is contained in D and dense in H, D is
indeed dense in H. Next, we see that for (g, h) ∈ D, it holds

(A(g, h) | (g, h)) =
∫

{∇h · ∇g + hg + (∆g − g)h} dx.
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By (3.2), we find (A(g, h) | (g, h)) = 0, which proves that (D,A) is dissipative.
Let a, b ∈ H. The equation (g, h)−A(g, h) = (a, b) is equivalent to{

g − h = a

h− (∆g − g) = b
⇐⇒

{
2g −∆g = a+ b

h = g − a.

Proceeding as in the proof of Proposition 3.28, there exists a solution g ∈ H1
0 (U)

such that ∆g ∈ L2 of the first line of the above system. By the second line, we
obtain h ∈ H1

0 (U), which means that (D,A) is maximal dissipative. We check
similarly that (D,−A) is maximal dissipative. By Proposition 3.26, this proves
that A is skew-adjoint.

3.7 Exercises for Chapter 3

Exercise 3.1. Prove Corollary 3.10.

Exercise 3.2. 1. Let A,B ∈ L(X). Prove by contradiction that it holds

AB −BA ̸= I.

2. Prove that the operator A on L2([0, 1]) defined by

(Ag)(x) = xg(x)

is a linear bounded operator on L2([0, 1]).

3. Prove that the operator (D,B) on L2([0, 1]) defined by

D = C1([0, 1]), (Bg)(x) = g′(x)

cannot be extended as a bounded operator on L2([0, 1]).

Exercise 3.3. Let f be a measurable function, bounded on R and v0 ∈ L2(R),
v0 ̸= 0.

1. Justify that we define an (unbounded) operator (D,A) on L2(R) by

D =

{
u ∈ L2 :

∫
|f(x)u(x)|dx <∞

}
,

for all u ∈ D(A), Au = v0 ·
∫
f(x)u(x) dx.

2. Assume that f ∈ L2(R). Prove that A is continuous and compute its
adjoint.

3. Assume that f ̸∈ L2(R). Prove that the domain of A is dense and compute
(D∗, A∗).

Exercise 3.4. Let X = Cb(R) the space of continuous, bounded functions on
R, equipped with the sup norm. Define the operator A in X by{

D = {g ∈ C1(R) ∩X : g′ ∈ X}
Ag = g′ for all g ∈ D.
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1. Prove that A and −A are maximal monotone. Hint: for h ∈ X, define

Lh(x) = 1
λ

∫∞
x

e
x−s
λ h(s) ds and prove ∥Lh∥L∞ ≤ ∥h∥L∞ .

2. Is the domain of A dense? Hint: use the function g defined on R by
g(x) = sin(x2).

Exercise 3.5. Denote by C0(R) the closure of D(R) in L∞(R). Answer the
same questions as in the previous exercise for Y = C0(R) and{

D = {g ∈ C1(R) ∩ Y : g′ ∈ Y }
Bg = g′ for all g ∈ D.

Exercise 3.6. Consider X = {g ∈ C([0, 1]) : u(0) = 0) equipped with the sup
norm. Define the operator A in X by{

D = {g ∈ C1([0, 1]) : g(0) = g′(0) = 0}
Ag = g′ for all g ∈ D.

Prove that A is maximal monotone with dense domain.

Exercise 3.7. Let U be an open subset of RN . Let H = H1
0 (U)× L2(U). Let

λ0 = inf{∥∇g∥2L2 : g ∈ H1
0 (U), ∥g∥L2 = 1} ≥ 0,

and let m > −λ0. We equip H with the scalar product

((g, h) | (g̃, h̃)) =
∫

(∇g · ∇g̃ +mgg̃ + hh̃) dx.

Define {
D = {(g, h) ∈ H : ∆g ∈ L2(U), h ∈ H1

0 (U)}
A(g, h) = (h,∆g −mg) for all (g, h) ∈ D.

Prove that (D,A) is skew-adjoint and maximal dissipative with dense domain
in H.

Exercise 3.8. Let X = L2(R). Prove that the operator A defined by{
D = H3(R)

Au = u′′′ for all u ∈ D

is skew-adjoint. In particular, both A and −A are maximal monotone with
dense domain. Hint: use the Fourier transform.

Exercise 3.9. Let N ≥ 2 and consider the real Hilbert space

H = (L2(RN ))N .

A vector of H is denoted by u = (u1, . . . , uN ). We denote

∇ · u = divu =

N∑
j=1

∂uj
∂xj

, ∆u = (∆u1, . . . ,∆uN ).

Let
X = {u ∈ H : ∇ · u = 0},

where the condition ∇ · u = 0 is understood in the sense of distributions.
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1. Prove that X is a Hilbert space with the scalar product of E:

(u | v) =
N∑
j=1

∫
RN

ujvj dx.

2. Prove that the Stokes operator A defined by{
D = {u ∈ (H2(RN ))N ∩X : ∆u ∈ X}
Au = ∆u for all u ∈ D,

is self-adjoint and maximal monotone with dense domain.
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Chapter 4

The Hille-Yosida-Phillips
Theorem

4.1 Construction of the semigroup generated by
a maximal dissipative operator

Let (D,A) be a maximal dissipative operator on X, with dense domain. For
λ > 0, we consider Rλ and Aλ as defined in Definition 3.12. We set

Sλ(t) = etAλ , for all t ≥ 0,

so that (Sλ(t))t≥0 is the uniformly continuous semigroup generated by Aλ.
In the next result, we construct a semigroup generated by A by a compact-

ness argument using the sequence of approximate uniformly continuous semi-
groups {(Sλ(t))t≥0}λ>0.

Theorem 4.1. For all g ∈ X, the sequence {Sλ(t)g}λ>0 converges as λ ↓ 0
uniformly on any bounded interval [0, T ] to a function u ∈ C([0,∞), X). Setting
S(t)g = u(t), (S(t))t≥0 is a contraction semigroup on X.

Moreover, if g ∈ D then u is the unique solution of the problem
u ∈ C([0,∞), D) ∩ C1([0,∞), X),

du

dt
(t) = Au(t), for all t ≥ 0,

u(0) = g.

(4.1)

Last, for all g ∈ D and t ≥ 0, it holds

S(t)Ag = AS(t)g.

Proof. First, by definition, for all λ > 0 and all t ≥ 0, one has

Sλ(t) = e
t
λ (Rλ−I) = e−

t
λ e

t
λRλ

and thus using ∥Rλ∥ ≤ 1,

∥Sλ(t)∥ ≤ e−
t
λ e

t
λ∥Rλ∥ ≤ 1.
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In particular, for any g ∈ X, uλ(t) = Sλ(t)g satisfies

∥uλ(t)∥ ≤ ∥g∥ for all λ > 0, and all t ≥ 0. (4.2)

Second, consider any g ∈ D and any λ, µ > 0. Recall from Remark 3.13 that
Aλ and Aµ commute. In particular, for any t ≥ 0, we have

Sλ(t)− Sµ(t) = etAµ

(
et(Aλ−Aµ) − I

)
= etAµ

∫ t

0

es(Aλ−Aµ)(Aλ −Aµ) ds

=

∫ t

0

Sλ(s)Sµ(t− s)(Aλ −Aµ) ds.

Using ∥Sλ∥ ≤ 1, we obtain the inequality, for any g ∈ D,

∥uλ(t)− uµ(t)∥ ≤
∫ t

0

∥Sλ(s)∥∥Sµ(t− s)∥∥Aλg −Aµg∥ ds ≤ t∥Aλg −Aµg∥.

It follows from (2) of Proposition 3.14 that {uλ}λ>0 is a Cauchy sequence in
C([0, T ], X), for any T > 0. Denote by u ∈ C([0,∞), X) its limit.

Setting u(t) = S(t)g, by passing to the limit λ ↓ 0 in the inequality (4.2), we
have ∥S(t)g∥ ≤ 1 for all t ≥ 0 and all g ∈ D. It follows that S(t) can be extended
to a unique linear continuous operator S(t) ∈ L(X) satisfying ∥S(t)∥ ≤ 1 for all
t ≥ 0. To prove the properties of S(t), we use a density argument. Let g ∈ X
and consider {gn}∞n=0 a sequence of D converging to g. We have

∥Sλ(t)g − S(t)g∥ ≤ ∥Sλ(t)g − Sλ(t)gn∥+ ∥S(t)gn − S(t)gn∥
+ ∥Sλ(t)gn − S(t)g∥

≤ 2∥gn − g∥+ ∥Sλ(t)gn − S(t)gn∥,

and so Sλ(t)g converges to S(t)g as λ ↓ 0 uniformly on [0, T ], for all T > 0. In
particular, S(0) = I. Now, we check that S(t)S(s) = S(t + s) using the same
property on Sλ:

∥S(t)S(s)g − S(t+ s)g∥ ≤ ∥S(t)S(s)g − S(t)Sλ(s)g∥
+ ∥S(t)Sλ(s)g − Sλ(t)Sλ(s)g∥
+ ∥Sλ(t+ s)g − S(t+ s)g∥.

and passing to the limit as λ ↓ 0.
Now, we prove that u(t) = S(t)g satisfies (4.1) in the case where g ∈ D. Set

vλ(t) = AλSλ(t)g = SλAλ(t)g =
d

dt
uλ(t).

We have by the triangle inequality and ∥S(t)∥ ≤ 1,

∥vλ(t)− S(t)Ag∥ ≤ ∥(Sλ(t)− S(t))Aλg∥+ ∥Aλg −Ag∥.

Thus, limλ↓0 vλ(t) = S(t)Ag, uniformly on [0, T ], for all T > 0. Passing to the
limit λ ↓ 0 in the identity

uλ(t) = g +

∫ t

0

vλ(s) ds

33



we obtain

u(t) = g +

∫ t

0

S(t)Ag ds. (4.3)

This means that u ∈ C1([0,∞), X) and, for all t ≥ 0,

d

dt
u(t) = S(t)Ag. (4.4)

By (3.1), we have vλ(t) = ARλSλ(t)g. Moreover, by ∥Rλ∥ ≤ 1,

∥RλSλ(t)g − S(t)g∥ ≤ ∥Sλ(t)g − S(t)g∥+ ∥RλS(t)g − S(t)g∥.

Therefore
lim
λ↓0

(RλSλ(t)g,A(RλSλ(t)g) = (S(t)g, S(t)Ag)

in X ×X. Since the graph of A is closed, S(t)g ∈ D for all t ≥ 0 and AS(t)g =
S(t)Ag. In particular u ∈ C([0,∞), D) (see Corollary 3.10) and by (4.4), u
satisfies (4.1).

Finally, we justify the uniqueness statement. Let v be a solution of (4.1)
and let s > 0. Set

w(t) = S(s− t)v(t),

for any t ∈ [0, s]. We have w ∈ C([0,∞), D) ∩ C1([0,∞), X) and

d

dt
w(t) = −AS(s− t)v(t) + S(s− t)

d

dt
v(t) = S(s− t)

[
d

dt
v(t)−Av(t)

]
= 0,

for all t ∈ [0, s]. It follows that w(s) = w(0) and so v(s) = S(s)g. Since s ≥ 0
is arbitrary, the uniqueness statement is proved.

4.2 Hille-Yosida-Phillips theorem

We have already proved the main parts of the following theorem.

Theorem 4.2. A linear operator (D,A) on X is the generator of a contraction
semigroup on X if and only if A is maximal dissipative with dense domain.

Proof. On the one hand, if (D,A) is the generator of a contraction semigroup
in X then Proposition 2.23 shows that A is maximal dissipative with dense
domain.

On the other hand, let A be a maximal dissipative operator with dense
domain and let (S(t))t≥0 be the contraction semigroup associated to A given
by Theorem 4.1. Denote by (D(B), B) the generator of (S(t))t≥0 as given by
Definition 2.16. We only have to prove that (D(B), B) = (D,A).

Recall from (4.3) that for g ∈ D and δ > 0, we have

S(δ)g = g +

∫ δ

0

S(t)Ag dt,

and thus g ∈ D(B) with Bg = Ag. Thus, G(A) ⊂ G(B). Conversely, let
h ∈ D(B). Since A is maximal dissipative, there exists g ∈ D such that

g −Ag = h−Bh.

Since G(A) ⊂ G(B), we have (g − h) − B(g − h) = 0 and B being dissipative,
we conclude g = h, which implies G(B) ⊂ G(A).
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Finally, for completeness, we prove the uniqueness of the semigroup gener-
ated by a given maximal dissipative operator with dense domain.

Proposition 4.3. Let (D,A) be a maximal dissipative operator on X with
dense domain. Assume that (D,A) is the generator of a contraction semigroup
(T (t))t≥0. Then, (T (t))t≥0 is the semigroup corresponding to (D,A) constructed
in Theorem 4.1.

Proof. Let (S(t))t≥0 be the semigroup corresponding to (D,A) constructed in
Theorem 4.1. Let g ∈ D and u(t) = T (t)g. For all t ≥ 0 and δ > 0, we have

u(t+ δ)− u(t)

δ
=
T (δ)− I

δ
u(t) = T (t)

T (δ)g − g

δ
−→
δ↓0

T (t)Ag.

Thus, T (t)g ∈ D, for all t ≥ 0, and for all t ≥ 0,

AT (t)g = T (t)Ag =
d+

dt
u(t),

It follows that u ∈ C([0,∞), D) ∩ C1([0,∞), X) and d
dtu = Au, for all t ≥ 0.

Therefore, by Theorem 4.1, we obtain T (t)g = S(t)g. By density of D in X,
the operators T (t) and S(t) coincide on X.

4.3 Isometry group of operators

Definition 4.4. A isometry group of linear operators on X is a map

S : R → L(X)

satisfying the following properties.

1. For all g ∈ X and all t ∈ R, ∥S(t)g∥ = ∥g∥;

2. For all t, s ∈ R, S(t+ s) = S(t)S(s);

3. S(0) = I;

4. For all g ∈ X, the function t ∈ R 7→ S(t)g ∈ X is continuous.

Theorem 4.5. Let (D,A) be a maximal dissipative operator with dense domain
and let (S(t))t≥0 be the contraction semigroup generated by A. Then (S(t))t≥0

is the restriction to [0,∞) of an isometry group (S(t))t∈R if and only if (D,−A)
is maximal dissipative. In this case, for all g ∈ D, the function u(t) = S(t)g
satisfies u ∈ C(R, D) ∩ C1(R, X) and the equation

d

dt
u(t) = Au(t),

for all t ∈ R.

Proof. First, we check that the condition (D,A) and (D,−A) maximal dissi-
pative is sufficient to construct an isometry group. Denote by (S(t))t≥0 the

semigroup generated by A and (S̃(t))t≥0 the semigroup generated by −A. For

g ∈ D, u(t) = S(t)g is solution of d
dtu = Au. Let ũ(t) = S̃(t)g be solution of
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d
dt ũ = −Aũ, ũ(0) = g. It is thus natural to extend the definition of S(t) by
setting

S(t) =

{
S(t) if t ≥ 0;

S̃(−t) if t ≤ 0.

We check that (S(t))t∈R is indeed a strongly continuous group of linear opera-
tors. Continuity is clear by the properties of S̃ and S. Now, we observe that,
for all t ≥ 0,

S(t)S(−t) = S(t)S̃(t) = S(−t)S(t) = S̃(t)S(t) = I.

Indeed, set v(t) = S(t)S̃(t)g, for some g ∈ D. Then,

d

dt
v(t) = AS(t)S̃(t)g − S(t)AS̃(t)g = 0.

In particular, S(t) is invertible for any t ∈ R and S(t) = (S(−t))−1. It is now
easy to check that for any t, s ∈ R, S(t+ s) = S(t)S(s). Indeed, for example, if
s < 0 < t are such that s+ t ≥ 0, then

S(t) = S(t+ s)S(−s) = S(t+ s)(S(s))−1.

We also see that ∥S(t)g∥ ≤ ∥g∥ and ∥g∥ = ∥S(t)S(−t)g∥ ≤ ∥S(t)g∥ implies
∥S(t)g∥ = ∥g∥. Concerning the C1 regularity of u(t) = S(t)g, we observe that
setting ũ(t) = u(−t),

d+

dt
u(0) = Ag,

d+

dt
ũ(0) = −Ag

and thus d−

dt u(0) = − d+

dt ũ(0) =
d+

dt u(0).
Second, we assume that (S(t))t≥0 is the restriction to [0,∞) of an isometry

group (S(t))t∈R, and we set T (t) = S(−t), for t ≥ 0. Then T (t) is a contraction
semigroup. We denote by (D(B), B) its generator. For all δ > 0 and g ∈ X, we
have

T (δ)− I

δ
g =

S(−δ)− I

δ
g = −T (δ)S(δ)− I

δ
g.

Thus, passing to the limit δ ↓ 0, we obtain B = −A, which proves the result.

4.4 Hilbert case

We consider in this section a real Hilbert space (H, (· | ·)).

4.4.1 Skew-adjoint case

Let (D,A) be a skew-adjoint operator with dense domain. By Proposition 3.26,
the operators (D,A) and (D,−A) are maximal dissipative. In particular, (D,A)
generates an isometry group, see Definition 4.4 and Theorem 4.5.
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4.4.2 Self-adjoint case

Theorem 4.6. Assume that (D,A) is a self-adjoint non positive operator. Let
(S(t))t≥0 be the semigroup generated by (D,A). Let g ∈ H and u(t) = S(t)g,
for any t ≥ 0. Then, u is the unique solution of the following problem

u ∈ C([0,∞), H) ∩ C((0,∞), D) ∩ C1((0,∞), H),

du

dt
(t) = Au(t), for all t > 0,

u(0) = g.

(4.5)

Moreover, it holds, for all t > 0,

∥Au(t)∥ ≤ 1

t
√
2
∥g∥,

− (Au(t) | u(t)) ≤ 1

2t
∥g∥2.

Finally, if g ∈ D, it holds, for all t > 0,

∥Au(t)∥2 ≤ − 1

2t
(Ag | g).

Remark 4.7. This result means that S(t) has a smoothing effect : the solution
at time t > 0 belongs to D even if g ̸∈ D. This effect is antagonist with
any reversibility of the equation, in contrast with the case of isometry group
generated by skew-adjoint operators.

Proof. First, we check that for all λ > 0, the bounded operator Aλ introduced in
Definition 3.12 is self-adjoint and satisfies Aλ ≤ 0. Indeed, it is easy to see that
if A is self-adjoint, then the bounded operator Rλ is also self-adjoint and thus
Aλ = 1

λ (Rλ − I) is self-adjoint. Moreover, since Aλ = RλA, g = Rλg − λARλg
and A ≤ 0, we have, for any g ∈ D,

(Aλg | g) = (ARλg | g) = (ARλg | Rλg − λARλg)

= (ARλg | Rλg)− λ∥ARλg∥2 ≤ 0.

Let λ > 0, g ∈ X and uλ(t) = Sλ(t), where (Sλ(t))t≥0 is the semigroup associ-
ated to Aλ. We have

d

dt
∥uλ(t)∥2 = (Aλuλ(t) | uλ(t)) + (uλ(t) | Aλuλ(t)) = 2(Aλuλ(t) | uλ(t)) ≤ 0,

which means that t 7→ ∥uλ(t)∥2 is non increasing. We check similarly that
t 7→ ∥ d

dtuλ(t)∥
2 is non increasing. Using that Aλ is self-adjoint, we also compute

d

dt
(Aλuλ(t) | uλ(t)) = (Aλ

d
dtuλ(t) | uλ(t)) + (Aλuλ(t) | d

dtuλ(t))

= 2∥ d
dtuλ(t)∥

2,

which implies that t 7→ (Aλuλ(t) | uλ(t)) is non decreasing.
By integration on (0, t), we obtain

∥g∥2 = ∥uλ(t)∥2 − 2

∫ t

0

(Aλuλ(s) | uλ(s)) ds ≥ −2t(Aλuλ(t) | uλ(t)). (4.6)
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We also obtain by the previous observations and integration on (0, t)

−(Aλg | g) ≥ −(Aλuλ(t) | uλ(t)) + 2

∫ t

0

∥ d
dtuλ(s)∥

2 ds ≥ 2t∥ d
dtuλ(t)∥

2, (4.7)

and by integration by parts

∥g∥2 = ∥uλ(t)∥2 − 2

∫ t

0

(Aλuλ(s) | uλ(s)) ds

= ∥uλ(t)∥2 − 2t (Aλuλ(t) | uλ(t)) + 2

∫ t

0

s
d

ds
(Aλuλ(s) | uλ(s)) ds

= ∥uλ(t)∥2 − 2t (Aλuλ(t) | uλ(t)) + 4

∫ t

0

s ∥ d
dtuλ(s)∥

2 ds,

which proves the estimate

∥g∥2 ≥ 2t2∥ d
dtuλ(t)∥

2. (4.8)

By (4.8), the equation d
dtuλ = Aλuλ = ARλuλ (see (3.1)), it follows that for

any t > 0, ∥ARλuλ(t)∥ is bounded as λ ↓ 0. Moreover, Rλuλ(t) → u(t) in H
as λ ↓ 0. Since G(A) is closed in H × H, it is also weakly closed in H × H.
This implies that u(t) ∈ D and Au(t) is the weak limit of (ARλuλ(t))λ as λ ↓ 0.
Now, to prove the estimates stated in the proposition, we only have to pass to
the limit as λ ↓ 0 in (4.6), (4.7) (for g ∈ D) and (4.8).

Finally, we prove the uniqueness of u as solution of du
dt = Au in the class

specified in (4.1). Let u be as in (4.1). Let t > 0 and 0 < δ < t. By the
uniqueness statement in Theorem 4.1, we know that u(t) = S(t− δ)u(δ). Thus,

∥u(t)− S(t)g∥ ≤ ∥S(t− δ)(u(δ)− g)∥+ ∥S(t− δ)(S(δ)g − g)∥
≤ ∥u(δ)− g∥+ ∥S(δ)g − g∥.

Passing to the limit δ ↓ 0, it follows that u(t) = S(t)g.

4.5 Extrapolation and weak solutions

From Theorem 4.1, we know that if g ∈ D, then S(t)g is solution of (4.1). If
g ∈ X, then S(t)g is still well-defined in X but in general it is not differentiable
in X. However, the extrapolation Proposition 3.15 allows us to identify S(t)g
as a solution of the same equation involving the extended operator (X,B) in
the space (Y, ||| · |||). We follow the notation of Proposition 3.15. Let (T (t))t≥0

be the semigroup generated by the (maximal dissipative) operator (X,B) with
dense domain in (Y, ||| · |||).
Proposition 4.8. Let g ∈ X. Then u(t) = S(t)g is the unique solution of the
problem 

u ∈ C([0,∞), X) ∩ C1([0,∞), Y ),

du

dt
(t) = Bu(t), for all t ≥ 0,

u(0) = g.

(4.9)

Proof. It follows from Theorem 4.1 that T (t)g is the unique solution of (4.9).
Now, since for g ∈ D, T (t)g = S(t)g, it follows by density and continuity that
T (t)g = S(t)g for all g ∈ X.
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4.6 Exercises for Chapter 4

Exercise 4.1. Let (D,A) be a maximal dissipative operator with dense domain
in a Banach space (X, ∥ · ∥).

1. Prove that the following defines a norm on D, for any g ∈ D,

∥g∥1 =
√
∥g∥2 + ∥Ag∥2.

2. Prove that (D, ∥ · ∥1) is a Banach space.

3. More generally, we define by induction on k ≥ 2, the space D(Ak) by

D(Ak) = {g ∈ D(Ak−1) : Ag ∈ D(Ak−1)}.

Justify that for k ≥ 2,

∥g∥k =

√√√√∥g∥2 +
k∑
j=1

∥Ajg∥2

defines a norm on D(Ak) and that (D(Ak), ∥ · ∥k) is a Banach space.

In what follows, we denote

D(A1) = D and D(A0) = X.

4. Set
D2 = D(A2), A2g = Ag for g ∈ D2.

Prove that (D2, A2) is a maximal dissipative operator with dense domain
in (D, ∥ · ∥1).

5. We denote by (S(t))t≥0 the contraction semigroupe generated by (D,A).
Prove that if g ∈ D(Ak), for a certain k ≥ 2, then u defined by u(t) = S(t)g
for all t ≥ 0, satisfies

u ∈ Ck−j([0,∞), D(Aj))

for all j = 0, . . . , k.

6. For T > 0 and k ≥ 2, we consider a function b ∈ Ck−j([0, T ], D(Aj)) for
all j = 1, . . . , k. We define

v(t) =

∫ t

0

S(t− s)b(s)ds.

Prove that
v ∈ Ck−j([0, T ], D(Aj))

for all j = 0, . . . , k.

Exercise 4.2. Product Semigroup.
Let (X, ∥·∥) be a Banach space on K = R or C. Let (S(t))t≥0 and (T (t))t≥0

be two strongly continuous contraction semigroups on X. Assume that for all
t ≥ 0, it holds

S(t)T (t) = T (t)S(t).
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1. Prove that for all s, t ≥ 0, S(s)T (t) = T (t)S(s).

2. For any t ≥ 0, let U(t) = S(t)T (t). Prove that (U(t))t≥0 is a strongly
continuous contraction semigroup on X.

We denote by (D(A), A) and (D(B), B), respectively, the generators of
the two semigroups (S(t))t≥0 and (T (t))t≥0. We denote by (D(C), C),
the generator of the semigroup (U(t))t≥0.

3. Prove that D(A) is invariant by the semigroup (T (t))t≥0 i.e. for all t ≥ 0,
if g ∈ D(A), then T (t)g ∈ D(A). Prove also that all t ≥ 0 and g ∈ D(A),
AT (t)g = T (t)Ag.

4. Prove that D(A) ∩D(B) is invariant by U(t).

5. Prove that D(A)∩D(B) ⊂ D(C) and that the restriction of C to D(A)∩
D(B) is A+B.

6. For any λ ≥ 0, we denote Rλ = (I−λA)−1 on X. Recall why this operator
is well-defined and satisfies ∥Rλ∥ ≤ 1. Prove that if h ∈ D(B) and λ > 0,
then Rλh ∈ D(A) ∩D(B).

7. Prove that D(A) ∩D(B) is dense in X.

Exercise 4.3. Apply Theorem 4.1 or Theorem 4.6 to the examples given in
§3.6 and Exercises 3.4-3.8.
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Chapter 5

Inhomogeneous equations

In this Chapter, (D,A) is a maximal dissipative operator with dense domain on
X and (S(t))t≥0 is the semigroup generated by A.

Let T > 0. Let g ∈ D and b ∈ C([0, T ], X). The objective is to solve the
inhomogeneous problem

u ∈ C([0, T ], D) ∩ C1([0, T ], X),

du

dt
(t) = Au(t) + b(t), for all t ∈ [0, T ],

u(0) = g.

(5.1)

5.1 Necessary condition

Proposition 5.1. Let g ∈ D and b ∈ C([0, T ], X). If u is a solution of (5.1),
then for all t ∈ [0, T ],

u(t) = S(t)g +

∫ t

0

S(t− s)b(s) ds. (5.2)

Remark 5.2. We check that for any b ∈ C([0, T ], X), the function v : [0, T ] → X
defined by

v(t) =

∫ t

0

S(t− s)b(s) ds

belongs to C([0, T ], X). It can be seen as a consequence of the Dominated
Convergence Theorem, but in the case b ∈ C([0, T ], X), there is an elementary
way to justify it, saying that the map

(t, s) ∈ {(t′, s′) : t′ ∈ [0, T ], s′ ∈ [0, t′]} 7→ S(t− s)b(s) ∈ X

being continuous on a compact set, is uniformly continuous.

Remark 5.3. The assumptions g ∈ D and b ∈ C([0, T ], X) may seem exactly
what is needed to provide a solution u of (5.1) by the formula (5.2). However,
such assumptions garantee that u ∈ C([0, T ], X) but not that u ∈ C([0, T ], D)
in general as shown by the following example. Assume that (S(t))t∈R is an
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isometry group and take h ∈ X \D. In particular, we know that for all t ∈ R,
S(t)h ∈ X \D. Take b(t) = S(t)h and g = 0. Then, formula (5.2) defines

u(t) =

∫ t

0

S(t− s)S(s)hds = tS(t)h.

But for t ̸= 0, we see that u(t) ̸∈ D.

Proof. Let t ∈ [0, T ] and for s ∈ [0, t] set

w(s) = S(t− s)u(s).

Now, let s ∈ [0, t). For δ ∈ (0, t− s], we have

w(s+ δ)− w(s)

δ
= S(t− s− δ)

{
u(s+ δ)− u(s)

δ
− S(δ)− I

δ
u(s)

}
,

and thus

lim
δ↓0

w(s+ δ)− w(s)

δ
= S(t− s)

{
d

dt
u(s)−Au(s)

}
= S(t− s)b(s).

Note that the function s 7→ S(t− s)b(s) belongs to C([0, t], X). We deduce that
w ∈ C1([0, t), X) with, for all s ∈ [0, t),

d

dt
w(s) = S(t− s)b(s).

Integrating in s ∈ [0, τ ], for some τ ∈ (0, t), we obtain

S(t− τ)u(τ) = S(t)g +

∫ τ

0

S(t− s)b(s) ds.

Passing to the limit τ ↑ t, we find the desired formula for u(t).

5.2 Sufficient condition

Proposition 5.4. Let g ∈ D and b ∈ C([0, T ], D). Then, u given by (5.2) is
the unique solution of (5.1).

Proof. As before

v(t) =

∫ t

0

S(t− s)b(s) ds.

Since b ∈ C([0, T ], D), it follows from Remark 5.2 that v ∈ C([0, T ], D) and

Av(t) =

∫ t

0

AS(t− s)b(s) ds =

∫ t

0

S(t− s)Ab(s) ds.

Now, we prove that v ∈ C1([0, T ], X). Indeed, for t ∈ [0, T ) and δ ∈ (0, T − t),
we have

v(t+ δ)− v(t)

δ
=

∫ t

0

S(t− s)
S(δ)− I

δ
b(s) ds+

1

δ

∫ t+δ

t

S(t+ δ − s)b(s) ds.
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First, we observe that∫ t

0

S(t− s)
S(δ)− I

δ
b(s) ds =

S(δ)− I

δ

∫ t

0

S(t− s)b(s) ds =
S(δ)− I

δ
v(t).

Thus, passing to the limit as δ → 0,

lim
δ↓0

∫ t

0

S(t− s)
S(δ)− I

δ
b(s) ds = Av(t).

Second, by continuity,

lim
δ↓0

1

δ

∫ t+δ

t

S(t+ δ − s)b(s) ds = b(t).

It follows that v is left-differentiable on [0, T ), and

d+

dt
v(t) = Av(t) + b(t).

We check similarly that v is right-differentiable on (0, T ] and so v ∈ C1([0, T ], X)
with

d

dt
v(t) = Av(t) + b(t).

Setting u(t) as in (5.2), we have obtained u ∈ C1([0, T ], X) ∩ C([0, T ], D) and u
solves d

dtu(t) = Au(t) + b(t), u(0) = g.

5.3 Weak solution

Corollary 5.5. Let g ∈ X, b ∈ C([0, T ], X) and let u be given by (5.2) on [0, T ].
Using the notation of Propositions 3.15 and 4.8, u is the unique solution of the
problem 

u ∈ C([0, T ], X) ∩ C1([0, T ], Y ),

du

dt
(t) = Bu(t) + b(t), for all t ∈ [0, T ],

u(0) = g.

(5.3)

Remark 5.6. This remark allows us to see u defined by (5.2) as the unique
weak solution of du

dt (t) = Au(t) + b(t) when only g ∈ X, b ∈ C([0, T ], X).

The following result is deduced immediately from (5.3).

Corollary 5.7. Let g ∈ X, b ∈ C([0, T ], X) and let u be given by (5.2) on [0, T ].
Then,

u ∈ C([0, T ], D) ⇐⇒ u ∈ C1([0, T ], X).

Moreover, in this case, u is solution of (5.1) on [0, T ].
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5.4 Exercises for Chapter 5

Exercise 5.1. Let (D,A) be a maximal dissipative operator with dense domain
in a Banach space (X, ∥ · ∥). For b ∈ C1([0, T ], X), we define

v(t) =

∫ t

0

S(t− s)b(s)ds.

Prove that v is solution of
v ∈ C([0, T ], D) ∩ C1([0, T ], X),

dv

dt
(t) = Av(t) + b(t), for all t ∈ [0, T ],

v(0) = 0.

Exercise 5.2. Let (D,A) be a skew-adjoint operator in a Hilbert space H with
scalar product (· | ·). Let (S(t))t∈R be the isometry group generated by (D,A).
Let T > 0, g ∈ H and b ∈ C([0, T ], H). Let u ∈ C([0, T ], X) be defined by

u(t) = S(t)g +

∫ t

0

S(t− s)b(s) ds.

Prove that the real-valued function t 7→ ∥u(t)∥2 belongs to C1([0, T ] and

d

dt
∥u(t)∥2 = 2(b(t) | u(t)),

for all t ∈ [0, T ]. Hint: use a density argument on g and b.

Exercise 5.3. Apply Proposition 5.1 and Proposition 5.4 to the examples given
in §3.6 and Exercises 3.4-3.8.
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Chapter 6

Nonlinear evolution
equations

6.1 Assumption on the nonlinearity

Let B̄M denote the closed ball of X of center 0 and radius M > 0.

Definition 6.1. A function f : X → X is Lipschitz continuous on bounded
subsets of X if for all M > 0, there exists a constant LM > 0 such that, for all
u, v ∈ B̄M it holds

∥f(u)− f(v)∥ ≤ LM∥u− v∥. (6.1)

Remark 6.2. Let a function f : X → X be Lipschitz continuous on bounded
subsets of X, we set

L(M) = inf{L > 0 : (6.1) holds for all u, v ∈ B̄M},

In particular, M 7→ L(M) is a non-decreasing function of M .

Remark 6.3. Let U be an open subset of RN with C1 boundary. We consider
a continuous function f : R → R such that there exists α ≥ 0 and C > 0 such
that

f(0) = 0, |f(u)− f(v)| ≤ C(|v|α + |v|α)|u− v|,
for all u, v ∈ R.

1. If N ≥ 3, assume that

0 ≤ α ≤ 4

N − 2

(no assumption on α if N = 1 or 2). Then f is Lipschitz continuous
from bounded subsets of H1

0 (U) to H−1(U). A common abuse of notation
consists in using the same notation for the real-valued function f : R → R
chosen as above and the corresponding map f : H1

0 (U) → H−1(U).

2. If N ≥ 3, assume that

0 ≤ α ≤ 2

N − 2

(no assumption on α if N = 1 or 2). Then, f is Lipschitz continuous from
bounded subsets of H1

0 (U) to L2(U).
See Exercice 6.1.
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6.2 Weak formulation of the nonlinear problem

In this Chapter, (D,A) is a maximal dissipative operator with dense domain
on X and (S(t))t≥0 is the semigroup generated by A. The function f : X → X
is Lipschitz continuous on bounded subsets of X. We denote L(M) > 0 the
corresponding constant in (6.1).

Let T > 0. For g ∈ D, a natural objective is to solve the nonlinear problem
u ∈ C([0, T ], D) ∩ C1([0, T ], X),

du

dt
(t) = Au(t) + f(u(t)), for all t ∈ [0, T ],

u(0) = g.

(6.2)

Actually, we will rather look for a weaker form of the above problem. From
Proposition 5.1, a solution of (6.2) is also a solution of

u ∈ C([0, T ], X),

u(t) = S(t)g +

∫ t

0

S(t− s)f(u(s)) ds.
(6.3)

For g ∈ X, using Corollary 5.5 and the notation of Propositions 3.15 and 4.8,
we know that (6.3) is equivalent to solving the problem

u ∈ C([0, T ], X) ∩ C1([0, T ], Y ),

du

dt
(t) = Bu(t) + f(u(t)), for all t ∈ [0, T ],

u(0) = g.

(6.4)

In this chapter, we will focus on the resolution of (6.3).

6.3 Local existence and uniqueness

6.3.1 Uniqueness

We start with a general uniqueness result for (6.3).

Proposition 6.4. Let T > 0 and g ∈ X. Then there exists at most one solution
of (6.3).

Proof. Let u, v be two solutions of (6.3). Set

M = sup
t∈[0,T ]

max{∥u(t)∥; ∥v(t)∥}.

We have by (6.3) and ∥S(t)∥ ≤ 1,

∥u(t)− v(t)∥ ≤
∫ t

0

∥f(u(s))− f(v(s))∥ds ≤ L(M)

∫ t

0

∥u(s)− v(s)∥ ds.

It follows from the Gronwall Lemma D.4 (with C1 = 0, C2 = L(M) and a ≡ 1)
that ∥u(t)− v(t)∥ = 0, for all t ∈ [0, T ].
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6.3.2 Existence of a local solution by contraction

Here we prove a version of the Cauchy-Lipschitz theorem.

Theorem 6.5. Let M > 0 and fix

TM =
1

2 + 2L(2M + ∥f(0)∥)
> 0. (6.5)

For any g ∈ X such that ∥g∥ ≤M , there exists a unique solution u of (6.2) on
[0, T ].

Proof. The uniqueness statement is proved by Proposition 6.4. Let M > 0 and
let g ∈ X be such that ∥g∥ ≤M . Fix K = 2M + ∥f(0)∥. We introduce

E = {u ∈ C([0, TM ], X) : ∥u(t)∥ ≤ K, for all t ∈ [0, TM ]}.

We equip E with the distance generated by norm of C([0, TM ], X), i.e., for any
u, v ∈ E,

d(u, v) = sup
t∈[0,TM ]

∥u(t)− v(t)∥.

Since C([0, TM ], X) is a Banach space and E is closed in C([0, TM ], X), (E, d) is
a complete metric space. For all u ∈ E, we define Φ(u) ∈ C([0, TM ], X) by

Φ(u)(t) = S(t)g +

∫ t

0

S(t− s)f(u(s)) ds,

for all t ∈ [0, TM ].
First, we prove that Φ : E → E. Indeed, for any s ∈ [0, TM ], one has

f(u(s)) = f(0) + f(u(s)) − f(0), and thus by the triangle inequality and the
assumption on f ,

∥f(u(s))∥ ≤ ∥f(0)∥+ ∥f(u(s))− f(0)∥
≤ ∥f(0)∥+ L(K)∥u(s)∥ ≤ ∥f(0)∥+ L(K)K.

It follows from ∥S(t)∥ ≤ 1 and the definition of TM in (6.5) that for any t ∈
[0, TM ],

∥Φ(u)(t)∥ ≤ ∥g∥+
∫ t

0

∥F (u(s))∥ ds

≤M + TM (∥f(0)∥+ L(K)K)

≤M +
∥f(0)∥+ L(K)K

2 + 2L(K)
≤M +

1

2
∥f(0)∥+ 1

2
K < K.

Second we prove that Φ is a contraction on (E, d). Indeed, for any u, v ∈ E,
and for any t ∈ [0, TM ],

∥Φ(u)(t)− Φ(v)(t)∥ ≤
∫ t

0

∥f(u(t))− f(v(t))∥ ds

≤ TML(K)d(u, v) ≤ 1

2
d(u, v).

By the Banach Fixed-Point Theorem A.26, Φ has a (unique) fixed-point u ∈ E,
which is a solution of (6.3).
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6.3.3 Maximal solution

Theorem 6.6. There exists a function Tmax : X → (0,∞] with the following
properties. For any g ∈ X, there exists u ∈ C([0, Tmax(g)), X), such that for
all T ∈ (0, Tmax(g)), u is the unique solution of (6.3). Moreover, the following
alternative holds:

1. Either Tmax(g) = ∞;

2. Or Tmax(g) <∞ and then limt↑Tmax(g) ∥u(t)∥ = ∞.

Remark 6.7. When property (1) holds, one says that the solution is globally
defined, or global. When property (2) holds, one says that the solution blows
up in finite time.

To prove that a solution is global, it is enough to prove the existence of a
priori bounds on the solution, preventing ∥u(t)∥ to become arbitrarily large in
finite time.

The fact that when the solution ceases to exist in finite time Tmax(g), the
norm of u becomes infinite as t ↑ Tmax(g) is related to the assumptions made on
the nonlinearity. It may fail in some other contexts, notably when the notion of
critical nonlinearity arises.

Proof. Let g ∈ X and M = ∥g∥. We define

Tmax(g) = sup{T > 0 : there exists a solution u of (6.3) on [0, T ]}.

By Theorem 6.5, we know that Tmax is well-defined and Tmax ≥ TM > 0. Now,
we define a function u ∈ C([0, Tmax(g)), X) which is solution of (6.3) on [0, T ]
for any T ∈ (0, Tmax(g)). Let t ∈ [0, Tmax(g)). Let T ∈ [t, Tmax(g)). By the
definition of Tmax(g) as a supremum, there exists a solution uT of (6.3) on
[0, T ]. Then, we set u(t) = uT (t) on [0, T ]. By the general uniqueness statement
Proposition 6.4, this definition does not depend on the choice of T ∈ [t, Tmax(g)).
Thus, it provides a function u ∈ C([0, Tmax(g)), X) which is indeed a solution
of (6.3) on [0, T ] for any T ∈ (0, Tmax(g)). Last, note that by the definition of
Tmax, this solution cannot be extended beyond Tmax. This solution is called the
maximal solution of (6.3).

Now, we prove the second statement of the Theorem, called the blowup
alternative. Fix τ ∈ [0, Tmax(g)), set M = ∥u(τ)∥ and consider TM > 0 given
by (6.5). By Theorem 6.5, there exists a solution v of

v ∈ C([0, TM ], X),

v(t) = S(t)u(τ) +

∫ t

0

S(t− s)f(v(s)) ds.
(6.6)

We define a function w ∈ C([0, τ + TM ], X) by setting

w(t) =

{
u(t) if t ∈ [0, τ ],

v(t− τ) if t ∈ [τ, τ + TM ].

We see that w is a solution of the problem (6.3) on the interval [0, T ], for
T = τ + TM . By the definition of Tmax(g), this shows that

τ + TM < Tmax(g).
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Assume Tmax(g) <∞. By the general definition of TM in (6.5) and the value of
M = ∥u(τ)∥ in the present context, we obtain

1

2 + 2L(2∥u(τ)∥+ ∥f(0)∥)
≤ Tmax(g)− τ.

This is equivalent to

L(2∥u(τ)∥+ ∥f(0)∥) ≥ 1

2(Tmax(g)− τ)
− 1, (6.7)

which proves that in the case Tmax(g) <∞, limt↑Tmax(g) ∥u(t)∥ = ∞.

Remark 6.8. The proof of Theorem 6.6 actually provides a qualitative infor-
mation (6.7) on the size of ∥u(t)∥ as t ↑ Tmax in the case where Tmax <∞.

In particular, we see that if the function f is (globally) Lipschitz on X (i.e.
there exists C > 0 such that L(M) ≤ C for all M > 0), then necessarily
Tmax(g) = ∞.

6.4 Continuous dependence on the initial data

Proposition 6.9. In the context of Theorem 6.6, the following properties hold.

1. The function Tmax : X → (0,∞] is lower semi-continuous;

2. If gn → g as n → ∞ in X, then for any T ∈ (0, Tmax(g)), un → u
in C([0, T ], X) as n → ∞, where un and u are the solutions of (6.3)
corresponding respectively to gn and g.

Proof. Let T ∈ (0, Tmax(g)). To prove (1)-(2), it suffices to show that if gn → g
then for n large enough Tmax(gn) > T and un → u in C([0, T ], X).

Set M = 1 + 2 supt∈[0,T ] ∥u(t)∥ and define

τn = sup{t ∈ [0, Tmax(g)) : ∥un(s)∥ ≤ 2M for all s ∈ [0, t]}.

Since ∥gn∥ < M for n large enough, τn > 0 is well-defined. Moreover, by
Theorem 6.5, τn > TM . For any t ∈ [0,min(T ; τn)], we have

∥u(t)− un(t)∥ ≤ ∥g − gn∥+ L(2M)

∫ t

0

∥u(s)− un(s)∥ds,

and thus by the Gronwall Lemma D.4, for any t ∈ [0,min(T ; τn)],

∥u(t)− un(t)∥ ≤ ∥g − gn∥ exp (L(2M)T ) . (6.8)

This proves that for any t ∈ [0,min(T ; τn)],

∥un(t)∥ ≤ ∥u(t)∥+ ∥u(t)− un(t)∥ ≤ M

2
+ ∥g − gn∥ exp (L(2M)T ) < 2M,

for n large enough. Therefore, τn > T , which also justifies that Tmax(gn) > T .
Last, we see that estimate (6.8) proves un → u in C([0, T ], X).

Remark 6.10. Even in the case where Tmax(g) = ∞, the uniform convergence
un → u is obtained only on compact sets of time [0, T ].
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6.5 Exercises for Chapter 6

Exercise 6.1. Let U be an open subset of RN with C1 boundary. We recall
that if p ≥ 2 satisfies (N − 2)p ≤ 2N then it holds for a constant C > 0,

∥ · ∥Lp(U) ≤ C∥ · ∥H1(U), ∥ · ∥H−1(U) ≤ C∥ · ∥Lp′ (U), (6.9)

where 1/p+ 1/p′ = 1.
We consider a continuous function f : R → R such that there exists α ≥ 0

and C > 0 such that

f(0) = 0, |f(u)− f(v)| ≤ C(|u|α + |v|α)|u− v|,

for all u, v ∈ R.

1. Let p ∈ [α+ 1,∞]. Prove that for some constant C > 0,

∥f(u)− f(v)∥
L

p
α+1

≤ C (∥u∥αLp + ∥v∥αLp) ∥u− v∥Lp .

for all u, v ∈ Lp(U).

2. We assume in this question that if N ≥ 3,

0 ≤ α ≤ 4

N − 2

(no assumption on α if N = 1 or 2). Prove that f is Lipschitz continuous
from bounded subsets of H1

0 (U) to H−1(U).

3. We assume in this question that if N ≥ 3,

0 ≤ α ≤ 2

N − 2

(no assumption on α if N = 1 or 2). Prove that f is Lipschitz continuous
from bounded subsets of H1

0 (U) to L2(U).

Exercise 6.2. Consider the equation{
∂2t u−∆u = f(u, ∂tu,∇u) (t, x) ∈ R×RN ,

u(0, x) = g(x), ∂tu(0, x) = h(x) x ∈ RN .

Assume that the function f : R × R × RN → R is globally Lipschitz and
satisfies f(0) = 0. Write a global existence result for any initial data (g, h) ∈
H2(RN ) ×H1(RN ). Hint: use the space X = H1(RN ) × L2(RN ) and a first
order formulation of the equation involving the function

F (g, h) = (0, f(g, h,∇g) + g).
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Chapter 7

The nonlinear
Klein-Gordon equation

In this Chapter, we are interested in solving the local Cauchy problem and
establishing global results for the nonlinear Klein-Gordon equation

∂2t u−∆u+ u− ϵ|u|αu = 0 (t, x) ∈ R× U , (7.1)

where U is a domain of RN with C1 boundary, ϵ = ±1, and α > 0.
We rewrite the nonlinear Klein-Gordon equation (7.1) as a system in the

unknown u = (u, v), {
∂tu = v

∂tv = ∆u− u+ f(u),

where f(u) = |u|αu. This system also writes

∂tu = Au+ f(u) (7.2)

where

Au = (v,∆u− u) and f(u) =

(
0

ϵf(u)

)
. (7.3)

7.1 The linear Klein-Gordon equation

Let H = H1
0 (U)× L2(U). We denote by g = (g, h) an element of H. We equip

H with the scalar product

(g | g̃) =
∫

(∇g · ∇g̃ + gg̃ + hh̃) dx.

We also define by ∥ · ∥ the corresponding norm. Define{
D = {g = (g, h) ∈ H : ∆g ∈ L2(U), h ∈ H1

0 (U)}
Ag = (h,∆g − g) for all g ∈ D.

Recall from Proposition 3.32 that the operator (D,A) is skew-adjoint and max-
imal dissipative with dense domain in H. We denote by (S(t))t∈R the corre-
sponding group of isometries given by Theorem 4.5. It follows from Theorem 4.1

51



and Theorem 4.5 that for any g ∈ D, u(t) = S(t)g ∈ C(R, D)∩C1(R,H) is the
solution of the linear problem

d

dt
u = Au. (7.4)

Moreover, for any g ∈ H, u(t) = S(t)g ∈ C(R,H) can be seen as the weak
solution of the linear problem (7.4) (see Proposition 4.8).

The identity ∥S(t)g∥ = ∥g∥ is interpreted as the conservation of energy for
the solution u(t) = S(t)g of the linear problem (7.4)∫ {

|v(t)|2 + |∇u(t)|2 + |u(t)|2
}
dx =

∫ {
|h|2 + |∇g|2 + |g|2

}
dx.

7.2 Local Cauchy theory for NLKG

If N ≥ 3, assume that

0 ≤ α ≤ 2

N − 2
, (7.5)

(no assumption is to be made on α if N = 1 or 2). Then, it follows from
Remark 6.3 that u ∈ H1

0 7→ f(u) ∈ L2 is well-defined and Lipschitz continuous
on bounded sets of H1

0 , as a function from H1
0 to L2. As a consequence, the map

u ∈ H 7→ f(u) ∈ H defined in (7.3) is well-defined and Lipschitz continuous
on the bounded sets of H to H, as introduced in Definition 6.1.

This is precisely the condition of applicability of the local nonlinear Cauchy
theory developed in Chapter 6. We write the weak formulation of the prob-
lem (7.2) as follows: for g ∈ H and T > 0,

u ∈ C([0, T ],H),

u(t) = S(t)g +

∫ t

0

S(t− s)f(u(s)) ds.
(7.6)

In particular, the following result is a direct application of Theorems 6.5 and 6.6.

Theorem 7.1. There exists a function Tmax : H → (0,∞] with the following
properties. For any g ∈ H, there exists u ∈ C([0, Tmax(g)),H) such that for all
T ∈ (0, Tmax(g)), u is the unique solution of (7.6). Moreover, for any g ∈ H,
the following alternative holds:

1. Either Tmax(g) = ∞;

2. Or Tmax(g) <∞ and then limt↑Tmax(g) ∥g(t)∥ = ∞.

In the next sections, we identify conditions on α, the sign ϵ in the definition
of the nonlinearity f in (7.3) and possibly on the initial data g such that the
solution u given the above theorem is global, or on the contrary has a finite
time of existence and thus blows up in finite time.
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7.3 Conservation of energy and other identities

Let g = (g, h) ∈ H and let u = (u, v) ∈ C([0, Tmax(g),H) be the corresponding
maximal solution of (7.6) provided by Theorem 7.1. We define the following
quantities

W (t) =
1

2
(u(t) | u(t)) = 1

2

∫ {
|v(t)|2 + |∇u(t)|2 + |u(t)|2

}
dx,

V (t) =
ϵ

α+ 2

∫
|u(t)|α+2 dx,

E(t) =W (t)− V (t),

M(t) =

∫
u2(t) dx.

Proposition 7.2. Let any T ∈ [0, Tmax(g)). The functions t 7→W (t), t 7→ V (t),
t 7→ E(t) are in C1([0, T ]). The function t 7→ M(t) is in C2([0, T ]). Moreover,
for all t ∈ [0, Tmax(g)), it holds

d

dt
W (t) = ϵ

∫
f(u(t))v(t) dx, (7.7)

d

dt
V (t) = ϵ

∫
f(u(t))v(t) dx, (7.8)

d

dt
E(t) = 0, (7.9)

d

dt
M(t) = 2

∫
v(t)u(t) dx, (7.10)

d2

dt2
M(t) = −2(α+ 2)E(t)

+ α

∫ {
|∇u(t)|2 + u2(t)

}
dx+ (α+ 4)

∫
v2(t) dx. (7.11)

Proof. Let T ∈ [0, Tmax(g)). All the quantities appearing in these identities are
well-defined (for example, f(u(t)) ∈ L2 and v(t) ∈ L2 for all t ∈ [0, T ], so that∫
f(u(t))v(t) dx is well-defined). However, we need to use density arguments to

justify them rigorously.
We introduce a sequence {gn}∞n=0 of functions of D such that gn → g in

H as n → ∞, and a sequence {bn}∞n=0 of functions of C([0, T ], D) such that
bn → f(u) in C([0, T ],H). The existence of such sequences follows directly
from the density of D in H. Moreover, we define

un(t) = S(t)gn +

∫ t

0

S(t− s)bn(s) ds.

Using ∥S(t)∥ ≤ 1, it is elementary to check that

lim
n→∞

sup
t∈[0,T ]

∥un(t)− u(t)∥ = 0. (7.12)

By Proposition 5.4, un is the unique solution of
un ∈ C([0, T ], D) ∩ C1([0, T ],H),

dun
dt

(t) = Aun(t) + bn(t), for all t ∈ [0, T ],

un(0) = gn.

(7.13)
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We denote by Wn, Vn and Mn the analogue for each un of the quantities intro-
duced above for u.

It follows from the regularity of un that t 7→Wn(t) is of class C1 and, using
the fact that the operator A is skew-adjoint,

d

dt
Wn =

(
d

dt
un | un

)
= (Aun | un) + (bn | un) = (bn | un).

Hence,

Wn(t) =Wn(0) +

∫ t

0

(bn(s) | un(s)) ds.

Passing to the limit n→ ∞, using (7.12), we find

W (t) =W (0) +

∫ t

0

(f(u(s)) | u(s)) ds.

This proves that W is C1 on [0, T ] and that (7.7) holds.
To prove the identity concerning V , we first observe that for any w, z ∈ R,

1

α+ 2

(
|w + z|α+2 − |w|α+2

)
− zf(w) =

∫ z

0

(f(σ)− f(w)) dσ,

and thus∣∣∣∣ 1

α+ 2

(
|w + z|α+2 − |w|α+2

)
− zf(w)

∣∣∣∣ ≤ C|z|2 (|w|α + |w + z|α) .

From this, it follows using the Hölder inequality that∣∣∣∣ 1

α+ 2

∫ (
|w + z|α+2 − |w|α+2

)
dx−

∫
zf(w) dx

∣∣∣∣
≤ ∥z∥2Lα+2 (∥w∥αLα+2 + ∥w + z∥αLα+2) .

Applying this inequality to w = un(t) and z = un(t+ δ)− un(t), one gets∣∣∣∣Vn(t+ δ)− Vn(t)− ϵ

∫
(un(t+ δ)− un(t)) f(un(t)) dx

∣∣∣∣
≤ C∥un(t+ δ)− un(t)∥2Lα+2

(
|Vn(t+ δ)|

α
α+2 + |Vn(t)|

α
α+2
)
.

This shows that Vn is of class C1 and

d

dt
Vn(t) = ϵ

∫
d

dt
un(t)f(un(t)) dx.

By the first line of the equation of un, one obtains

d

dt
Vn(t) = ϵ

∫
f(un(t))vn(t) dx.

We proceed as for Wn to obtain the identity (7.8) for u.
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The identity (7.9) is obtained directly on u since u ∈ C1([0, T ], L2). To
prove (7.10), we first work on the sequence {un}∞n=0. Since un ∈ C1([0, T ],H,
we know that vn ∈ C1([0, T ], L2) and using the equation and next (3.2),

M ′′
n = 2

∫ (
d

dt
vn

)
un dx+ 2

∫
v2n dx

= 2

∫
(∆un − un + bn)un dx+ 2

∫
v2n dx

= −2

∫ (
|∇un|2 + u2n + bnun

)
dx+ 2

∫
v2n dx.

Integrating this identity on [0, t], and passing to the limit as n → ∞ in the
integral form, we find

M ′(t) =M ′(0)− 2

∫ t

0

∫ {
|∇u|2 + u2 − ϵf(u)u− v2

}
dxds.

This means that M is of class C2 on [0, T ] and

M ′′(t) = −2

∫ {
|∇u|2 + u2 − ϵf(u)u− v2

}
dx.

Using f(u)u = |u|α+2 and the expression of the energy, we find

M ′′(t) = −2(α+ 2)E(t) + (α− 2)

∫ {
|∇u|2 + u2

}
dx+ (α+ 4)

∫
v2 dx,

which is (7.10).

Corollary 7.3. For any t ∈ [0, Tmax(g)), it holds

E(t) = E(0).

7.4 Global existence in the defocusing case

When ϵ = −1, we say that the nonlinearity is defocusing. It follows directly
from the energy conservation that the following hold.

Proposition 7.4. Let ϵ = −1. Then, for all g ∈ H, the maximal solution u of
(7.6) given by Theorem 7.1 is global, i.e. Tmax(g) = ∞.

Proof. When ϵ = −1, it is clear that V (t) ≤ 0. Thus, by the conservation of
energy, for all t ∈ [0, Tmax(g)),

1

2
∥u(t)∥2 =W (t) ≤ E(t) = E(0).

This a priori bound prevent the norm of u(t) to become large and thus the
solution is global.
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7.5 Global existence for small data

In this section, we consider the focusing case ϵ = 1.

Theorem 7.5. There exists µ > 0 such that for any g ∈ H with ∥g∥ ≤ µ, the
solution u of (7.6) given by given by Theorem 7.1 is global, i.e. Tmax(g) = ∞.

Proof. From (6.9) and the assumption on α (in the case N ≥ 3), it follows that

V (t) ≤ C

∫
|u|α+2 ≤ 1

4
∥u(t)∥2L2 + C

∫
|u(t)|2α+2

≤ 1

2
∥u(t)∥2L2 + C∥u(t)∥2α+2

H1 ≤ 1

2
W (t) + C[W (t)]α+1.

Thus, using the conservation of energy (Corollary 7.3)

W (t) = E(t) + V (t) ≤ E(0) +
1

2
W (t) + C[W (t)]α+1

≤W (0) +
1

2
W (t) + C[W (t)]α+1.

Thus, W (t) satisfies

θ(W (t)) ≥ −W (0) ≥ −µ
2

2
where θ(w) = Cwα+1 − w

2
.

We denote m > 0 and xm > 0 such that

xm = {2C(α+ 1)}−
1
α , θ′(xm) = 0

m = − inf
[0,∞)

θ = −θ (m) =
α

2(α+ 1)
{2C(α+ 1)}−

1
α .

If we assume that W (0) = 1
2µ

2 < min(xm;m), then for all t ∈ [0, Tmax(g)),
θ(W (t)) > −m. By continuity of t 7→ W (t), it follows that W (t) < xm, for all
t ∈ [0, Tmax(g)), and thus W (t) is uniformly bounded, which proves that the
solution u is global.

7.6 Blowup in finite time

Theorem 7.6. If g ∈ H is such that

E(0) < 0

then the solution u of (7.6) given by given by Theorem 7.1 blows up in finite
time, i.e. Tmax(g) <∞.

Remark 7.7. We note that it is easy to generate initial data g such that
E(0) < 0. Indeed, we check that for any g ̸= 0, there exists λ > 0 large enough
such that the energy of λg is negative.

Proof. The proof is by contradiction. We assume that the solution is global
Tmax(g) = ∞, and we perform estimates for all t ≥ 0. We know that E(t) =
E(0), and thus from (7.11), we have

M ′′(t) ≥ −2(α+ 2)E(0) > 0.
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In particular, lim∞M ′ = ∞ and lim∞M = ∞. Estimate (7.11) also implies
that

M ′′(t) ≥ (α+ 4)∥v(t)∥2L2 ;

Moreover, from (7.10), we have

[M ′(t)]2 ≤ 4M(t)∥v(t∥2L2

Therefore, we obtain for all t ≥ 0,

M ′′(t)M(t) ≥
(
1 +

α

4

)
[M ′(t)]2.

This implies directly that for all t ≥ 0,

[M−α
4 ]′′(t) ≤ 0.

Since lim∞M ′ = ∞, one has lim∞M−α
4 = 0. Thus, there exists t1 > 0 such

that d
dt [M

−α
4 (t1)] < 0, and for all t ≥ t1,

0 ≤M−α
4 (t) ≤M−α

4 (t1) + (t− t1)[M
−α

4 ]′(t1),

which is absurd for t ≥ t1 large enough. This contradiction implies that
Tmax(g) <∞.

7.7 Exercises for Chapter 7

Exercise 7.1. The damped linear Klein-Gordon equation.
Let H = H1(RN )×L2(RN ) for N ≥ 1. We denote by g = (g, h) an element

of H. We equip H with the scalar product (all functions are real-valued)

(g | g̃ ) =
∫
RN

(∇g · ∇g̃ + gg̃ + hh̃) dx.

We denote by ∥ · ∥ the corresponding norm on H. Let α > 0. Define{
D = {g = (g, h) ∈ H : ∆g ∈ L2(RN ), h ∈ H1(RN )}
Ag = (h,∆g − g − 2αh) for all g = (g, h) ∈ D.

1. Prove that the operator (D,A) is maximal dissipative with dense domain
in H. Hint: we recall the identity, for g, g̃ ∈ H1(RN ) with ∆g ∈ L2,∫
RN ∆g g̃ dx = −

∫
RN ∇g · ∇g̃ dx.

2. Is the operator (D,A) skew-adjoint ?

3. Denote by (S(t))t≥0 the semigroup of contractions on H generated by
(D,A). For g ∈ D, what is the equation satisfied by u(t) = (u(t), v(t)) =
S(t)g ? What is the corresponding second-order equation for u(t), the
first component of u(t)?

4. For any g ∈ H, let u(t) = (u(t), v(t)) = S(t)g and

E(t) =

∫
RN

{
|v(t)|2 + |∇u(t)|2 + |u(t)|2

}
dx = (u(t),u(t)).

Prove that the map t ∈ [0,∞) 7→ E(t) is of class C1 and compute dE(t)
dt .
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Exercise 7.2. The damped cubic Klein-Gordon equation in one space
dimension.

We follow the framework and notation of the previous Exercise in space
dimension N = 1. Consider the following nonlinear equation in space dimension
one, for α > 0,

∂2t u = ∂2xu− u− 2α∂tu+ u3. (DNLKG)

1. For any initial data (u(0), ∂tu(0)) = g ∈ H, suggest a weak formulation
of the equation (DNLKG). State and justify a local well-posedness result
for this weak formulation.

For a maximal solution u = (u, ∂tu) of (DNLKG), we introduce

F (t) =

∫
R

{
|∂tu(t)|2 + |∇u(t)|2 + |u(t)|2 − 1

2
|u(t)|4

}
dx,

M(t) =
1

2
∥u(t)∥2L2 + α

∫ t

0

∥u(s)∥2L2 ds.

The goal of the remaining questions is to prove that if F (0) < 0 then the
solution u⃗ blows up in finite time. From now on, we assume F (0) < 0 and,
for the sake of contradiction, we assume that the solution u⃗ is global for
t ≥ 0.

2. Check the following relations, for t ≥ 0,

F ′(t) = −4α

∫
R

|∂tu(t)|2 dx,

M ′(t) =

∫
R

u(t)∂tu(t) dx+ 2α

∫ t

0

∫
R

u(s)∂tu(s) dxds+ α∥u(0)∥2L2 ,

M ′′(t) = 3∥∂tu(t)∥2L2 + ∥∂xu(t)∥2L2 + ∥u(t)∥2L2 − 2F (t).

3. Prove that limt→∞M ′(t) = ∞ and limt→∞M(t) = ∞.

4. Prove that

|M ′| ≤ ∥u∥L2∥∂tu∥L2 + 2α

(∫ t

0

∥u(s)∥2L2 ds

) 1
2
(∫ t

0

∥∂tu(s)∥2L2 ds

) 1
2

+ α∥u(0)∥2L2 .

Deduce the following estimate

|M ′|2 ≤ 4

3
M

[
2∥∂tu∥2L2 + 4α

∫ t

0

∥∂tu(s)∥2L2 ds

]
+ 4α2∥u(0)∥4L2 .

5. Prove that for all t large enough, 10
9 [M ′(t)]2 < M ′′(t)M(t) and conclude.

Exercise 7.3. In the framework of the previous exercise, prove that for an
initial data g ∈ H sufficiently small in the norm ∥ · ∥, the solution of (DNLKG)
is global and converges to 0 in norm ∥ · ∥ when t → ∞. Hint: for µ > 0 small
and ρ = 2α− µ, use the functional

G(t) =

∫
R

{
|∂tu(t) + µu(t)|2 + |∂xu(t)|2 + (1− ρµ)|u(t)|2 − 1

2
|u(t)|4

}
dx.
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Chapter 8

The nonlinear heat equation

In this Chapter, we study the local and global Cauchy problem for the nonlinear
heat equation

∂tu−∆u− ϵ|u|αu = 0 (t, x) ∈ R× U , (8.1)

where U is a bounded domain of RN with C1 boundary, ϵ = ±1, and α > 0. We
consider the case of homogeneous Dirichlet boundary condition on ∂U .

8.1 The linear heat equation

8.1.1 General setting

We follow the setting of Section 3.6.2. Let X = C0(U) be equipped with the
norm ∥ · ∥L∞ . Define {

D = {g ∈ X ∩H1
0 (U) : ∆g ∈ X}

Ag = ∆g for all g ∈ D.

From Proposition 3.29, the operator (D,A) is maximal dissipative with dense
domain in X. We denote by (S(t))t≥0 the semigroup generated by (D,A) given
Theorem 4.1. For any g ∈ D, u(t) = S(t)g ∈ C([0,∞), D) ∩ C1([0,∞), X) is the
solution of the linear problem

d

dt
u = Au. (8.2)

Moreover, for any g ∈ X, u(t) = S(t)g ∈ C(R, X) is a weak solution of the
linear problem (8.2). This framework is suitable to study both the linear and
nonlinear heat equations.

However, recall that Section 3.6.1 provides another framework to study the
linear heat equation in the Hilbert space L2(U). Since U is bounded, C0(U) ⊂
L2(U) and ∥ · ∥L2 ≤

√
|U| ∥ · ∥L∞ , where |U| is the Lebesgue measure of U . In

particular, we can see the semigroup (S(t))t≥0 as a restriction to L∞ of the

semigroup (S̃(t))t≥0 on L2(U) given by the setting of Section 3.6.1. In this
setting, we can enjoy the regularizing effect (see Theorem 4.6) due to the fact
that the Laplacian is a self-adjoint operator operator on the Hilbert space L2(U).
This framework will be used in Section 8.2.2 to study the regularizing effects of
the nonlinear heat equation.
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8.1.2 Exponential estimates in large time

Let λ0 > 0 be defined by

λ0 = inf
{
∥∇u∥2L2 ; u ∈ H1

0 (U) with ∥u∥L2 = 1
}
.

It is known (Poincaré inequality, Theorem C.9) that λ0 > 0 for a bounded
domain.

Lemma 8.1. For all g ∈ L2(U),

∥S̃(t)g∥L2 ≤ e−λ0t∥g∥L2 .

Proof. By density, it suffices to consider the case g ∈ H1
0 (U) ∩H2(U). Then,

1

2

d

dt
∥S̃(t)g∥2L2 =

∫
(S̃(t)g)∆(S̃(t)g) dx = −

∫
|∇(S̃(t)g)|2 dx

≤ −λ0∥S̃(t)g∥2L2 .

We obtain the result by integrating this differential inequality on [0, t].

Lemma 8.2. There exists M > 1 such that, for all g ∈ C0(U), for all t ≥ 0,

∥S(t)g∥L∞ ≤Me−λ0t∥g∥L∞ .

Proof. First, we prove that for some constant C > 0, for any g ∈ C0(U), it holds,
for all t > 0,

∥S(t)g∥L∞ ≤ Ct−
N
4 ∥g∥L2 . (8.3)

Proof of (8.3). When U = RN , this inequality is deduced from the explicit
expression of the heat kernel

Kt(x) = (4πt)−
N
2 exp

(
−|x|2

4t

)
, ∥Kt(x)∥L2 = Ct−

N
4 ,

and the representation of the solution v of ∂tv = ∆v with initial v(0) = h as a
convolution product

v(t, x) = (Kt ⋆ h)(x).

Indeed, the Young inequality implies for t > 0 that

∥v(t)∥L∞ ≤ ∥Kt∥L2∥h∥L2 ≤ Ct−
N
4 ∥h∥L2 .

Now, in the case of a bounded domain U of RN , we use a comparison argument.
(See the same technique in the proof of Proposition 3.29.) Let g ∈ C0(U)
and define h ∈ Cc(RN ) by h = |g| on U and h = 0 on RN \ U . Denote
v(t) = Kt ⋆ h ≥ 0 as before. Set z(t) = v(t)|U − S(t)g. It is clear that z|∂U ≥ 0
and z(0) = 0 on U . We introduce a function G ∈ C1(R) such that

• G′ ≤ 1 on R;

• G is increasing on (0,∞);

• G = 0 on (−∞, 0];
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and we set H(s) =
∫ s
0
G(σ) dσ. Define m(t) =

∫
H(−z(t)) dx. Then,

m′ = −
∫
G(−z)(∂tz) dx = −

∫
G(−z)(∆z) dx = −

∫
G′(−z)|∇z|2 dx ≤ 0.

Since m(0) = 0 and m ≥ 0, we obtain m(t) = 0, for all t ≥ 0. This justifies that
z(t) ≥ 0 holds for all t ≥ 0. Thus, S(t)g ≤ v(t). Proceeding similarly with −g,
it holds S(t)g ≥ −v(t). Thus, on U , for any t ≥ 0, it holds

|S(t)g| ≤ v(t).

The estimate (8.3) on U thus follows.
Second, by the contraction property, ∥S(t)g∥L∞ ≤ ∥g∥L∞ ≤M0e

−λ0t∥g∥L∞ ,
for t ∈ (0, 1], with M0 = eλ0 . For t ∈ (1,∞), we write S(t)g = S(1)S(t − 1)g,
and we use (8.3) for t = 1 and next (8.1) for t− 1, which provides the estimate

∥S(t)g∥L∞ ≤ C∥S(t− 1)g∥L2 ≤ Ce−λ0(t−1)∥g∥L2

≤ Ceλ0e−λ0t∥g∥L2 ≤ Ceλ0
√
|U|e−λ0t∥g∥L∞ .

Therefore, estimate (8.1) is proved for all t ≥ 0.

8.2 Local Cauchy theory for the nonlinear heat
equation

8.2.1 General local existence result

We denote f(u) = ϵ|u|αu. The C0(U) framework is quite favorable regarding
the Lipschitz continuity condition to be checked on the nonlinearity. Indeed, for
any α > 0 and for any space dimension N ≥ 1,

|f(u)− f(v)| ≤ C|u− v| (|u|α + |v|α) ,

and thus
∥f(u)− f(v)∥L∞ ≤ C∥u− v∥L∞ (∥u∥αL∞ + ∥v∥αL∞) .

Thus, f : u ∈ X 7→ f(u) ∈ X is Lipschitz continuous on bounded sets of X. The
weak formulation of the problem (8.1) is the following: for g ∈ X and T > 0,
solve 

u ∈ C([0, T ], X),

u(t) = S(t)g +

∫ t

0

S(t− s)f(u(s)) ds.
(8.4)

The following result is a direct application of Theorems 6.5 and 6.6.

Theorem 8.3. There exists a function Tmax : X → (0,∞] with the following
properties. For any g ∈ X, there exists u ∈ C([0, Tmax(g)), X) such that for all
T ∈ (0, Tmax(g)), u is the unique solution of (8.4). Moreover, for any g ∈ X,
the following alternative holds:

1. Either Tmax(g) = ∞;

2. Or Tmax(g) <∞ and then limt↑Tmax(g) ∥g(t)∥L∞ = ∞.
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8.2.2 Regularizing effect

Theorem 8.4. Let g ∈ X. In the framework of Theorem 8.3, for any T ∈
(0, Tmax(g)), it holds

u ∈ C((0, T ], H1
0 (U)) ∩ C1((0, T ], L2(U)) and ∆u ∈ C((0, T ], L2(U)).

Moreover, u solves (8.1) on (0, T ].

Proof. Using Theorem 4.6, for any g ∈ L2(U), w(t) = S̃(t)g is the unique
solution of the following problem

w ∈ C([0,∞), L2(U)) ∩ C((0,∞), H1
0 (U)) ∩ C1((0,∞), L2(U)),

∆w ∈ C((0,∞), L2(U)),
∂tw(t) = ∆w(t), for all t > 0,

w(0) = g,

(8.5)

and it holds, for t > 0,

∥w(t)∥L2 ≤ ∥g∥L2 , ∥∇w(t)∥L2 ≤ 1√
2t
∥g∥L2 , ∥∆w(t)∥L2 ≤ 1

t
√
2
∥g∥L2 .

For g ∈ C0(U), we recall that ∥g∥L2 ≤
√

|U| ∥g∥L∞ , where |U| is the Lebesgue
measure of U , and the desired regularizing properties are obtained on the linear
part w(t) = S(t)g = S̃(t)g of u(t) as defined in (8.4). For the nonlinear part,
we set

v(t) =

∫ t

0

S(t− s)f(u(s)) ds.

Using Theorem 4.6, we know that s ∈ [0, t) 7→ S(t − s)f(u(s)) belongs to
C([0, t), H1

0 (U)), with the following estimate

∥S(t− s)f(u(s))∥H1 ≤

(
1 +

1√
2(t− s)

)
∥f(u(s))∥L2 .

By these properties, for any n ≥ 1, the formula

vn(t) =

∫ n−1
n t

0

S(t− s)f(u(s)) ds

defines a function in C([0, T ], H1
0 (U)). Moreover, for any n < m, it holds for any

t ∈ [0, T ],

∥vm(t)− vn(t)∥H1 ≤
∫ m−1

m t

n−1
n t

∥S(t− s)f(u(s))∥H1
0
ds

≤
∫ m−1

m t

n−1
n t

(
1 +

1√
2(t− s)

)
∥f(u(s))∥L2 ds

≤ C

√
T

n
sup
[0,T ]

∥f(u)∥L∞ .
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Therefore, {vn}∞n=0 is a Cauchy sequence in C([0, T ], H1
0 (U)). Since its limit in

C([0, T ], L2(U)) is exactly v, we obtain that in addition v ∈ C([0, T ], H1
0 (U)).

Moreover, for t ∈ [0, T ], we deduce from the previous estimates that

∥u(t)∥H1 ≤ C

(
1 +

1√
t

)
, ∥f(u(t))∥H1 ≤ C

(
1 +

1√
t

)
.

Using again the regularizing effect, we deduce that

∥∆S(t− s)f(u(s))∥L2 ≤ C

(
1 +

1√
s

)(
1 +

1√
t− s

)
.

Proceeding as before, we obtain that ∆v ∈ C([0, T ], L2(U)), and thus ∆u ∈
C((0, T ], L2(U)).

For any δ ∈ (0, T ) and t ∈ (0, T − δ), let ũ(t) = u(t+ δ). Then, ũ writes

ũ(t) = S(t)u(δ) +

∫ t

0

S(t− s)f(ũ(s)) ds.

Using Corollary 5.7, we obtain ũ ∈ C1([0, T −δ], L2) and ũ satisfies the equation
(8.1). Thus, also u satisfies (8.1) on (0, T ).

8.3 The maximum principle for the nonlinear
heat equation

Theorem 8.5. In the context of Theorems 8.3 and 8.4, if g ≥ 0 then for all
t ∈ [0, Tmax(g)), it holds u(t) ≥ 0.

Proof. We fix a function G ∈ C1(R) such that

• G′ ≤ 1 on R;

• G is increasing on (0,∞);

• G(s) = 1
2s

2 on [0, 1];

• G = 0 on (−∞, 0];

and we set H(s) =
∫ s
0
G(σ) dσ. We set m(t) =

∫
H(−u(t)) dx. Then,

m′ = −
∫
G(−u)(∂tu) dx = −

∫
G(−u)(∆u+ f(u)) dx

= −
∫
G′(−u)|∇u|2 dx−

∫
G(−u)f(u) dx

≤ C

∫
G(−u)|u|α+1 ≤ C

∫
G(−u)|u| ≤ Cm.

We have used that sG(s) ≤ CH(s) for s ≥ 0 (the proof is easier if ϵ = 1).
Note that the above computation makes sense for t ∈ (0, Tmax(g)). Using

the Gronwall lemma D.4, it follows that for 0 < s < t < Tmax(g),

m(t) ≤ m(s)eC(t−s).

Passing to the limit s ↓ 0, using m(0) = 0, we find m(t) = 0 for all t ∈
[0, Tmax(g)), which means that u(t) ≥ 0.
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8.4 Global existence

Theorem 8.6. There exists µ > 0 and C ≥ 1 such that if ∥g∥L∞ ≤ µ, then
the corresponding maximal solution of (8.4) given by Theorem 8.3 is global and
satisfies, for all t ≥ 0,

∥u(t)∥L∞ ≤ C∥g∥L∞e−λ0t.

Proof. Let u be a maximal solution of (8.4) with initial data g ∈ X as given by
Theorem 8.3. Define, for any t ∈ [0, Tmax(g)),

N(t) = sup
s∈[0,t]

{
eλ0s∥u(s)∥L∞

}
.

Multiplying (8.4) by eλ0t, taking the L∞ norm, and then using Lemma 8.2, we
obtain

eλ0t∥u(t)∥L∞ ≤ eλ0t∥S(t)g∥L∞ +

∫ t

0

eλ0t∥S(t− s)f(u(s))∥L∞ ds

≤M∥g∥L∞ +M

∫ t

0

eλ0te−λ0(t−s)∥u(s)∥1+αL∞ ds

≤M∥g∥L∞ +M

∫ t

0

eλ0te−λ0(t−s)e−(1+α)λ0s[N(s)]1+α ds

≤M∥g∥L∞ +
M

αλ0
[N(t)]1+α.

Thus, for all t ∈ [0, Tmax(g)), N(t) satisfies the inequality

N(t) ≤M∥g∥L∞ +
M

αλ0
[N(t)]1+α.

Setting

θ(w) =
M

αλ0
w1+α − w,

we conclude as in the proof of Theorem 7.5. Let

m = −min[0,∞) θ and xm > m be such that θ(xm) = m.

If M∥g∥L∞ < m < xm, then N(0) < xm, and for all t ∈ [0, Tmax(g)), it holds
θ(N(t)) ≥ −M∥g∥L∞ > −m, and so by continuity, N(t) < xm. In particular,
the solution is global in time.

Now, we prove the exponential bound. For any a ∈ (0,m), there exists a ≤
xa ≤ xm such that θ(xa) = −a, with xa ≤ Ca for some constant C > 1. Since
θ(N(t)) ≥ −M∥g∥L∞ , we have for all t ≥ 0, N(t) ≤ xM∥g∥L∞ ≤ CM∥g∥L∞ ,
which completes the proof.

8.5 Blowup in finite time

We consider the (normalized) eigenfunction Ψ0 ∈ H2(U)∩H1
0 (U) of the Lapla-

cian on the domain U , i.e. the unique positive solution of

∆Ψ0 + λ0Ψ0 = 0, Ψ0 > 0 on U ,
∫
U
Ψ0 dx = 1.
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Theorem 8.7. Let g ∈ X be such that g ≥ 0 on U . Assume that∫
U
g(x)Ψ0(x) dx > λ

1
α
0 .

Then, the corresponding maximal solution of (8.4) given by Theorem 8.3 blows
up in finite time.

Proof. We consider a non negative initial data, and thus by Theorem 8.5, the
solution itself is non negative for all t ∈ [0, Tmax(g)). We define

I(t) =

∫
U
u(t, x)Ψ0(x) dx.

Then, using the equation of u for t > 0, and next the Jensen inequality, we
compute and estimate

I ′ =

∫
U
∂tuΨ0 dx =

∫
U
(∆u+ f(u))Ψ0 dx

=

∫
U
u∆Ψ0 dx+

∫
U
uα+1Ψ0 dx

≥ −λ0
∫
U
uΨ0 dx+

(∫
U
uΨ0 dx

)α+1

.

This means that I satisfies

I ′ ≥ −λ0I + Iα+1.

By a standard argument, we prove that I ′ ≥ 0 on [0, Tmax(g)). Let δ > 0 be
such that

(1− δ)[I(0)]α ≥ λ0.

Then, for all t ∈ [0, Tmax(g)), (1− δ)[I(t)]α ≥ (1− δ)[I(0)]α ≥ λ0.

I ′ ≥ δIα+1.

Integrating this on [0, t], we find

[I(0)]−α − [I(t)]−α ≥ δαt,

which proves that Tmax(g) ≤ (δα)−1[I(0)]−α.

8.6 Exercises for Chapter 8

Exercise 8.1. Let U be a bounded smooth domain of RN . Let p > 1. Let
φ ∈ C0(U)∩H1

0 (U) and let u ∈ C([0, Tm), C0(U)∩H1
0 (U))∩C((0, Tm), H2(U))∩

C1((0, Tm), L2(U)) be the maximal solution of

ut −∆u = up in (0, Tm)× U , u(0) = φ in U .

For all t ∈ [0, Tm), define

E(u(t)) =
1

2

∫
U
|∇u(t, x)|2 dx− 1

p+ 1

∫
U
up+1(t, x) dx.
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1. Prove that E(u(t)) ∈ C([0, Tm)) ∩ C1((0, Tm)), and

d

dt
E(u(t)) = −

∫
U
u2t (t, x) dx.

(Hint: for 0 < s < t < Tm, compute 1
t−s [E(u(t)) − E(u(s))] and pass to

the limit as s→ t.)

2. What can be said about E(u(t)) in the case where only φ ∈ C0(U) ?

Exercise 8.2. (A simple blow up criterium)
We consider the following problem

ut −∆u = u+ up, x ∈ U , t > 0,
u = 0, x ∈ ∂U , t > 0,

u(0, x) = u0(x), x ∈ U ,

 (P )

for p > 1 and U a bounded domain of RN with C1 boundary.

1. Let u0, v0 ∈ C0(U) and let u, v be the corresponding solutions of (P )
on their maximal interval of existence [0, Tmax(u0), [0, Tmax(v0)). Assume
that u0 ≥ αv0 ≥ 0 for some α > 1. Prove that Tmax(u0) ≤ Tmax(v0) and
that for all t ∈ [0, Tmax(u0)), u(t) ≥ αv(t).

2. Assume that problem (P) has a stationary solution w > 0, i.e, a positive
classical solution of

−∆w = w + wp, x ∈ U ,
w = 0, x ∈ ∂U .

}
Prove that if u0 ≥ αw on U , for some α > 1, then Tmax(u0) < +∞.

Exercise 8.3. (Unbounded solution) Find explicitly the solution u(t, x) of

ut −∆u = 2u in (0,∞)× (0, π), u(0) = sin(x) in (0, π).

Exercise 8.4. (Interior regularity) Let Q = (−1, 0) × B, where B is the unit
ball of RN . Let u ∈ C(Q) ∩ C∞(Q) and assume ut −∆u = 0. The goal of this
exercise is to prove that, for all α ∈ RN , ∀p ≥ 0,

|∂pt ∂αx u(0, 0)| ≤ C∥u∥L∞(Q).

1. Let φ ∈ C∞
0 (Rd+1) be such that φ(0, 0) = 1, suppφ ⊂ (−1, 1)×B. Set

w = φ2|∇xu|2 +K|u|2, for some K > 0.

Prove that for K > 0 large enough, wt −∆w ≥ 0 on Q. The constant K
is now fixed to such value.

2. Deduce from the previous question the following estimate

|∇xu(0, 0)|2 ≤ K∥u∥2L∞(Q).

3. Conclude.
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Exercise 8.5. (Blow up rate) Let u ∈ C([0, Tm), C0(U)) ∩ C((0, Tm), H2(U) ∩
H1

0 (U)) ∩ C1((0, Tm), L2(U)) be the maximal solution of

ut −∆u = up in (0, Tm)× U , u(0) = φ ≥ 0 in U .

Assume that Tm < +∞ (blow up in finite time). Prove that

∀t ∈ [0, Tm), ∥u(t)∥L∞ ≥ k(Tm − t)−
1

p−1 where k = (p− 1)−
1

p−1 .

Exercise 8.6. In this exercise, B denotes the open unit ball of R3, and S
denotes the boundary of B, i.e. the unit sphere of R3. For x = (x1, x2, x3), we

set as usual |x| =
(∑3

j=1 x
2
j

) 1
2

. For notational reasons, we recall the integration-

by-parts formula in the particular case of B (note that ν = x is the outward
pointing unit normal vector field at the boundary S of B): for u, v ∈ C1(B̄),
j = 1, 2, 3, ∫

B

(∂xj
u)v dx = −

∫
B

u(∂xj
v) dx+

∫
S

uvxjdσ(x),

where σ(x) denotes the Lebesgue measure on S.
We denote by λ1 and φ1 the first eigenvalue and normalized eigenfunction

of −∆ in B with zero boundary condition : φ1 > 0 on B and
∫
B
φ1 = 1.

Part I. Non existence results for a nonlinear elliptic equation

1. The goal of this question is to prove that there is no nonzero classical
solution of the nonlinear elliptic problem{

∆w + w7 = 0, x ∈ B,

w = 0, x ∈ S.
(E)

Let w ∈ C2(B) satisfy (E).

(a) Multiply (E) by w and integrate by parts to find a relation between∫
B
|∇w|2 and

∫
B
w8.

(b) Multiply (E) by x · ∇w and integrate by parts to find a relation
between

∫
B
|∇w|2 dx,

∫
B
w8 dx and

∫
S
|∇w · x|2dσ(x).

(c) Conclude that w = 0 on B.

2. The goal of this question is to prove that there exists no radially symmetric
positive solution of {

∆w + w7 = 0, x ∈ B \ {0},
w = 0, x ∈ S.

(SE)

Note that we allow a possible singularity at 0. Let w(x) =W (|x|) satisfy
(E) and w > 0 on B \ {0}. We assume that W ∈ C2((0, 1]).

(a) Derive the equation satisfied by W on (0, 1].
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(b) For all s ≥ 1, we consider Z(s) defined by

Z(s) = s−
1
2W (s−1).

Show that Z satisfies the following equation
(sZ ′)′ + Z7 − Z

4s
= 0, s > 1,

Z(s) > 0, s > 1,

Z(1) = 0.

(ODE)

(c) Prove that Z ′(1) > 0.

(d) Prove that s 7→ Z(s) cannot be monotone nondecreasing on [1,+∞).
Hint: argue by contradiction: assume that Z is monotone nonde-
creasing and show that there exists s1 > 1 such that for any s ≥ s1,
(sZ ′)′(s) ≤ − 1

2Z
7(s1). Conclude.

We denote by s0 > 1, the first zero of Z ′ on [1,+∞).

(e) Let any 1 ≤ s2 < s3; multiplying the equation (ODE) by sZ ′, inte-
grating on [s2, s3], prove the identity∫ s3

s2

Z8(s)ds = s2Z
8(s2)− s1Z

8(s1)−
[
Z2(s2)− Z2(s1)

]
+ 4

[
(s2Z

′(s2))
2 − (s1Z

′(s1))
2
]
. (⋆)

(f) Prove that Z is monotone nonincreasing on [s0,+∞). Hint: argue
by contradiction, using the identity (⋆) for suitable 1 ≤ s2 < s3.

(g) Show that there exists sn → ∞ such that limn→∞ snZ
′(sn) = 0.

(h) Using again the identity (⋆), reach a contradiction and conclude.

Part II. Global radial solutions of a nonlinear heat equation
∂tu−∆u− u7 = 0, t > 0, x ∈ B,

u = 0, x ∈ S,

u(0, x) = u0(x), x ∈ B.

(P)

We assume that u0 ∈ C2(B̄), u0 ≥ 0 on B and that u0 is a radially symmetric
decreasing function on B, i.e.

u0(x) = U0(|x|) where U ′
0(r) ≤ 0 for r ∈ [0, 1]. (H)

We also assume that the corresponding classical solution u ∈ C([0,+∞), C2(B̄))
of (P) is global in time. The goal of this exercice is to prove that

lim
t→+∞

u(t, x) = 0 for all x ∈ B \ {0}, (C1)

and
lim

t→+∞
∥u(t)∥L1(B) = 0. (C2)
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1. Prove that for all t ≥ 0, the function x ∈ B 7→ u(t, x) is also a radially
symmetric decreasing function, i.e., for all x ∈ B, u(t, x) = U(t, |x|) and
for all r ∈ [0, 1], ∂rU(t, r) ≤ 0.

2. We define the energy of u(t) as follows

E(t) =
1

2

∫
B

|∇u(t, x)|2 dx− 1

8

∫
B

u8(t, x) dx.

Prove that for all t ≥ 0, 0 ≤ E(t) ≤ C0, for some constant C0 > 0. Deduce
that, for some C ′

0 > 0,∫ +∞

0

∫
B

|∂tu(t, x)|2 dxdt ≤ C ′
0.

3. Let I(t) =
∫
B
u(t, x)φ1(x) dx. Prove that there exists a constant C1 > 0

such that
∀t ≥ 0, I(t) ≤ C1.

4. Deduce from the previous question that there exists a constant C2 > 0
such that

∀t ≥ 0,

∫
B

u(t, x) dx ≤ C2.

5. Let R ∈ (0, 1). Let UR = {x ∈ R3, R < |x| < 1}. Prove that there exists
C3(R) > 0 such that

∀t ≥ 0, ∥u(t)∥L∞(UR) ≤ C3(R).

In view of the next questions, we recall the following parabolic regularity
result in Lp. Let 0 < R < 1

2 , 1 < p < ∞ and let f ∈ Lp((0, 1)× UR). Let
h = h(t, x) be solution of{

∂th−∆h = f, t ∈ (0, 1), x ∈ UR,
h = 0, x ∈ S.

There exists a constant C(p,R) > 0 such that, for all j, k = 1, 2, 3,

∥∂th∥Lp([ 12 ,1]×U2R) + ∥∂xjh∥Lp([ 12 ,1]×U2R) + ∥∂xjxk
h∥Lp([ 12 ,1]×U2R)

≤ C(p,R)∥f∥Lp([0,1]×UR).

6. Prove that there exists C4(R) > 0 such that, for any 1 < p < ∞, for any
T ≥ 1,

∥∂2t u∥Lp([T,T+1]×UR) ≤ C4(R).

7. Show that for any R ∈ (0, 1),

lim
t→+∞

∫
UR

|∂tu(t)|2 = 0.
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8. Let tn → +∞. Prove that there exists a subsequence of {tn}∞n=0, denoted
by {tnk

}∞k=0, and w ∈ C2(B̄ \ {0}), w solution of (SE) on B \ {0} such
that

lim
k→+∞

u(tnk
) → w in L∞(UR) for all R ∈ (0, 1).

9. Prove (C1).

10. Using again the functional I(t), prove (C2).

Exercise 8.7 (Continuity of the blow up time for a nonlinear heat equation).
In this text, C(K) denotes a constant depending on K, which may change from
one line to another. Possible dependency on the domain U is not specified.

1. Preliminary. Let δ0 > 0 and c0 > 0. Prove that if a positive function
g ∈ C1([0, δ0]) satisfies g

′ ≥ c0g
2 on [0, δ0], then g(0) <

1
δ0c0

.

Let δ1 > 0 and c1, c2 > 0. Prove that if a positive function g ∈ C1([0, δ1])

satisfies g′ ≥ −c2 + c1g
2 on [0, δ1], then g(0) < max

(√
2c2
c1
, 2
δ1c1

)
.

Let U be a smooth bounded domain of R2. We consider the following
nonlinear heat equation ut −∆u = u3 (t, x) ∈ (0, T )× U ,

u(t)|∂U = 0 t ∈ (0, T ),
u(0, x) = φ(x) x ∈ U .

(8.6)

Recall that for any φ ∈ C0(U), there exist 0 < Tmax(φ) ≤ +∞ and a
unique maximal solution u of (8.6), satisfying u ∈ C([0, T ]), C0(U)) ∩
C((0, T ], H2(U) ∩H1

0 (U)) ∩ C1((0, T ], L2(U)) for any 0 < T < Tmax(φ).

Let K > 0. In questions 2–10, we consider φ ∈ C0(U) such that ∥φ∥L∞ <
K. Recall that in this case Tmax(φ) > TK where TK > 0 depends only on
K. In questions 2–10, we also assume that u blows up in finite time, i.e.

Tmax(φ) < +∞.

For all t ∈ [0, Tmax(φ)), define

M(t) =

∫
|u(t, x)|2 dx

and for all t ∈ (0, Tmax(φ)), define

E(t) =
1

2

∫
U
|∇u(t, x)|2 dx− 1

4

∫
u4(t, x) dx.

2. Recall why E(t) ∈ C1((0, Tmax(φ))), and check that

d

dt
E(t) = −

∫
U
u2t (t, x) dx.

3. Comparing u with the solution of the equation h′ = h3 with h(0) = K,
justify the existence of 0 < τK < TK

4 , depending only on K, such that
supt∈[0,τK ] ∥u(t)∥L∞ ≤ 2K. Such τK is now fixed.
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4. Prove that there exists C(K) > 0 such that

∀t ∈ [τK , Tmax(φ)), E(t) ≤ C(K).

Let 0 < δ < TK

4 and define Tδ = Tmax(φ)− δ.

5. Prove that there exists C(K, δ) > 0 such that

∀t ∈ [τK , Tδ], M(t) ≤ C(K, δ).

Hint: study the evolution of the quantity M(t) and use question 1.

6. Prove that there exists C(K, δ) > 0 such that

∀t ∈ [τK , Tδ], E(t) ≥ −C(K, δ).

7. Prove that there exists C(K, δ) > 0 such that∫ Tδ

τK

∫
U
u2t ≤ C(K, δ).

8. Prove that there exists C(K, δ) > 0 such that

∥u(t)∥L8(I,L4(U)) ≤ C(K, δ),

for any interval I ⊂ (τK , Tδ) such that |I| ≤ 1.

Hint: use the expression of d
dt

∫
u2(t) in terms of E(t) and

∫
u4(t).

9. Deduce that

∀t ∈ [τK , Tδ], ∥u(t)∥
L

19
6 (U)

≤ C(K, δ).

Hint: use the inequality (we admit it)

∥f∥
L∞((0,T ),L

19
6 (U))

≤ C(T )
(
∥ft∥L2((0,T )×U) + ∥f∥L2((0,T )×U)

+ ∥f∥L8((0,T ),L4(U))

)
10. Deduce from the previous question that

∀t ∈ [0, Tδ], ∥u(t)∥L∞(U) ≤ C(K, δ).

Hint: use the Duhamel formula for u(t) and estimates for the heat semi-
group.

11. Conclusion. Prove that the function

φ ∈ C0(U) 7→ Tmax(φ) ∈ (0,∞]

is continuous for the ∥.∥L∞ topology.
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Exercise 8.8 (Construction of positive solutions to a linear heat equation with
singular potential). Let U be a bounded smooth convex domain of RN , where
N ≥ 3. We denote by f the function distance to the boundary, i.e.

∀x ∈ U , f(x) = dist(x, ∂U).

Recall the so-called Hardy inequality

∀φ ∈ H1
0 (U),

1

4

∫
U

φ2(x)

f2(x)
dx ≤

∫
U
|∇φ|2. (8.7)

We study the existence problem for the following linear heat equation
vt −∆v =

α

f2(x)
v (t, x) ∈ (0,∞)× U ,

v(t)|∂U = 0 t ∈ (0,∞),
v(0, x) = φ(x) x ∈ U ,

(8.8)

for φ ∈ C0(U) ∩H1
0 (U), φ ≥ 0 and 0 < α < 1

4 .

For n ≥ 1, let

an(x) = min

(
α

f2(x)
, n

)
.

1. For any n ≥ 1, prove the existence of a global solution

vn ∈ C([0,∞), C0(U)) ∩ C([0,∞), H1
0 (U))

of the problem (vn)t −∆vn = an(x)vn (t, x) ∈ (0,∞)× U ,
vn(t)|∂U = 0 t ∈ (0, T ),
vn(0, x) = φ(x) x ∈ U .

(8.9)

Hint: use the Duhamel formulation of the equation and a fixed point
argument in a suitable space on a short interval of time. Then iterate the
argument to obtain a global solution.

2. For all n ≥ 1, prove that vn(t) ≥ 0, for all t ≥ 0.

3. For all n ≥ 1, prove that vn+1(t) ≥ vn(t), for all t ≥ 0.

For t ≥ 0, define

En(t) =
1

2

∫
U
|∇vn(t, x)|2 dx− 1

2

∫
U
an(x)v

2
n(t, x) dx.

4. Prove that the function En is C1 on [0,+∞) and compute d
dtEn(t).

5. Deduce from the previous question and (8.7) the following uniform bound
: there exists C(α) > 0 such that

∀n ≥ 1, ∀t ≥ 0,

∫
|∇vn(t, x)|2 dx ≤ C(α)

∫
|∇φ|2.

6. Construct a global weak solution v of (8.8) in a sense to specify.

Hint: obtain the solution v as the limit of the sequence {vn}∞n=1.
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Appendix A

Elements of topology and
functional analysis

A.1 Metric spaces

Let E be a non empty set.

Definition A.1. A distance on E is a mapping d : E × E → [0,∞) satisfying,
for all x, y, z ∈ E:

1. Separation: d(x, y) = 0 ⇐⇒ x = y;

2. Symmetry: d(x, y) = d(y, x);

3. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).

A set E equipped with a distance d is called a metric space, denoted by (E, d).

Let A be a subset of E. Equipped with the (restriction of the) distance d,
(A, d) is a metric subspace of E.

Let (E1, d1), . . . , (EN , dN ) be N metric spaces and let E be the product set

E =

N∏
j=1

Ej .

Then,

d(X,Y ) =

√√√√ N∑
j=1

d2j (xj , yj),

defined for any X = (x1, . . . , xN ), Y = (y1, . . . , yN ) in E, is a distance on E.
One can also consider the distances

d∞(X,Y ) = sup
j=1,...,N

dj(xj , yj), d1(X,Y ) =

N∑
j=1

dj(xj , yj).

Unless otherwise indicated, for N ≥ 1, RN is equipped of the Euclidian distance

d(X,Y ) =

√√√√ N∑
j=1

(xj − yj)2
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A.2 Normed vector spaces

Let X denote a K-linear space, where K = R or C.

Definition A.2. A mapping ∥ · ∥ : X → [0,∞) is called a norm if

1. for all g, h ∈ X, ∥g + h∥ ≤ ∥g∥+ ∥h∥ (triangle inequality);

2. for all g ∈ X, a ∈ K, ∥ag∥ = |a|∥g∥;

3. ∥g∥ = 0 if and only if g = 0.

A normed space (X, ∥·∥) has a metric structure for the distance d associated
to ∥ · ∥, defined by d(g, h) = ∥g − h∥, for any two elements g, h ∈ X.

Two norms on X, denoted by ∥ ·∥1 and ∥ ·∥2 are say to be equivalent if there
exists a constant C > 0 such that

∀g ∈ X, ∥g∥1 ≤ C∥g∥2 and ∥g∥2 ≤ C∥g∥1.

We recall that on a finite dimensional space, all norms are equivalent.

A.3 Topology of metric spaces

A.3.1 Open sets

Let (E, d) be a metric space.

Definition A.3. We call open ball of center g ∈ E and radius r > 0 the set

B(g, r) = {h ∈ E : d(g, h) < r}.

The closed ball of center g ∈ E and radius r > 0 is the set

B′(g, r) = {h ∈ E : d(g, h) ≤ r}.

Definition A.4. We say that a subset U of E is open if for any point g ∈ U
there exists an open ball centered at g and included in U . A subset of E is said
to be closed if its complement in E is open.

By convention, the empty set is open. Any union of open subsets of E is
open. Any finite intersection of open subsets of E is open. Any intersection of
closed subsets of E is closed. Any finite union of closed subsets of E is closed.

For any g ∈ E, we call neighborhood of g a subset of E containing an open
subset containing g. A subset U of E is open if, and only if it is a neighborhood
of each of its points.

If D is a subset of E, the union of all open subsets included in D is called the
interior of D, denoted by D̊. Note that g ∈ D̊ if and only if D is a neighborhood
of g. The intersection of all closed sets containing D is called the closure of D,
denoted by D̄. Note that g ∈ D̄ if and only if any neighborhood of D has a
non empty intersection with D. The complement of D̄ is the interior of the
complement of D. The set D̄ \ D̊ is called the boundary of D denoted by ∂D.

Definition A.5. We say that a sequence {gk}∞k=1 of (E, d) converges to g ∈ E,
written limk gk = g, if limk→∞ d(gk, g) = 0.
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Remark A.6. Let {gλ}λ>0 be a family of elements in E, defined for all λ > 0
small. We will say that {gλ}λ>0 converges to g as λ→ 0, written limλ↓0 gλ = g
if for any sequence {λk}∞k=1 of positive numbers converging to 0, the sequence
{gλk

}∞k=1 converges to g.

Definition A.7. A subsequence {gφ(k)}∞k=1 of a sequence {gk}∞k=1 is character-
ized by a strictly increasing mapping φ : N → N.

Definition A.8. We say that g is an accumulation point of a sequence {gk}∞k=1

if there exists a subsequence of {gk}∞k=1 converging to g.

If a sequence {gk}∞k=1 converges to g, then g is the unique accumulation point
of this sequence. In particular, the limit of a sequence, if it exists, is unique.

Definition A.9. Let (E, d) be a metric space and A be a subset of E. We say
that A is dense in E if its closure Ā is E. Equivalently, for all f ∈ E, there
exists a sequence {aj}∞j=1 of elements of A such that limj→∞ aj = f .

A.3.2 Continuity

Let (E1, d1) and (E2, d2) be two metric spaces. Let A be a subset of E1 and
F : A→ E2 be a function. Let g0 ∈ Ā and h ∈ E2. We say that

lim
g→g0;g∈A

F (g) = h

if for all neighborhood V2 of h in E2, there exists a neighborhood V1 of g0 in E1

such that F (V1 ∩A) ⊂ V2. The limit, if it exists, is unique.

Definition A.10. We say that F : A→ E2 is continuous at g0 ∈ A if

lim
g→g0;g∈A

F (g) = F (g0).

We say that F is continuous on A if it is continuous at any point of A.

The composition of two continuous functions is continuous.

Theorem A.11. The application F : A → E2 is continuous at g ∈ A if, and
only if for any sequence {gk}∞k=1 of A converging to g, the sequence {F (gk)}∞k=1

converges to F (g).

A.3.3 Compactness

Definition A.12. We say that a metric space (E, d) is compact if any sequence
of E admits a subsequence that converges to an element of E.

A subset A of a metric space (E, d) is compact if the metric space (A, d) is
compact.

Proposition A.13. Let A be a subset of a metric space (E, d). If A is compact,
then A is closed in Y . If E is compact and A is closed in E, then A is compact.

Theorem A.14. Let X be a finite dimensional vector space. Then, A ⊂ X is
compact if and only if A is closed and bounded.
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In a vector space with infinite dimension, any compact set is closed and
bounded, but the converse is false in general.

Theorem A.15. Let (E1, d2) and (E2, d2) be two metric spaces. Let F : E1 →
E2 be continuous. If E1 is compact then F (E1), the image of E1 by F , is a
compact set of E2.

Definition A.16. Let (X, ∥ · ∥) and (Y, ∥ · ∥Y ) be two normed spaces. Let
D ⊂ X and F : D → Y . We say that F is uniformly continuous if the function
ω : [0,∞) → [0,∞) defined by

ω(δ) = sup
g,h∈D

∥g−h∥≤δ

∥F (g)− F (h)∥Y (A.1)

converges to 0 as δ converges to 0.

Theorem A.17. Let (E1, d1) and (E2, d2) be two metric spaces. Let F : E1 →
E2 be continuous. If E1 is compact then F is uniformly continuous.

A.4 Complete metric spaces and Banach spaces

Let (E, d) be a metric space.

Definition A.18. We call Cauchy sequence on E a sequence {gk}∞k=1 such that

lim
j,k→∞

d(gj , gk) = 0.

In any metric space, a converging sequence is a Cauchy sequence.

Definition A.19. We say that a (E, d) is complete if any Cauchy sequence is
convergent.

Definition A.20. We say that a normed vector space (X, ∥ · ∥) is a Banach
space if any Cauchy sequence is convergent.

Theorem A.21. Any finite dimensional normed vector space is a Banach space.

Theorem A.22. The metric space (E, d) is complete if and only if any sequence
{gk}∞k=0 satisfying

∑∞
k=0 d(gk+1, gk) <∞ has a limit.

Corollary A.23. Let
∑∞
k=0 gk be a series of elements gk of a Banach space

(X, ∥ ·∥). Suppose that
∑∞
k=0 ∥gk∥ <∞. Then the series

∑∞
k=0 gk is convergent

in X.

Proposition A.24. Let A be a subset of a metric space (E, d). If A is complete,
then A is closed in E. If E is complete and A is closed in E, then A is complete.

Proposition A.25. A compact metric space is complete.

Theorem A.26 (The Banach Fixed-Point Theorem). Let (E, d) be a complete
metric space. Let Φ : E → E be a mapping such that there exists k ∈ [0, 1)
satisfying

for all g, h ∈ E, d(Φ(g),Φ(h)) ≤ k d(g, h).

Then, there exists a unique fixed point g0 ∈ E of Φ, i.e. satisfying Φ(g0) = g0.
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Definition A.27. A map f : (E1, d1) → (E2, d2) between two metric spaces is
an isometry if for all g, h ∈ E1, d2(f(g), f(h)) = d1(g, h).

Theorem A.28 (Completion of a metric space). Let (E, d) be a metric space.
There exists a unique (up to isometries) complete metric space (Ẽ, d̃), contain-
ing E as a dense subset and such that the restriction of d̃ to E is d.

Any uniformly continuous application f : E → Y , where (Y, dY ) is a com-
plete metric space, extends uniquely as a continuous application f̃ : Ẽ → Y .

The complete metric space (Ẽ, d̃) is called the completion of (E, d). The
completion of a complete metric space is itself. Moreover, if A is a dense subset
of a complete metric space (E, d), then E is the completion of A.

A.5 Space of continuous functions

Let (E1, d1) and (E2, d2) be two metric spaces. An application F : E1 → E2 is
bounded if there exists C > 0 such that d2(F (g), F (h)) ≤ C for all g, h ∈ E1.

We denote by C(E1, E2) the set of continuous mappings from E1 to E2 and
by Cb(E1, E2) the subset of bounded continuous mappings from E1 to E2.

If E1 is compact, then C(E1, E2) = Cb(E1, E2).

Definition A.29. The formula

D(F,G) = sup
g∈E1

d2(F (g), G(g)),

for F,G ∈ Cb(E1, E2) defines a distance on Cb(E1, E2), called the uniform dis-
tance.

Proposition A.30. Suppose that (E2, d) is complete. Then, (Cb(E1, E2), D) is
a complete metric space.

In particular, for any metric space (E, d), the normed space (Cb(E,R), ∥ · ∥),
where the norm ∥ · ∥ is defined by

∥F∥ = sup
g∈X

|F (g)|,

is a Banach space.

A.6 Bounded linear operators

Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be two normed vector spaces on R.

Definition A.31. A map A : X → Y is called a linear operator if for all
g, h ∈ X, α, β ∈ R,

A(αg + βh) = αAg + βAh.

The range of A is R(A) = {v ∈ Y : v = Ag for some g ∈ X}. The null space of
A is N(A) = {g ∈ X : Ag = 0}. The graph of A is the set

G(A) = {(g, v) ∈ X × Y : v = Ag}.
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Theorem A.32. Let A : X → Y be a linear operator. The following three
properties are equivalent.

1. A is continuous at 0;

2. A is continuous on X;

3. there exists a constant C ≥ 0 such that

for all g ∈ X, ∥Ag∥Y ≤ C∥g∥X .

We denote by L(X,Y ) the vector space of linear continuous operators fromX
to Y equipped with the norm

∥A∥L(X,Y ) = sup {∥Ag∥Y ; ∥g∥X = 1} .

Theorem A.33. Let (X, ∥ · ∥) be a normed vector space, D be a dense subspace
of X, and Y a Banach space. Any linear continuous linear map from D to Y
can be uniquely extended to a continuous linear map from X to Y .

We recall the uniform boundedness principle (or Banach-Steinhaus theorem).

Theorem A.34. Let X be a Banach space, Y be a normed vector space, and
Ajj∈J be a family of linear operators from X to Y satisfying, for all g ∈ X,

sup
j∈J

∥Ajg∥Y <∞.

Then, the bound is uniform on the unit ball of X, i.e.

sup
j∈J

∥Aj∥L(X,Y ) <∞.

A linear operator A : X → Y is called closed if its graph is closed, which
means that for any sequence {gk}∞k=0 of X such that lim∞ gk = g in X and
lim∞Agk = v in Y , one has Ag = v.

Theorem A.35 (The Closed Graph Theorem). Let X and Y be Banach spaces
and let A : X → Y be a linear mapping. Then, A ∈ L(X,Y ) if and only if the
graph of A is a closed subspace of X × Y .

Corollary A.36. Let X be a Banach space and Y be a normed vector space.
Then, the pointwise limit of a sequence in L(X,Y ) belongs to L(X,Y ).

When Y = X, we denote L(X) instead of L(X,X) the vector space of the
bounded linear operators on X. Equipped with the composition product of
applications A ◦ B, denoted simply by AB, L(X) is a unitary algebra, with
identity element I. The norm on L(X), defined by

∥A∥L(X) = sup
∥g∥≤1

∥Ag∥

will also be denoted by ∥ · ∥ when there is no risk of confusion. It is easily
checked that for all A,B ∈ L(X),

∥AB∥ ≤ ∥A∥ ∥B∥.

An element A of L(X) is said to be invertible if it admits an inverse in L(X),
i.e. if there exists B ∈ L(X) such that AB = BA = I. We recall the following
consequence of the open mapping theorem.
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Theorem A.37. Let X be a Banach space. Let A ∈ L(X) be bijective. Then
the inverse of A, denoted by A−1, belongs to L(X).

Recall that if A and B are invertible, then AB is also invertible and it holds
(AB)−1 = B−1A−1. We will use the convention A0 = I.

Definition A.38. Let A ∈ L(X).

1. The resolvent set of A is

ρ(A) = {λ ∈ R : (A− λI) is invertible with continuous inverse}.

2. The spectrum of A is σ(A) = R \ ρ(A).

3. We say that λ ∈ σ(A) is an eigenvalue of A if N(A−λI) ̸= {0}. We write
σp(A) the set of eigenvalues (point spectrum).

4. If λ ∈ σp(A) and g ∈ X, g ̸= 0 satisfies Ag = λg, then g is an associated
eigenvector.

Note that by Theorem A.37, when X is a Banach space, for λ ∈ R such that
(A− λI) is invertible, its inverse (A− λI)−1 is automatically continuous.

Lemma A.39. Suppose that X is a Banach space. Let A ∈ L(X) be such that
∥I −A∥ < 1. Then, A is invertible and

A−1 =

∞∑
k=0

(I −A)k.

Proposition A.40. Suppose that X is a Banach space. Let A ∈ L(X).

1. The resolvant set of A is open in R.

2. The spectrum of A is a non empty compact set of R.

The spectral radius is then defined by

r(A) = sup{|λ| : λ ∈ σ(A)}. (A.2)

Proposition A.41. Suppose that X is a Banach space. Let A ∈ L(X). The
sequence {∥An∥1/n}∞n=1 is convergent and

r(A) = lim
n→∞

∥An∥ 1
n .

A.7 The dual space

When Y = K, L(X,Y ) is denoted by X∗ and called the dual or topological dual
space of X; it is the space of continuous linear forms on X. Equipped with the
norm

∥A∥L(X) = sup
∥g∥≤1

|Ag|,

it is a Banach space.
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A.8 Continuously differentiable functions

Let (X, ∥ · ∥) and (Y, ∥ · ∥Y ) be two normed vector spaces and let U be an open
set of X.

Definition A.42. For a function f : U → R, where 0 ∈ U , we denote f(h) =
o(h), if for any ε > 0, there exists δ > 0 such that for any h ∈ U with ∥h∥ ≤ δ,
|f(h)| ≤ ε∥h∥.

Definition A.43. We say that an application F : U → Y is differentiable at
g ∈ X if there exists a continuous linear map, dFg : X → Y such that

∥F (g + h)− F (g)− dFg(h)∥Y = o(h).

If it exists, this linear map is unique and called the differential of F at g.
We say that F is differentiable on U if it is differentiable at any point of U .
We say that F is of class C1 on U if it is differentiable at any point of U and

if the application
dF : U → L(X,Y ), g 7→ dFg

is continuous.

A linear combinaison of differentiable functions is differentiable, and the
differential is linear. A composition of differentiable functions is differentiable.

Remark A.44. Let I be an open interval of R and (X, ∥·∥) be a normed vector
space. Let F : I → X be differentiable at t0 ∈ I, so that dFt0 ∈ L(R, X). Since
L(R, X) is isomorphic to X, we may identify dFt0 with a vector of X, and the
real dFt0(1) is denoted by F ′(t0) or

d
dtF (t0).

Theorem A.45. Let a, b ∈ R with a < b and (X, ∥ · ∥) be a normed vector
space. Let F : [a, b] → X and φ : [a, b] → R two continuous mappings on
[a, b], differentiable on (a, b). If for all t ∈ (a, b), it holds ∥ d

dtF (t)∥ ≤ φ′(t) then
∥F (b)− F (a)∥ ≤ φ(b)− φ(a).

A.9 Integral of regulated functions with values
in a Banach space

Let (X, ∥ · ∥) be a Banach space and let I = [a, b] be a compact interval of R.
The vector space B(I,X) of bounded functions from I to X, equipped with the
norm

∥f∥∞ = sup
t∈I

∥f(t)∥

is a Banach space.

Definition A.46. We say that a function f : [a, b] → X is a step function if
there exists x0 = a < t1 < · · · < tN+1 = b and c0, c1, . . . , cN ∈ X such that
f(t) = ck on (tk, tk+1) for any k = 0, . . . , N .

We define the integral of f by∫
I

f =

∫ b

a

f(t) dt =

N∑
k=0

ck.

We denote by D be the subspace of step functions in B(I,X)
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This definition yields a linear map

T : D → X

f 7→
∫ b

a

f(t) dt,

such that, for any step function g : I → R and any x ∈ X∫ b

a

g(t)xdt =

(∫ b

a

g(t) dt

)
x.

In this framework, the following inequalities are elementary∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥ ≤
∫ b

a

∥f(t)∥dt ≤ (b− a)∥f∥∞. (A.3)

By definition, we say that a function f ∈ B(I,X) is regulated if it belongs
to the closure of D in B(I,X). It can be proved (Exercise) that a function
f : I → X is regulated if and only if it admits left and right limits at any
point of I. Using the extension theorem (see Theorem A.33), we deduce that
T extends uniquely to the closure of D in B(I,X). This procedure defines, for

any regulated function f : I → X, its integral
∫ b
a
f(t) dt ∈ X. Morever, the

inequalities (A.3) extend to such functions.
In this course, we often use this notion of integral for continuous functions,

which are a particular case of regulated functions.
Another possibility is to extend the notions of measurability and integrability

reviewed in Appendix B to mappings f : [a, b] → X using the Bochner integral.
See [8, Appendix E.5] or [6, Chapter 1].

A.10 Real and complex Hilbert spaces

Definition A.47. Let H be a linear vector space on R. A (real) scalar product
on H is a map (f, g) 7→ (f | g) from H × H to R satisfying the following
properties

1. Bilinearity: for all f1, f2, g1, g2 ∈ H, λ ∈ R,

(λf1 + f2 | g1) = λ(f1 | g1) + (f2 | g1),
(f1 | λg1 + g2) = λ(f1 | g1) + (f1 | g2);

2. Symmetry: (f | g) = (g | f), for all f, g ∈ H;

3. Positivity: for all f ∈ H, (f | f) ≥ 0 and

(f | f) = 0 ⇐⇒ f = 0.

Definition A.48. Let H be a linear vector space on C. A hermitian scalar
product on H is a map (f, g) 7→ (f | g) from H×H to C satisfying the following
properties
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1. Linearity and antilinearity: for all f1, f2, g1, g2 ∈ H, λ ∈ C,

(λf1 + f2 | g1) = λ̄(f1 | g1) + (f2 | g1),
(f1 | λg1 + g2) = λ(f1 | g1) + (f1 | g2);

2. Hermitian symmetry: (f | g) = (g | f), for all f, g ∈ H;

3. Positivity: for all f ∈ H, (f | f) ≥ 0 and

(f | f) = 0 ⇐⇒ f = 0.

A real or complex vector space equipped with a scalar product has a natural
normed space structure, by setting

∥f∥ = (f | f)1/2.

Moreover, the Cauchy-Schwarz inequality holds

|(f | f)| ≤ ∥f∥ ∥g∥.

Definition A.49. We say that (H, (· | ·)) is a Hilbert space if it is complete for
the associated norm.

We recall the Riesz Theorem.

Theorem A.50. Let (H, (· | ·)) be a Hilbert space. To any element h ∈ H, we
associate the continuous linear form Lh on H defined by, for any f ∈ H,

Lh(f) = (h | f).

Conversely, for any continuous linear form L on H, there exists a unique h ∈ H
such that L = Lh.

Definition A.51. For any subset A of a Hilbert space H, we set

A⊥ = {f ∈ H : ∀a ∈ H, (a | f) = 0}.

The set A⊥ is a closed subspace of H.

Definition A.52. We say that a subset A of a Hilbert space H is total if the
subpace spanned by A, denoted by span(A), is dense in H. Equivalently, A is
total if and only if A⊥ = {0}.

Definition A.53. We say that a Hilbert space is separable if there exists a
finite or infinite sequence of elements of H that form a total set in H.

Definition A.54. Let H be a separable Hilbert space. We call Hilbert basis
of H a finite or infinite sequence {ej}j=1,2,... of H that is a total set of H and
satisfies the relations

(ej | ek) =

{
1 for j = k

0 for j ̸= k.

In any separable Hilbert space, there exist Hilbert basis.

82



Theorem A.55. Let H be a separable Hilbert space and {ej}j=1,2,... be a Hilbert
basis of H.

1. Any element f ∈ H decomposes uniquely as a convergent series in H

f =
∑
j

cjej , cj ∈ C.

The components cj are given by cj = (ej | f) and it holds

∥f∥2 =
∑
j

|cj(f)|2 (Bessel-Parseval)

2. Conversely, being given complex numbers γj satisfying
∑
j γ

2
j < ∞, the

series
∑
j γjej is convergent in H and its sum f satisfies (f | ej) = γj,

for all j.

A.11 Weak convergence in Hilbert spaces

In Hilbert spaces of infinite dimension, bounded sets are not in general of com-
pact closure (See Exercice A.7). Thus, it is relevant to weaken the notion of
convergence in such spaces.

Definition A.56. Let {fj}∞j=0 be a sequence of elements of a separable Hilbert
space H and let f be an element of H. The sequence {fj}∞j=0 is said to weakly
converge to f , which is denoted by fj ⇀ f if

∀h ∈ H , lim
j→∞

(h|fj) = (h|f).

It is easy to see that if the weak limit exists, then it is unique.

Proposition A.57. Let {fj}j∈N be a sequence of elements of a separable Hilbert
space H and f ∈ H. Then

lim
j→∞

∥fj − f∥ = 0 =⇒ fj ⇀ f

and
fj ⇀ f =⇒ {fj}∞j=0 is bounded and ∥f∥ ≤ lim inf ∥fj∥. (A.4)

The first statement is easy to prove, using the Cauchy-Schwartz inequality

∀h ∈ H, |(h|fj − f)| ≤ ∥h∥∥fj − f∥.

The second result is a consequence of the Banach-Steinhaus Theorem A.34: for
any integer j, define the map Lj on H by

Lj(h) = (h|fj).

This map is clearly linear and continuous. Moreover, for a fixed h ∈ H, the
sequence {Lj(h)}∞j=0 is convergent and thus bounded. The Banach-Steinhaus
Theorem implies that the sequence {Lj}∞j=0 is bounded and that the limiting
linear map defined by

L : h 7→ (h|f)
is continuous. Moreover, its norm is bounded by lim inf ∥Lj∥L(H). Since it
holds ∥Lj∥L(H) = ∥fj∥ and ∥L∥L(H) = ∥f∥, the result follows.
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A.12 The Lax-Milgram theorem

Let (H, (· | ·)) be a real Hilbert space. We denote by ⟨·, ·⟩ the pairing of H with
its dual space H∗.

Theorem A.58 (Lax-Milgram theorem). Assume that

a : H ×H → R

is a bilinear mapping, for which there exist positive constants α, β such that

1. Continuity: for all (φ,ψ) ∈ H, |a(φ,ψ)| ≤ β∥φ∥∥ψ∥;

2. Coercivity: for all φ ∈ H, a(φ,φ) ≥ α∥φ∥2.

Then, for every ℓ ∈ H⋆, there exists a unique g ∈ H such that

a(g, φ) = ⟨ℓ, φ⟩ for any φ ∈ H.

A.13 Exercises

Exercise A.1. Let X and Y be two normed vector spaces and L(X,Y ) be the
set of continuous linear applications from X to Y , equipped with the operator
norm. Show that if Y is complete then L(X,Y ) is complete.

Exercise A.2. Let A be a continuous operator on a Banach space X such that
∥A∥ < 1. Prove that I −A is invertible with inverse

∑∞
k=0A

k.

Exercise A.3. Prove that the set of inversible operators is open in L(X).

Exercise A.4. Prove that spectrum σ(A) of a continuous operator is compact
and included in the disk of centre 0 and radius ∥A∥.

Exercise A.5. Prove Theorem A.33.

Exercise A.6. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be normed vector and D be a
dense subspace of X. Let {An}∞n=0 be a sequence of L(X,Y ). Suppose that
there exists a constant C > 0 such that

∀n ≥ 0, ∥Tn∥L(X,Y ) ≤ C

and that for any g ∈ D, the sequence {Ang}∞n=0 has a finite limit Ag as n→ ∞.
Prove that A : D → Y defines a linear and continuous map. Prove that if A
extends to Ā ∈ L(X,Y ), then for any g ∈ X,

lim
n→∞

Ang = Āg.

Exercise A.7. Let H be a separable Hilbert space of infinite dimension and
let (ej)j∈N be a Hilbert basis of H. Assume that the sequence {ej}∞j=0 has a
limiting point ℓ. Montrer que pour tout x ∈ H, la suite de terme général (ej |x)
tend vers zéro. En déduire que ℓ = 0 et conclure au fait que la boule unité d’un
espace de Hilbert séparable de dimension infinie n’est pas d’adhérence compacte.

Exercise A.8. Show that weak convergence does not imply strong convergence.
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Exercise A.9. Let {fj}∞j=0 be a sequence in a separable Hilbert space H which
weakly converges to f , and satisfying in addition

lim
j→∞

∥fj∥ = ∥f∥.

Prove that the sequence {fj}∞j=0 converges strongly to f in H.

Exercise A.10. Let {fj}∞j=0 be a bounded sequence in a separable Hilbert
space H. The goal of this exercise is to prove that there exist f ∈ H and a
subsequence of {fj}∞j=0 converging weakly to f . For any Hilbert basis (en)n≥1

ofH, we will consider the sequence {(fj |en)}∞j=0 and apply a diagonal extraction.

1. Prove that there exists a subsequence {fψ1(j)}j such that {fψ1(j)|e1)}j
converges to a scalar γ1 (ψ1 : N → N strictly increasing).

2. Prove that one can extract from {fψ1(j)}j a subsequence {fψ1◦ψ2(j)}j telle
que {fψ1◦ψ2(j)|e2)}j that converges to some γ2. Continue and construct
for any n a subsequence {fψ1◦...◦ψn(j)}j extracted from the previous ones
and such that {(fψ1◦...◦ψj(j)|en)}j converges to a scalar γn.

3. We define for any j ∈ N, φ(j) = ψ1 ◦ . . . ◦ ψj(j). Prove that for any n,

lim
j→+∞

(fφ(j)|en) = γn

Last, prove that
∑
n γnen defines an element of H to which the subse-

quence {fφ(j)}j weakly converges.

Exercise A.11. 1. Let {gn}∞n=1 be a sequence of a Hilbert space (H, (· | ·)).
Suppose that {gn}∞n=1 converges weakly to g ∈ H. Prove that there ex-
ists a subsequence of (gn), denoted by {gφ(k)}∞k=1 such that the sequence
{hn}∞n=1 defined by

hk =
1

k
(gφ(1) + · · ·+ gφ(k))

converges strongly to g.

Hint: prove that one can reduce to the case g = 0 and construct the
subsequence (gφ(k))k≥0 by induction.

2. Let C be a convex subset of H. Prove that C is weakly closed if and only
if C is strongly closed.
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Appendix B

Lebesgue integral on RN

and Lp spaces

B.1 Lebesgue measure

Definition B.1. We say that a collection B of subsets of RN is a σ-algebra
on RN if

1. The empty set ∅ and RN belong to B;

2. A ∈ B implies RN \A ∈ B;

3. For any sequence {Aj}∞j=1 of elements of B, it holds

∞⋃
j=1

Aj ∈ B and

∞⋂
j=1

Aj ∈ B.

Definition B.2. The Borel σ-algebra Bor(RN ) is the σ-algebra generated by
the open subsets of RN , i.e. the coarsest σ-algebra on RN that contains all
open subsets of RN .

Definition B.3. We call a measure on (RN ,B) a function µ on B such that

1. µ(∅) = 0;

2. For any A,B ∈ B,

A ∩B = ∅ =⇒ µ(A ∪B) = µ(A) + µ(B).

3. For any non decreasing sequence {Aj}∞j=0 of elements of B, it holds

µ

(⋃
j

Aj

)
= sup

j
µ(Aj) = lim

j
µ(Aj),

Now, we introduce the N -dimensional Lebesgue measure λN on RN .
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Theorem B.4. There exists a unique measure λN on Bor(RN ) such that for

all box B =
∏N
j=1(aj , bj) of R

N

λN (B) =

N∏
j=1

(bj − aj).

A subset A of RN (belonging to Bor(RN ) or not) is said negligible if there
exists B ∈ Bor(RN ) with A ⊂ B and λ(B) = 0.

A property P (x) depending on x ∈ RN is satisfied almost everywhere if it is
satisfied everywhere on RN except possibly on a negligible set.

B.2 Measurable functions

Definition B.5. Let f : RN → R. We say that f is a measurable function if
for any open subset U of R,

f−1(U) = {x ∈ RN : f(x) ∈ U} ∈ Bor(RN ).

Recall in particular that any continuous function f : RN → R is measurable.
The sum and the product of two measurable functions is measurable. If {fk}∞k=0

are measurable functions, then so are lim sup fk and lim inf fk.
Let 1A the characteristic function of A ∈ Bor(RN ) be defined by

1A(x) =

{
1 if x ∈ A

0 otherwise.

Then, 1A : RN → R is measurable.

B.3 Lebesgue integral for positive functions

Using approximation of positive measurable functions f : RN → [0,∞) by
simple functions, one defines the Lebesgue integral for positive measurable func-
tions as a map f 7→

∫
RN f(x) dx ∈ [0,∞] (also denoted by

∫
RN f or simply

∫
f)

satisfying the following four fundamental properties.

1. Linearity: for f, g, two positive measurable functions, and α, β ∈ [0,∞),∫
RN

(αf + βg) = α

∫
RN

f + β

∫
RN

g.

2. Comparison: if f ≤ g on RN then
∫
RN f ≤

∫
RN g.

3. Normalisation: for any box B =
∏N
j=1(bj − aj), one has

∫
RN

1B(x) dx = λN (B) =

N∏
j=1

(bj − aj).

4. The Beppo-Levi monotone convergence theorem
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Theorem B.6. Let {fn}∞n=0 be a non decreasing sequence of positive
measurable functions. Define f(x) = supn fn(x) for all x ∈ X. Then f is
measurable and ∫

RN

f dx = lim
n→∞

∫
RN

fn dx.

Note that more generally, for any A ∈ Bor(RN ),
∫
1A(x) dx = λN (A).

We also recall the following result.

Proposition B.7. Let f be a positive measurable function on RN . Then∫
RN

f dx = 0 ⇐⇒ f = 0 almost everywhere on X.

B.4 Integral of summable functions

Definition B.8. An application f : RN → R or C is said to be summable (or
integrable) if it is measurable and

∫
RN |f |dx <∞.

Definition B.9. Real-valued case. For f : RN → R summable, the integral
of f is defined by ∫

RN

f dx =

∫
RN

f+ dx−
∫
RN

f− dx,

where

f+ = sup(f, 0), f− = sup(−f, 0), 0 ≤ f± ≤ |f |, f = f+ − f−.

Complex-valued case. For f : RN → C summable, the integral of f is de-
fined by ∫

RN

f dx =

∫
RN

ℜf dx+ i

∫
RN

ℑf dx.

Proposition B.10. 1. The space of summable functions is a vector space
on R or C, denoted by L1(RN ,Bor(RN ), λN ) or simply L1(RN ).

2. The application f 7→
∫
RN f dx is a linear form on L1. Moreover, for any

f ∈ L1, it holds ∣∣∣∣∫
RN

f dx

∣∣∣∣ ≤ ∫
RN

|f |dx.

3. Let f1 and f2 be two measurable functions that are equal almost every-
where. Then, f1 is summable if and only if f2 is summable. In this case,
they have equal integral.

B.5 Integration on a subset of X

Let M ∈ Bor(RN ) and g be a function from M to C. We define the function
gM on RN , that is equal to g on M and equal to 0 on RN \M . Then, g is
summable on M if, and only if gM is summable on RN and we define∫

M

g dx =

∫
RN

gM dx.
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It is equivalent to define directly the integral onM , by considering the σ-algebra
Bor(M) of elements of Bor(RN ) that are contained in M and the restriction
λM of the Lebesgue measure λN to Bor(M). Then, we can use the general
integration theory to give a sense to

∫
M
g dx.

B.6 The dominated convergence theorem

Theorem B.11. Let {fk}∞k=0 be a sequence of measurable functions. We as-
sume that

• The sequence {fk}∞k=0 converges almost everywhere to a measurable func-
tion f ;

• There exists a function g ∈ L1 such that for any k ≥ 1, |fk| ≤ g almost
everywhere.

Then f ∈ L1 and

lim
k→∞

∫
RN

|fk − f |dx = 0.

In particular,

lim
k→∞

∫
RN

fk dx =

∫
RN

f dx.

Now, we state applications of the dominated convergence theorem to func-
tions defined by integrals depending on a parameter.

Theorem B.12. Let U be an open set of RN . Let t0 ∈ U . Let f : U ×X → C
satisfying

1. For all t ∈ U , the function x 7→ f(t, x) is measurable.

2. For almost all x ∈ X, the function t 7→ f(t, x) is continuous at t0.

3. There exists a non negative summable function h such that, for all t ∈ U
and almost all x ∈ X, we have

|f(t, x)| ≤ h(x).

Then, the function F : U → C

F (t) =

∫
RN

f(t, x) dx.

is well-defined on U and continuous at t0.

Theorem B.13. Let I be an interval of R and let f : I×RN → C. Assume that
there exists a subset Z of RN of measure zero such that, setting X = RN \ Z,
it holds

1. For all t ∈ I, the function x 7→ f(t, x) is summable.

2. The partial derivative ∂f
∂t (t, x) exists at all point of I ×X.

89



3. There exists a non negative summable function h such that for any point
(t, x) ∈ I ×X, ∣∣∣∣∂f∂t (t, x)

∣∣∣∣ ≤ h(x).

Then, the function F : t 7→
∫
RN f(t, x) dx is differentiable on I and

F ′(t) =

∫
RN

∂f

∂t
(t, x) dx.

B.7 Lebesgue spaces

B.7.1 The Lebesgue space L1

Let U be any open set of RN equipped with the Borel σ-algebra and the
Lebesgue measure. In the space L1 = L1(U ,Bor(U), λ), the application f 7→
∥f∥L1 =

∫
|f |dx is a semi-norm:

• For any f ∈ L1 and a ∈ C, ∥a f∥L1 = |a| ∥f∥L1 .

• For any f, g ∈ L1, ∥f + g∥L1 ≤ ∥f∥L1 + ∥g∥L1 .

However,
∥f∥L1 = 0 ⇐⇒ f = 0 almost everywhere.

This property is weaker than the separation property of a norm. Thus, we are
led to modify the space L1 to define a norm related to ∥ · ∥L1 . On L1, we define
a equivalence relation ∼ (reflexive, symmetric and transitive binary relation) by

f ∼ g ⇐⇒ f = g almost everywhere.

For f ∈ L1, we denote [f ] the equivalence class of f

[f ] :=
{
g ∈ L1 : f = g almost everywhere

}
.

Definition B.14. The Lebesgue space L1 is defined by L1 =
{
[f ] : f ∈ L1

}
.

The Lebesgue integral of [f ] is defined by [f ] 7→
∫
[f ] dx =

∫
f dx, and this

definition is independent of f chosen in [f ].

The semi-norm ∥ · ∥L1 on L1 now defines a norm ∥ · ∥L1 on the space L1,

∥[f ]∥L1 =

∫
|f |dx where f ∈ [f ].

Indeed,

∥[f ]∥L1 = 0 ⇐⇒
∫

|f |dx = 0 ⇐⇒ f = 0 a.e. ⇐⇒ [f ] = [0].

In practice, we will identify [f ] ∈ L1 with any representative in L1 of this
equivalence class, denoted by f , of [f ] and we denote ∥[f ]∥L1 = ∥f∥L1 .

Theorem B.15 (Fischer-Riesz). The vector space L1, equipped with the norm
∥ · ∥L1 is a Banach space.
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Corollary B.16. Let {fk}∞k=0 be a sequence that converges to f in L1. Then
there exists a subsequence of {fk}∞k=0 that converges almost everywhere to f .

For continuous functions, the notion of support is well-known.

Definition B.17. Let f : RN → C be a continuous function. We call support
of f the closure of the open set {x ∈ RN : f(x) ̸= 0}. The support of f is
denoted by supp f .

We denote by Cc(U) the space of continuous functions with compact support
in U . Equivalently, it is the space of continuous functions U → C that vanish
outside a compact set of RN included in U .

Theorem B.18. The space Cc(U) is dense in L1(U), which means that for any
function f ∈ L1(U) and any ε > 0, there exists fε ∈ Cc(U) such that∫

U
|f − fε|dx ≤ ε.

Proposition B.19 (Continuity of translations in L1). Let f ∈ L1(RN ). Let
τh : L2(RN ) → L2(RN ) be defined by

τhf(x) = f(x− h).

Then,
lim
h→0

∥τhf − f∥L1 = 0.

Now, we introduce the notion of locally integrable functions.

Definition B.20. We say that a mesurable function f : U → R belongs to
L1
loc(U) if f · 1K ∈ L1(U) for any compact K ⊂ U .

Remark B.21. Recall that if f ∈ L1
loc(U) and

∫
U fu = 0 for all u ∈ Cc(U),

then f = 0 almost everywhere on U .

B.7.2 The Lebesgue space L2

Let U be any open set of RN .

Definition B.22. A function f : U → C is said to be square integrable if it is
measurable and

∫
U |f |2 <∞.

The space L2 of square integrable functions is stable by multiplication by a
scalar and by sum since

|f + g|2 ≤ 2|f |2 + 2|g|2.

It is thus a vector space. Moreover, if f and g belong to L2, then fg is integrable
since |fg| ≤ 1

2 (|f |
2 + |g|2). Thus, one can define

⟨f | g⟩L2 =

∫
fg

(note the convention for the hermitian scalar product) and

∥f∥L2 = ⟨f | f⟩1/2L2 =

(∫
|f |2

)1/2

.
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We recall the equivalence relation

f ∼ g ⇐⇒ f = g almost everywhere.

For f ∈ L2, we denote by [f ] the equivalence class of f

[f ] :=
{
g ∈ L2 : f = g almost everywhere

}
.

Definition B.23. The Lebesgue space L2 is defined by L2 =
{
[f ] : f ∈ L2

}
.

Theorem B.24. The space L2 equipped with the hermitian scalar product

⟨f | g⟩L2 =

∫
fg

is a Hilbert space, with corresponding norm ∥f∥L2 = ⟨f | f⟩1/2L2 .

Proposition B.25. Let {fn}∞n=0 be a sequence of L2 functions that converges
to f in L2. Then there exists a subsequence of {fn}∞n=0 that converges almost
everywhere to f .

Theorem B.26. The space Cc(U) is dense in L2(U): for any function f ∈
L2(U) and any ε > 0, there exists fε ∈ Cc(U) such that

∥f − fε∥L2(U) ≤ ε.

Proposition B.27. Let f ∈ L2(RN ). Then

lim
h→0

∥τhf − f∥L2 = 0,

where τh is defined in Proposition B.19.

B.7.3 The space of essentially bounded functions L∞

Definition B.28. A measurable function f on RN is said to be essentially
bounded if there exists M ∈ R and a negligible subset Z of RN such that
|f(x)| ≤M , for all x ∈ RN \ Z.

Definition B.29. If f is essentially bounded, we define its essential upper bound
by

∥f∥L∞ = inf{M : there exists a negligible set Z

such that |f(x)| ≤M , for all x ∈ RN \ Z}.

Remark B.30. We observe that with this definition, there exists a negligible
subset Z of RN so that |f(x)| ≤ ∥f∥L∞ , ∀x ∈ RN \ Z.

Definition B.31. The space L∞(RN ) of classes of essentially bounded func-
tions for the equivalence relation f = g almost everywhere, equipped with the
norm ∥ · ∥L∞ is a Banach space.
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B.7.4 The Lebesgue spaces Lp

Let 1 ≤ p <∞.

Definition B.32. The space Lp(RN ,Bor(RN ), λN ) (or simply Lp(RN )) is the
space of measurable functions f : RN → C such that |f |p is summable. We
define

∥f∥Lp =

(∫
RN

|f(x)|p dx
) 1

p

.

Proposition B.33 (Minkowski inequality). For any f, g ∈ Lp, it holds

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp .

Definition B.34. The space Lp(RN ) of classes of functions of Lp(RN ) for the
equivalence relation f = g almost everywhere, equipped with the norm ∥ · ∥Lp ,
is a Banach space.

Theorem B.35. 1. Let u and v be non negative summable functions on RN

and let θ ∈ (0, 1). Then, uθv1−θ ∈ L1(RN ) and∫
RN

uθv1−θ dx ≤
(∫

RN

udx

)θ (∫
RN

v dx

)1−θ

.

2. Let 1 ≤ p ≤ ∞. Let p′ be the conjugate exponent of p defined by

1

p
+

1

p′
= 1.

If f ∈ Lp(RN ) and g ∈ Lp
′
(RN ), then fg ∈ L1(RN ) and

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lp′ .

B.7.5 Support

We extend the notion of support to measurable functions and to (classes of)
functions in L1.

Definition B.36. Let f : U → R be a measurable function. Let (ωj)j∈J the
family of all open sets of U such that f = 0 almost everywhere on ωj . Define
ω = ∪j∈J ωj . Then, f = 0 almost everywhere on ω and the support of f is
defined by

supp f = Ω \ ω.

Note that for two measurable functions f and g, if f = g almost everywhere
on U , then supp f = supp g. Thus, the notion of support for a (class of) function
in L1, or more generally in Lp, makes sense.

B.8 Multiple integrals

B.8.1 Product σ-algebra and product measure

The product σ-algebra Bor(Rp) ⊗ Bor(Rq) is Bor(Rp+q). Let λp be Lebesgue
measure on Rp. Then, the product measure λp ⊗ λq is λp+q.
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B.8.2 Fubini theorems

Theorem B.37 (Fubini theorem for borelians). Let S ∈ Bor(Rp+q).

1. For each x ∈ Rp, the vertical slice Sx = {y ∈ Rq : (x, y) ∈ S} belongs to
Bor(Rq).

2. The application x ∈ Rp 7→ λq(Sx) ∈ [0,∞] is measurable.

3. It holds

λp+q(S) =

∫
Rp

λq(Sx) dx.

Theorem B.38 (Non negative functions: Tonelli theorem). Let f : Rp+q →
[0,∞] be measurable. Then,

1. For all x ∈ Rp, the partial function y ∈ Rq 7→ f(x, y) is measurable and
the function from Rp to [0,∞] defined by x 7→

∫
Rq f(x, y) dy is mesurable;

2. The same property holds exchanging x and y;

3. The following identity holds:∫
Rp+q

f =

∫
Rp

{∫
Rq

f(x, y) dy

}
dx =

∫
Rq

{∫
Rp

f(x, y) dx

}
dy. (B.1)

In particular, f ∈ L1(Rp+q) if, and only if y 7→
∫
Rp f(x, y) dx is integrable

on Rq.

Theorem B.39 (Real or complex-valued functions : Fubini theorem). Let f
be a summable function on Rp+q. There exist two sets ZX ∈ Rp and ZY ∈ Rq

with λp(ZX) = λq(ZY ) = 0 such that:

• For all x ̸∈ ZX , the function y 7→ f(x, y) is summable on Rq and the
function x 7→

∫
Rq f(x, y) dy is summable on Rp.

• For all y ̸∈ ZY , the function x 7→ f(x, y) is summable on Rp and the
function y 7→

∫
Rp f(x, y) dx is summable on Rq.

• The identity (B.1) holds.

B.9 The Fourier transform

B.9.1 Convolution product in L1

Theorem B.40. Let f, g ∈ L1(RN ) and r : RN × RN → R be defined by
r(x, y) = f(x− y)g(y). Then,

• For almost all x ∈ RN , the function y 7→ r(x, y) is summable on RN .

• Defining, for almost all x ∈ RN ,

(f ⋆ g)(x) =

∫
RN

r(x, y) dy =

∫
RN

f(x− y)g(y) dy,

the function f ⋆ g is summable on RN and

∥f ⋆ g∥L1 ≤ ∥f∥L1∥g∥L1 .
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• For any f, g, h ∈ L1(RN ),

f ⋆ g = g ⋆ f and (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h).

The function f ⋆ g is called convolution product of f and g.

Theorem B.41 (Convolution product and differentiation). Let f ∈ L1(RN )
and let g be a bounded continuous function on RN . Then, the function f ⋆ g
defined at any point of RN by the formula

(f ⋆ g)(x) =

∫
RN

f(x− y)g(y) dy =

∫
RN

f(y)g(x− y) dy

is continuous and bounded.
If, moreover for some p ≥ 1, the partial derivatives of g up to order p exist,

are continuous and bounded, then the same is true for f ⋆ g and it holds

∂(f ⋆ g)

∂xj
= f ⋆

∂g

∂xj
, . . . ,

∂p(f ⋆ g)

∂xp11 · · · ∂pNxN

= f ⋆
∂pg

∂xp11 · · · ∂pNxN

.

Theorem B.42 (Convolution product in L2). It holds

1. Let f ∈ L1(RN ), g ∈ L2(RN ). Then, (f ⋆ g)(x) is well-defined for almost
all x ∈ RN . The function f ⋆ g belongs to L2(RN ) and

∥f ⋆ g∥L2 ≤ ∥f∥L1∥g∥L2 .

2. Let f ∈ L2(RN ), g ∈ L2(RN ). Then, (f ⋆ g)(x) is well-defined for all
x. The function f ⋆ g is continuous, bounded, converges to 0 at infinity.
Moreover,

∥f ⋆ g∥L∞ ≤ ∥f∥L2∥g∥L2 .

Theorem B.43 (Approximation of the identity). Let h ∈ L1(RN ) be such that∫
RN h(x) dx = 1. We set

hn(x) = nNh(nx) for n ≥ 1.

• If f ∈ L1(RN ) then f ⋆ hn converges to f in L1(RN ) as n→ ∞.

• If f ∈ L2(RN ) then f ⋆ hn converges to f in L2(RN ) as n→ ∞.

Remark B.44. For instance, consider on RN the function h(x) = π−N
2 e−|x|2

which is summable, of class C∞ and of integral 1. Any function of L2 is limit
in L2 of the sequence of functions {f ⋆ hn}∞n=1 where each f ⋆ hn is of class C∞

by the differentiation theorem of convolution product.

B.9.2 Support and convolution

Proposition B.45. Let f, g : RN → C be two continuous functions, summable
on RN . Then,

supp (f ⋆ g) ⊂ supp f + supp g.

In particular, if two continuous f, g have compact support, then f ⋆ g also
has a compact support.
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B.9.3 Convolution and density : continuous functions

Recall that we denote Cc(RN ) the space of continuous functions RN → C with
compact support. More generally, for all p ≥ 1, we denote Cpc (RN ) the space of
functions of class Cp with compact support.

Lemma B.46. For any p ≥ 1, the space Cpc (RN ) is dense in Cc(RN ) for the
uniform norm. More precisely, for any g ∈ Cc(RN ), there exists a sequence of
function gn ∈ Cpc (RN ) such that, for all n ≥ 1,

∥g − gn∥L∞ ≤ 1/n and supp gn ⊂ supp g + B̄(0, 1/n).

We denote by h : RN → [0,+∞[ the function defined on B(0, 1) by

h(x) = αN exp

(
− |x|2

1− |x|2

)
, |x|2 =

N∑
j=1

x2j ,

and extended by 0 outside B(0, 1). We choose the constant αN > 0 so that
∥h∥L1(RN ) = 1. We check that the function h is of class C∞. For all n ≥ 1, we
denote

hn(x) = nNh(nx).

The function hn is of class C∞ and supphn ⊂ B̄(0, 1/n). Moreover, ∥hn∥L1 =
∥h∥L1 = 1.

Proposition B.47. For any p ≥ 1, the space Cpc (RN ) is dense in the space
(L2(RN ); ∥ · ∥L2).

B.9.4 Fourier transform in L1

Definition B.48. For any f ∈ L1(RN ), the Fourier transform of f is the

function denoted by f̂ or F(f) and defined for all ξ ∈ RN by

f̂(ξ) :=

∫
RN

e−i ξ·xf(x) dx.

Theorem B.49. Let f ∈ L1(RN ) and let f̂ be the Fourier transform of f .

Then, the function f̂ is continuous and satisfies ∥f̂ ∥L∞ ≤ ∥f∥L1 . Moreover,

lim
|ξ|→∞

f̂(ξ) = 0.

B.9.5 Properties of the Fourier transform

Proposition B.50. • If f is real-valued then f̂ has the hermitian symme-

try: f̂(−ξ) = f̂(ξ).

If f has the hermitian symmetry then f̂ is real-valued. More generally,

F(f(x)) = F
[
f(−ξ)

]
.

• If f is even (resp. odd) then f̂ is even (resp. odd).

If f is real-valued and even, then f̂ is real-valued and even.
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• Translation:

F [f(x− x0)] = e−ix0·ξ f̂(ξ), F
[
eix·ξ0f(x)

]
= f̂(ξ − ξ0).

• Dilation: for λ > 0,
F [f(x/λ)] = λN f̂(λξ).

Theorem B.51. If (1 + |x|) f ∈ L1(RN ) then f̂ ∈ C1(RN ) and for all j =
1, . . . , N ,

∂f̂

∂ξj
(ξ) = −i

∫
e−iξ·x xj f(x) dx = −iF(xjf)(ξ).

More generally, for p ≥ 1, if (1 + |x|p)f ∈ L1(RN ) then f̂ ∈ Cp(RN ).

Theorem B.52. If f ∈ C1(RN ) ∩ L1(RN ) and for j = 1, . . . , N ,
∂f

∂xj
∈

L1(RN ), then

F
(
∂f

∂xj

)
(ξ) =

∫
RN

e−iξ·x ∂f

∂xj
(x) dx = i ξj f̂(ξ).

More generally, for p ≥ 1, if f ∈ Cp(RN )∩L1(RN ) and all the partial derivatives
of f up to order p belong to L1(RN ), then

lim
|ξ|→∞

|ξ|p |f̂(ξ)| = 0.

Theorem B.53 (Convolution and Fourier transform in L1). Let f, g ∈ L1(RN ).
Then,

F(f ⋆ g) = f̂ ĝ

Theorem B.54 (Fourier inversion in L1). Let f ∈ L1(RN ) be such that f̂ ∈
L1(RN ). Then, for almost all x ∈ RN , it holds

f(x) =
1

(2π)N

∫
RN

ei x·ξ f̂(ξ) dξ.

B.9.6 Fourier transform in L2

Define the normalized Fourier transform of f by

G(f)(ξ) = 1

(2π)N/2

∫
RN

e−i ξ·x f(x) dx,

and the inverse normalized Fourier transform of f̂ by

G(f̂)(x) = 1

(2π)N/2

∫
RN

eix·ξ f̂(ξ) dξ.

Theorem B.55. The maps G and G extend to bijective isometries from L2(RN )
to itself and their extensions, still denoted G and G, satisfy

G ◦ G = G ◦ G = IdL2 .
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B.10 Exercises

Exercise B.1. Let φ ∈ L∞(Rn). For g ∈ L2(Rn), we define Ag = φg. Prove
that A is a continuous operator on L2(Rn), with norm ∥A∥ = ∥φ∥L∞ .

Exercise B.2. Prove Proposition B.27.

Exercise B.3. Compute the following classical Fourier transforms.

1. Indicator function of an interval [a, b]:

F
(
1[a,b]

)
=

2 sin
(
b−a
2 ξ
)

ξ
exp

(
−i
a+ b

2

)
.

2. Gaussian functions: on RN , for α > 0,

F
(
e−α|x|

2
)
=
(π
α

)N
2

exp

(
−|ξ|2

4α

)
.

3. Rational fractions: in R, for α > 0,

F
(

2α

α2 + x2

)
= 2π e−α|ξ|.
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Appendix C

Sobolev spaces

C.1 Distribution theory

Let U be a nonempty open set of RN . We denote by D(U) the space of infinitely
differentiable functions on U with compact support on U . If φ ∈ D(U) and
α = (α1, . . . , αN ) ∈ NN is a multi-index, we set

∂αφ =

(
∂

∂x1

)α1

· · ·
(

∂

∂xN

)αN

φ =
∂|α|

∂xα1
1 . . . ∂xαN

N

,

with
|α| = α1 + . . .+ αN .

We equip the space D(U) with a pseudo-topology, defining the notion of conver-
gence for sequences in D(U).

Definition C.1. We say that a sequence {φn}∞n=0 of D(U) converges to φ ∈
D(U) if

1. The support of φn is included in a fixed compact setK of U for any n ∈ N;

2. For any α ∈ NN , the sequence {∂αφn}∞n=0 converges to ∂αφ uniformly
in K.

Next, we introduce the space D′(U) of distributions on U as the space of
linear forms on D(U) with a suitable continuity property: for T a distribution
on D(U) and ⟨T, φ⟩ denoting the duality product D′(U), D(U), for any sequence
{φn}∞n=0 of D(U) converging to φ ∈ D(U), the sequence {⟨T, φn⟩}∞n=0 converges
to ⟨T, φ⟩.

The space D′(U) itself can be given a pseudo-topology.

Theorem C.2. If {Tn}∞n=0 is a sequence in D′(U) such that for any φ ∈ D(U)
the real sequence {⟨Tn, φ⟩}∞n=0 converges in R to a limit denoted by ⟨T, φ⟩, then
T is a distribution and we say that the sequence {Tn}∞n=0 converges to T in the
sense of distributions.

Example C.3. The following are standard examples of distributions.
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1. Locally summable functions. To any f ∈ L1
loc(U), we associate a distribu-

tion, still denoted by f , defined by

⟨f, φ⟩ =
∫
U
f(x)φ(x) dx.

The identification between f and the corresponding distribution is justi-
fied by the fact that if two locally summable functions define the same
distribution, then they are equal almost everywhere by Remark B.21.

2. Point masses. The Dirac distribution at the point a ∈ RN is defined by

⟨δa, φ⟩ = φ(a).

More generally, for any α ∈ NN ,

⟨T, φ⟩ = ∂αφ(a)

defines a distribution.

Now, we introduce the differentiation in sense of distributions. If T is a distri-
bution on U , we define another distribution ∂T

∂xj
on U by the formula

for any φ ∈ D(U),
〈
∂T

∂xj
, φ

〉
= −

〈
T,

∂φ

∂xj

〉
.

We denote by D(U) the space of of infinitely differentiable functions on U
with compact support on U . In particular, a function φ belongs to D(U) if there
exist an open set O of RN containing U and a function φ̃ ∈ D(O) such that
φ = φ̃ on U .

C.2 The Sobolev space H1(U)
A given function g ∈ L2(U) is locally summable and so can be viewed as a
distribution on U . In particular, one can define its first order partial derivatives
∂g
∂xj

for any j = 1, . . . , N as distributions on U . In general, ∂g
∂xj

does not belong

to L2(U), which motivates the introduction of the following function space.

Definition C.4. We call the Sobolev space of order one on U ⊂ RN the space

H1(U) =
{
g ∈ L2(U) : ∂g

∂xj
∈ L2(U) for any j = 1, . . . , N

}
.

We equip H1(U) with the real scalar product

(g, h)H1 =

∫
U

gh+

N∑
j=1

∂g

∂xj

∂h

∂xj

 dx,

and we denote by ∥g∥H1 the associated norm.

Theorem C.5. The space (H1(U), (·, ·)H1) is a separable Hilbert space.
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Recall that the space D(U) is dense in (L2(U), ∥ · ∥L2). In general, the space
D(U) is not dense in (H1(U), ∥ · ∥H1). This justifies the following definition.

Definition C.6. We denote by H1
0 (U) the closure of D(U) in (H1(U), ∥ · ∥H1).

Theorem C.7. The space D(RN ) is dense in H1(RN ). In particular,

H1
0 (R

N ) = H1(RN ).

Theorem C.8. Let g ∈ H1
0 (U). We define

g̃ =

{
g on U ,
0 on RN \ U .

Then, g̃ belongs to H1(RN ).

Theorem C.9 (Poincaré inequality). If the open subset U of RN is bounded
then there exists a constant C = C(U) > 0 such that

for any g ∈ H1
0 (U), ∥g∥L2(U) ≤ C

√√√√ N∑
j=1

∥∥∥∥ ∂g∂xj
∥∥∥∥2
L2(U)

For specific properties of H1 function in one dimension, see Exercises C.2,
C.3 and C.4.

C.3 Integration on surfaces

C.3.1 Case of a local graph

We denote by x = (x′, xN ) ∈ RN a point of RN , where x′ ∈ RN−1 and xN ∈ R.
We consider an open set ω of RN−1, (a, b) an open interval of R and a function
Φ : ω → (a, b) of class C1. We set

U = {x ∈ ω × (a, b) : xN > Φ(x′)}

Ũ = {x ∈ ω × (a, b) : xN ≥ Φ(x′)}
∂U = {x ∈ ω × (a, b) : xN = Φ(x′)}.

The outer unit normal vector at a point (x′,Φ(x′)) of the surface ∂U is defined
by

ν =
1

1 + |∇′Φ(x′)|2


∂Φ
∂x1

...
∂Φ

∂xN−1

−1

 (C.1)

where ∇′ denotes the N − 1-dimension gradient of Φ. Next, for any function f
defined on ∂U , continuous and with compact support on ∂U , we set∫

∂U
f(x) dσ(x) =

∫
ω

f(x′,Φ(x′)
√
1 + |∇′Φ(x′)|2 dx′, (C.2)
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Note that the above defines a positive linear form on the space of continuous,
compactly supported functions on ∂U . Actually, the above integral can be
defined in the more general setting of measurable functions defined on ∂U .

Recall that Xj of class C1 on Ũ means that Xj is continuous on Ũ , of class
C1 on U , and all its first partial derivatives extend continuously to Ũ . Recall
also the notation

divX =

N∑
j=1

∂Xj

∂xj
and X · ν =

N∑
j=1

Xjνj .

We recall the Stokes formula in the present context.

Theorem C.10. Let X = (X1, . . . , XN ) be a vector field defined on Ũ , such
that the support is a compact subset of Ũ . Suppose that the components Xj of

X are of class C1 on Ũ . Then∫
∂U
X · ν dσ =

∫
U
divX dx.

C.3.2 Definition of an open set with C1 boundary

We continue with the definition of a C1 boundary. Let U be any open set of
RN . Recall that the boundary ∂U of U is defined by ∂U = U \ U .

Definition C.11. We say that the boundary U is C1 if for any point m ∈ U ,
there exist

1. An orthonormal system (y) of coordinates (y1, . . . , yN );

2. An open set ω of RN−1 containing m′ and an interval (a, b) containing
mN , where (m′,mN ) are the components of m in the system (y);

3. An application Φ : ω → (a, b) of class C1 such that in the system (y)

U ∩ C = {y ∈ C : yN > Φ(y′)},

where C = ω × (a, b).

In this framework, at a given point m ∈ ∂U , we associate the outer unit
normal vector defined by (C.1). Its definition is proved to be independent of
the choice of coordinate system (y).

If U is bounded with C1 boundary, its boundary ∂U can be covered by a
finite number of cylinders Ck = ωk×(ak, bk) (k = 1, . . . ,K) such as in Definition
C.11, corresponding to choices of coordinates (y)k and applications Φk. By the
compactness of ∂U and partition of unity, one can find K functions (χk)k=1,...,K

of class C∞ such that
∑N
k=1 χk = 1 in a neighbourhood of ∂U and each χk has

compact support in Ck.
Now, let f : ∂U → C be a continuous function. Then, for any k = 1, . . . ,K,

the integral
∫
∂U f(x)χk(x) dσ(x) being defined as in (C.2), the sum

N∑
k=1

∫
∂U
f(x)χk(x) dσ(x)
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is independent of the choice of Ck, the coordinates (y)k, the functions Φk and χk,
for any k = 1, . . . ,K. This sum is denoted by

∫
∂U f(x) dσ(x). The Stokes

formula in Theorem C.10 then extends to this case. In particular, we deduce
the following calculus formulas.

Theorem C.12. Let U be a bounded open set of RN with C1 boundary.

1. Integration by parts. For any f, g ∈ C1(U), j = 1, . . . , N ,∫
U
g(x)

∂f

∂xj
(x) dx =

∫
∂U
f(x)g(x)νj dσ(x)−

∫
U
f(x)

∂g

∂xj
(x) dx,

where νj = cos(ν, ej), for j = 1, . . . , N , are the components of the outer
unit normal vector.

2. Green formula. For any f, g ∈ C2(U),∫
U
(f∆g − g∆f) dx =

∫
∂U

(
f
∂g

∂ν
− g

∂f

∂ν

)
dσ,

where ∂g
∂ν = ∇g · ν.

Remark C.13. Now that we have defined an integral on sufficiently regular
surfaces, we allow ourselves to define the set of summable or square summable
functions on ∂U denoted by L1(∂U) and L2(∂U). A rigorous definition would
require the notion of measurable functions on ∂U .

C.4 Trace theorem

The properties of H1 functions may depend strongly on the dimension of the
space. For instance, in dimension one, H1 functions are continuous (see Exer-
cise C.3). It is not true in dimension N ≥ 2, for example, the function

v(x) = |log |x||
1
4

belongs to H1(B1), where B1 is the unit ball of R2. In concrete situations, one
may wish to impose some condition on functions on the boundary of an open
domain U of RN . In dimension one, the continuity gives sense to the value of an
H1 function at a given point. In higher dimension, it is necessary to introduce
the notion of trace.

Theorem C.14. Let N ≥ 2. Let U be an open set of RN with C1 boundary.
Then

1. The space C∞(U) is dense in H1(U):

2. The map

γU : C∞(U) → C1(∂U)
v 7→ v|∂U

satisfies
∥γUv∥L2(∂U) ≤ C∥v∥H1(U).

for some constant C > 0.
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3. The map γU extends by continuity as a continuous linear map from H1(U)
to L2(∂U).

This result means that whereas an H1 function in dimension higher than or
equal to 2 is not necessarily continuous, its value on the boundary U makes sense
as an L2 function on the boundary. In particular, this allows to characterize
functions in H1

0 (U).

Theorem C.15. Let N ≥ 2 Let U be an open set of RN with C1 boundary.
Then,

H1
0 (U) = {v ∈ H1(U) : γU (v) = 0}.

Theorem C.16 (The Green formula). Let N ≥ 2. Let U be a bounded open
subset of RN with C1 boundary. For any g, h ∈ H1(U), it holds, for any j =
1, . . . , N , ∫

U

∂g

∂xj
hdx = −

∫
U
g
∂h

∂xj
dx+

∫
∂U
ghνj dσ.

C.5 Higher order Sobolev spaces

Definition C.17. For any integer s ≥ 1, we denote

Hs(U) =
{
g ∈ L2 :

∂g

∂xj
, j = 1, . . . , N

}
.

We equip the space Hs(U) with the real scalar product

(g, h)Hs =

∫
U

 N∑
|α|≤m

∂αg ∂αhdx

 ,

and we denote by ∥g∥Hs the associated norm.

Theorem C.18. For any integer s ≥ 1, (Hs(U), (·, ·)Hs) is a separable Hilbert
space.

Theorem C.19. Let N ≥ 2. Let U be an open set of RN with C1 boundary.
Then

1. The space C∞(U) is dense in H2(U):

2. The map

γ′U : C∞(U) → C1(∂U)

v 7→ ∂v

∂ν
|∂U

satisfies
∥γ′Uv∥L2(∂U) ≤ C∥v∥H2(U).

for some constant C > 0.

3. The map γ′U extends by continuity as a continuous linear map from H2(U)
to L2(∂U).
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Theorem C.20. Let N ≥ 2. Let U be an open set of RN with C1 boundary.
For any g ∈ H2(U) and h ∈ H1(U), it holds, for any j = 1, . . . , N ,

−
∫
U
(∆g)hdx =

∫
U
(∇g · ∇h) dx+

∫
∂U

∂g

∂ν
hdσ.

In particular, if h ∈ H1
0 (U), it holds

−
∫
U
(∆g)hdx =

∫
U
(∇g · ∇h) dx.

Theorem C.21. Let N ≥ 2. Let U be an open set of RN with C1 boundary. If
s > N

2 , then H
s(U) ⊂ C0(U).

C.6 Sobolev spaces via the Fourier transform

Let U = RN . For f ∈ L2(Rn) and s ∈ [0,+∞[, we can equivalently define

∥f∥Hs =

(∫
RN

⟨ξ⟩2s|f̂(ξ)|2dξ
)1/2

where ⟨ξ⟩ =
(
1 +

∑N
j=1 ξ

2
j

)1/2
and

Hs(RN ) = {f ∈ L2(RN ) : ∥f∥Hs <∞}.

C.7 Exercises

Exercise C.1. We denote by S(Rn) the spaces of functions ϕ of class C∞ on
Rn satisfying

∀α, β ∈ Nn, sup
x∈Rn

|xα∂βϕ(x)| <∞,

where the following notation is used xα = xα1
1 . . . xαn

n and ∂βϕ = ∂β1
x1
. . . ∂βn

xn
ϕ.

For f ∈ L2(Rn) and s ∈ [0,+∞[, we define

∥f∥Hs =

(∫
Rn

⟨ξ⟩2s|f̂(ξ)|2dξ
)1/2

where ⟨ξ⟩ =
(
1 +

∑n
j=1 ξ

2
j

)1/2
and Hs(Rn) = {f ∈ L2(Rn) | ∥f∥Hs <∞}.

1. Prove that Hs(Rn) is a hilbert space equipped with the scalar product
associated to the norm ∥ · ∥Hs .

2. Prove that for f ∈ S(Rn), the Fourier transform of f is well-defined and
also belongs to S(Rn).

3. Prove that if f ∈ S(Rn) then f ∈ Hs(Rn) for all s ≥ 0.

4. We consider the trace map τ defined (for now) from S(Rn) to S(Rn−1)
by

τu(x′) = u(0, x′), x′ = (x2, . . . , xn).

Prove that for any u ∈ S(Rn) and all ξ′ ∈ Rn−1,

τ̂u(ξ′) =
1

2π

∫
R

û(ξ1, ξ
′)dξ1.
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5. Prove that for any s > 1/2, there exists C = C(s) > 0 such that for any
u ∈ S(Rn),

∥τu∥Hs−1/2(Rn−1) ≤ C∥u∥Hs(Rd).

Hint: use the estimate :

|τ̂u(ξ′)|2 ≤ 1

4π2

(∫
R

|û(ξ)|2⟨ξ⟩2sdξ1
)(∫

R

⟨ξ⟩−2sdξ1

)
and express

∫
R
⟨ξ⟩−2sdξ1 in terms of ⟨ξ′⟩ (we denote ξ = (ξ1, ξ

′)).

6. Let s > 1/2. Using that S(Rn) is dense in Hs(Rn) for the norm ∥ · ∥Hs ,
prove that τ can be extended uniquely to a continuous linear map from
Hs(Rn) to Hs−1/2(Rn−1).

7. Let s > 1/2 and g ∈ Hs−1/2(Rn−1). Define v by

v̂(ξ) = ĝ(ξ′)
⟨ξ′⟩2(s−1/2)

⟨ξ⟩2s
.

Prove that v ∈ Hs(Rn) and v(0, x′) = Cg(x′) for a constant C ̸= 0.
Deduce that the extension of the trace map defined above is surjective.

Exercise C.2. Let I ⊂ R be an open interval. Define

H1(I) =
{
g ∈ L2(I) : g′ ∈ L2(I)

}
,

where g′ denotes the derivative of g in the sense of distributions. Alternatively,

H1(I) =

{
g ∈ L2(I) : ∃v ∈ L2(I) with

∫
I

gϕ′ = −
∫
I

vϕ, ∀ϕ ∈ C1
c (I)

}
.

1. Prove that H1(I) equipped with

(g | h)H1 = (g | h)L2 + (g′ | h′)L2

is a (separable) Hilbert space.

2. Let g ∈ L2(I). Prove that g ∈ H1(I) if and only if there exists C > 0 such
that ∣∣∣∣∫

I

gϕ′
∣∣∣∣ ≤ C∥ϕ∥L2 , ∀ϕ ∈ C∞

c (I).

Exercise C.3. 1. Let f ∈ L1
loc(I) be such that∫ b

a

fϕ′ dx = 0, ∀ϕ ∈ C∞
c (I).

Prove that there exists C ∈ R such that f = C almost everywhere on I.

Hint: Let χ ∈ C∞
c (I) be such that

∫ b
a
χ(x) dx = 1. For ϕ ∈ C∞

c (I), we

define ϕ̃ and Φ by

ϕ̃(x) = ϕ(x)− χ(x)

∫ b

a

ϕ(t)dt, Φ(x) =

∫ x

a

ϕ̃(t)dt.

Prove that Φ ∈ C∞
c (I).
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2. Let g ∈ H1(I) and g′ ∈ L2(I) be its weak derivative. Let x0 ∈ I. Set

G(x) =

∫ x

x0

g′(t)dt.

Prove that G′ = g′.

3. If I is bounded, deduce that H1(I) ⊂ C(Ī) with compact embedding i.e.
any bounded subset of H1(I) is relatively compact in C(Ī).

4. Assume that b = +∞. Prove that lim
x→∞

g(x) = 0.

(Similarly, if a = −∞, then lim
x→−∞

g(x) = 0.)

Exercise C.4. Let g ∈ L2(R). Prove that g ∈ H1(R) if and only if there exists
a constant C > 0 such that for all δ ∈ R, it holds

∥τδg − g∥L2 ≤ C|δ|,

where
τδg(x) = g(x− δ) for all x, δ ∈ R.

Moreover, in this case, one can choose C = ∥g′∥L2 .
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Appendix D

Ordinary differential
equations

D.1 Inequality

Here, R is equipped with the norm associated to the absolute value | · | and RN

is equipped with any norm also denoted by | · |.
Let g : [a, b] → RN be a function of class C1. Let g′(t) = (g′1(t), . . . , g

′
N (t)).

Then,

|g(b)− g(a)| ≤
∫ b

a

|g′(s)|ds ≤ (b− a) sup
[a,b]

|g′|.

In the more general case where V is an open set of RM and G : V → RN is a
function of class C1, we denote by JG the Jacobian matrix of G and we define

∥JG(X)∥ = sup
|h|=1

|JG(X) · h|.

Then, for any X,Y ∈ V such that the segment joining X to Y is included in V ,
we have

|G(Y )−G(X)| ≤ sup
0≤θ≤1

∥JG(X + θ(Y −X))∥ · |Y −X|.

D.2 The Cauchy-Lipschitz Theorem

Let δ be a positive real number and (t0, x0) ∈ R×RN . We set

A =
{
(t, x) ∈ R×RN : |t− t0| ≤ δ, |x− x0| ≤ δ

}
.

We suppose that f : A→ RN is continuous and satisfies

• There exists M > 0 such that, for all (t, x) ∈ A,

|f(t, x)| ≤M ;

• There exists C > 0 such that, for all (t, x) ∈ A, (t, y) ∈ A,

|f(t, x)− f(t, y)| ≤ C|x− y|.
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We say that f is continuous on (t, x) and Lipschitz continuous with respect to
its second variable on A.

Theorem D.1. Under the above assumptions, there exists one and only one
solution (J, x) of the equation ẋ = f(t, x) such that

• Time of existence: J = [t0 − T, t0 + T ] with

T = min
(
δ,

δ

2M
,
1

2C

)
;

• Initial condition: x(t0) = x0;

• For all t ∈ J , (t, x(t)) ∈ A.

Corollary D.2. Suppose that the function f : I × U → RN is of class C1. Let
(t0, x0) ∈ I × U . Then, the following hold.

• Local existence: there exists T > 0 and a solution (J, x) of ẋ = f(t, x)
such that J = [t0 − T, t0 + T ] and x(t0) = x0.

• Uniqueness: let J̃ ⊂ J be an interval containing t0, let (J̃ , x̃) a solution of
ẋ = f(t, x) with initial data (t0, x0), then x̃ coincides with the restriction
of x to J̃ .

A solution (J, x) is said to maximal if it does not admit any extension.

Theorem D.3. Suppose that the function f : I × U → RN is of class C1. Let
(t0, x0) ∈ I × U . There exists an interval J ⊂ I containing t0 and open in I,
and a solution x of ẋ = f(t, x) on J with initial data (t0, x0) that is maximal,
in the sense that it cannot be extended by a solution on a larger time interval.

D.3 Gronwall lemma

Lemma D.4 (Gronwall Lemma). Let T > 0 and C1, C2 ≥ 0. We consider two
continuous functions a : [0, T ] → [0,∞) and φ : [0, T ] → [0,∞) such that for all
t ∈ [0, T ],

φ(t) ≤ C1 + C2

∫ t

0

a(s)φ(s) ds.

Then, for all t ∈ [0, T ],

φ(t) ≤ C1 exp

(
C2

∫ t

0

a(s) ds

)
.

Lemma D.5. Let p, q : I → R be two continuous functions. Suppose that p has
positive values. Let t0 ∈ I. Consider a function x : I → RN of class C1 such
that, for all t ≥ t0, t ∈ I,

|ẋ(t)| ≤ p(t)|x(t)|+ q(t).

Let ψ be a solution on I ∩ [t0,+∞[ of the equation

ψ̇ = p(t)ψ + q(t)

such that ψ(t0) ≥ |x(t0)|. Then, for all t ≥ t0, t ∈ I,

|x(t)| ≤ ψ(t).

109



D.4 Exercises

Exercise D.1. Prove Theorem D.1.

Exercise D.2. Prove Lemma D.4.

110



Bibliography
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