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ABSTRACT

Given a quiver ) (possibly infinite) and a set of relations p on @), we say that the
algebra A = kQ/(p) is locally semi-perfect if it is locally finite-dimensional and e,Ae,
is local for all a € ()g. In the first part of this dissertation, we prove the existence of
almost split sequences in ModA, the category of unital modules over A, ending in non-
projective finitely presented indecomposables, for locally semi-perfect algebras which we
call ‘bounded on the left’. Using a duality functor, we then prove the existence of almost
split sequences in modA, the category of locally finite-dimensional unital modules over
A, starting at non-injective finitely copresented indecomposables, for locally semi-perfect

algebras which we call ‘bounded on the right’.

In the second part, we give a combinatorial characterization of the finitely presented and
finitely co-presented string modules over locally finite-dimensional string algebras. We

also give an explicit description of their syzygys and cosyzygys respectively.
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SOMMAIRE

Etant donné un carquois @ ( peut-étre infini ) et un ensemble de relations p sur @, nous
disons que l'algébre A = kQ/(p) est localement semi-parfaite si elle est localement de
dimension finie et si I’algébre e, Ae, est locale pour tout a € ()y. Dans la premiére partie de
ce mémoire, nous prouvons l’existence de suites presque scindées dans ModA, la catégorie
des modules unitaires sur A, se terminant par des indécomposables non-projectifs de
présentation finie, pour les algébres localement semi-parfaites qui s’appellent ‘bornées a
gauche’. En utilisant un foncteur de dualité, nous prouvons ensuite I'existence de suites
presque scindées dans modA, la catégorie des modules unitaires localement de dimension
finie sur A, commencgant par des indécomposables non injectifs de coprésentation finie,

pour des algébres localement semi-parfaites qui s’appellent ‘bornées a droite’.

Dans la deuxiéme partie, nous donnons une caractérisation combinatoire des modules
de cordes de présentation et coprésentaton finie sur les algébres de cordes localement
de dimension finie. Nous donnons aussi une description explicite de leurs syzygies et

cosyzygies respectivement.
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INTRODUCTION

An important tool in the study of the representation theory of finite dimensional algebras
has been the theory of representations of finite quivers along with the Auslander-Reiten
theory of irreducible morphisms and almost split sequences. However, from the per-
spective of covering theory, it has become important to study locally finite-dimensional
algebras defined by locally finite quivers with relations. One of the natural questions
is the existence of almost split sequences in the module category over such an algebra.
For this purpose, we shall need some further finiteness conditions. Indeed, we shall con-
sider locally semi-perfect algebras, that is locally finite-dimensional algebras such that
the idempotents associated with the vertices of the quiver are primitive. We shall prove
the existence of almost split sequences for finitely presented modules (resp. finitely co-
presented modules) over locally semi-perfect algebras which are left (resp. right) locally
bounded. For this purpose, we introduce a Nakayama functor by using a slightly mod-
ified standard duality, which allows us to define the Auslander-Reiten translate, prove
the Auslander-Reiten formula, and derive the existence of almost split sequences for
such modules. As a consequence, one obtains immediately the existence of almost split
sequences in the category of finite-dimensional modules over the covering of a finite-

dimensional algebra.

In the second part of the thesis, we study the representation theory of string algebras,



where we drop the classical finiteness conditions imposed by Butler and Ringel [11]. In
particular, we give a combinatorial characterization of the strings for which the string
modules are finitely presented or finitely copresented, along with calculating their syzygies
and cosyzygies. String algebras with the finiteness conditions imposed by Butler and
Ringel are a class of tame algebras whose representation theory is highly combinatorial
in nature, and hence easier to study. By definition, such a string algebra is the path
algebra of a quiver with relations that satisfies certain conditions designed to restrict the
structure of the indecomposable projective and injective modules. This definition is a
specialization of the definition of a special biserial algebra, for which the restrictions on

the quiver imply that all indecomposable projective modules are biserial.

In [11], Butler and Ringel classified the indecomposable finite-dimensional modules over
such algebras in terms of string and band modules, where they credited their method
to Gel'fand and Ponomarev [14]. They also classified all the irreducible maps between
these modules and, hence, the Auslander-Reiten sequences. As mentioned before, they
imposed a finiteness condition on these algebras which implied that they were finite-
dimensional if the quiver had finitely many vertices. These are what we will call locally
bounded string algebras in this dissertation. These conditions were dropped by William
Crawley-Boevey in [12], where he classified the finitely controlled modules (A module M
is finitely controlled if, for every vertex v, the set e, M is contained in a finitely generated
submodule of M) over such algebras in terms of string and band modules. The next
task would be to classify the irreducible morphisms and almost split sequences for such

modules.

The dissertation is organized as follows. In Chapter 1, we introduce the relevant back-
ground and terminology related to quivers and algebras associated with them. In partic-
ular, we define the notions of locally semi-perfect algebras and prove some preliminary

results about them. Chapter 2 is used to introduce the basics of Auslander-Reiten theory,



irreducible morphisms, almost split sequences, etc., for finite-dimensional algebras. In
Chapter 3, we upgrade these basics to the case of locally semi-perfect algebras to show
the existence of almost split sequences for them. Chapter 4 is devoted to the definitions
of modules associated with these strings and bands, along with a description of certain
projective and injective string modules. In Chapter 5, we classify the strings for which
the associated modules are finitely presented, which turn out to be the same as strings
for which these modules are finitely generated. In particular, we give an explicit descrip-
tion of the syzygies of such modules. Chapter 6 deals with the dual of these results—we
classify the strings for which the associated modules are finitely copresented, which turn

out to be the same as the strings for which these modules are finitely cogenerated.



CHAPTER 1

Quivers and algebras

In this chapter, we will introduce the notion of quivers and the path algebras associated to
them along with some examples. We will further define certain special kinds of algebras

called ‘locally semi-perfect’ algebras, which will be our main object of study.

Throughout this chapter, k£ will denote an algebraically closed field. All ideals of algebras

will be two-sided unless stated otherwise.

1.1 Quivers and path algebras

In this section, we define the notion of a quiver, its path algebra, and its representations.

Definition 1.1.1. A quiver @ is a quadruple (Qo,Q1,s,t), where Qo, Q1 are sets and

s,t: Q1 = Qo are functions.

The elements of )y and Q1 are called the vertices and the arrows of the quiver respec-
tively. For each a € @1, s(a) is said to be the source of a while ¢(«) is said to be its

target. We denote this as a : s(a) - t(a) or s(a) = t(a). A vertex a € Qy is said to be
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a source vertex if it is not the target of any arrow. Dually, a vertex a € ()q is said to be
a sink vertex if it is not the source of any arrow. We call the quiver @) finite if both Qg
and @ are finite and we call it locally finite if for each pair of vertices (a,b) € Qy x Qo,
the set of arrows starting at a and ending at b is finite. For a quiver Q = (Qo, @1, s,1),
we define its opposite quiver, Q°, as the quiver (Qg, Q1,t,s), i.e., the quiver obtained by

reversing the direction of the arrows.

Throughout this work, we will use the letter ) to denote a locally finite quiver.

Definition 1.1.2. Let n > 0. A path of length n in Q is a sequence p = ay---qu,, where
a; € Q1 for all i such that 1 <i<n, satisfying s(auy1) =t(a;) for all i such that 1 <i<n.

In addition to this, to each x € QQgy, we associate a trivial path e, of length 0.

We will denote the length of a path p by I(p).

Example 1.1.1. The following graph is a quiver with Qo = {1,2,3,4,5} and

Q1 ={a,8,7v,0,v1,va, u}. There is no source while vertex 5 is a sink. Some examples of

paths are o?f3, Byvij, €.

We can extend the definitions of the functions s,¢ to all paths as follows: for x € @,
set t(e;) = s(e;) =z, and for p = a1y, a path of length n > 0, set t(p) := t(a,,) and
s(p) = s(ay). We call a path of length > 1 an oriented cycle if its source and target

coincide. We say that a quiver @) is acyclic if it does not contain any oriented cycles.

Definition 1.1.3. A k-algebra A is a k-vector space together with a binary operation -

such that for all a,b,ce A and X € k,



1) a-(b+c)=a-b+a-c.
2) (a+b)-c=a-c+b-c.
3) AMa-b)=(Xa)-b=a-(A\D).

4) (a-b)-c=a-(b-c).

We define the dimension of a k-algebra A to be its dimension as a k-vector space.

The above definition implies that for a k-algebra A, the multiplication is determined by

its values on a k-basis elements of A.

We are now ready to define the path algebra associated to a quiver. Let k@ be the
k-vector space having the set of paths in ) as a basis. In order to turn k@) into a k
algebra, it is enough to define the multiplication of the basis elements. Let p = aq---ay,
p' = P1-+-Bp be two non-trivial paths in (). Then we define

b :{ - BB, if t(p) = s(p');

0, otherwise.

Similarly, for z,x’ € o, we define

e ift(p) =
P _{ 0, otherwise.

e ifs(p) =
Eo' P _{ 0, otherwise.

e e, 2] Eo if ' = x;
v 0, otherwise.

Definition 1.1.4. Let () be a quiver. The path algebra of @), denoted by kQ), is defined
to be the algebra generated as a k-vector space by the paths in QQ of length >0 under the

above multiplication.



The above definition shows that k@ is infinite-dimensional if )y is infinite or if ) con-
tains cycles. Conversely, if @) is acyclic with finite @, then kQ is finite-dimensional |5,
Lemma 1.4]. We also have the following lemma characterizing the quivers for which kQ

is unital.

Lemma 1.1.1. The algebra kQ has an identity if and only if Qo is finite.

Proof. Suppose Q) is finite. Let A = ¥ .o, €4 Then for any path p, p- A = p-gy,) = p and
A p =&y p=p. Therefore, kQ has an identity element given by ¥ ..o, 4. Conversely,
suppose Qg is infinite and 1 = Y., \;w; is the identity element, where \; € k are non-zero
scalars and w; are paths in ). Since )y is infinite, there exists a € Qg such that a # s(w;)
for all 1 <4 <m. Then g,-1 = 0, a contradiction. Therefore, k() does not have an

identity. O]

Example 1.1.2. Let QQ be the following quiver.

Then kQ is generated by {e1,e2,€3, 1, an, 3,18, a0} and is 8-dimensional.

For the sake of completeness, we also introduce the notion of a path of infinite length,
which is a sequence either of the form aqas---, --:a_sa_q, or ---a_sa_jaq - of arrows of ()
such that s(a,1) = t(a;) for all . The first kind of paths do not have a target, the second

ones do not have a source, and the last ones neither have a source nor a target.

Definition 1.1.5. Let p be a path in QQ, possibly of infinite length. In case p has a source,
a path q s called an initial subpath of p if p = qp’ for some path p’. In case p has a
target, a path q is called a terminal subpath of p of p = p’q for some path p'.

7



Note that in the above definition, ¢, p’ are allowed to be trivial.
Example 1.1.3. Continuing with Example 1.1.1, ¢1 is an initial subpath of o8 while

af is a terminal subpath of it.

For a quiver @, given a vertex a € )y and an integer n > 0, we shall denote by Q,(a,-)
the set of paths of length n starting at a, and by Q,(—,a) the set of paths of length n

ending at a in Q.

1.2 Bound quivers and elementary algebras

In this section, we expand the class of algebras that can be obtained from quivers by
defining a certain class of ideals of path algebras called ‘admissible ideals’. We will see

how this construction essentially characterizes all finite-dimensional algebras over k.

Let Rg be the ideal of k@) generated by the arrows of Q).

Definition 1.2.1. [13, § 8.3/ Let Q = (Qo, Q1) be a quiver. An ideal I of kQ is called

admissible if

1. Ic Ry,

2. For each a € QQy, there exists I, € N such that I contains all paths of length > I,

starting or ending at a.

In this case, the pair (Q,I) is called a bound quiver, and the algebra A = kQ/I is called

a bound quiver algebra.

The reasons for choosing the above definition of admissible ideals are the following. The

second condition makes sure that we do not have arbitrarily long paths in the quotient,

8



i.e., that A is finite-dimensional for finite quivers. And the condition I ¢ Ré makes sure

that we do not have any redundant arrows in our quiver. Let us look at some examples.
Examples 1.2.1. 1. For any m > 2, Rjy is an admissible ideal.

2. Let QQ be a finite quiver. Then the zero ideal is admissible in kQ if and only if Q
is acyclic. Indeed, the zero ideal is admissible if and only if there exists m > 2 such
that R%y =0, that is, any product of m arrows in kQ is zero. This is the case if and

only if Q is acyclic.
3. Let Q be the following quiver.

2

1%Ax>4
N,

The ideal I = (a8 —~d) of the k-algebra kQ is admissible, but Iy = (a3 — \) is not
as af =\ ¢ R,

It is convenient to define an admissible ideal in terms of its generators. These are called

relations.

Definition 1.2.2. A relation p on a quiver Q) with coefficients in k is a non-zero k-
linear combination of paths in Q) of length at least two having the same source and target.
Thus p = Y% Nw; such that A; € k*, l(w;) > 2, s(w;) = s(w;), and t(w;) = t(w;) for all

1<e,5<m.

If m =1, the relation is called a zero relation or a monomial relation. If it is of the form

wy — wy (where wy, wq are two paths), it is called a commutativity relation.

9



Example 1.2.1. For Q as in Ezample 1.1.1, o — o3, vip, vy — dvy are some relations

on Q.

For an algebra A = kQ/(p), we define the opposite algebra of A, A°, as kQ°/{p°), where
Q° is the opposite quiver of @ and p° = {p° | p € p}.

Definition 1.2.3. Let A be a k-algebra. The Jacobson radical, radA, of A is defined to

be the two-sided ideal which is the intersection of all mazximal right ideals of A.

A finite-dimensional k-algebra A is called elementary if AfradA is a product of copies of
k.

The following theorem states that the previous construction characterizes all elementary

algebras.

Theorem 1.2.1. (Gabriel)[}, Theorem 1.2.13] Let A be a finite-dimensional elementary
k-algebra. Then there exists a finite quiver Q4 and an admissible ideal I € kQ 5 such that
A=z ]{JQA/I

Moreover, since k is algebraically closed, every finite-dimensional k-algebra is Morita

equivalent to an elementary algebra |2, Theorem 3.2|.

1.3 Representations of a quiver with relations

Let (@,I) be a bound quiver such that I is generated by a set of relations p on Q.
We will also denote this pair as (@, p). Then we can talk about the representations of

this bound quiver. These representations will be closely related to the modules over the

algebra kQ/ (p).

10



Definition 1.3.1. A k-representation of the bound quiver (Q,p) is a collection of k-
vector spaces (V;)ieq, and a family of linear maps To, : Vi) = Vi(a), indezed by a € Qq,
such that for each element Y.;") Ao 10y, of p, iy )\Z-T%.JZA---TOHY1 =0.

Example 1.3.1. Let (Q, 1) be the bound quiver from Ezample 1.2.1.53. Then the follow-

ing diagram gives a k-representation of (Q,I).

N
k2 i > k2

e

Definition 1.3.2. Let M = ((Vi)iegy, (T0)aeq,) and N = (W:)ieqy, (Sa)aco,) be two k-

representations of a bound quiver (Q,p). A morphism of representations u: M — N is
a family of linear maps (u; : V; > W,)ieq, such that for all a € Qy, the following diagram

commutes:

Ta
Vs(a) E— V;t(oz)

US(Q)l lut(oz)

Sa
Wiy — Wy

Given k-representations L, M, N of (Q,p), and maps v : L - M and v : M - N, we
define the composition (v-u); := v; - u; for all i € QQy. Moreover, for any k-representation
M = ((V3)icgos (Ta)aco, ), we have an identity morphism id : M — M given by (id); = idyy,
for all i € QQp. Thus, we get a category Rep,(Q, p) whose objects are the representations

of (@, p) and the morphisms are the morphisms of representations. Let A = kQ/ (p).

Definition 1.3.3. We say that a right A-module M is unitary iof M = ¥ .o ME, as

k-vector spaces.

11



We will denote the category of unitary right A-modules by Mod A. We will also identify
ModA° with the category of unitary left A-modules.

Theorem 1.3.1. /3, Theorem I1.2.10] We have an equivalence of categories
Mod A = Rep, (Q, p)

giwen by M = ((M&;)icq,, (Ma)acq,), where mg @ M&yoy = Mé&y,) denotes the map

T~ xaQ, i.e., the multiplication by &.

Remark 1.3.1. Although we assumed (Q,I) to be a bound quiver at the beginning of the

section, the results mentioned here also work for all ideals I of kQ) generated by relations.

Definition 1.3.4. Let M € ModA. We say that M is locally finite-dimensional if
dimy(ME&,) < oo for all x € Q.

We will denote the full subcategory of locally finite-dimensional modules of Mod A by
modA.

1.4 Locally finite-dimensional algebras

In this section, we introduce another class of algebras obtained from quivers and relations
called ‘locally’ finite-dimensional algebras. These will be our main object of study in this

thesis.

Let p be a set of relations on a quiver ) and A = kQ/(p). Set e, := &, for all z € Qy, i.e.,

the equivalence class of €, in A.

Definition 1.4.1. The algebra A = kQ/(p) is said to be locally finite-dimensional if
dim(e,Ae,) < oo for all x,y € Q.

12



We also define the following one-sided analogues of the above notion.

Definition 1.4.2. 1. An algebra A = kQ/[{(p) is said to be left locally bounded if Ae,

1s finite dimensional for all a in Q.

2. An algebra A = kQ/ (p) is said to be right locally bounded if e, A is finite dimen-

sional for all a in Qq.

Note that a left or right locally bounded algebra is always locally finite-dimensional.

We also have the following slightly stronger definition, which ensures that the projective

at each vertex is indecomposable.

Definition 1.4.3. The algebra A = kQ/{p) is called locally semi-perfect if it is locally

finite-dimensional, and for all x € QQy, eNe, is local.

The above definitions were first introduced by Bongartz and Gabriel in [9, § 2.1], where
locally semi-perfect algebras were called locally finite-dimensional categories, while locally
bounded categories were defined to be left and right locally bounded locally semi-perfect

algebras.

Define P, := e, A for a € Q).

Lemma 1.4.1. For any A-module M and a € Qy, Hom4(P,, M) = Me,.

Proof. Define f : Hom,(P,, M) — Me, as g — g(e,). Since g is a A-module homomor-
phism, g(e,) = g(eqeq) = g(eq)eq, which implies that g(e,) € Me,. f is injective because
if there exists some g € Hom,(P,, M) such that g(e,) =0, then g(e,-A) = g(e,)A =0 for
all A € A, and hence g = 0. It is surjective because if me, € Me,, then g: P, > M defined

by €4+ A~ mey - A is a A-module homomorphism such that g(e,) = me,. O

Proposition 1.4.1. P, is a projective module for all a € Q)q.

13



Proof. We want to show that Hom(P,, -) is an exact functor. Since it is always left exact,
it is enough to show that it preserves epimorphisms. Let f: M — N be a surjective A-

module homomorphism. Then, using Lemma 1.4.1, Hom(P,, M) Hom(Fai), Hom(P,,N)

.. . flase . . .. .
is isomorphic to Me, — Ne,. Let ne, € Ne,. Since f is surjective, there exists m € M

such that f(m) =n. Thus f(me,) =ne, and f |y, is surjective. O

For the rest of this section, we will assume A to be a locally finite-dimensional algebra.
Then P, is a locally finite-dimensional unitary A-module for all a € )y. Moreover,
as stated in the following lemma, if A is locally semi-perfect, then these P, are also

indecomposable.

Lemma 1.4.2. Let A be a locally semi-perfect algebra. Then for all a € Qq, P, is

mdecomposable.

Proof. Using Lemma 1.4.1, End(P,) = Hom(FP,, P,) = P,e, = e,Ae,, and hence local.

Since P, has a local endomorphism algebra, it is indecomposable. O

Define projA to be the full subcategory of modA whose objects are finite direct sums of
P,, a € Q. Since a finite direct sum of projective modules is projective, every module in

projA is projective.

Proposition 1.4.2. Let A be a locally semi-perfect algebra. Then projA is closed under

direct summands.

Proof. Let X € projA and Y a non-trivial summand of X, ie., X 2 Y @Y’ for non-
zero Y)Y’ € modA. Set A := End(X). Let iy : Y - X and 7y : X - Y denote the
canonical injection and projection respectively. Then f = ¢ymy is a non-zero idempo-
tent in A. Since X € projA, it is isomorphic to ®,F,, for some a; € (). Therefore,

Az ep, @), End(F,,, Pu,) 2 @, ®7, e,;Ae,,, and hence it is finite dimensional. In

14



particular, it is semi-perfect. We claim that f can be written as a finite sum of primitive
orthogonal idempotents in A. Suppose this is not the case. Then, in particular, f is not
a primitive idempotent, which implies that f = f; + fo, where fi, fo are non-zero orthog-
onal idempotents in A. If both f;, fo are primitive, then the claim is true, and we get a
contradiction. Therefore, without loss of generality, suppose f; is not primitive. Then
f1 = fi1 + fi2, where fi1, fi2 are non-zero orthogonal idempotents in A. Moreover, since
Jife = funfa + fraf2 = 0, we get that fiif1fe = finfo = 0= fiafifo = fizfa. Thus, fi1, fi2
are also orthogonal to fy. Thus, repeating this process, we get that, for all m >0, f can
be written as a sum of m non-zero orthogonal idempotents which is a contradiction to
the finite-dimensionality of A. Thus, there exists a complete set fi,..., f, of primitive
orthogonal idempotents in A such that f = fi+...+ f,, withO<r <n. Let g; : X - X
denote the idempotent @}, F,, o, Py, N o P, in A. Then gy,...,g, is another com-
plete set of primitive orthogonal idempotents in A. Using [1, Theorem 27.10], we get
that m = n and there exists a permutation o such that Ag; = Af,q, for ¢ = 1,...,n.
Thus g; = (9ibi fo(iy) (foiyaigi) and fo@) = (fo@)@ig:)(9ibifo@)), With a;,b; € A. Setting
a =Y (fo)aigi), we see that a™ = 31U, (9:bi fos)) and g; = a™! fo;)a. Set

L=PF,

A5 (1)

®...0F

Ao (r)?

b= (ﬂ-o‘(l)a s JWU(T))Ta_l X - L7

q= a([’U(l)?' .- 7La(r)) L X.

Then f =gp and pg =1,. This yields an isomorphism piy : M - P, = &...® P, with

Go(1) - Qo (r)

inverse myq. [

For A a locally finite-dimensional algebra, we shall now define an exact contravariant
functor ® : ModA° — ModA as follows. Given a module M € ModA°, set DM :=
®,eq,Homy (e, M, k). Given f e Homy(e, M, k) and u € e,Ae, with x,y, 2 € Qo, we define
f-u e Homy(e, M, k) by setting (f-u)(m) = f(ey-u-m) for m € e, M. In particular, f-e, = f
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and f-u =0 in case z # x. This makes ® M into a unitary module in ModA. Given a
morphism 1 : M — N in ModA°, by restriction, we obtain k-linear maps v, : e, M — e, N
for x € )p. This gives rise to a morphism D¢ = @,.9, Homy (¢, k) : ON - DM in
ModA. Similarly, we have an exact contravariant functor ® : ModA — ModA°. Note
that both of these functors preserve locally finite-dimensional modules. Thus we get

restricted functors ® : modA° - modA and ® : modA — modA®°.

Proposition 1.4.3. The functors ® : modA° - modA and ® : modA - modA° are

mutually quasi-inverse dualities.

Proof. We will show that D2 : modA — modA is isomorphic to the identity functor on
modA. The proof for ©? : modA°® - modA° will be similar.

We first define a map ¢y : M — D2(M) for all M € modA. Let m € M. Since M is
unitary, m = Y ,.q, M. With m, € Me,. By definition, D*(M) = ®,q,Homy (e, DM, k).
We define ¢(m) as follows. Let f,:e,DM — k be the map e, - (95)ze, + gy(my), where
g, € Homy(Mey, k). Set ¢ppr(m) := (fy)yeq,- Since m, = 0 for all but finitely many x € Q,
this map is well-defined. In order to show that it is a A-module homomorphism, it is
enough to show that ¢p(m-u) = ¢p(m) - u for u € e,Ae, with y,z € Q)g. This is true
because ¢pr(m - u) = (fi)zeqy, Where f @ e,OM — k is the zero map for = # z, and
[ e, DM -k is the map e, - (94 )acq, = 9-(my - w). Moreover, if ¢pr(m) = (1;)zeq,, then
O (m)-u = (hy)zeq,, Where hy : e,©OM — k is the zero map for z # z and h, : e, DM — k

is the map e. - (ga)aeqo = ly(u “(9a)acq,) = (u- (ga)aEQo)y(my> = gz(my ‘u).

Now we show that ¢, is injective. Let 0 # m € M. Then there exists some x € )y such
that m, # 0. Let ¢ar(m) = (fy)yeqo- Then fy((my)*) =1, where (m,)* : Me, - k denotes
the linear map that takes the value 1 on m,, and 0 on other basis elements. This gives

that ¢pr(m) # 0.
Let 2 € Qo. The restriction of ¢y, to Me, gives an injective map Me, - Homy(e,DM, k).
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Since M is locally finite-dimensional, both of the above modules are finite-dimensional,
and hence, Me, ¥ Homy(e,© M, k). This gives that ¢,; is an isomorphism for all M e
modA. O]

For a € Q, let P? denote the left A-module Ae,. This module is projective by an analog
of Lemma 1.4.1 for left modules. Set I, := D (P?).

Proposition 1.4.4. I, is an injective module for all a € Q).

Proof. Suppose we have two morphisms ¢ and g with ¢ injective.

M ‘s

|

N

Since ® is an exact functor, we get that the map (i) : D(I) - D(M) is surjective.
Moreover, since © is a duality, ©(I,) = P°. Thus it is projective, and there exists

h:®(I,) — ©(N) such that the following diagram commutes.

o) 29 o)

Then the map ¢;' o ®(h) o ¢y : N — I makes the first diagram commute, where

¢ :idpoga — D? is the natural isomorphism obtained in the previous proposition. O

Define injA to be the full subcategory of modA whose objects are finite direct sums of I,
a € (Qg. Since a finite direct sum of injective modules is injective, every module in injA is

injective.
Definition 1.4.4. Let M be an object of ModA. We say that M 1is
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1. finitely generated if there exists an epimorphism f: Py — M, for some Py € projA;

2. finitely presented if there exists an eract sequence
P->-FP->-M-0

for some Py, Py € projA.

We also have the following dual notions.

Definition 1.4.5. Let M be an object of ModA. We say that M 1is

1. finitely cogenerated if there exists a monomorphism f: M — Iy, for some Iy € injA;

2. finitely copresented if there exists an exact sequence
0-M->1,—-1;

for some Iy, Iy € injA.

We will denote the full subcategory of finitely presented modules in modA by mod™A
and the full subcategory of finitely co-presented modules by mod™A. We claim that both

of these categories are Krull-Schmidt categories for locally finite-dimensional algebras.

Definition 1.4.6. Let A be an additive category. Then A is said to be Krull-Schmidt
if every non-zero object in A decomposes into a finite direct sum of objects with local

endomorphism rings.

Theorem 1.4.1. [19, Theorem 6.1] Let A be a Hom-finite additive category. Then A is
Krull Schmidt if and only if A has split idempotents.

Theorem 1.4.2. Let A = kQ/I be a locally finite-dimensional algebra. Then, mod™A is
a Krull Schmidt category.
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Proof. We first prove that mod*A is Hom-finite. Let M, N € mod*A and P, - Py - M — 0
be a projective presentation of M with P, Py € projA. Applying the left exact functor

Hom, (-, N) to the above sequence, we get the following exact sequence
0 - Hom,(M,N) - Hom, (P, N) - Hom, (P, N).

Since Py € projA, Py = @, P,, for a; € Qy. Thus Hom(Fp, N) 2 @, Hom(P,,, N) = @, Ne,,,
where the last isomorphism follows from Lemma 1.4.1. Since N is locally finite-dimensional,
Ne,, is finite-dimensional for all 7, and hence Hom,(Fy, N) is finite-dimensional. Thus

Hom (M, N) is finite-dimensional.

We now want to show that the idempotents in mod*A split. Let M € mod™A and
e: M — M an idempotent. Then M = e(M) @ (13 —e)(M). Let P, 5 P, LM > 0be
a projective presentation of M with P;, Py € projA. Set N :=e(M) and N':=(1-¢)(M)
and let 1y : M - N, oy : M - N, and 1y : N - M, 1y : N’ - M be the canonical

projections and injections respectively. Since Fj is projective, the following diagram

P
d
il/// \LLNIWNI]C

Py > M > 0

implies that there exists h: Py - Fy making the above triangle commute. We claim that
- 7h . . . . .
the sequence P, & Fy o), P ™N S 0 is exact. Clearly, mxn f is surjective being a

composition of two surjective maps. Moreover,
(rnf)(=g,h) = (=mnfg,mnfh) = (0, 7N f) = (0,0).

Now suppose p € Ker(myf). Then f(p) € N and fh(p) = tnewn f(p) = f(p). Thus
h(p) = p € Ker(f) = Im(g). Thus there exists some ¢q € P; such that g(q) = h(p) - p and
(=g,h)(q,p) = p. This shows that N e mod"A and e splits. O
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CHAPTER 2

Auslander-Reiten theory

In this chapter, we will give a brief introduction to the Auslander-Reiten theory for
finite-dimensional algebras over k, although everything stated here also holds for any
Artin algebra over k. As we saw in the previous chapters, quiver-theoretical techniques
provide a convenient way to visualise finite-dimensional algebras and certain modules over
them. However, to actually compute all the finite-dimensional indecomposable modules
and the homomorphisms between them, we need other tools. The notions of irreducible
morphisms and almost split sequences are particularly useful for that. These were first

formally introduced by Auslander [6], and Auslander and Reiten [§].

Throughout this chapter, A will denote a finite-dimensional algebra over k, unless stated

otherwise. Moreover, all A-modules will be finite-dimensional.

2.1 Radical of a category

In this section, we will define the notion of the radical of a k-linear category A, which

generalizes the notion of the radical of an algebra when A4 = modA. We recall that a
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morphism is called a retraction (resp. section) if it has a right inverse (resp. left inverse)

in A.
Definition 2.1.1. Let A be a k-linear category. An ideal I of A is given by the following
data: for each pair (X,Y') of objects of A, a k-subspace Z(X,Y) of A(X,Y) such that
1. feZ(X,Y) and g C(Y, Z) implies go f e (X, Z).
2. feZ(X,Y) and h e C((W, X) implies foh e Z(W,Y").

Definition 2.1.2. Let Z be an ideal of a k-linear category A. We define the quotient
AT of A by T as follows.
ob(AJZ) := 0b(A)

AJ/Z(A, B) := A(A,B)|Z(A, B)
for ABeAy. Let f: X =Y, g:Y — Z be two morphisms in A. We define their
composition in AT as

(g+I(§/,Z))O(f+I(X,Y)) =g0f+I(X,Z).

Examples 2.1.1. The following two examples will be important for us in the next chapter.

1. Let A be a k-algebra. Let P be the ideal of modA formed by morphisms that factor
through a module in projA. The quotient category modA = modA/P is called the

projectively stable category.

2. Let T be the ideal of modA formed by morphisms that factor through a module
in injA. The quotient category modA = modA/Z is called the injectively stable

category.

As in the case of algebras, we can also define the powers of an ideal of a category.
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Definition 2.1.3. Let Z an ideal of A. Set ' :=Z. For m > 1, we define I™ inductively
as follows. For two objects X,Y € Ay,

T"(X,Y):={gof|lgeI™NZ)Y), heZ(X,Z)}.

We also define > as
I°(X,Y) = I"(X,Y).

m>1

Definition 2.1.4. /3, Lemma 1.5.2] The radical of a k-category A is an ideal rady,
such that for each pair (X,Y) of objects of A, rad4(X,Y") is the collection of morphisms
fe A(X,Y) such that 1y — f o g is a retraction for all g: Y — X. The morphisms lying

in some rad 4(X,Y") are called radical morphisms.

The following theorem gives several equivalent characterizations of the radical.

Theorem 2.1.1. /4, Theorem I1.1.17] Let A be a k-category. A morphism f: X -Y of

A is a radical morphism if and only if one of the following equivalent conditions holds.

1. 1y = fog is a retraction for all g: Y - X;

2. 1x —go [ is a section for all g: Y — X;

3. fogerad(EndyY) forallg:Y - X;

4. go ferad(EndaX) forallg:Y —» X;

5. fe F(X) for all mazimal sub-functors F' of A(-,Y);

6. feF(Y) for all maximal sub-functors F' of A(X,-).

Now, we specify A = modA. If XY in modA, we will simply write radcqa(X,Y) as
rada(X,Y). In case X or Y is indecomposable, the description of rad,(X,Y’) becomes

simpler.
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Proposition 2.1.1. [4, Corollary I1.1.10] Let f: M — N be a morphism of A-modules.

1. If M is indecomposable, then f is radical if and only if [ is not a section.

2. If N is indecomposable, then f is radical if and only if f is not a retraction.

2.2 Irreducible morphisms

The last proposition indicates that the essential information about modA is contained in
its radical, hence we want to have a method to construct all the radical morphisms of
modA. In this section, we introduce the notion of irreducible morphisms which are an
analogue of indecomposable modules for radical morphisms, i.e., the smallest building

blocks for such morphisms.

Definition 2.2.1. A homomorphism f : X — Y in modA is said to be irreducible pro-
vided:

1. f is neither a section nor a retraction,

2. if [ = fio fo, either f1 is a retraction or fy is a section.

The next lemma gives us a relation between irreducible morphisms and the radical of

radp (X,Y)

rad? (X,Y) mea-

modA. It shows that when XY are indecomposable, the quotient space

sures the irreducible morphisms from X to Y.
Lemma 2.2.1. [5, Lemma IV.1.6] Let X,Y be indecomposable modules in modA. A

morphism f: X =Y is irreducible if and only if f e rady(X,Y) ~rad} (X,Y).

Irreducible morphisms can also help us find some indecomposable modules over A.
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Lemma 2.2.2. [/, Corollary 11.2.9]

1. The cokernel of an irreducible monomorphism is indecomposable.

2. The kernel of an irreducible epimorphism is indecomposable.

The following results make it precise how irreducible morphisms ‘generate’ all the radical
morphisms. Although the proofs use machinery from the next section, we state them

here for the sake of completion.

Proposition 2.2.1. [/, Proposition II.4.4] Let M, N be indecomposable modules and
ferady(M,N) for some n>2. Then

1. There exist s indecomposable modules X1,...,Xs and morphisms M i X, 5N
with h; € rady (M, X;) and g; a sum of compositions of n — 1 radical morphisms
between indecomposable modules such that f =37 4 g; o h;. If, in addition, f is not
in rady™ (M, N), then at least one of the h; is irreducible and f can be written as
f =u+wv, where u is a sum of compositions of n irreducible morphisms between

indecomposable modules and v € rady™ (M, N).

2. There exist s indecomposable modules X1,..., X, and morphisms M e, X, 5N
with g; € rady(X;, N) and h; a sum of compositions of n — 1 radical morphisms
between indecomposable modules such that f =i, g; o h;. If, in addition, f is not
mn radTl(M,N), then at least one of the g; is irreducible and f can be written
as f =u+ v, where u is a sum of compositions of irreducible morphisms between

indecomposable modules and v € rady™ (M, N).

Corollary 2.2.1. [4, Corollary I1.4.5] Let M, N be indecomposable modules. Then, every
radical morphism f € rady(M,N) can be written as f = u+wv, where u is a sum of compo-
sitions of irreducible morphisms, and v € rady (M, N). In particular, if rady (M, N) =0,

then f is a sum of compositions of radical morphisms.
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2.3 Almost split morphisms and minimal morphisms

As stated before, the consideration of irreducible morphisms came from the need to
identify building blocks for radical morphisms, so that other radical morphisms could be
obtained from the irreducible ones by successive compositions and linear combinations.

Therefore, the next step is to study the factorisation behaviour of radical morphisms.

Definition 2.3.1. Let L, M, N be A-modules.

1. A morphism f : L — M 1is called left almost split if it is not a section and for
every morphism w : L — U that is not a section there exists u' : M — U such that

u' o f =u.

2. A morphism g: M — N is called right almost split if it is not a retraction and for
every morphism v : V. — N that is not a retraction, there exists v’ : V. — M such

that gov' =v.

We will state some families of examples of left and right almost split morphisms below.

The proofs for these can be found in [5].

Examples 2.3.1. 1. Let P be a projective indecomposable A-module. Then the inclu-
sion j :radP — P is right almost split.

2. Dually, if T is an injective indecomposable, then the projection I — I[socl is left

almost split.

3. Suppose f : L — M 1is left almost split and f' : L — M’ s radical. Then the
morphism

I r e
[1].s-aron

1s also left almost split.
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4. Dually, if g: M — N 1is right almost split and g’ : M' - N s radical, then
¢ 9] MeM >N

15 also right almost split.

The last example suggests that the ‘good’ almost split morphisms should satisfy some
‘minimality’ condition, namely that the target of a left almost split morphism or the

source of a right almost split morphism should be as small as possible.

Definition 2.3.2. 1. A morphism f : L - M is called left minimal if for every
h e EndM such that ho f = f, h is an automorphism.

2. A morphism g : M — N s called right minimal if for every h € EndM such that

goh=g, h is an automorphism.

The following proposition shows that this is indeed the correct notion of minimality we

wanted for almost split morphisms.

Proposition 2.3.1. [4, Proposition I1.2.19]

1. Let f: L — M be a left almost split morphism. Then, f is left minimal if and only
if its target M has the least length among the targets of left almost split morphisms

with source L. In addition, this condition uniquely determines f up to isomorphism.

2. Let g: M — N be a right almost split morphism. Then, g is right minimal if and
only if its source M has the least length among the sources of right almost split
morphisms with target N. In addition, this condition uniquely determines g up to

1somorphism.

Definition 2.3.3. 1. A morphism is called minimal left almost split if it is left min-

imal and left almost split.
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2. A morphism is called minimal right almost split if it is right minimal and right

almost split.

Example 2.3.1. /5] For every indecomposable projective module P, the inclusion mor-
phism rad(P) - P is minimal right almost split. Dually, for every indecomposable injec-

tive module I, the projection I — I [soc(I) is minimal left almost split.

The following set of results gives a connection between irreducible morphisms and almost

split morphisms.

Lemma 2.3.1. Fvery irreducible morphism is both left and right minimal.

Proof. We just give a proof for left minimality. The proof for right minimality is similar.
Let f: L - M be irreducible and h € EndM be such that ho f = f. Since f is not a
section, h must be a retraction, and in particular an epimorphism. But then A is an

automorphism because M is finite-dimensional. O

Lemma 2.3.2. Every nonzero minimal left or right almost split morphism is irreducible.

Proof. We only prove the statement for minimal left almost split morphisms, the other
case being dual. Let f : L - M be a minimal left almost split morphism. Then by
definition, f is not a section. It is not a retraction either, because otherwise the inde-
composability of L would imply that it is an isomorphism, and hence a section, which is

a contradiction.

Now assume that f = fio fo with fo: L - X and f; : X - M. Suppose that f, is not
a section. Since f is left almost split, there exists fi : M — X such that f, = fJo f.
But then f = fio fo = fio fjo f and the left minimality of f yields that fi o f is an

automorphism. Hence, f; is a retraction. O]
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The next theorem is often called the structure theorem for irreducible morphisms. It says
that irreducible morphisms with a given indecomposable source (or target) are exactly
those morphisms that can be completed to a minimal almost split morphism having the

same source (or target respectively).

Theorem 2.3.1. [/, Theorem I1.2.2}]

1. Let f: L - M be minimal left almost split. Then, f': L — M' is irreducible with
M’ # 0 of and only if there exists a decomposition M = M’ & M" and a morphism

/
f"+ L - M" such that [ff,,] : L - M s minimal left almost split.

2. Let g: M — N be munimal right almost split. Then, g’ : M" - N 1is iwrreducible with

M'" # 0 if and only if there exists a decomposition M = M' & M" and a morphism
g":M" - N such that [g’ g”] : M — N s minimal right almost split.

2.4 Almost split sequences

In this section, we will present the notion of almost split sequences which are particularly
important in the representation theory of algebras. We will also show that there exist
sufficiently many minimal almost split morphisms inside the module category, in the
sense that every indecomposable module is a source or target of a minimal almost split

morphism.

Definition 2.4.1. A short exact sequence 0 — L LMS NS 0 is called an almost split

sequence (or an Auslander—Reiten sequence) if f and g are irreducible morphisms.

Remarks 2.4.1. 1. Because irreducible morphisms never split, an almost split se-

quence never splits.
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2. Because of Lemma 2.2.2, f irreducible implies N indecomposable, and g irreducible
implies L indecomposable: an almost split sequence always has indecomposable end

terms.
3. Lemma 2.3.1 tmplies that both f and g are left and right minimal.

Example 2.4.1. [3, Ezample I11.2.22] Let A be the algebra given by Q =3 = 2 %1 and
p={ab}. Then one can check that the sequence

O—>SQ—>P3—>53—>O

15 almost split as both of the morphisms are irreducible.

The following theorem gives several equivalent characterizations of almost split sequences.
Theorem 2.4.1. [3, Theorem I11.2.25] Let 0 - L LM% N 5 0 be a short ezact
sequence in modA. The following are equivalent:

1. The given sequence is almost split.

2. L 1s indecomposable, and g is right almost split.

3. N is indecomposable, and f is left almost split.

4. The homomorphism f is minimal left almost split.

5. The homomorphism g is minimal right almost split.

Corollary 2.4.1. An almost split sequence 0 - L L ME NS 0 is uniquely determined

by L (or by N ) up to isomorphism.

!

Proof. Let 0 - L Lo LN S 0 be another almost split sequence. Since f and

f" are minimal left almost split, it follows from Proposition 2.3.1 that there exists an
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isomorphism h : M — M’ such that ho f = f’. Passing to cokernels, we get an isomorphism
h' : N - N’ such that h' o g = g’ o h Thus, the sequences are isomorphic. The proof is

similar when we fix N. O

We finally arrive at the theorem of the existence of almost split sequences.

Theorem 2.4.2. [}, Theorem 11.8.12] Let N be a non-projective indecomposable A-
module, or L a non-injective indecomposable A-module. Then there exists an almost

split sequence

0>LL Mm% NSO

Moreover, this sequence is uniquely determined by N, or by L, up to isomorphism.

For a non-projective indecomposable module N, the module L obtained from the above
theorem is the Auslander-Reiten translate, denoted 7(N), of N. Dually, for a non-
injective indecomposable module L, the module N obtained from the above theorem is

denoted by 77 (NN). We will give the precise definition of 7 in the next chapter.

As an easy consequence of the last theorem, we get that the module category contains

enough minimal almost split morphisms.

Corollary 2.4.2. 1. If N is an indecomposable A-module, then there exists a minimal

right almost split morphism g: M — N.

2. If L is an indecomposable A-module, then there exists a minimal left almost split

morphism f: L — M.

Proof. We only prove (2); the proof of (1) is dual. If L is injective, then the projection
7 : L - Lfsoc(L) is minimal left almost split. Otherwise, there exists an almost split

sequence 0 - L ERY VN 0 in which the morphism f is minimal left almost split. [J
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CHAPTER 3

Auslander-Reiten theory for locally

semi-perfect algebras

In this chapter, our goal will be to prove the Auslander-Reiten formula for locally semi-
perfect algebras defined by quivers with relations, which, in turn, would imply the exis-
tence of almost split exact sequences in the module category of such algebras. We will
define appropriate generalizations of the Nakayama functor and the Auslander-Reiten

translate from the finite-dimensional case.

Throughout this chapter, A = kQ/(p) will denote a locally finite-dimensional algebra,

unless stated otherwise.

3.1 The transpose functor

Let M € ModA. Then M is a right A-module. We want to define a left A-module
structure on ®,cq,Hom (M, e, A). We will denote this module by M?. Let x € (). Since
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A =@, ., e, it is enough to define the action of e,Ae, on Hom,(M,e,A) and then
extend bilinearly. Let f € Hom, (M, e,A) and a € e,Ae,. We define a- f € Hom (M, e, A)
such that (a- f)(m) :=af(m) for all m € M. Note that if z # z, then a- f = 0.

We need to check that this does make M? into a left A-module, i.e., we need to check
that if a € e,Ae, and beeyAe,, then (ab)- f=a-(b- f). Let me M. Then

((ab) - f)(m) = (ab) f(m) = a(b(f(m))) = (a- (b- f))(m),

where we have used the associativity of A for the second equality. This shows that M?
is indeed a left A-module. It is also a unitary module because e, - M* = Hom (M, e, \).
Moreover, given a morphism ¢ : M — N in ModA, we define ¢! = @,.9,Hom (¢, e, A).
This yields a contravariant functor (-)* : ModA - ModA°. Similarly, we have a con-

travariant functor (=)’ : ModA° - ModA.

Lemma 3.1.1. (-)! is a left-exact functor.

Proof. Suppose we have the following short exact sequence in ModA:
0>LLMS N0
Applying (-)? to this, we get the chain complex
0 - @0, Hom (N, e, \) ER e, Hom 4 (M, e, A) LR e, Hom (L, e, ),

where ¢’ = ®,e0,Hom,(g,e,A) and f' = @,c9,Homs(f,e,A). We first show that ¢’ is
injective. Let (n4)zeq, € ®zeg,Homa(N, e, A) such that ¢'((n)zeq,) = (e © §)zeq, = 0.
This implies that n, o g =0 for all z € ()y. Since ¢ is an epimorphism, this implies that

n, =0 for all z € Q.

Now let (my)zeq, € DreqoHoma(M, e, A) be such that f'((my)zeq,) = (Ma © f)zeq, = 0.

Let J ={z € Qy | m; # 0}. By definition, J is a finite set. Since m, o f =0, m, factors
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through the cokernel of f, i.e., there exists some n, : N - e, A such that n, o g = m,.

Note that for x ¢ J, we can choose n, = 0. Then (n;)eq, € ®zeg,Homs(N,e,A) and

g/((nI)IEQO) = (mw)IEQo‘ u

Proposition 3.1.1. Let A = kQ/I be a locally finite-dimensional algebra. Then the
functor (=)t induces a duality (=)' : projA — projA°.

Proof. Let a € Qy. We claim that (e,A)! = Ae, and (Ae,)! = e,A. We will only prove the

first isomorphism. The proof of the second will be dual.

We first define a map ¢, : (e,A)t - Ae,. Let (f2)ze, € (€a)! = @peg,Hom (e, A, e, A).
Since f, is a A-module homomorphism, f,(e,) = fz(€q-€a) = fz(€a)-€q, which implies that
fz(eq) € exhe, for all 2 € Qp. We set ¢((fz)zeqo) = Lreqy Jo(€a). Since f, =0 for all but
finitely many x € @y, this map is well-defined. Clearly, ¢ is k-linear. In order to show that
it is a A-module homomorphism, it is enough to show that w-¢((fz)zeqo) = P(u- (f2)zeqo)

for u € e,Ae, with y, z € ()y. This is true because

S(u- (fo)eeqo) = D (u-(fu))(ea) = 3 u- fulea) = u- o((fo)weqs)-
xeQo z€Qo
Since {e, | v € Qp} is a complete set of idempotents in A, Ae, = @, A€, as vector
spaces. Hence, if ¢((f2)ecqy) = Lucq, f2(€a) = 0, then f, =0 for all x € Q. This shows
that ¢ is injective. Moreover, for u € Ae,, u can be uniquely written as u =}, U, with
uy € ez Ae,. Defining f, 1 e, A —> e, A as eq-pu > uy-pu for pe A, we get that ¢((f)zeq,) = -

Hence ¢ is surjective.

Dually we get an isomorphism ), : (Ae,)! — e,A. Thus, for all a € Qg, we get iso-
morphisms (¢,) (¥,)! : e,A = (e A)H and (1) (¢a)™' : Ae, — (Aey)®. Moreover,
these isomorphisms are natural in the sense that for all morphisms p : e,A - ¢, A and

q:Ne, > Aey, with a,b € (g, the following diagrams commute:
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g —2— ey A Ae, —— Aey
(%)t(wa)’ll l(fbb)t(wb)’l (wa)t(qﬁa)’ll l(wb)t(%)’l
(eaA)“ 7) (ebA)“ (Aea)“ 7) (Aeb)tt

Since (-)! is an additive functor and projA and projA° are additively generated by e, A
and Ae, respectively, we get that (=)!: projA — projA° is a duality. ]

3.2 Nakayama functor

We now consider the composite endo-functors v = © o (-)! : ModA - ModA and

v~ =(-)to®:ModA - ModA, and call v the Nakayama functor.
Lemma 3.2.1. Let A = kQ/{p) be a locally finite-dimensional algebra. Then the Nakayama
functor v restricts to a duality v : projA — injA with a quasi-inverse v~ :injA - projA.
Proof. Let a € (Qy. We have a k-linear isomorphism

(P! = @, Homy (e, A, €, A) 2 @,y xMe, = Ae,.

It is easy to verify that this is indeed a A-linear isomorphism. Thus, v(P,) = I,. Moreover,

we have:
v (1) = ®eg,Hom 4o (D*(Aey ), Aey) 2 @eg,Homgo (Aey, Aey) & @pegoealien 2 e A

This shows that v and v~ are quasi-inverse of each other. O

3.3 Auslander-Reiten translation

We now define the notion of transposition for a finitely-presented module. We first start

by proving some preliminary results we need to do this.
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Lemma 3.3.1. Let A be a locally semi-perfect algebra. Then, projA is a Krull-Schmidt
category and contains all finitely gemerated projective modules in modA. Moreover,

mod*A is also a Krull-Schmidt category.

Proof. Since projA is a full subcategory of mod"A, it is Hom-finite by the proof of
Theorem 1.4.2. Moreover, by Proposition 1.4.2, it is closed under direct summands,
i.e., the idempotents split. Therefore, using Theorem 1.4.1, it is a Krull-Schmidt cate-
gory. This implies that every non-zero object in mod"A decomposes into a finite direct
sum of objects with local endomorphism rings. Note that if End, ,q+5(M) is local for
M e mod*A, then End(M) := End,yeq+a (M) is either 0 or local. This is because by defi-
nition End(M) = End(M)/P(M, M). If P(M, M) #+ End(M), then it is contained in the
unique maximal ideal rad(End(M)) of End(M). Thus, 29E2IAD) il be the unique

P(M,M)
End(M)

maximal ideal of POTI)" Thus, mod*A is also a Krull-Schmidt category. O]

Throughout the rest of this chapter, we will assume A to be a locally semi-perfect algebra.
Given a module P € projA, we denote by addP the full additive subcategory of projA

generated by the indecomposable direct summands of P.

Lemma 3.3.2. Let ¥ = Endy(P), where P is a non-zero module in projA. The ezxact
functor Homy (P, -) : ModA - Mod¥ restricts to an equivalence Ep : addP — proj¥. In
particular, a morphism f in addP is a section (respectively, retraction, isomorphism) if

and only if so is Ep(f).

Proof. Let M € ModA, f e Homy (P, M), and o € 3. Then

fo=foo

defines a right »-module structure on Homy (P, M). Since P € projA, we can write

P =P &--®P,, where the P, are indecomposable. Let p; : P - P; be the canonical

35



projections and ¢; : P; > P the canonical injections. Set e; = ¢;p;, for i = 1,...,n. Clearly
{e1,...,e,} is a complete set of orthogonal idempotents of ¥. We claim that each e; is
primitive. This is because if ¢; = a + b, where a, b are orthogonal idempotents in ¥, then
P, 2 a(P) @ b(P), and the indecomposability of P; implies that either a = 0 or b = 0.
Thus {e,...,e,} is a complete set of primitive orthogonal idempotents of ¥. Since X
is a finite-dimensional algebra, therefore, e;X, ..., e,X are precisely the indecomposable

objects in proj¥ (|2, Theorem VIII.1.9]).

Note that the restriction of Ep(p;) to ¢;X, that is Ep(p;) : ;X — Homy (P, P;), is a
Y-isomorphism with the inverse given by Fp(q;) : Homy (P, P;) — e;%. Since proj¥ is
additively generated by e;% and Ep is an additive functor, we get that Ep is dense.

Given any 1<, <n, we claim that Ep induces a Y-isomorphism
Ep:Homy (P, Pj) - Homy (Homy (P, P;), Homa (P, P;)).

Define H : Homy,(Homy (P, P;), Homy (P, P;)) - Homa (P, P;) as f +~ f(pi)g;- Then, for
g € Homy (P, P;), f € Homy(Homy (P, P;),Homa (P, P;)), and h € Homy (P, P;), we get
that (HEp)(9) = Ep(9)(pi)¢ = gpig; = g and

(EpH)(f)(h) = H(f)h = f(p:)ah = f(psaih) = f(h),

where the second last equality holds because f is a »-homomorphism. Thus H is the
inverse of Ep. Again, since Ep is an additive functor and addP is additively generated
by P;, we get that Ep is a fully faithful functor. Thus the restriction of Ep is an

equivalence. O

Definition 3.3.1. A morphism f: M — N in modA is called right minimal if any map
g: M — M, such that fg=f, is an automorphism.

Lemma 3.3.3. Let f: M — N be a right minimal morphism in modA. If M = M, & M,

is a proper decomposition, then the restriction f |y, is non-zero, fori=1,2.
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Proof. Let M = M; & M, be a proper decomposition with p; : M — M; the canonical
projection and ¢; : M; - M the canonical injection, for ¢ = 1,2. Then 1), = ¢1p1 + ¢2po.
Assume that f [p,=0, that is fg; = 0. Then f = f(qip1 + @2p2) = fqope. Since f is right
minimal, gops is an isomorphism. In particular, ps is a section, and hence an isomorphism.

This gives that M; =0, a contradiction. O
Definition 3.3.2. Let M, N € modA. An epimorphism f : M — N 1is called essential
if whenever fg is an epimorphism for g : M' — M with M' € modA, then g is also an
epimorphism.

Definition 3.3.3. Let M € modA. A projective cover of M is an essential epimorphism

p: P — M with P € projA.

We also have the dual notions of essential monomorphisms and injective envelopes.

Definition 3.3.4. Let M, N € modA. A monomorphism f: M — N is called essential
if whenever gf is a monomorphism for g : N - N’ with N’ € modA, then g is also a

monomorphism.

Definition 3.3.5. Let M € modA. An injective envelope of M is an essential monomor-

phism p: M — I with I €injA.

Lemma 3.3.4. Let P € projA and M € modA. Then an epimorphism p: P — M 1is a

projective cover of M if and only if p is right minimal.

Proof. Suppose p is a projective cover of M and f: P - P such that pf = p. Since p is
an essential epimorphism and pf is an epimorphism, f is an epimorphism. Thus there
exists f': P — P such that ff’ = 1p since P is projective. Therefore pff’ = pf’ = p and

f" is also an epi. But f’ is a monomorphism, so it is an isomorphism, and so is f.

Conversely, assume that p is right minimal. Let f : N - P be a morphism such that

pf is an epimorphism. Then p factors through pf via a morphism ¢g: P - N since P is
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projective. Since p is right minimal, the composite fg is an isomorphism, and therefore

f is an epimorphism. Thus p is essential. O]

Lemma 3.3.5. Let p: P — M be an epimorphism in modA with P € projA. Then there

exists a decomposition P = Py @ Py such that p |p, is right minimal and p |p,= 0.

Proof. We may assume that P is non-zero. Since projA is Krull-Schmidt, P is a finite
direct sum of indecomposable objects with local endomorphism rings. Hence ¥ := End(P)

is semi-perfect (|18, Proposition 1.1]). Since P is projective,
p* = Hom(P,p) : Homy (P, P) - Homy (P, M)

is a Y-epimorphism. Thus, there exists a 3-projective cover ¢ : L - Homy (P, M) ([1,
Theorem 27.6]). Since X is Y-projective, there exist Y-morphisms 7: % - Land p: L - X
such that g = p*u, p* =qm and mp =1g.

Using Lemma 3.3.2, we know that Hom(P,-) : addP — projX is an equivalence. Thus
there exist morphisms p': P’ - P and n’: P — P’ in addP such that L = Homy (P, P’),
7w =Hom(P,n’) and p = Hom(P,u'). Since mp =1y, we get 7'’ = 1ps, and hence, p'n’ is
an idempotent in . Since projA is Krull-Schmidt, there exist morphisms 7 : P - P”
and p" : P" — P such that p/n"” = 1p—p/n’. This yields a decomposition P ~ P'@® P". Set
p' =pu : P'—> M and p"” =pu" : P" - M. Since q = p*u = Hom(P, py’) is right minimal,
by Lemma 3.3.1, p’ is right minimal. Moreover, Hom (P, p"7"") = Homy (P, 1p — p'n’) =

1y, — pr, and hence,
Homy (P, pp"€") = p* o Homy (P, " €") = p*(1s, — um) = p* — qm = 0.

By Lemma 3.3.1, pu/#" = 0. Since 7" is an epimorphism, pu” = 0. That is p” = p|p,= 0.
[

Proposition 3.3.1. Every finitely generated module in modA admits a projective cover

in projA, which is unique up to an isomorphism.
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Proof. Let M be a finitely generated module in modA. Then there exists an epimorphism
p: P — M with P € projA. Using Lemma 3.3.5, we get that p= (py p2): Pr® P, > M
such that p; is right minimal and ps; = 0. Consequently, p; : P, — M is an epimorphism.

By Lemma 3.3.4, p; is a projective cover of M.

Now suppose p: P - M and p’' : P’ - M are two projective covers of M. Then there
exist epimorphisms v : P - P’ and v : P’ - P such that p’u = p and pv = p’. Thus pvu=p
and p'uv = p’. Since p,p’ are right minimal (Lemma 3.3.4), we get that vu and uv are

isomorphisms, and hence u, v are isomorphisms. ]

Definition 3.3.6. Let M € mod*A. A projective presentation Py ER Py L M0 s

called minimal if g is a projective cover of M and f corestricts to a projective cover
[Py —TIm(f).

Definition 3.3.7. Let M € mod A. An injective presentation 0 - M ER Iy 5 1 is
called minimal if f is an injective envelope of M and g restricts to an injective envelope

g :Ker(g) » L.

Lemma 3.3.6. Every module M € mod*A admits a minimal projective presentation,

which 1s unique up to an isomorphism.

Proof. Since M € mod*A, there exists an exact sequence P; ER Py L M - 0 with
Py, Py € projA. In particular, M is finitely generated, and Proposition 3.3.1 implies that
M admits a projective cover p{ : Pj — M. Since F, is projective and p{ is essential,
there exists an epimorphism ¢ : Py — B such that pjq = g. We claim that the image of
qf : P > P} is Ker(p}). Since pyaf = gf =0, Im(qf) < Ker(pf). Let a € Ker(pf). Since
q is an epi, there exists b € Py such that ¢(b) = a. Now ¢(b) = p;(q(b)) = pj(a) = 0, which
implies that b € Ker(g), and hence there exists some ¢ € P, such that f(c¢) = b. Thus
(¢f)(c) = a and Im(qf) = Ker(pf). This gives that Ker(p) is finitely generated and

hence, using Proposition 3.3.1, it admits a projective cover p; : P/ - Ker(pf). Setting
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Py =jp1: P| - P}, where j: Ker(pf)) - B} is the inclusion map, we get that P| n, P o,

M — 0 is a minimal projective presentation of M.

Now suppose P; N Py 2 M - 0 and P i Py 2 M - 0 are two minimal projective
presentations of M. Using Proposition 3.3.1, we get that there exists an isomorphism
u : Py > P} such that pju = po. Thus u : Ker(py) — Ker(p}) is an isomorphism and
upy : P, — Ker(py) is a projective cover of Ker(p;). Using Proposition 3.3.1 again, this
implies that there exists some isomorphism v : P, - P such that pjv = up;. Finally,
the uniqueness of minimal projective presentation follows easily from the uniqueness of

projective cover stated in Lemma 3.3.1. O]

Let M be a module in mod"A. By Lemma 3.3.6, M admits a unique minimal projective
presentation P L Py L M - 0 with Py, Py e projA. Applying the left exact contravariant

functor (=) to the above sequence, we get the following exact sequence:
0-M L PSS PES Coker(pt) — 0.
Thus, Coker(p') € mod"A°. We set Tr(M) := Coker(pt) and call it the transpose of M.

Lemma 3.3.7. Let M € mod*A with P, > Py L M >0 a minimal projective presenta-
tion, where Py, Py € projA. If M has no non-zero projective summands, then the sequence

t
Pt 5 Pt Te(M) - 0 is a minimal projective presentation of Tr(M).

Proof. Applying the left exact functor () to the sequence stated in the lemma, by

Proposition 3.1.1, we get the following commutative diagram with exact rows

tt /

p q
P Pt T M

p 7 Py s M > 0.

-

~
o

~

~
~
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On the other hand, since Tr(A/) is finitely presented, Lemma 3.3.6 implies that Tr(M)
admits a minimal projective presentation, say Ly — L, —> Tr(M) - 0. Using Lemma
3.3.5, we can decompose P} as V@ V) such that r |y, is right minimal and 7 |y, = 0. Since
projA° is closed under direct summands, V7, V5 € projA°, and hence, using Lemma 3.3.4,
7 |y, is a projective cover of Tr(M). Since Proposition 3.3.1 says that projective covers
are unique up to isomorphisms, we get that the map 7 |y,: Vo — Tr(M) is isomorphic to
Ly = Tr(M). Thus the map P! > Tr(M) - 0 is isomorphic to

(u1 0)

LoV, —— Tr(M) - 0.

Thus Ker(r) = Ker(u;) @ V;. Since ug : Ly - Ker(uy) is the projective cover of Ker(u;y),
0
1y,

1
Ker(r). Since P} € projA°, using Lemma 3.3.5, we get that there exists a decomposition

we get that the map %0 :Loe V) > Ker(up) @ V) 2 Ker(r) is a projective cover of
Pt~ N'® N such that p' |y is right minimal and p' |[y= 0. Thus, using Lemma 3.3.4,
we get that p! |y N’ - Ker(r) is a projective cover of Ker(r). Since Proposition
3.3.1 says that projective covers are unique up to isomorphisms, we get that the map

%0 10 ) s Loo V) - Ker(uy) @ Vy = Ker(r).
1%

1

p! e N — Ker(r) is isomorphic to the map (
(UO 0 0

Thus pt : Pt - Ker(r) is isomorphic to Ly @ N & V}

Ker(u;) @ V4 for some

t
isomorphism v : V5 — V;. Thus, the sequence P} L, P! 5 Tr(M) — 0 is isomorphic to

Uo 0 0
0 0 v (u1 0)
LieV, —— Tr(M) - 0.

the exact sequence

Lo Ne&

Applying the functor (-)? to this sequence, we see that the minimal projective presenta-

tion P, &> Py > M -0 is isomorphic to the exact sequence

ut 0

0 0

0 ot i fe f
Liean—»LgeaNt@w(l 2 B)
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In particular, (fi, fo, f3) is right minimal and (fju?, fsv*) = (0,0). Since v is an isomor-
phism, so is v*, and hence, f5=0. Since (f1, fa, f3) is right minimal, V{f = 0. This implies
that V5 = 0, and hence, V; = 0. In other words, the minimal projective presentation
By LN By LM >0is isomorphic to the exact sequence

0 0
L’i—>L6€BNtM>M—>O.

Thus M = Coker(p) = Coker(u') ® Nt, where N' € projA. Suppose that M does not
have a non-zero projective summand. Then N! = 0, and hence N = 0. Therefore,

t
Pt % Pt S Te(M) - 0 is the minimal projective presentation of Tr(M). O

Lemma 3.3.8. Let M be a module in mod™A. Then Tr(M) = 0 if and only if M is

projective.

Proof. Suppose M is projective. Then the minimal projective presentation of M is given

by 0 = M - M — 0. Applying (-)* to this sequence, we get that

Tr(M) = Coker(M" - 0) = 0.

Conversely suppose Tr(M) = 0. Let P 2 Py B M - 0 be the minimal projective

presentation of M. Then p} is an epi, and hence a retraction since Pf is projective. By
Proposition 3.1.1, p; is a section. Thus, Py = P’ ® P"”, where P’ = Im(p;) = Ker(py).
In particular, py |p= 0. Since pg is right minimal, by Lemma 3.3.3, P’ = 0, that is,
Ker(py) = 0. Thus, pg is a monomorphism, and hence, an isomorphism. So, M is

projective. O
Lemma 3.3.9. Let M be an indecomposable non-projective module in mod™A. Then
Tr(M) is indecomposable and non-projective.

Proof. Let P; 2 P2 M > 0 be a minimal projective presentation of M. Since M is

not projective, Lemma 3.3.8 implies that Tr(M) # 0.
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Being indecomposable and non-projective, M has no non-zero projective summands.
Thus, by Lemma 3.3.7, P o, P} - Tr(M) — 0 is a minimal projective presentation of

Tr(M). Then, by Proposition 3.1.1, TrTr(M) = Coker(pl’) = Coker(p;) = M.

We now show that Tr(M) has no non-zero projective summand. Suppose Tr(M) 2 E@ P
with P € projA°. Being finitely presented, E admits a minimal projective presentation

Ly ER Lo = E - 0. Thus the minimal projective presentation P! o, Pl - Tr(M) - 0is

f u 0
0 0 1p
Lh.—LyeP—>SFEaeP-0.

isomorphic to

to
Thus, we may assume that p; is the map L{ ® P? ERU Py. In particular, p; |pe= 0. Since

p1 corestricts to a right minimal map p} : P, — Im(py), it is right minimal. Hence, P? = 0,

and hence, P = 0.

Now suppose Tr(M) = M; & My. Then M = TrTr(M) = Tr(M;) @ Tr(My). Thus,
Tr(M;) =0 or Tr(M;) = 0. By Lemma 3.3.8, M; or M, is projective, and consequently,
M, or My is zero. Thus, Tr(M) is indecomposable. O

Given an indecomposable non-projective module M in mod* A, we write 7(M) := ©DTr(M)
and call it the Auslander-Reiten translation of M. Lemma 3.3.9 and the fact that ® is
a duality imply that 7(M) is a non-injective indecomposable module in mod™A. Dually,
given an indecomposable non-injective module N in mod™ A, ©(N) is a non-projective
indecomposable module in mod* A, which implies that TrD(N) is a non-projective inde-

composable module as well. We denote this by 77(N) := TrO(N).

Lemma 3.3.10. Let M be an indecomposable non-projective module in mod*A with a

minimal projective presentation Py 2> Py — M — 0. Then 7M = Ker(vp).

Proof. By definition 7M = ©Tr(M). In order to calculate Tr(M), we apply the left exact
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functor (-)! to the given presentation, which gives us the sequence
0= M! - P! Pt Te(M) - 0.
Applying the exact functor ® to the above sequence, we get
0> DTH(M) > P! 2 P - DM 0.

By definition, ®p' = vp and DTrM = 7 M, and we get the required isomorphism. O]

3.4 Auslander-Reiten formula

Throughout this section, we assume that A = kQ/I is a locally semi-perfect algebra. We

need the following technical lemma to prove our main theorem.

Lemma 3.4.1. [3, Lemma I11.5.12] Suppose we have the following commutative diagram
of A-modules

L L oM . W N > 0
LI f, }Ml g, }Nl

such that u, v are isomorphisms, the upper row is exact, and the lower row is a complex.

Then the cohomology of the lower row at M' is isomorphic to the kernel of w.

Now, we need the usual exact contravariant functor D = Homy (-, %) : Mod k - Mod k.

Note that if M is a finite dimensional A-module, then DM = ® (M) as k-vector spaces.

Lemma 3.4.2. Let M ¢ modA and N € ModA.

1. There exists a bi-natural k-linear map ¢prn : N Mt - Hom (M, N') with cokernel
Hom , (M, N).
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2. Suppose A is left locally bounded and M € mod*A. Then there exists a bi-natural
k-linear map vy N : DHomy (M, N) - Hom, (N, v M) which is an isomorphism in
case M € projA.

Proof. (1) It is easy to see that we have a k-linear map
duN: N &g M - Homa(M,N):u® (fa)ac, = (V7 Tyegottfa(v)),

where f, € Hom,(M,e,A) such that f, = 0 for almost all a € ). We claim that
Im(¢an) = P(M,N). First, suppose that f € Im(¢arn). Then, f =37 dprn(w® fi),
where uy,...,u, € N and fi,..., f, € Mt. Write f; = (fia)acq,, Where f; , € Hom,(M, e, A)
is such that f;, = 0 for almost all a € )p. Thus, there exist a4,...,a, € ¢y such that
fia=0forall 1<i<nand ag{a,...,an}. Therefore, f(v) = XL X7 u;i - fia;(v), for

v e M. On the other hand, consider the morphisms

fi,al
f.’: :M»ealA@...@eamA

fi,am
and g; = (w;, -, u;r) t €, A® -+ @ e,, A - N, the left multiplications by u;, for i=1,... n.

Setting P =e, A® - ®e,, A, we see that f is the composite of the following morphisms

A

(f}a

Conversely, suppose that f € P(M,N). Then, there exists a projective module P € projA

M Po..op i)y

Thus feP(M,N).

such that f = gh for some h: M - P and g: P - N. Since P € projA, P 2 e, A®---®e,, A
for some a; € Q. Write g = (gays-- -, 9a, ), Where g, : €, A > N and

ha,
h=|: |'M—>e,A®--®e,, A,
ha,,
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where h,, € Hom, (M, e,,A), fori=1,...,n. Consider h; = (hiq)aeq, € M?, where h; , = hy,

in case a = a; and h; , = 0 otherwise, for i = 1,...,n. Write u; = g(e,;) € N, fori=1,... n.

Given v € M, by definition, we obtain

Prrn (it i ® hi) (V) = Xity YaeqoUihia(v) = Xty wiha, (v).

On the other hand, since h,, (v) € e,, A, we see that

f(U) = Z?:l gai(hai(v)) = Zzzl gai(eai ' h'ai(v)) = Z?=1 uihai(v)'
That is, f = ¢ n(Xiq u; ® h;). This establishes our claim, and Statement (1) follows.

(2) Suppose A is left locally bounded. Then Ae, is finite-dimensional for every a € Q.
Hence, every module in projA° is finite-dimensional. Since M € mod'A, it admits an
epimorphism f : Py - M with Py € projA. Since (-)? is left exact, we get that f*: M! — B/
is a monomorphism, where P} € projA°. Since M? is a submodule of a finite-dimensional

module, it is also finite-dimensional. Thus vM =D (M) = D(M?), as k-vector spaces.

We can compose the morphism D¢y, : DHom (M, N) - D(N @y M) with the adjunc-
tion isomorphism 7y : D(N @ M?) - Hom (N, D (M?)). Hence, we get the required
morphism ¥y x = Ny nD(darn) : DHomy (M, N) - Hom,(N,vM). Using Lemma 3.2
from [10], we get that this map is an isomorphism if M € projA. ]

We are now ready to prove our main theorem which states that the Auslander-Reiten

formula holds for certain locally finite-dimensional algebras.

Theorem 3.4.1. Let A = kQ/I be a locally semi-perfect algebra.

1. Suppose A is left locally bounded. If N € ModA and M € mod™A, then there exists

a binatural isomorphism
Ext}y(N,7M) =~ DHom(M, N).
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2. Suppose A is right locally bounded. If M € mod™A and N € modA, then there exists

a binatural isomorphism

Exty ("M, N) 2 DHom(N, M).

Proof. We will first prove Statement (1). Let M € mod*A with a projective presentation
PSP M -0
with P, Py € projA. Using Lemma 3.3.10, we get the following exact sequence:
O—>TM—>VP1£>VP()@>VM—>O.

Applying Hom (N, -) to the above sequence gives the following complex

Hom(N,vp1) Hom(N,vpo)
_— _—

0 - Hom(N,7M) - Hom(N,vPy) Hom(N,vFP,) Hom(N,vM)

It is well known that Ext} (N, 7M) = fofonalmm),

On the other hand, applying the right exact functor DHom 4(—, N') to the above projective

presentation of M, we get the following exact sequence

DHom 4 (p1,N) DHom 4 (po,M)
—_—s - 5

DHom, (P, N) DHom (P, N) DHom (M, N) - 0.

The natural transformation ¢ from Lemma 3.4.2(2) gives the following commutative

diagram where the upper row is exact and the lower row is a complex.

DHom (P, N) 2240 By oma( By, N) 224 @ N i oma(M, N) —— 0

iibpl N iwpo N le, N

Hom(N,vPy) Hom (N, vFy) Hom(N,vM)

—_— —_—
Hom 4 (N,vp1) Hom 4 (N,vpo)

Using Lemma 3.4.2(2), ¥p, y and 1 p, y are isomorphisms. Therefore, using Lemma 3.4.1

and the fact that ¥y = N D(dan), we get that
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KerH N
er omA( ,l/po) ~ Ker(i/JM,N) = Ker(D¢M,N)

Exty (N, M) = =
xta (N, M) ImHom 4 (N, vp;)
= D(Coker¢y y) = DHom (M, N).

We now prove Statement (2). Let M e mod” A with A right locally bounded. Then
D(M) e mod"A° and A° is left locally bounded. Using part (1), we get that

Extyo(D(N), 7D(M)) = D(Hom,. (D (M), D(N))).
Now D(Hom ,.(D(M),D(N))) = D(Homy (N, M)) and

Extj.(D(N), 7D (M)) = Ext)j.(D(N), DTrD(M))
= Extj. (D(N), D77 (M))

> Exty (77(M), N),

and we get the required isomorphism. O

Let M e modA. We say that M is strongly indecomposable if End (M) is a local ring.

Theorem 3.4.2. Let A = kQ/I be a locally semi-perfect algebra.

1. Suppose A is left locally bounded. If M € mod® A is indecomposable and non-

projective, then there exists an almost split sequence

0 TM L M 0

in ModA, where TM 1is finite dimensional.

2. Suppose A is right locally bounded. If M € mod A is indecomposable and non-

injective, then there exists an almost split sequence

0 M L T M——0

in modA, where =M s finite dimensional.
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Proof. We first prove Statement (1). Since M € mod*A is indecomposable and mod*A
is a Krull-Schmidt category, it is strongly indecomposable. Moreover, by the paragraph
following Lemma 3.3.9, 7(M) is an indecomposable module in mod™A, which is a Krull-

Schmidt category, and hence it is strongly indecomposable. Let
¢ : Ext' (-, 7(M)) - DHom(M, -)

be the functorial isomorphism obtained from Theorem 3.4.1. Since ¢ is a natural tran-
formation, ¢y : Ext'(M,7(M)) - DEnd(M) is an End(M)-linear isomorphism. Since
the End(M)-top of End(M) is non-zero, we get that the End(M)-socle of DEnd (M)
is non-zero. As a consequence, the End(M)-socle of Ext!(M,7(M)) is non-zero. Let
d:0->7(M) > X - M - 0 be a non-zero extension lying in the End(M)-socle
of Ext'(M,7(M)). Hence, 6 = ¢y(0) is a non-zero element of the End(M)-socle of
DEnd(M). In particular, 8 is annihilated by rad(End(M)). Since M is not projec-
tive and End(M) is local, if f € rad(End(M)), then f € rad(End(M)), and hence,

0(f) = (f6)(Ly) =0.

Let p: L - M be a morphism in ModA which is not a retraction. Since End, (M) is
local, for any morphism ¢ : M - L in ModA, we have pq € rad(End(M)), and hence,
pq € rad(End(X)). Thus 0(pq) = 0, that is, (DHom(M,p) o ¢1,)(d) = 0. In view of the

commutative diagram

Extl(p,T(M))

Ext'(M,7(M)) Ext'(L,7(M))

o] B

DHOID(M, M) m DHOI’H(M, L)

we see that (¢, oExt!(p,7(M)))(6) = 0. Since ¢y, is injective, pd = Ext' (p, 7(M))(8) = 0.
That is p factors through the epimorphism X — M in §. Thus, the morphism X — M is

right almost split. Since 7(M) is strongly indecomposable, ¢ is an almost split sequence.
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Finally, since A is left locally bounded, all the modules in projA° are finite-dimensional,
and hence Tr(M) is finite-dimensional, being the cokernel of a map in projA°. Thus,

T(M) =DTr(M) is finite-dimensional.

We now prove Statement (2). Since A is right locally bounded, A° is left locally bounded,
and (M) € mod"A° is non-projective indecomposable. Applying Statement (1), we get
that there exists an almost split sequence 0 > 7O (M) - L - D (M) - 0 in ModA° with
7O (M) finite-dimensional. Since both 70 (M) and © (M) are locally finite-dimensional,
we get that L is also locally finite-dimensional. Thus 0 > 7®(M) - L - ©(M) - 0 is an
almost split sequence in modA°. Applying ©, we get that 0 > M - O(L) > 7 (M) -0

is an almost split sequence in modA and 7=(M) is finite-dimensional. O

The above result about the existence of almost split sequences was mentioned by Aus-

lander in [7]. However, he does not provide a complete proof there.
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CHAPTER 4

String algebras

In the last chapter, we proved the Auslander-Reiten formula for the class of locally semi-
perfect algebras. Now we restrict our attention to a special class of algebras, called string
algebras. We will start with the definition of string algebras and see how we can associate
some combinatorial structures, called strings and bands, with them. Further, we will see
how one can associate a A-module to a string or a band. We will then try to extract

some properties of a given string module from the structure of the corresponding string.

4.1 String algebras

In this section, we will introduce a special class of algebras obtained from quivers called
string algebras. We will also introduce the relevant combinatorial language associated

with these algebras, including the notions of walks, strings, etc.

Definition 4.1.1. Let Q = (Qo, Q1) be a locally finite quiver and p a set of zero relations
on Q. The algebra A = kQ/{(p) is said to be a string algebra if the following conditions

are satisfied:
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1. For each a € Qq, there exist at most two arrows «, 5 € Q1 such that s(a) = s(8) = a.
2. For each a € QQy, there exist at most two arrows a, € Q1 such that t(a) = t(f) = a.
3. For each o € (), there exists al most one arrow [ € Q1 such that af ¢ p

4. For each a € (Q1, there exists at most one arrow v € Q1 such that ya ¢ p.
In this definition, we drop the classical ‘boundedness’ conditions [11, § 3]

5. For each f € @1, there exists some bound n(/3) such that any path -8, with

[y = B contains a subpath lying in p.

6. For each (3 € @y, there exists some bound n’(3) such that any path 3---3,,(s) with

Bnr(3) = B contains a subpath lying in p.

In the sequel, we shall call the string algebras satisfying the above two conditions as
locally bounded string algebras. The finite-dimensional indecomposable representations
of locally bounded string algebras were completely classified in [11] along with the maps

between these.

Henceforth, unless stated otherwise, we will use the letter A to denote a string algebra

with @ the corresponding quiver and p the corresponding set of relations.

Examples 4.1.1. 1. Let QQ be the following quiver.

~— i c — i
1\522—)3\62{4

In order to make this a string algebra, we need some relations at vertices 2 and 3.

Setting p = {bc, cd} makes kQ[{p) a string algebra, called As.
2. Let Q) be the following quiver with p = {af, Ba, ™, f™}.
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f?
1

O

o

Then kQ[{p) is a string algebra, called GP, ,, for all n,m > 2.
3. The infinite linear quiver AL
.._>a_1_>a0_)a1_)...

15 a string algebra that is not locally bounded.

4.2 Strings and bands

In this section, we introduce the notion of strings and bands in a string algebra A. We

will eventually look at a way of assigning A-modules to these combinatorial objects.

We start by introducing for each arrow « € 1, a ‘formal inverse’, denoted by o', and
setting s(a™!) :=t(a) and t(a™') := s(a). Let Q7' :={a"! | aeQ}. We will refer to the
elements of the set Q1 1Q7" as letters. A letter u contained in )1 will be referred to as a
direct letter and a letter u contained in Q! will be referred to as an inverse letter. Also

if u=a™!, where « is a direct letter, then u™! := a.

Let A = kQ/(p) be an arbitrary string algebra, not necessarily locally bounded.

Definition 4.2.1. A trivial walk in Q s a trivial path e, with x € (). A non-trivial
walk w in Q is a formal product [1,cq ¢;, where S is a non-empty interval in 7, such that
¢; is either an arrow or the inverse of an arrow, and s(ci1) = t(¢;) for all i such that
1,1+1€S. A reduced walk w in Q is either a trivial walk or a non-trivial walk T1;cq ¢;

such that ¢ # ¢;* for any @ such thati,i+1€S.
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Throughout this work, the order on {¢; | i € S} in a non-trivial walk [],.q ¢; will coincide

with the increasing order of S, that is,

H Ci = CiCiy1 "

ieS
Each ¢; will be called an edge of w. When S is bounded below by an integer [, we shall call
¢; the initial edge of w and s(¢;) the starting point of w, denoted s(w). When S is bounded
above by an integer m, we shall call ¢,, the terminal edge of w and e(c,,) the ending
point of w, denoted e(w). We shall call a walk [],.qc; a right infinite (respectively left
infinite, doubly infinite) walk if S is bounded below and unbounded above (respectively
bounded above and unbounded below, unbounded below and above). Moreover, we say
two non-trivial walks w = [[;eg ¢, W' = [jesr € are equivalent if there exists some m € 7Z
such that S" = {s+m|s e S} and ¢ = ¢;_,. Thus, up to equivalence, we can assume S to

be one of [1,n] for some n >0, NN~ or Z.

We also extend the definition of inverses to the set of all reduced walks as follows. If
w = [liege with S = [1,n], w! = [Tiegcliyy. For w = [ieg e, a right infinite walk
(resp. left infinite walk), w™! is defined to be the left infinite walk (resp. right infinite

U (resp. w = [Tien¢;'). Finally for a doubly infinite walk, w = [T, ¢,

walk) w = [Tien- ¢
wt = [Tiez 7t and for w = ¢,, w™t := w for all a € Qp. A reduced walk w = ¢;--¢,, in Q

for n > 1 is called a reduced cycle if s(cy) = e(cy).

Let w = [],.q ¢; be a reduced walk. Let a; = s(¢;) and a1 = e(c;) for allie€ S. Set S =8
if S has no maximal element, and otherwise, S = S u {n + 1}, where n is the maximal
element of S. Observe that for any i € S, i+ 1€ S but i — 1 is not necessarily in S. We
shall call V(w) = {a; | i € S} the vertex set of w and each a € V(w) a vertex of w. We
emphasize that we think of a; and a; as different vertices for ¢ # j even if they correspond
to the same vertex in (). Note that, under this viewpoint, V' (w) is technically a multiset,

even though, for the sake of convenience, we call it a ‘set’. The vertex set of a trivial

54



walk £, is defined to be the singleton set {a}. A subwalk of w is defined to be a reduced
walk of the form [, ¢; for T a sub-interval of S or of the form ¢, for some a € V(w). A
trivial walk ¢, has a unique subwalk £,. A subwalk w’ of w is called an initial subwalk of
w if w = w'w"” for a reduced walk w”. If w’ is not an initial subwalk of w, then w = uw’w"
for a non-trivial walk v and we say that u is the left complement of w’ in w. Dually, a
subwalk w’ of w is called a terminal subwalk of w if w = w”w’ for some reduced walk w”.
If w’ is not a terminal subwalk of w, then w = w”w’u for a non-trivial walk u and we say
that u is the right complement of w' in w. Note that in the above two definitions, w”

may be a trivial walk.

Definition 4.2.2. Let w = [;cg¢; be a reduced walk in (Q,p). We say that a path p is

contained in w if there exists an interval T € S such that p = ([Tier ¢i)*!.
A reduced walk w is called a string if either it is trivial or it contains no path lying in p.

Example 4.2.1. For Ay, aced™, ab=tab™'--- are some examples of strings, while ed 'c¢™1,

cc™l are certain non-examples.

We say that a string w is composable with another string w’ if e(w) = s(w’) and the
(reduced) concatenation ww’ is a string, in which case the composition is defined to be
ww’. By reduced concatenation, we mean that we remove any copy of trivial strings from

the concatenation.

Definition 4.2.3. A reduced cycle w is called a band if w™ is a string for all m > 1, and

w s not a power of a reduced walk of smaller length.

Example 4.2.2. In Ay, ab™, cd™t, ba™', and dc™' are the only bands while there are
infinitely many bands in GP, ,.

Let w = [;.5 ¢; be a non-trivial string. Fix 4,j € S. We shall say that j is a successor of i
in w, or equivalently ¢ is a predecessor of j in w, provided that j = ¢, or ¢;---c;_; is a path
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in case @ < j, or ¢j---¢;—1 is the inverse of a path in case j <i. Moreover, we shall call 7 a
peak for w provided that ¢; is an arrow in case i € S and ¢;_; is the inverse of an arrow in
case i —1 € S; and a deep for w provided that ¢; is the inverse of an arrow in case 7 € S

and ¢;_; 1s an arrow in case 1 — 1€ S.

We say that a string w starts on a peak if it has a starting point and there is no arrow
[ such that Sw is a string. Similarly, we say that it starts in a deep if it has a starting
point and there is no arrow ~ such that y~'w is a string. Dually, a string w is said to end
on a peak if it has an ending point and there is no arrow S such that w31 is a string,
and it is said to end in a deep if it has an ending point and there is no arrow ~ such that

w7y 1s a string.

A string v is called a substring of a string w if it is either of the form [];.; ¢; for a sub-
interval T' of S or g, for some a € V(w). A trivial string ¢, is defined to have a unique
substring £,. We call w zigzag finite if it has finitely many peaks and deeps. We define
the notions of initial substrings and terminal substrings similarly to the notions of initial

and terminal subpaths respectively.

4.3 Definitions of string and band modules

Given a string w in (Q, p), we can associate to it a string module M (w) over A as follows.
If w =g, for a vertex a € Qy, then M(w) := S(a), the simple A-module associated with a.
Otherwise w = [];cq ¢;, where S € {[1,n],N,N=,Z} and each ¢; : a; - a;;1, with i € S and
a;, a1 € Qo, is an edge from a; to a;y1. Now, the string module M (w) has as a k-space
a basis {v; | i € S}. Its multiplication is defined as follows. Fix i € S. Given a € Qq, one
defines v; - e, = v; in case a = a;, and otherwise, v; - e, = 0. Given an arrow «:a — b in Q,

one defines v; - @ = v;,1 in case 1 +1 € .S and ¢; = «; and v; - & = v;_; in case 1 — 1 € .S and
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¢;i-1 = b and in all other cases, v;- @ = 0. Since w is a reduced walk and v; - e,, = v;,
this definition has no ambiguity and makes M (w) into a unitary right A-module. More
explicitly, if p is a non-zero path of positive length r in @, then v;-p = v;,, in case i +7 € S
and p = ¢;Cjyp_1; and v; - P = v;_, in case i —r € S and p~! = ¢;_,--¢;_1; and in all other
cases, v; - p = 0. In particular, v; - p =0 in case s(p) # a;. Henceforth, we shall call such a
k-basis {v; | i€ S} for M(w) a w-string basis. For any string w there is an isomorphism

iw: M(w) > M(w™') given by reversing the basis.

Example 4.3.1. Let Q) be the following quiver with p = {ab,b? a?}.

O
1
Let w=b"taba™'b. Then M (u) is 6-dimensional and we depict it as follows.

N AN

In general, we can represent any string w by a diagram of the above form by using
arrows pointing towards the bottom left for inverse letters and towards the bottom right

for direct letters.

Now, let w = ¢;---¢, be a band, where ¢; : a; - a;;; are edges in () between vertices a;
and a;y1 such that a,.; = a;. Let ¢ be an indecomposable automorphism of a finite-
dimensional k-space V. Note that this is equivalent to giving a finite-dimensional in-

decomposable k[T, T-'] module by setting the action of T" to be ¢. We associate a
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band module B(w,p) to the pair (w,y) as follows. First, we have an underlying k-
space B(w,¢) = U ®; V', where U is a k-space with a basis {uy,...,u,}. Set up.1 = uy
and uy = u,. Given a € Q1 and w; ® v € B(w, ) with 1 < i <n and v € V| we de-
fine (u; ® V)& = uiyy ® Pn(v) if a = ¢;; and (u; ® V)@ = u;_y ® P O-1n(v) if ™! = ¢;_yq;
and (u; ® v)a = 0 in all other cases, where ¢;, is the Kronecker symbol. This makes
B(w, ) into a unitary right A-module. Moreover, B(w, ¢) 2 B(w', ) if and only if w’
is a permutation of w or the inverse of w, i.e., w' = ¢;41---cpeq-oc; for 1 <i<n-1, or
w' = c;leerteptepl for 1 <i<n—1. We will often denote B(w,¢) as B(w, V'), where
V is viewed as a k[T, T~'] module through .

Example 4.3.2. Let w = ba™! be a band in Ay and Z an indecomposable k[T, T~'] module.

Then B(w, Z) is the following representation of (Q, p).

Mp-1 0

— ! 0 ~— i
Z\_)(Z—)Oﬁ)(o
id

For locally finite-dimensional string algebras, we have the following theorem about the

classification of their finite-dimensional representations.

Theorem 4.3.1. [11, § 3/[14] Let A be a locally bounded string algebra. The modules
M(u), with u a finite string in A, and B(w', Z), with w' a band in A, and Z a finite-
dimensional, indecomposable k[T, T~'] module, give a complete list of finite-dimensional
indecomposable A-modules. Moreover, M (u) = M(u') if and only if u = u' or u™' = u/,
and M(w,Z) = M(w',Z") if and only if w is a cyclic permutation of w' or (w')™' and

Z 27" Finally, no string module is isomorphic to a band module.

Now, let A be an arbitrary string algebra. Suppose M is a locally finite-dimensional
A-module. Then M is finitely controlled in the sense of [12], i.e., for every vertex a, Me,
is contained in a finitely generated submodule of M. In particular, the following theorem

gives us a complete description of such modules.
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Theorem 4.3.2. [12, Theorem 1.2] Every finitely controlled A-module is isomorphic to

a direct sum of copies of string modules and finite-dimensional band modules.

4.4 Some special string modules

Let A = kQ/(p) be a string algebra. Since A = @€\ = Baeg,Neq, A has sufficiently
many idempotents and Proposition 1.4.1 gives that P, = e,A is a projective module.
Theorem 4.4.1 shows how these modules can be obtained as string modules associated

to some special strings.

Theorem 4.4.1. Let a € Qy. Then P, =2 M(p~tq), where p,q are paths starting at a such

that p~tq is a string starting and ending in a deep.

Proof. We know that P, = e, A has as basis the set of classes of non-zero paths starting
at a. Let p be a maximal path (possibly trivial) in @ starting at a. If there exists at
most one arrow starting at a, then let ¢ be trivial; otherwise, let ¢ be the maximal path
starting at ¢ and having no common initial arrow with p. Since A is a string algebra,
any path starting at a is an initial subpath of p or ¢q. Consider the case where p, ¢ are
non-trivial. Let p = [Tes s and q = [Tier Bi- Set v = €q, v = [T1gqj B; for j € T, and
v_j = [l1<icj @ for j € S. Then we claim that the set V = {vo} u{v;|jeT}u{v_;|jeS}

is a p~lq string basis for P,.

Let u be a non-zero path of length » > 1 in ). Then vy-u # 0 only if u starts at a, i.e., u
is an initial subpath of p or ¢. In this case, vo-u =v, if r € T and u = [T 4, Bi; Vo U = v_,
if r €S and u = [T, i Let j € T. By the properties of string algebras, v;-# is non-zero
only if j+7 €T and u = [];,14, B, in which case it is equal to v;,,. Finally, for j €S,
vyt =v ., if —j—r €S and u = []j;14¢ ai; and in all other cases v_;-u = 0. Now

suppose u = g, for some b € Q)g. Then for all v € V, v -4 is non-zero only if b = ¢(v), in
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which case it equals v.

In case one of p or ¢ is trivial, the u in the above paragraph would be an initial subpath
of q or p respectively, and the proof would remain the same. In case p, ¢ are both trivial,

a is a sink and P, 2 S, = M(e,). O

Example 4.4.1. Let Q) be the following quiver with p = {ba’,b'a}.

\/
/\

Then Py = M(a™'a'"), Py=M(cba), Py=M(e3), Py=M(c"'b'a’), and Ps= M/(es).

Let A be a locally finite-dimensional string algebra. The following theorem states that

the injective modules I, a € ()y can also be obtained as string modules.

Theorem 4.4.2. Let A = kQ/{p) be a locally finite-dimensional string algebra with a € Q.
Then I, =~ M(pq~') where p,q are the paths ending at a such that pg~! is a string starting

and ending in a deep.

Proof. Given a,x € Qq, the set {p1, -, ps} of classes of non-zero paths from z to a is a
k-basis for P?(x) = e,Ae,, and its dual basis {p},---,p:} is a k-basis of I,(z). Consider
the case where p,q are non-trivial. Write p = [1;es oy and q = [];ep 85, where S, T are
intervals of N~ containing —1. Observe that any path ending at a in @ is a terminal

subpath of either p or q.

Set vy = €, v_; = (A~aa1)* forie S, and v; = (B;-B_9B1)*, for j € T. Then we claim

that the set V = {vo}u{v;|jeT}u{v_;|jeS}is a (pg!)-string basis for I,.

60



In order to prove the above claim, we first make the following observation. Suppose p’ is
a non-zero path, possibly trivial, in ) from vertex x to y and « : b — ¢ is an arrow. Then
p"-a=¢" if and only if p’ = ag’. Let us first suppose p’ = aq’. Let r be a path in Q
starting at c. Then (p’* -a)(7) = p’* (ar), which is equal to 1 if @F = p’ and 0 otherwise.
Therefore, (p'* - a)(r) = 1 if r = ¢ and 0 otherwise. This proves that p'* -a = ¢'".
Conversely, suppose p’" -@ =¢'". Then (p'" -@)(q') = 1, which gives that p’*(ag’) = 1, and
hence p’ = aq’.

I *

Moreover, we also note that for a € Qo, " - e, = ¢'" if and only if p’ = ¢’ and a = s(p’).

As a corollary, we conclude the following: Suppose p is a non-zero path of length r > 0
in Q. Then vy.p = eX.p is non-zero if and only if p = €,, in which case vy.p = vy, and
v_i.p = (oy--apaq)*.p is non-zero if and only if p = eyq,) or p = -y for 7 <4, in
which case v_; = v_,. Similarly v;.p = (8;---8281)*.p is non-zero if and only if p = e;g,)

or p = B;-Bi_ys1 for r <14, in which case v; = v;_,. O

Example 4.4.2. Let ) be the quiver . A. with the following orientation and without

any relations

Then In= M(---bsbiaytay+), Iy = M(a;t ), and I, = M (- -bs1), for k> 0.

In the following chapters, we will classify the finitely generated and finitely cogenerated

string modules over A.
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CHAPTER 5

Finitely-generated string modules

In this chapter, our goal would be to classify the finitely-generated string modules over a
string algebra A. Furthermore, we will calculate their projective covers and syzygies and

show that any finitely-generated string module is finitely presented as well.

Throughout this chapter, A will denote a locally finite-dimensional string algebra. We

start by giving a combinatorial description of the top and socle of a string module.

5.1 Socle and top of string modules

Definition 5.1.1. Let M be a A-module. Then the socle of M, denoted soc(M), is
defined to be the sum of simple submodules of M.

Lemma 5.1.1. Let w = [[;.5¢; be a string with i,7,1 € S.

1. Ifi is a successor of j in w, and j is a successor of | in w, then i is a successor of

[ in w.
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2. If i is a successor of j in w, and j is a successor of i in w, then i=j.

3. If i is a successor (predecessor) of j in w and i is a peak (deep) for w, then i =j.

Proof. The first statement is trivial if ¢ = 7 or 7 = [. Hence, we can suppose that i is a
successor of j with 7 # j, and j is a successor of [ in w with 7 # [. We first consider the
case j < i. Then ¢j---¢;-; is a path. In particular, ¢; is an arrow. If j <[, then ¢j---¢;q
is the inverse of a path. In particular, ¢; is the inverse of an arrow, a contradiction.
Thus, [ < j and ¢;--¢;-; is a path. Therefore, [ <4 and ¢;---¢;—1 = ¢---¢j_1¢j---c;—1 s a path.

Therefore, ¢ is a successor of [ in w.

We now consider the case i < j. Then ¢;---cj_; is the inverse of a path. In particular, ¢;_;
is the inverse of an arrow. If [ < j, then ¢---c;_; is a path, and hence, ¢;_; is an arrow,
a contradiction. Thus, j <[ and ¢;---¢;-1 is the inverse of a path. Therefore, 7 < [ and
CiC-1 = C-+Cj-1C5---C—1 is the inverse of a path. Therefore, by definition, ¢ is a successor

of [ in w. This proves Statement (1).

Suppose 4 is a successor of j and j is a successor of ¢ in w. If j <4, then ¢;---¢;-; is a path
and c;---c;_; is the inverse of a path, a contradiction. If 7 < j, then ¢;---c;_; is the inverse

of a path and ¢;---cj_; is a path, a contradiction again. Therefore, ¢ = j.

Finally, if 7 is a successor of j and ¢ is a peak, then we have the following two cases: if
J < then, by definition, ¢;---¢;-; is a path. In particular, i —1 € S with ¢;_; being an
arrow. If 7 < j then, by definition, ¢;---c;_; is the inverse of a path, and hence, ¢ € S with
¢; being the inverse of an arrow. In either case, 7 is not a peak, a contradiction. On the
other hand, if 7 is a predecessor of j and i is a deep, then we again have two cases: if
i > j then, by definition, ¢;---¢;-1 is the inverse of a path. In particular, i -1 € S with ¢;_;
being the inverse of an arrow. If j > then, by definition, ¢;---c;_; is a path, and hence,

1 € .S with ¢; being an arrow. In either case, ¢ is not a deep, a contradiction. O]
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Recall that for a A-module M, and x € M, xA denotes the submodule of M generated
by x, i.e.,
aA={x-A|XeA}.

Lemma 5.1.2. Consider the string module M(w) associated to a string w = [l;cq ¢,
where S is an interval of Z and ¢; : a; > a1 are edges in Q. Let {v; |i€ 5} be a w-string

basis for M(w).

1. soc(M(w)) = ®;evv; A, where V is the set of deeps for w.

2. top(M(w)) 2 ®ien Sa,, where A is the set of peaks for w.

Proof. Let 1 € V. Then ¢; is the inverse of an arrow in case 7 € S and ¢;_; is an arrow in
case 1 — 1€ S. Given an arrow « :a — b in Q), if v;a = v;,1, then «a = ¢;, a contradiction;
and if v;a = v;_1, then a~! = ¢;_;, a contradiction as well. Thus, v;a =0, for any a € Q.

As a consequence, v;A = kv;, which is simple. Therefore, @;.y v;A € soc(M(w)).

Consider now v = ¥ ;.0 \iv; € soc(M(w)), where Q ¢ S and ); € k*. Assume that there
exists some i € Q\V. Then, ¢; = o; or ¢;-1 = 871, where oy, 5; € Q1. In the first case,
viay; = v;41. This yields

0=vo; = \jUje1 + Zjeﬂ\{i})\jvjozi.
Since A; # 0, we see that vy, = vja; for some 7 € Q\{i}. If a; = ¢;, then vja; = V41 = Vi1,
which is absurd since j # i. If a;' = ¢;_1, then v;a; = v;1 = v;1. Thus, i+1=7-1 and
contradiction to w being a reduced walk. In other cases, vja; = 0, and

_ _ -1
Civ1 = Cj—1 = Q

7 0

hence, v;,1 =0, a contradiction as well. In the second case, v;3; = v;_1. This yields
0= Uﬁi = /\ivi—l + Zjeﬂ\{i}Ajvai'

Since \; # 0, we see that v;_1 = v;5; for some j € Q\{i}. If 571 = ¢;_q, then v;5; = v;_1 = v;_1,

which is absurd because j #i. If 3; = ¢, then v;8; = vj.1 = v;1. Thus, j+1=4-1, and
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hence, cjy1 = ¢i-1 = 5} 1 contradiction to w being a reduced walk. In other cases, v;Bi =0,
and hence, v;_; = 0, a contradiction as well. Thus, soc(M(w)) € @;cy v;A. This shows

Statement (1).

We will now prove Statement (2). By definition, topM (w) = M (w)/M (w).J, where J is
the ideal of A generated by the residue classes of the arrows modulo I. Given i € A, let

{u;} be a k-basis of the simple module S,,. Clearly, we have a A-linear map
[ ®iea Sq, > M(w)/M(w)J = (Nitt;)ien = ZiEA)\z’@z‘,

where \; € k and 0; = v; + M(w)J, for all i € A.

Fix s € S\A. As seen in the proof of Lemma 5.2.1, s is a successor in w of some

my € A. Clearly, s # m;. Thus, either s < m; with cs---¢;,,—1 being the inverse of a path

-1

ool =
me_17C5T = Us OF

or s > my; with ¢,,---:cs_1 being a path. This implies that either v,,,c
Umn, Cmy+*Cs—1 = Vs. In any case, vy € M(w)J. Now, for any v = ¥,.g\v; € M(w), we see

that 0 = 3;caA\0;. Hence, f((Aw;)iea) =0. That is, f is surjective.

Finally, suppose that f((Ait;)iea) = LeaXi®s = 0. Then, Y, ANv; € M(w)J. Therefore,
YAV = Yien teVePy, where € is a finite subset of S, p; € k and p; is paths of length
l; > 1. Suppose that A; # 0 for some 7 € A. By definition, ¢; is an arrow if i € S and ¢;_; is
the inverse of an arrow if 1 —1 € S. Since \; # 0, we obtain v; = vs Ps = vy, for some s € ().
That is, 1 = s+ [, #+ s. If i > s, then p, = ¢5---¢;_1, and in particular, ¢;_; is an arrow, a
contradiction. If s >4, then p;! = ¢;++-cs_1, and in particular, ¢; is an inverse of an arrow,

a contradiction as well. Therefore, \; =0 for all i € A. That is, f is injective. ]

5.2 Finitely generated string modules

We start by stating a few combinatorial lemmas that we will need.
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Lemma 5.2.1. Let w = [[,eg ¢ be a string, where ¢; : a; - a1 are edges in Q. Then
w admits at most finitely many peaks and every i € S is a successor of some peak in w
if and only if w = pilqi---p;lq., where p;,q; are paths in Q such that p; is non-trivial for

1<i<r and q; is non-trivial for 1 <i<r.

Proof. Suppose w admits finitely many peaks i, < ... <1, in S such that every i € S is a
successor of some peak in w. We shall show that w is of the form as stated in the lemma.

We start by defining p;. If 4, =1 ¢ S, then p; := &, .

7

Suppose that i, — 1 € S. Given
any ¢ € S with ¢ <i; — 1, 7 is a successor of some 7, with 1 <m < r. Since i < iy < i,
by definition, ¢;---¢; 1 is the inverse of a path, and in particular, ¢; is the inverse of an
arrow. Setting S to be the set of i € S with i <7, we see that [],, ¢; is the inverse of a

non-trivial path. We define p; to be this path.

We can similarly define the path g,. If 4. ¢ S, then ¢, = &,, . Suppose that i, € S.

Consider i € S with 4, <i. Then i is a successor in w of some 4, with 1 <n < r. Since
in <1 <4, by definition, ¢; ---¢;_1 is a path. In particular, ¢;_; is an arrow. Letting 7). be

the set of i € S with i, < i, we see that [Tier, ci-1 is a non-trivial path, which we define to

be g.. If r =1, then w = [Ties,ur, = Pi'q1-

Now suppose that r» > 1. Fix some 1 <[ <r. Since 7;,4;,; are peaks, ¢;, is an arrow and
Ci,,,-1 is the inverse of an arrow. Therefore, we obtain a maximal j; with 4; < j; < 441 such
that ¢;,---c;-1 is a non-trivial path, say ¢;. Then, ¢;, is the inverse of an arrow. Consider
1 with 7; < < 4,41, which is a successor of i; for some 1<t <r. If £t <[, then i; <7 and we
obtain a path ¢;,---c;_1 = ¢;,---cj,---c;-1, contrary to c;, being the inverse of an arrow. Thus,
l+1<tand < which gives that ¢;---¢;,_1 is the inverse of a path, and in particular,
¢; is the inverse of an arrow. As a consequence, ¢;,---¢;,,,-1 is the inverse of a non-trivial

path, say pi1. It is now easy to see that w = pylqr--p;ilq,.
Conversely, assume that w can be written as w = py'qi---p;tq,, where p;, ¢; are paths in Q
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such that p; is non-trivial for 1 <4 <r and ¢; is non-trivial for 1 <7 <r. For each 1 <i <r,
let S;, T; € S be such that [];eg, ¢; = p;t and [Tjer, ¢ = Gi, where Sy = @ in case p; is
trivial; and T, = & in case ¢, is trivial. Let s; be the minimal element of T}, for 1 <i < r.
Moreover, let s, be the minimal element of T, in case T, # @, and otherwise, let s, be the

unique element of S\ S. By definition, S; and 7} are convex subsets of S such that
S = (Sl UTl) @) (SQ U TQ) U (Sr UTT)

when viewed as orders. Moreover, s; — 1 is the maximal element of 5; if it exists, for all

1<e<r.

We claim that {s1, ss,...,s,} is the set of tops for w. Let us start with s;. By definition,
Cs, is the initial arrow of ¢;. If s —1€ .5, then s; —1 € S; with ¢, -1 being the inverse of
the initial arrow of p;. So s is a peak by definition. Consider now s; with 1 <7 < r. Since
s; is the minimal element of T;, the edge c;, is the initial arrow of ¢;; and since s; — 1 is
the maximal element of S;, the edge c,_1 is the inverse of the initial arrow of p;. So s; is
a peak by definition. Let us finally consider s,. Since s, —1 is the maximal element of S,.,
the edge c,._1 is the inverse of the initial arrow of p,_;. If s, € S, then s, is the minimal

element of 7)., and hence, ¢, is the initial arrow of ¢,. So s, is a peak by definition.

Given 1 <[ <r, we claim that each i € S; U T is a successor of s; in w. Indeed, if i < s,
since s; is minimal in 7;, we see that ¢ € S; with ¢ < s, — 1. In this case, ¢;---c5,-1 is the
inverse of an initial subpath of p;. So 7 is a successor of s; in w by definition. If i > s,
since s; — 1 is the maximal element of S;, we see that 7 € 7;. In this case, c5--c;-1 is an

initial path of ¢;. So 7 is a successor of s; in w.

In particular, every ¢ € S is a successor in w of some s; with 1 <[ < r. Consider now
ieS\S. Theni>s,. If i = s,, then it is a successor of s,. If i > s, then, by definition,
i—1€T,. In this case, ¢ ++-¢;_1 = ¢,. So i is a successor of i,.. By Lemma 5.1.1, {sq,...,5,}

is the set of all peaks for w. n
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Lemma 5.2.2. Ifi,j €S, then j is a successor of i in w if and only if v; € v;A.

Proof. Suppose j is a successor of ¢. If j =14, then v; = vie,,. If j <7, then ¢;---¢;_; is the
inverse of a path, say p. Since p is a path of length i~j > 0, by definition, v;p = v;_;—j) = v;.
If ¢ < j, then ¢;---cj_; is a path p. Since p is now a path of length j -4 > 0, by definition,
UiD = Vit (j—i) = Vj-

Conversely, assume that v; € v;A with j # i. Write v; = )X \jv;py, where A\; € k and p
is a path of length m,; such that \wv;p; # 0, for [ = 1,...,n. By definition, v;p; = Vjsm,-
Then, v; = YL NVism,, and hence, j = i £ my,, for some ly with my, > 0. If j =i+ my,,
then p;, = Ci***Ciamyy-1 = Ci**Cj1. If j =¢-my,, then pl‘ol = CimyyCicl = CjoreCint. In either

case, j is again a successor of i. O

Having the above combinatorial results in our hands, we are now ready to prove the main

theorem.

Theorem 5.2.1. Let w = [];.gci be a string, where ¢; : a; - a;41 are edges in Q). The
string module M (w) is finitely generated if and only if w admits finitely many peaks and

every i € S 1S a successor of some peak in w.

Proof. Suppose that M(w) is finitely generated. By definition, M (w) has a k-basis
{v; | i € S}. Then there exists a minimal subset {iy,is,...,4,} of S, with i; < iy < i,

such that M(w) = ¥7_; vi; A,

We claim that each i € S is a successor of at least one of iy, s, ..., 4,. Since v; € 251 Vi A\,
we may write v; = Y, Nvj,pr, where Njvj,pp # 0 with A € k, ji € {i1,...,4,}, and p; a path
of length m;. Then, v; = Zf:l AVj4m,» Where vj,.m, = v, € v;;A. Therefore, v; = Vs
and hence i = j;, + my,, for some 1 <[y <t. This gives that v; € vleA. Then the previous

lemma says that ¢ is a successor of jj,.
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It is now enough to show that the set {i1,%,...,4.} is the set of peaks for w. Suppose
i €S is a peak in w. Then we know that i is a successor of some i; with 1< j <. Using
Lemma 5.1.1, 7 = ¢;. Next, suppose that 4; is not a peak for some 1 <! <. Then either
¢;, is the inverse of an arrow or ¢;_; is an arrow. In the first (resp. second) case, i, is a
successor of 4; + 1 (resp. 7, —1). Since ¢; + 1 (resp. ¢; — 1) is a successor of some i, with
1 <m <r, Lemma 5.1.1 gives that i; is a successor of i,, and [ # m. Thus, the previous

lemma gives that v;, € v;, A, a contradiction to the minimality of {iy,...,i,}.
Therefore, w has finitely many peaks, and every i € S is a successor of some peak.

Conversely, suppose w admits finitely many peaks {iy,...,i,} and that every i € S is a
successor of some peak. Using the previous lemma, v; € v;, A for some 1 < p < r. Since
{v;|i €S} is a generating set of M(w), we get that M (w) is generated by {v;,,...,v; }.
Therefore M (w) is finitely generated. O

The above theorem can be informally stated as saying that a string module M (w) is
finitely generated if and only if the diagram representing w is of the following form. Note

that the string has only finitely many peaks.

k k
N N N
P4 N N N
Example 5.2.1. Let Q be the following quiver with p = {bc, cd, df, fb}.

a e
. —
U1 Vg —— Us V4

~ 7
v

f

Let w = ---acefacefab™t. Then the following picture demonstrates that not every i€ S is

a successor of some peak, and hence M(w) is not finitely generated.
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5.3 Projective covers and syzygies

In this section, we will give an explicit description of the projective covers of finitely
generated string modules. By Theorem 4.4.1, these will themselves be string modules.
We will then use this projective cover to explicitly describe the ‘syzygy’ of such modules.

We will use the following equivalent definition of the projective cover for our purposes.

Definition 5.3.1. Let M be a finitely generated A module. The projective cover of M
is a module P € projA with f: P — M an epimorphism such that Ker(f) c radP.

Lemma 5.3.1. Let w = [[;.g¢; be a string, where the ¢; : a; - a;;1 are edges in Q).
Assume that M(w) is finitely generated with a w-string basis {v; |i € S}. If A is the set

of peaks for w, then M(w) has a projective cover as follows:

fu: ®iena, A = M(w) : (2;)ien = ZKAUﬂCi-

Proof. First, we claim that f,, is surjective. Let j € S. Then j is a successor of some
ieA. If j <4, then ¢j---¢c;_y = p~, where p is a path of length ¢ - j starting with a;. Thus,
D € eq, A such that f,(p) = v;p = vi_i—j) = v;. If j >4, then ¢;---cj1 = ¢, where ¢ is a path
of length j —i starting with a;. Thus, § € e,, A such that f(q) = vi§ = vis(jy = v;. If j =14,

then f(eq;) = vieq, = v; =v;. This proves our claim.
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Let # = (2;)iea € Ker(fy). For each i € A, we may write z; = A\ieq, + X; AijPij, Where

)\Z‘, >\ij € k and Dij € le’j ((Zl', —) with lij > (0. Then

fu(x) = ZieA)\ivi + ZieAZj/\ijviilij =0.
This yields A\; = 0 for all i € A. That is, x € rad(®;ea€q,A). O

Definition 5.3.2. Let M be a finitely generated A-module with f: P — M its projective
cover. Then the syzygy of M, denoted Q(M), is defined to be the module Ker(f).

In essence, the syzygy of a module ‘measures’ its deviation from being a projective

module.

Theorem 5.3.1. Let M(w) be a finitely-generated string module defined by a string
w = pitqrprlqe, where p;,q; are paths in Q such that p;,q; are non-trivial for 1 <i<r
and 1 < j <r respectively. In case py is finite and p;tqr does not start in a deep, define
x1 to be the mazimal path such that x7'pitqr is a string. In case q, is finite and p;tq,
does not end in a deep, define y, to be the maximal path such that p;lq.y, is a string.
For each 1 < i <r, let x; and y;_1 be the maximal paths such that p;x; and q;_1y;_1 are
strings. Then
QMw))=Ki1o Ky K, ® K,.1,

where

1. Ky =0 if zy is not defined; and otherwise, K1 = M(x) with x the path such that

r1 = ax for an arrow «;
2. K;=M(x;'yq) for2<i<r;

3. K1 =0 if y,. is not defined; and otherwise, K,,1 = M (y) with y the path such that

yr = Py for an arrow [.
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Proof. We denote by [; and d; the length of p; and ¢; respectively, for i =1,...,r. Write
W = [];eq ¢iy where S is an interval of Z and ¢; : a; - a;41 are edges in Q). Let my,...,m,
be the peaks for w such that a,,, = s(p;). Since s(g;-1) = s(p;-1) and e(q;i-1) = e(p;), we
see that m;_; +d;_; = m; — l;, which is a deep for w, for 2 <i <r. Let {v; | i€ S} be a

w-string basis for M (w). By Lemma 5.3.1, M (w) admits a projective cover
fuw: Py = ®i_1€q,, A ~ M(w): (p1s-- -, pr) P iy Vm, i

We shall first show that K; @ L;, a submodule of P, for i = 1,...,r+ 1. For the sake
of simplicity, we shall omit the zero components of an element (p1,...,p,) in P,. For

instance, (eq,, ,0,...,0) will be simply written as (eq,,, )-

In case x; is not defined, K7 = Ly with L; = 0. Assume that x; = ax, where av:a - b is
an arrow and x is a path. Put L; = (p1a)A # 0. By the maximality of x1, we see that
prazy =0 forall y € Q1. If x = &, then Ky = M(z) 2 Sy, and Ly = k(p1@) 2 Sp. Otherwise,
T = ajg-++, where a; € Q1. Then, (p1a@)A has k-basis {(p1a), (praan), (praaras),. .., },
which is clearly a z-string basis. Thus, M (z) 2 L. Similarly, K,,; 2 L,,1, where L,,; =0
in case y, is not defined, and L,,; = (¢,8)A in case y, = By with 3 some arrow and ¥

some path.

Consider K; = M(w;), where w; = x;'y;_1, for 2 <4 <r. By the maximality of x; and
Yi-1, we see that p;z;¥ =0 and ¢;_17;-17 =0 for all v € Q. If z; and y;_1 are trivial, then
K; = Sepyy- Put L; = (¢i-1,—p;)A. Since p;y = 0 and ¢;-17 = 0 for all v € @1, we see that
L; = k(Gi-1,—Pi) = Se(p;), and hence, K; = L;.

Assume that z; is trivial and y;-1 = Bic118i-12. Then w; = Bi118i-12. We set
L; = (Gi-1,—pi)\ + (cji,lﬁi,lyl)A. Since p;y = 0 for v € @)1, we see that L; has a k-basis
{(@i-1,-P1), (G-18i-1.1), (Gi-1Bi-1.1Bi-1.2), - - - },- This is a w;-string basis for L; because
(Gi-1, —ﬁi)@,m = (@46@-,171). Thus, K; 2 L; in this case. Similarly, if y;_; is trivial and
T; = Qe then K; = L;, where L; = (i1, —pi) A + (pscvin ) A
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Finally, assume that z; = a;1049--- and y;-1 = Bi-118i-1,2+-, Where a;s, 814 are arrows.
Put Ll = (_ﬁzdzl)A + ((ji_l, —ﬁl)A + (Qi—lgi—l,l)A~ Since Cji—ldil =0 and ]51'61'_1’1 = 0, we see
that L; has a k-basis

{... (-Piqirqviz), (=Piti1), (Gi-1,—Ds), (@'7151'71,1)7 (@‘715171,152‘71,2)7 )
Observe that w; = -z ;' Bi1,1 0512+ Since
(Gi-1, —Di) i1 = (—Diti1),
(-1, —ﬁz‘)Bz‘—m = (q_i—15z'—1,1)7

we see that the above basis is a w;-string basis for L;. Thus, K; 2 L; in this case.

Now, set L = Y0} L;. It is not difficult to see that this is a direct sum. We first show

1=

that L ¢ Ker(f,), or equivalently, L; ¢ Ker(f,), fori=1,...,r +1.

Suppose that Ly # 0. Then, [; is finite and Ly = (p1a@)A. Observe that m; —[; is a deep
for w and vy, p1 = vy, -1, Thus, v, ;@ =0, and consequently, f,((p1&)) = vy, Pra = 0.

Thus, L; € Ker(f,). Similarly, L,,; € Ker(f,).

Consider L; with 2 <4 <r. Since m;_1 + d;_1 = m; — [;, we see that

Jo((@i1,-Di)) = U1 Gi-1 = Um;Di = Um,_y+d;—y — Umy—1; = 0.

This shows that (gi-1,-pi)A € Ker(fy). Let y;o1 = Bim118i-12+-. Since m;_y + d;—y is
a deep for w, we see that f,((¢i-158i-1.1)) = Vm,Gi1Bic11 = Vmy_y+d,Bi-11 = 0. Thus,
(Gio1Bic11)A € Ker(f,,). Similarly, if ; = o+, then (p;ai1)A € Ker(f,,). This implies
that L; ¢ Ker(f,) in any case.

Assume conversely that p = (py,...,p,) € Ker(f,), where p; € e,,, A. For each 1 <i <,

we may write

Pi = ZSZOAispis + thl;uitq_ita
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where \;q, i3 € k, and p;s is a path of length s such that p;, is an initial subpath of p; for
0 < s <l; and p; is a proper initial subpath of p;, for s > [;, while ¢;; is a path of length ¢
such that g;; is an initial subpath of ¢; for 1 <t <d; and ¢; is a proper initial subpath of
pit for t > d;. Then
0 = fulp) =iz Vm;pi

= Vi1 (X0 NisUm,Dis + L1 HitVm, Git)

= Zgzl(ZOgssli AisUm, Dis + 2 1<t<d; MitVm, Git)

= Zosssll >‘18,Um1—8 + Z;Z ZOSS<ZZ' )\isvmi—s

r—1

+2im1 Licted; HitUmist + Licted, HrtUm,+t
-

+ zi:Z()‘iJi T Hi-1,d;y )Umi_li

A a consequence, A\j; =0 for 0<s<ly, and \js=0for 2<i<rand 0<s<;, and py; =0
for1<i<r-land 1<t<d;, and p,y =0 for 1 <t <d,,and Ny, + pt;-14, , =0 for 2<i<r.

That is, p1 = Yo, ArsP1s + H1,a, @1 + Dtsa, K161t
Pi = —Hi-1,d;_Di + Mid; @i + Dogsi, NisPis + Lgsa, Mieie, for i=2,...,r =1,

and Pr = _,ur—l,dr_lﬁr + Zs>lr )‘rsﬁrs + Zt>dr,urtgrt- This yields

p = Zs>l1>‘18(ﬁls) + Zt>dr:u7"t((.77"t)
+ Vo (Zt>di,1 fio14(Gio1,) + Pic1,diy (Gim1, =Di) + Loty Ais (ﬁis)) .

Thus, p€ Ly + Lo + -+ + L, + Ly41. Thus, Ker(f,) = L=o!L; 2 /" K;. ]

Example 5.3.1. Let A be the string algebra from Example 5.2.1. Let w = ced tef. Then
by definition, the peaks for w are 1 and 4. Therefore, the projective cover for M(w) is
gwen by P,, & P,,, where

P,, = M(cefacefa--),

P,, = M(d'efacefac--).

Moreover, using the previous theorem, we get that K; = 0, Ky = M(faceface---), and
K3 =M(cefacefa-), hence

Q(M(w)) = M(faceface---) & M(cefacefa--).
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We immediately get the following theorem as a corollary of the previous theorem.

Theorem 5.3.2. Let A be a string algebra. Then a string module over A s finitely
generated if and only if it is finitely presented.

Proof. Clearly, if a module is finitely presented, then it is finitely generated. Conversely,
suppose M (w) is a finitely generated module for a string w in A. Theorem 5.2.1 along
with Lemma 5.2.1 implies that w is of the form w = p7lq;---p;lq., where p;, g; are paths
in () such that p; is non-trivial for 1 < ¢ < r and ¢; is non-trivial for 1 < ¢ < r. Using
Theorem 5.3.1, we get that Q(M (w)) is a finite direct sum of string modules that are
themselves finitely generated. Hence (M (w)) is finitely generated, which implies that
M (w) is finitely presented. O
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CHAPTER 6

Finitely co-generated string modules

In this chapter, our goal would be to prove the dual results from the last chapter. We will
classify the finitely co-generated string modules over A. Furthermore, we will calculate
the injective envelopes and cosyzygies of such string modules and show that any finitely
cogenerated string module is finitely copresented as well, which is again known to be
the case for locally bounded string algebras. We will assume A = kQ/(p) to be a locally

finite-dimensional string algebra for the entirety of this chapter.

6.1 Finitely cogenerated string modules

As before, we start by stating a few combinatorial lemmas.

Lemma 6.1.1. Let I = ®]_,1,, for some a; € Qy and x € I such that x # 0. Then there

exists a path p in @ such that 0+ x-p € soc(l).

Proof. Suppose x = (x1,--,x,) with z; € I,,. Let S ={j|1<j<rxz; # 0} Since

z # 0, S # @ Using Theorem 4.4.2, for all i € S, we can write z; = ¥, )\i,jvg)j,
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where {...v f,véz),viz ,...} is a string basis of I,, as described in Theorem 4.4.2 and

Nij # 0 forall 1 <j<r. Letm= max .| kij| such that the maximum occurs at
some j.. Let p; be the path ending at a; corresponding to v( ) g ie. vk = (p;)*. Then
T+ Pi = Niji(€q,)* €s0c(ly,). Now, let py be the path with the maximum length among
the p;. Then z; - py is either 0 or equal to A;j/(eq,)*. Since xy - py # 0, - py # 0 and
x - py € soc(I). O

We can express the idea of the above proof as follows. Since we are starting with a direct

sum of /,,, we have a direct sum of string modules of the form

N -
\ /
NS

Taking the maximum m; ensures that x; - p; is proportional to the basis vector corre-
sponding to the deep of I,,. Further, by taking the maximum over p;, we make sure that
every other copy either becomes zero or proportional to the basis vector corresponding

to the deep.

Lemma 6.1.2. Let w = [[,cq ¢ be a string, where ¢; : a; > a;41 are edges in Q. Then w
admits at most finitely many deeps and every i € S is a predecessor of some deep in w
if and only if w = qip7t--q.p;t, where p;, q; are paths in Q such that p; is non-trivial for

1<i<r and q; is non-trivial for 1 <1 <r.

Proof. Suppose w admits finitely many deeps di,...,d, in S such that every i € S is a

predecessor of some deep. We shall show that w is of the form as stated in the lemma.
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We start with defining ¢;. If d; —1 ¢ S, then ¢ = €q;,- Suppose that d; -1 € S. Given
any ¢ € S with ¢ <d; — 1, 7 is a predecessor of some d,, with 1 <m < r. Since 7 < dy < d,,,
by definition, ¢;---cq,,-1 is a path, and in particular, ¢; is an arrow. Letting S; be the set

of 1€ S with i <d;, we see that [],g, ¢; is a non-trivial path p;.

Next, we define p,. If d,. ¢ S, then p, = &,, . Suppose that d, € S. Consider i € S with
d, <i. Then 7 is a predecessor of some d,, with 1 <n <r. Since d,, < d, <7, by definition,
g4, +Ci—1 is an inverse of a path. In particular, ¢;_; is an arrow. Let S, be the set of i € S
with d, < i, we see that [];.s c;-1 is the inverse of a non-trivial path p,. If r = 1, then
w=qp;

Suppose that r > 1. Fix some 1 <[ <r. Since d;,d;,1 are deeps, ¢4, is the inverse of an
arrow and cq,, -1 is an arrow. Therefore, we obtain a maximal j; with d; < j; < d;4; such
that cg,---cj,—1 is the inverse of a non-trivial path p;. Then, ¢j, is an arrow. Consider i
with j; < 7 < dj;1, which is a predecessor of d; for some 1 <t <r. If t <[, since d; < 1,
we obtain the inverse of a path c4,---ci-1 = ¢q,---c;,---ci—1, contrary to c¢;, being an arrow.
Thus, [ +1 <, and since i < d;, we see that ¢;---cq,—1 is a path, and in particular, ¢; is an
arrow. As a consequence, ¢;,---Cq,,,-1 is a non-trivial path g;;. It is now easy to see that

w = qp;tgpit.

Conversely, assume that w can be written as w = ¢ip7'--¢,p;t, where p;,¢; are paths in
(@ such that p; is non-trivial for 1 < ¢ < r and ¢; is non-trivial for 1 < ¢ < r. For each
1<i<r, let S;,T; €S be such that [];cq, ¢; = p;t and [1jer, ¢j = @i, where T} = @ in case
q1 is trivial; and S, = @ in case p, is trivial. Let d; be the minimal element of S;, for
1 <7 < r. Moreover, let d, be the minimal element of S, in case S, # @, and otherwise,
let d, be the unique element of S\ S. By definition, S; and 7T} are convex subsets of S

such that

S = (Tl @) Sl) U (TQ U SQ) U (Tr @) Sr)
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and that d; — 1 is the maximal element of T; if it exists for all 1 <7 <.

We claim that {d;,ds, ...,d,} is the set of deeps for w. Let us start with d;. By definition,
cq, is the inverse of the final arrow of p;. If dy — 1€ .S, then d; — 1 € T} with c¢4,_; being
the final arrow of ¢;. So d; is a deep by definition. Consider now d; with 1 <7 < r. Since
d; is the minimal element of S;, the edge ¢4, is the inverse of the final arrow of p;; and
since d; — 1 is the maximal element of 7}, the edge c4,_1 is the final arrow of ¢;. So d; is
a deep by definition. Consider finally d,. Since d, — 1 is the maximal element of T;., the
edge cg4,.-1 is the final arrow of ¢.. If d, € S, then d, is the minimal element of S, and

hence, ¢4, is the inverse of the final arrow of p,. So d, is a deep by definition.

Given 1 <[ < r, we claim that each ¢ € S; UT; is a predecessor of d;. Indeed, if i < d,
since d; is minimal in S;, we see that 7 € S; with ¢ < d; — 1. In this case, ¢;---cq,-; is a final
subpath of ¢;. So i is a predecessor of d; by definition. If 7 > d;, since d;—1 is the maximal
element of 7j, we see that ¢ € 7. In this case, cg4,---¢;—1 is the inverse of a final subpath of

pi- So 4 is also a predecessor of d;.

In particular, every i € S is a predecessor of some d; with 1 <1 <r. Consider now i € S\ S.
Then i > d,.. If i = d,, then it is a predecessor of d,. If 7 > d,. then, by definition, 1—1 € S,..
In this case, cg4,+-¢;-1 = p;l. So i is also a predecessor of d,. By Lemma 5.1.1, {dy,...,d,}

is the set of all deeps for w. n

Theorem 6.1.1. Let w = [],cq ¢; be a string, where the ¢; : a; - a;41 are edges in (). The
string module M (w) is finitely cogenerated if and only if w admits finitely many deeps

and every 1 € .S is a predecessor of some deep in w.

Proof. Let {v; | i € S} be a w-string basis of M(w). We first suppose that M(w) is
finitely cogenerated. Then there exists an injective map f: M (w) — Iy, where I € injA.

This means that Iy = ®]_,1,,, where a; € Qg for 1 <¢ <r.
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Let Q be the set of deeps of w. We first show that 2 is finite. Using Lemma 5.1.2,
we know that soc(M(w)) = @yv; A, where V is the set of deeps for w. Since f is an
injection, soc(M(w)) c soc(®!_ 1,,) = @!_soc(l,,) = ®_ k(eq,)*. Since ®!_ k(e,,)* is

finite-dimensional, soc(M (w)) is finite dimensional and V is finite.

Let i € S. Then using Lemma 6.1.1, there exists some path p in @ such that

F(0-5) = F(0) 5= Y Mlen)” 0.

Since v; - p # 0, there exists some m € S such that v, = v; - p.

We claim that m is a deep. Suppose otherwise. Then either m € S and ¢, is an arrow,
or m—1¢€ S and ¢,,_1 is the inverse of an arrow. In the first case, v,, - ¢;n = Vi1,
which implies that f(vms1) = f(Um - cm) = f(Um) - cm = (Xig Mi(eq,)*) - ¢ = 0. Since
f is injective, this is a contradiction. In the second case, v,, - ¢, = v,,—1, which implies
that f(vm-1) = f(vm) - em = (Xig Ai(€q;)*) - ¢m = 0. Since f is injective, this is again a

contradiction. Hence, Lemma 5.2.2 gives that each i € S is a predecessor of some deep.

Now suppose w admits finitely many deeps {d;,---,d,} and every i € S is a predecessor
of some deep. Then soc(M(w)) = ®]_,v4,k using Lemma 5.1.2. Thus, we get a canonical
inclusion f :soc(M(w)) - @}, 1, sending vy, to the element having (e,, )* as the ith
coordinate and 0 as others. Let g be the canonical inclusion of soc(M(w)) in M (w).
Since @] _,1,, is an injective module, we get a map h : M(w) —» ®,_,1,, such that

hog=f.

We claim that A is a monomorphism. For this, it is enough to show that soc(M (w)) is an
essential submodule of M (w) as that would imply that ¢ is an essential monomorphism,
which would imply that A is a monomorphism (since f is a monomorphism). Let N be a
non-zero submodule of M (w) such that z = ¥, \;jv; is a non-zero element of N, where
T is a finite subset of S, and \; # 0 for all i € 7. Since every [ € S is a predecessor of

some deep, there exist paths p; in () such that v; - p; is a deep. Let p, be a path with
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the maximum length among p;. Then v; - p,, is either 0 or a deep. Since v, - p, # 0,
0#x-p, € Nnsoc(M(w)). This shows that soc(M(w)) is an essential submodule of
M(w). O

Again, the above theorem can be reformulated as saying that a string module M (w) is
finitely cogenerated if and only if the diagram representing w is of the following form.

Note that the string has only finitely many deeps.

NS NS

Example 6.1.1. Let w =---ab~tab™'--+ in Ay. Then the diagram representing M(w) is as

follows.

AONAN AN

Since w has infinitely many deeps, M (w) is not finitely cogenerated.

6.2 Injective envelopes and cosyzygies

Lemma 6.2.1. Let w = [[,.g¢; be a string, where ¢; : a; > a;41 are edges in Q, such that
M(w) is finitely cogenerated. If V is the set of deeps for w, then ®,vl,, is the injective
envelope of M(w).

Proof. Let i € V. Then I,, = M(p;q;'), where p;, ¢; are longest paths ending at a; such
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that p;g;! is a string. We write p; = (20 (-1,4) and g; = -+-B1.:)B0,)- Now, we define

a map gy : M(w) - @,cvl,, as follows.

Let i € S. Since M(w) is finitely cogenerated, i is a predecessor of some deep d;. We
note that i can be a predecessor of at most two distinct deeps. If 7 is a predecessor of
a unique deep d, then either ¢;---c4_1 is a subpath of p; or c4---¢;_1 is the inverse of a
subpath of g4. In either case, we define g, (v;) to be the dual of this subpath. However,
if 7 is a predecessor of two deeps d; and dy, then cy,---c;_; is the inverse of a subpath of
qq, and ¢;---cq,-1 is a subpath of pg, (Assuming, without loss of generality, that d; < ds).
In this case, set g, (v;) to be the difference of the dual of these two paths. Clearly, g,
is an injective module homomorphism as the images of v; are linearly independent. We

will show that Im(g, ) is an essential submodule of ®;cy1,,.

Suppose 0 # N @;ey I,,. Let 0 # z € N. Then z = ¥, A\p(rm)*, with A, # 0, where
Tm = Q(=2mm)" " (=2,i)(=1,i) OF T = B(1nm) B1,i)B(0,i) for some i € V. Set n := max,, ny,.
Let 7, be a path with length n. Then -7, is a non-zero sum of e,,. Hence we get that

Ty € g(M(w)). Therefore, g, is an essential monomorphism. O

Definition 6.2.1. Let M be a finitely cogenerated A-module with i : M — I its injective
envelope. Then the cosyzygy of M, denoted by Q- (M), is defined to be the module
Coker(1).

In essence, the cosyzygy of a module ‘measures’ its deviation from being an injective

module.

Theorem 6.2.1. Let M(w) be a finitely cogenerated string module defined by a string
w = qpytqepyt, where pi,q; are paths in Q such that p;,q; are non-trivial for 1 <i<r
and 1 < j <r respectively. In case ¢, is finite and does not start in a peak, define x1 to be
the mazimal path such that x1qipy! is a string. In case p, is finite and does not start in

a peak, define y, to be the mazimal path such that q.p;'y-! is a string. For each 1 <i<r,
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let x; and y;_1 be the maximal paths such that y;_1p;_1 and x;q; are strings. Then
Q_(M(U))) =KieoKyo---K,® KT+1,

where

1. K1 =0 if 1 is not defined; and otherwise, Ky = M(x) with x the path such that

x, = Q0 for an arrow «;
2. K;=M(zy;Yy) for2<i<r;

3. K,11 =0 if y, is not defined; and otherwise, K,.1 = M(y) with y the path such that

yr =yB for an arrow .

Proof. We denote by [; and d; the length of p; and ¢; respectively, for ¢ =1,... r. Write
W = [];eq ¢iy where S is an interval of Z and ¢; : a; - a;41 are edges in Q). Let mq,...,m,
be the deeps for w such that a,,, = e(p;). Since e(q;-1) = e(pi-1) and s(¢;) = s(pi-1), we
see that m;_; +l;_; = m; — d;, which is a peak for w, for 2<i <r. Let {v; |i € S} be a

w-string basis for M (w). By Lemma 6.2.1, M (w) admits an injective envelope

G M(w) > ®iev 1y,

We will construct a surjective homomorphism 7 : @evl,, - @17 K; and show that the
kernel of this map is Im(g,). For 1 <i<r, let s;, t; be the longest paths ending at a,,
such that s;¢7! is a string. Since s; and ¢; have an endpoint, they are either trivial or
we can write them as s; = ---ag;01; and t; = (2,01, where «;;, 3;; are arrows. We
note that if s; and ¢; are both trivial, then w would have to be a trivial string. Now set
Vo = €5, 5 Ui = (i 00 ,)* for j < 1(s;), and vj; = (B P2:P1,)* for j < U(t;).
Using Lemma 4.4.2, we have that the set {v_;; | 7 < 1(s;)} u{vo;} u{vj;|j <I(t;)} is
a k-basis of I,, . Since g;,p; are paths ending at a;, we can assume, without loss of

generality, that they are terminal subpaths of s; and t; respectively.
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Now if ¢; is infinite or starts in a peak, ¢; = s; and we define w(v_;;) :=0 for all 1 < j <
I(s;). Otherwise, z; is a non-trivial path such that z1¢; = s;. So we get that x = ---ag,421.
We define m(v_;1) := 0 for 1 < j < dy, m(v_g,_11) := ez(m), and m(v_j1) = (j1-Qay+21)"
for dy +2 < j <I(sy). Since the set {(a1-gy21)* | di+2 < j <I(s1)}u {e;(z)} is an

a-string basis of M (z), we get that K; c Im(7).

Similarly if p, is infinite or starts in a peak, ¢, = t, and we define 7(v;,.) ;=0 forall 0 < j <
I(t;). Otherwise, y, is a non-trivial path such that y,p, =t,. So we get that y =---; 12,
We define m(v;,) =0 for 0 < j <., m(v,41,) = e;(y) and 7(v;,) = (BjrBi+2.)* for
[, +2<j<I(t). Since the set {(5;,-as+2,)* |l +2<j<I(t,)}u {ez(y)} is a y-string
basis of M(y), we get that K,,; c Im(7).

Now suppose 2 < ¢ < 7. Then either z; is trivial or x; = -4, 42,ig,+1,4. Similarly either
Yi—1 is trivial or y;q = -0}, ;+1.-1. Now we define m(v_;;) =0 for all 1 < j <d; -1,
m(vgi)=0forall 0<t <l -1, m(v_g, ;) =7m(vy,_ 1) = 6;(%)’ m(v_ji) = (i ge14)*
for all d; +1 < j <I(s;), and 7(vj;-1) = (Bjic1-By+14-1)* for all [y +1 < j < U(ti1).
Note that this defines 7 on all of @;eyl,,. Since the module M (z;y;1) has as a k-basis
the set {... ,agﬁlji,e;(qi),ﬁ;_ﬁl’i_l, ...}, K; c Im(r) for all 2 <4 < r. Therefore, we get

that 7 is a surjective homomorphism.

We now show that Im(g,,) c Ker(r). Let i € S. Then by Lemma 6.1.1, i is a predecessor
of some deep m,, for 1 < z; <r. If i = m,,, then 7(gw(v;)) = W(e;mq) = m(voz,) = 0.
Suppose ¢ < m,,. Then Cit*Cm -1 is a terminal subpath of ¢,,, and hence a terminal
subpath of s,,. Now if ¢+ —1 ¢ .5, then ¢; is the starting point of the string and z; = 1. By
the definition of g, we get that 7(g,(vi)) = 7((@g 1--c11)*) =0. If i —1€ .S and ¢;4
is an arrow, then 7 is a predecessor of a unique deep. Therefore, by the definition of g,
we get that m(g,(vi)) = 7((m., iz z,)*) = 0, since 0 <m, —i <d,. On the other
hand, if 7 -1 € .S and ¢;_; is the inverse of an arrow, then ¢ is a predecessor of m,,_; as

well. This gives that Crms, 1" Cicl is the inverse of p,,_; and Q. —i,z O is the path ¢,,.
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Therefore, by the definition of g,,, we get that

7T(gw(vi)) = 7T((Oédzi,za;"'O‘LZﬂ;)* - (6121-—1721'—1"'61,21‘—1)*)

= W(U—dzi’zi - Ulzrlﬁzi—l) =€ *s(qzi) _e*s(qzi) =0.

Now we suppose that i >m.,. Then ¢, -+-c;-1 is the inverse of a terminal subpath of p.,,
and hence of a terminal subpath of t,.. Now if ¢ ¢ S, then ¢;_; is the endpoint of the
string and z; = 7. By the definition of g, we get that 7(gy,(v:)) = 7((B,B1r)*) = 0.
If 7 € S, and ¢; is the inverse of an arrow, then ¢ is a predecessor of a unique deep.
Therefore, by the definition of g,,, we get that m(g,(v;)) = W((ﬁi,mwzi---ﬁl,%)*) =0, since
0<i—-m,, <l,,. Finally, if ¢; is an arrow, then ¢ is a predecessor of m, ,; as well and we
are in the same case as before. Therefore, Im(g,) c Ker(w). Now suppose z € Ker(7)

such that z =Y _, Zé(_t_g(s A;ivji. Then 7(z) = 0 implies that

I(s1)~d .
Ad;-1 166(1) + Do ()= >\—d1—b,1(ad1+b,1"'ad1+2,1) +

1(t;— lie *
i e i l)l ' )\ll 1+b,ifl(ﬁli,ﬁb,ifl'"ﬁli,ﬁl,ifl) +

PIED I (i) s Ady—bi (O b0l 41,)
z 2(/\ d; z+)\l _1,i— 1) ;(q)
1(tr)~lr
(t - At (Brsbr Bovze ) + Ma1n€l,y = 0.

This gives that

Ad;—ji =0 1<j<l(s)—d;, 1<i<r
N;+5i =0 1<yj<l(ty)-1;, 1<i<r
Acdii = =Ny y,i-1 2<i<r

This gives that z =Y, Zl—idi Aj,iv5i such that A_g, ; = =\;, | ;-1 for 2 <4 <r. Therefore we
get that z € Im(g,) and Ker(7) = Im(g, ). Thus

QO (M(w)) 2 ®iey Ly, /Tm(gy) = ey Ly, [Ker () = @4 K.
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Example 6.2.1. Let A be the string algebra from Example 4.4.2. Let w = a;bit. Then

w has one deep, 2. Therefore, the injective envelope for M (w) is given by Iy, where
IQ = M("'agalbilbgl"').
By Theorem 6.2.1, Ky = M(---aqa3) and Ko = M(---bsbs), and hence

Q_(M(U))) = M("'CL4CL3) @ M(b4bg)

We immediately get the following theorem as a corollary of the previous theorem.

Theorem 6.2.2. Let A be a locally bounded string algebra. Then a string module over
A is finitely cogenerated if and only if it is finitely copresented.

Proof. Clearly, if a module is finitely copresented, then it is finitely cogenerated. Con-
versely, suppose M (w) is a finitely cogenerated module for a string w in A. Theorem
6.1.1 along with Lemma 6.1.2 implies that w is of the form w = ¢1py*--¢.p;!, where p;, ¢;
are paths in () such that p; is non-trivial for 1 <7 < r and ¢; is non-trivial for 1 < < r.
Using Theorem 6.2.1, we get that Q= (M (w)) is a finite direct sum of string modules
that are themselves finitely cogenerated. Hence - (M (w)) is finitely cogenerated, which
implies that M (w) is finitely copresented. [
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CONCLUSION

In this dissertation, we worked with locally semi-perfect algebras and proved the existence
of almost split sequences in the category of locally finite-dimensional unital modules over

certain locally semi-perfect algebras.

In the second half, we worked with locally finite-dimensional string algebras. We char-
acterized the strings for which the associated string modules are finitely presented or

finitely copresented and calculated their syzygies and cosyzygies respectively.

In order to give an explicit description of the almost split sequences, the next step would
be to give a combinatorial description of the irreducible maps and almost split sequences
for locally finite-dimensional string algebras. This would involve a generalization of the

functorial factorization method used by Butler and Ringel in [11].
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