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Abstract. These notes contain an introduction to Monsky–Washnitzer coho-
mology, and to the algorithm of Kedlaya which counts points on hyperelliptic

curves in odd characteristic.

At the end of 2022, I gave an eight-hour mini-course at the Université Toulouse
III - Paul Sabatier entitled “Théories cohomologiques p-adiques et comptage de
points”. These notes contains an extended version of the lecture.

The ultimate goal of this paper is to present Kedlaya’s algorithm in its original
form [Ked]. This algorithm computes the number of points on an hyperelliptic
curve over a finite field of characteristic p ⩾ 3. To achieve this, it employs a tool
called p-adic cohomology.

There exists numerous variants of p-adic cohomology, and providing a full ex-
position would be an impossible task for a mini-course. Here, we will rather focus
on two of the most explicit p-adic cohomology theories: Monsky–Washnitzer and
overconvergent de Rham–Witt cohomology. We will give proofs of some standard
theorems which will be necessary for the algorithm.

The construction of these theories is inspired from results in differential topology.
By combining Lefschetz–Hopf and de Rham theorems, we have in modern terms
the following result.

Theorem. Let n ∈ N. Let X be a compact, smooth n-manifold with boundary. Let
f : X → X be a smooth map. Denote by Fix (f) the set of fixed points of f .

Suppose that these fixed points are all isolated, and that none of them lays on the
boundary of X. For all x ∈ Fix (f), we let if (x) be the fixed point index of f at x.

Then, we have the following formula using the de Rham cohomology of X:∑
x∈Fix(f)

if (x) =

n∑
i=0

(−1)
i
tr
(
Hi

dR (f)
)
.

Proof. See [RS, theorem 4.4.2] for the proof and terminology. □

Roughly, the idea is to get a similar result when X is a smooth scheme over
a perfect field of positive characteristic, and when f is related to the Frobenius
endomorphism. The difficulty resides in the definition of a suitable complex a la de
Rham.

In the first part, we will first see why the naive definitions of the de Rham
complex fail to provide such a formula. We then introduce Monsky–Washnitzer
cohomology to get around the problems we shall encounter.

In the last part of this paper, we describe Kedlaya’s algorithm.
This paper targets a wide audience of mathematicians, but we still assume that

the reader has some background. For instance, it is necessary for them to be
familiar with the algebraic de Rham complex [Sta, 0FKF], and with the theory of
smooth morphisms of schemes [Sta, 01V5]. We also presume that they know how
the cohomology groups of a cochain complex are defined [Sta, 010V], and what
adic topologies are [Sta, 07E8]. By now, it should be clear that we will often rely
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on [Sta] to reference some basic facts, in hope that it will make the reading more
accessible.

Part 1. Monsky–Washnitzer cohomology

The cohomology theory we are about to define was introduced by Monsky and
Washnitzer in [MW]. Their aim was to give a cohomological interpretation of
Dwork’s work.

Throughout this section, p is any prime number.

1.1. Naive de Rham cohomology

Let us first explain why we cannot simply use the algebraic de Rham cohomology
of a scheme X over a perfect field of characteristic p.

Example 1.1.1. Simply consider the commutative Fp-algebra Fp [X]. Then the
algebraic de Rham complex can be interpreted as:

(1.1.2) · · · 0 Fp [X] Fp [X] 0 · · ·
∂

∂X

Remember that our main goal is to have a formula similar to Lefschetz–Hopf
theorem, that is, using traces. In particular, we want our cohomology spaces to be
finite dimensional vector spaces.

Here, the associated cohomology spaces are obviously infinite dimensional. In-
deed for each n ∈ N, we have:

Xpn−1 ∂

∂X
(X) ̸= 0,

∂

∂X

(
Xpn

)
= 0.

So it is clear from the beginning that we have to work in characteristic zero.
Before we explain how we proceed in general, let us just consider the case where
our base field is Fp. The obvious characteristic zero p-adic candidate for the base
ring is Zp.

In all this course, we are going to be working with lifts.

Definition 1.1.3. Let V be a commutative ring, and let I be an ideal of V . Let
A be a commutative V/I-algebra. A lift of A is a commutative V -algebra A such
that A ∼= A⊗V V/I as V -algebras.

We say that such a lift is flat (respectively smooth) when the structural mor-
phism V → A is flat (respectively smooth).

Similarly, if F : A → B is a morphism of commutative V/I-algebras, and if A
and B are two respective lifts of A and B, then a lift of F is a morphism F : A→ B
of V -algebras such that F ∼= F ⊗V V/I as morphisms of V -algebras.

Of course, these definitions depend on the choices of V and I, but in context in
will always be clear what our base ring is. In the examples that follow, we will only
be working with V = Zp and I = ⟨p⟩.

However, even in that simple case, lifting leads to infinite dimensional cohomol-
ogy groups.

Example 1.1.4. Let us consider again Fp [X], with lift Zp [X]. The de Rham
complex associated with Zp [X] is:

(1.1.5) · · · 0 Zp [X] Zp [X] 0 · · ·
∂

∂X
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This time, the kernel of ∂
∂X is just Zp. But in the cokernel, for all n ∈ N∗ the

element Xpn−1 ∂
∂X (X) is a non zero element with pn-torsion. So again, we get an

infinitely generated cohomology group in degree 1.

To get rid of these torsion elements, we tensor our complex with Q; or in other
words, we invert p.

Before we carry on with yet another problematic example, let us just comment
in this paragraph that you have just read a lie. The real problem here is that
the morphism of schemes Spec (Fp [X]) → Spec (Fp) is not proper. In crystalline
cohomology, one has actually a p-adic cohomology theory with finite dimensional
Zp-modules for proper and smooth schemes over Fp, amongst other base fields, in
which p-torsion play an important role [Ber74]. This goes however far beyond the
scope of this course, so let us go back to our quest for finite dimensional vector
spaces associated to any smooth scheme over a perfect field of characteristic p.

We stumble on another problem: there are infinitely many lifts for a ring of
positive characteristic to characteristic zero, thus leading to different de Rham
complexes and cohomologies; and this also happens when one consider smooth
lifts.

Example 1.1.6. We will consider two smooth lifts of Fp [X], namely Zp [X] and
A := Zp [T,X] / ⟨pTX + T − 1⟩.

To see that the second lift is indeed smooth, use [Sta, 00T7] by noticing that
∂
∂T (pTX + T − 1) = pX + 1, so that (pX + 1)T = 1 in A.

We first invert p in the de Rham complex (1.1.5), and we get:

· · · 0 Qp [X] Qp [X] 0 · · ·
∂

∂X

It is easy to notice that ∂
∂X is surjective, hence the H1 associated to this complex

is reduced to {0}.
Let us now turn to A. We will be working in A⊗Z Q, which is isomorphic as a

Qp-algebra to Qp [T,X] / ⟨pTX + T − 1⟩. For that reason, any element in A ⊗Z Q
as a unique representative of the form:

(1.1.7) P (T ) +Q (X) ∈ Qp [T,X] ,

with P (T ) ∈ Qp [T ] satisfying P (0) = 0 and Q (X) ∈ Qp [X].
Indeed, if S (T,X) ∈ Qp [T,X] has a monomial of the form T aXb with a, b ∈ N∗,

then one can replace it with 1
p

(
T a−1Xb−1 − T aXb−1

)
now that p is invertible in

A ⊗Z Q to get a new representative for the same class. Repeating the process
removes all the monomials divided by TX as wanted.

As of unicity, notice that if P (T ) + Q (X) = (pTX + T − 1)S (T,X) for some
S (T,X) ∈ Qp [T,X], then if S (T,X) ̸= 0 the monomials with the highest total
degree in P (T ) +Q (X) must be divisible by TX, which is impossible.

Now, compute in Ω1
A/Zp

⊗Z Q:

d (T ) = d (T × 1)

= d (T × (pTX + T ))

d (T ) = 2pTXd (T ) + pT 2d (X) + 2Td (T ) .

So that:

(1.1.8) −pT 2d (X) = (2pTX + 2T − 1) d (T ) = d (T ) .

In particular, by using the unique writing (1.1.7), the universal derivation can
be computed as follows:

(1.1.9) d (P (T ) +Q (X)) =

(
∂

∂X
(Q (X))− pT 2 ∂

∂T
(P (T ))

)
d (X)
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Without using dimensional arguments, applying (1.1.8) implies that all elements
in Ω1

A/Zp
⊗ZQ are cocyles. But (1.1.9) shows us, using the unique writing (1.1.7) and

[Sta, 00T7], that Td (X) is a non-zero cochain which is not a coboundary. Actually,
one sees that here the H1 is the free Qp-vector space of dimension 1 generated by
the class of Td (X), so we have indeed two non isomorphic degree 1 cohomology
groups.

This last example shows us that we have to do better than smooth lifts to find
a canonical lift.

1.2. Completion and pathologies

In this section, we let V be a commutative ring, and we fix π ∈ V . Here, we will
study the properties of lifts of π-adically complete and T2 (also called Hausdorff)
lifts of formally smooth algebras. For our definition of formally smooth ring maps,
we follow [Sta, 00TI].

Lemma 1.2.1. Let A be a flat commutative V -algebra. If A/πV is a formally
smooth V/πV -algebra, then for all n ∈ N∗ the ring A/πnA is a formally smooth
V/πnV -algebra.

Proof. By hypothesis, we already have shown the case n = 1, so suppose that
we have proven the formal smoothness for some n ∈ N∗. In that case, the ideal
πnA/πn+1A has square zero in A/πn+1A. Moreover, by base change [Sta, 00HI]
the ring A/πn+1A is a flat V/πn+1V -algebra. So applying [Sta, 031L], we get that
A/πn+1A is a formally smooth V/πn+1V -algebra. □

Lemma 1.2.2. Let A and B be two commutative V -algebras. Consider a morphism
φ1 : A/πA→ B/πB of V/πV -algebras. Assume that A is a flat V -algebra and that
A/πA is a formally smooth V/πV -algebra.

Then there is a projective system, indexed by n ∈ N∗, of morphisms of V/πnV -
algebras φn : A/π

nA→ B/πnB.

Proof. We fix n ∈ N∗ and we apply lemma 1.2.1. Then, by definition of a formally
smooth morphism there exists a dotted morphism making the following diagram of
V/πn+1V -algebras commutative:

A/πn+1A A/πnA B/πnB

V/πn+1V B/πn+1B.

φn+1

φn

□

The next proposition illustrates how π-adic T2 completion yields canonical lifts.
We do not state it in full generality, nevertheless we are also about to see that
these lifts are still not satisfying for our purpose, so there is no need for the entire
machinery.

Proposition 1.2.3. Let A and B be two π-adically complete and T2 commutative
V -algebras. Let φ1 : A/πA→ B/πB be an isomorphism of formally smooth V/πV -
algebras. If A is flat and B has no π-torsion, then A and B are isomorphic as
V -algebras. Moreover, this isomorphism is a lift of φ1.

Proof. By hypothesis, A ∼= limA/πnA and so does B. So from the projective
system of morphisms given by lemma 1.2.2, we have a morphism of V -algebras
φ : A → B. Let a ∈ A. If φ (a) = 0, then a = πa1 for some a1 ∈ A because φ1 is
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injective. Since B has no π-torsion we find φ (a1) = 0. By repeating this process,
we get a ∈

⋂
n∈N∗ πnA. So it is zero.

As of surjectivity, if b1 ∈ B, then we can find a1 ∈ A and b2 ∈ B such that
φ (a1) = b1 − πb2 because φ1 is surjective. We can do it again with b2, and carry
on infinitely many times, so that φ

(∑
n∈N∗ πn−1an

)
= b1. □

A fortiori, we find the following well-known proposition.

Proposition 1.2.4. If V is Noetherian and π-torsion free, then the π-adic T2

completions of two smooth lifts of the same smooth commutative V/πV -algebra are
isomorphic.

Proof. Let A be a smooth commutative V/πV -algebra. Let A and B be two smooth
lifts of A. These lifts are Noetherian because V is Noetherian. We can thus apply
[Sta, 00MB], which informs us that these π-adic T2 completions are two flat lifts,
with same smooth reduction modulo π. The flatness property implies that the
completions are π-torsion free, so we can apply proposition 1.2.3. □

However, such flat, π-adically complete and T2 lifts still do not provide a suitable
setting for our quest for an appropriate de Rham complex. First of all, the universal
derivation is in general not continuous for the p-adic topology.

Example 1.2.5. Let A := Ẑp [X] be a flat, p-adically complete and T2 lift of
Fp [X]. The module Ω1

A/Zp
⊗Z Q is not a A ⊗Z Q-module of rank 1 as one could

candidly expect.
To see this, we first have to remind the reader that there exists an injective

morphism of Zp-algebras Zp [Yi | i ∈ N] → Zp JT K from the ring of polynomials
with countably many variables to the ring of formal power series. One way to see
this is to read the second proof of [MS, lemma 2.], and see that it still holds in the
case of an integral domain (or, similarly, that the power series constructed in the
proof can be chosen in the ring of integers of Qp).

Consider now the injective morphism of Zp-algebras Zp JT K → A sending T to
pX. Inverting p gives us the following sequence of injective Qp-algebras:

Qp [Yi | i ∈ N] Zp JT K ⊗Z Q A⊗Z Q.

In turn, there is an injective morphism Qp [Yi | i ∈ N] → Frac (A) of Qp-algebras.
In other words, the transcendence degree of Frac (A) over Qp is infinite.

Now, [Bou07b, théorème 2. p. V.125] tells us that Ω1
Frac(A)/Qp

is an infinite

dimensional Frac (A)-vector space. Using [Sta, 00RT] we get isomorphisms of
Frac (A)-modules Ω1

Frac(A)/Qp

∼= Ω1
Frac(A)/Zp

∼= Ω1
A/Zp

⊗A Frac (A). This means

that Ω1
A/Zp

must be an infinitely generated A-module, but also that Ω1
A/Zp

⊗Z Q is

an infinitely generated A⊗Z Q-module.
Where do all these elements come from? One could ingenuously think that the

derivative ∂
∂X extended to formal series would be universal.

To understand what goes wrong, take a power series P (X) ∈ A transcendental
over Zp, and algebraically independent with X. What [Bou07b, théorème 2. p.

V.125] unveils is that the element ∂
∂X (P (X)) d (X) − d (P (X)) ∈ Ω1

A/Zp
⊗Z Q

is not zero. Notably, the universal differential is not continuous for the p-adic
topology, which of course would cause us huge practical problems. In particular,
we still do not get infinite dimensional cohomology groups...

Moreover, we see that
⋂
n∈N p

nΩ1
A/Zp

is an infinitely generated A-module. In-

deed, all the elements of the form ∂
∂X (P (X)) d (X)− d (P (X)) are divisible by all

powers of p. To sum up, our main issue here is that Ω1
A/Zp

is not T2 for the p-adic

topology.
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To circumvolve this last issue, one idea is to slightly change the universal property
of our module of differentials.

Let A be a commutative V -algebra. For each A-module M , we denote by
DerV (A,M) the set of V -derivations from A into M . Recall that this rule de-
fines a functor from the category of A-modules to the category of sets, and that it
is representable by the A module Ω1

A/V .

Consider the full subcategory (A, π) -T2Mod of A-modules whose objects are T2

for the π-adic topology. We can restrict the above functor to (A, π) -T2Mod.

Proposition 1.2.6. The restriction of the functor DerV (A, •) to the category
(A, π) -T2Mod is representable by a A-module, T2 for the π-adic topology, Ω1

A/V .

In other words, there exists a A-module Ω1
A/V , which is T2 for the π-adic topol-

ogy, and a V -derivation d : A → Ω1
A/V such that for all A-module M , T2 for the

π-adic topology, and any V -derivation ∂ : A→M , there exists a unique morphism
of A-modules φ : Ω1

A/V →M such that the following diagram is commutative:

Ω1
A/V

A M

φd

∂

Proof. By the universal property of the quotient, and the universal property of
Kähler differentials, it is immediate to see that Ω1

A/V
:= Ω1

A/V /
⋂
n∈N p

nΩ1
A/V ,

endowed with the quotiented universal derivation, satisfies the universal property.
□

As usual, we define the associated de Rham complex by taking the exterior
product ΩA/V :=

∧
Ω1
A/V endowed with the differential induced by the universal

derivation. Alternatively, if A is π-adically separated (and it will be), we could
have defined it as the quotient ΩA/V /

⋂
n∈N p

nΩA/V .
Do not fear to mingle both complexes in the following of the paper: as of now,

we shall only consider the T2 complex. These extremely close notations have been
chosen here on purpose: in the literature, some authors denote the T2 complex the
same way as the de Rham complex.

It seems that we have finally have worked through all the issues in our quest for a
suitable de Rham cohomology for affine schemes over a perfect field of characteristic
p. Unless... Convergence is not fast enough.

Example 1.2.7. As usual, we work with the Fp-algebra Fp [X]. Again, we consider

the flat, p-adically complete and T2 lift A := Ẑp [X].
For all n ∈ N, consider the following element in Ω1

A/Zp
⊗Z Q:

(1.2.8)
∑
l∈N∗

pnlXpnl−1d (X) .

Looking at the following commutative diagram:

A⊗Z Q Ω1
A/Zp

⊗Z Q

Zp JXK ⊗Z Q Ω1
ZpJXK/Zp

⊗Z Q,

d

i
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in which i is the obvious inclusion, one sees that if (1.2.8) was the image through
d of some element a ∈ A⊗Z Q, then we would have:

i (a) =
∑
l∈N∗

Xpnl

which is not convergent for the p-adic topology. Thus, we again get an infinite
dimensional cohomology group in degree 1.

The annoying phenomenon here is that the degree of the monomials grows too
fast in comparison to the p-adic valuation of their coefficients. Because of that,
when one would like to integrate the series, the powers of p disappear, and the
integrated series does not converge any longer. So we want to have some control
on the pace of convergence of our series.

1.3. Weak completions

In all this section, we let V be a commutative Noetherian ring, and π ∈ V . If A is

a commutative V -algebra, we denote by Â = limA/πnA the π-adic T2 completion
of A (with n varying in N and the canonical projective system).

The next definition allows us to get rid of the problem shown in example 1.2.7.
For the moment, we shall review the basic properties of this notion in full generality.

Definition 1.3.1. Let A be a commutative V -algebra, and let S ⊂ A be a subset.

We shall denote by (S ⊂ A)
†
the subset of Â whose elements are the ones for which

there exists n ∈ N, depending of the given element, such that it can be written as:∑
j∈N

πjPj (a)

with a ∈ Sn and Pj ∈ V [X1, . . . , Xn] for all j ∈ N. In addition, we require that
there exists c ∈ N such that:

∀j ∈ N, deg (Pj) ⩽ c (j + 1) .

When S = A, we shall simply write A† := (A ⊂ A)
†
, and call this set the weak

completion of A.
We will call series of the form above overconvergent.

Of course, this definition and the ones to follow depend on the choices of V and
π. But in practice, it will be very clear what they are, so we do not keep them in
our notations.

Proposition 1.3.2. Let A be a commutative V -algebra, and let S be a subset of

A. Then (S ⊂ A)
†
is a commutative V -algebra such that (S ⊂ A)

† ∼= (S ⊂ A)
††

as
V -algebras.

Proof. Let s ∈ Â JπK be a formal series which has a representation for some fixed
n ∈ N:

s =
∑
j∈N

πjPj (s1, . . . , sn) ,

with (s1, . . . , sn) ∈ (S ⊂ A)
†n

and Pj ∈ V [X1, . . . , Xn] for all j ∈ N. We will also
assume the existence of c ∈ N such that:

∀j ∈ N, deg (Pj) ⩽ c (j + 1) .

We can assume without loss of generality that c ̸= 0. By definition, for all
i ∈ J1, nK, we have:

si =
∑
k∈N

πkQi,k (a) ,
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with a ∈ Sm and Qi,k ∈ V [X1, . . . , Xm] for all k ∈ N and some fixed m ∈ N.
Furthermore, there exists e ∈ N such that:

∀k ∈ N, deg (Qi,k) ⩽ e (k + 1) .

Notice that it is possible to choose such m and e commonly for all i ∈ J1, nK.
For now, let us fix j ∈ N. We claim that for all l ∈ N, there exists polynomials

Fj,l ∈ V [X1, . . . , Xm] such that we have the following inequality in Â:

Pj (s1, . . . , sn) =
∑
l∈N

πlFj,l (a) ,

∀l ∈ N, deg (Fj,l) ⩽ e (l + deg (Pj)) .

This is actually a general fact about polynomials, that we can show by induction
on their total degree. If deg (Pj) ⩽ 1, the claim is obvious. Otherwise, for all
i ∈ J1, nK we can find Rj,i ∈ V [Y1, . . . , Yn] and v ∈ V such that:

Pj (s1, . . . , sn) = v +

n∑
i=1

Rj,i (s1, . . . , sn) si,

∀i ∈ J1, nK , deg (Rj,i) ⩽ deg (Pj)− 1.

Fix such an i, and suppose that the claim is shown for Rj,i; that is, suppose we
have polynomials Gj,l ∈ V [X1, . . . , Xn] for all l ∈ N satisfying:

Rj,i (s1, . . . , sn) =
∑
l∈N

πlGj,l (a) ,

∀l ∈ N, deg (Gj,l) ⩽ e (l + deg (Pj)− 1) .

So that we can now write:

Rj,i (s1, . . . , sn) si =
∑
l∈N

πlGj,l (a)
∑
k∈N

πkQi,k (a) =
∑
t∈N

πt
∑
l,k∈N
l+k=t

Gj,l (a)Qi,k (a) .

Of course we find for all l + k = t as in the double series above:

deg (Gj,lQi,k) ⩽ e (l + deg (Pj)− 1 + k + 1) = e (t+ deg (Pj)) ,

and the claim follows. Notice that this very argument implies that (S ⊂ A)
†
is

a commutative V -algebra, so that we can see the element s ∈ Â JπK we started

with as an element in (S ⊂ A)
††

instead. To conclude, by examining the following
commutative diagram:

Â
̂

(S ⊂ A)
†

(S ⊂ A)
†

(S ⊂ A)
††
,

we see that the bottom arrow is injective because so is the left one, and by our
previous claim we get:

s =
∑
k∈N

πk
∑
j,l∈N
j+l=k

Fj,l (a) .

To conclude, since we assumed that c ̸= 0, we find for all j + l = k as above:

deg (Fj,l) ⩽ e (l + deg (Pj)) ⩽ e (l + c (j + 1)) ⩽ ec (k + 1) .

Which implies that the bottom map is also onto. □

Definition 1.3.3. A V -algebra is said to be weakly complete if it is isomorphic
to A† for some commutative V -algebra A.
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Notice that we have a canonical morphism of V -algebras A→ A†.

Proposition 1.3.4. Let A be a commutative V -algebra. Then it is weakly complete
if and only if the canonical morphism A→ A† is an isomorphism.

Proof. One direction by definition of being weakly complete, the other is simply
proposition 1.3.2 with S = A. □

We can associate functorialy to each morphism of V -algebras A → B another

morphism Â→ B̂. It is clear that the restriction of this morphism to A† has image
in B†, so that we get a weak completion functor.

Proposition 1.3.5. Let A be a weakly complete V -algebra. Then πA is included
in the Jacobson radical J (A) of A.

Proof. We have to prove that for all a ∈ A, then 1 + πa is a unit in A. Of course,∑
i∈N (−πa)i is an overconvergent series, and an inverse of 1 + πa in A. □

Definition 1.3.6. Let A be a weakly complete V -algebra. We say that S is a set

of weak generators of A if (S ⊂ A)
†
= A.

Weak generators play an important role in the theory of weak completions, be-
cause most of the time, the weak completion of a commutative V -algebra of finite
type is not of finite type. Nevertheless, weak generators provide the good framework
to retrieve a notion similar to being of finite type.

Definition 1.3.7. A V -algebra is said to be wcfg is it is a weakly complete V -
algebra having a finite subset of weak generators.

This definition stands for “weakly complete, weakly finitely generated”.

Example 1.3.8. The V -algebra V [X1, . . . , Xn]
†
is wcfg, with S = {X1, . . . , Xn}.

Indeed, one can replace the Pj in the definition above with Pj (a). If d is the
greatest of the degrees in a, then deg (Pj) ⩽ dc (j + 1).

All wcfg V -algebras are the homomorphic image of V [X1, . . . , Xn]
†
for some

n ∈ N. To see this, it suffices to define the V -algebra morphism sending the weak

generators of V [X1, . . . , Xn]
†
to the ones of the considered wcfg algebra.

For the same reason, the weak completion of a finitely generated commutative
V -algebra is wcfg.

Proposition 1.3.9. Any wcfg V -algebra is Noetherian.

Proof. The proof of this result of Fulton is not very long nor too difficult, but it is
slightly technical, so we omit it here. It can be found in [Ful, theorem p. 592]. □

As expected, the universal module of π-adically T2 differentials has nice proper-
ties regarding weak completion.

Proposition 1.3.10. Let A be a commutative V -algebra. Let n ∈ N be an integer.

Then Ω1
A[X1,...,Xn]

†/A
is a free A [X1, . . . , Xn]

†
-module with basis {d (Xi)}i∈J1,nK.

Proof. Recall that we defined the universal module of π-adically T2 differentials
as a quotient Ω1

A[X1,...,Xn]
†/A

= Ω1
A[X1,...,Xn]

†/A
/
⋂
n∈N π

nΩ1
A[X1,...,Xn]

†/A
of the

A [X1, . . . , Xn]
†
-module of Kähler differentials, which is by construction generated

by the set {d (a)}a∈A[X1,...,Xn]
† .

Let a ∈
∑
j∈N π

jPj ∈ A [X1, . . . , Xn]
†
, where Pj ∈ A [X1, . . . , Xn] for all j ∈ N.

Then for all k ∈ N we have:

d (a)−
n∑
i=1

∑
j∈N

πj
∂

∂Xi
(Pj) d (Xi) ∈ πk+1Ω1

A[X1,...,Xn]
†/A

.
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Turning back to our π-adically T2 differentials, this implies that {d (Xi)}i∈J1,nK
is a generating set of Ω1

A[X1,...,Xn]
†/A

, and it is linearly independent because it is

known to be modulo πk for all k ∈ N [Sta, 00RX]. □

Proposition 1.3.11. Let A be a commutative V -algebra of finite type. Then the

inclusion morphism A† → Â is faithfully flat, and the canonical morphism A→ A†

is flat.

Proof. Since the natural composition A/πnA → A†/πnA† → Â/πnÂ is an isomor-
phism, the first arrow is injective. It is also surjective because every element in A†

can be written as a+ πna′ with a ∈ A and a′ ∈ A†.
Since A is of finite type, A† is Noetherian by virtue of proposition 1.3.9, so by

[Sta, 0912] the inclusion morphism A† → Â is flat. Let m ∈ Spec
(
A†) be a closed

point, that is, a maximal ideal of A†. Notice that mÂ ∩ A† = m using proposition
1.3.5, so by [Sta, 00HQ] it is also faithfully flat.

The second part of the statement is [Sta, 039V]. □

1.4. Dagger smoothness

As in the previous section, we let V be a commutative Noetherian ring, and
π ∈ V . We now introduce a very important property which all lifts of smooth
V/πV -algebras shall have.

Definition 1.4.1. A weakly complete V -algebra A is very smooth, or dagger
smooth, if A/πA is a smooth V/πV -algebra, and if for all pairs of morphisms of
weakly complete V -algebras φ : A → B and p : C → B, such that p is surjective
and that there exists a morphism of V/πV -algebras ψ : A/πA → C/πC satisfy-
ing φ ⊗V V/πV = (p⊗V V/πV ) ◦ ψ, then there exists a morphism of V -algebras
ψ : A→ C such that the following diagram commutates:

A A/πA

C C/πC

B B/πB

φ

ψ

φ⊗V V/πV

ψ

p p⊗V V/πV

The term “very smooth” is the only one in the literature, but the author finds
it quite confusing. Indeed, as we shall see, very smooth algebras are not always
smooth, and the weak completion of a smooth algebra is very smooth. So we will
talk about “dagger smooth” algebras instead.

The following two theorems will be the first ones for which we do not provide
proofs, and whose demonstrations are not straightforward.

Theorem 1.4.2. Let A be a smooth commutative V/πV -algebra. Then there exists
a smooth V -algebra A which is a lift of A.

Proof. This is a result of Arabia [Ara, 1.3.1.] which generalizes a theorem of Elkik
[Elk, théorème 6]. She has shown the existence of a smooth lift in the context of
Noetherian henselian pairs, which is actually general enough in the context of the
algorithm we shall study.

See also: [Sta, 07M8]. □

Theorem 1.4.3. Let A be a smooth commutative V/πV -algebra. For every smooth
V -algebra A lifting A which always exist by theorem 1.4.2, its weak completion A†

is a dagger smooth V -algebra A which is a lift of A.
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Proof. This result is due to Arabia [Ara, 3.3.2.]. □

This theorem actually also implies the existence of lifts of morphisms between
smooth commutative V/πV -algebras.

Proposition 1.4.4. Let φ : A→ B be a morphism of smooth commutative V/πV -
algebras. Let A be a dagger smooth, weakly complete V -algebra. Let B be a weakly
complete V -algebra. Suppose that A and B are lifts of A and B respectively.

Then there exists a morphism of V -algebras φ : A→ B which is a lift of φ.

Proof. Since A is dagger smooth, the existence of φ is given by the definition applied
to the following commutative diagram:

A A/πA

B B/πB

B/πB B/πB.

φ

φ

φ

IdB/πB

IdB/πB

□

Example 1.4.5. Assume that V/πV has characteristic p. Let A be a smooth
commutative V/πV -algebra. Denote by FrobV/πV and FrobA the Frobenius endo-

morphisms of V/πV and A respectively. Let A[FrobV/πV ] be the V/πV -algebra that

we obtain from A by restriction of scalars through FrobV/πV .
Assume also that there exists a lift F : V → V of the Frobenius endomorphism on

V/πV , and that F is an isomorphism. Let A be a dagger smooth, weakly complete
lift of A. Denote by A[F ] the V -algebra that we obtain from A by restriction of
scalars trough F .

Notice that A[F ] is a weakly complete lift of A[FrobV/πV ]. Moreover, since the

Frobenius endomorphism FrobA : A→ A[FrobV/πV ] is actually a morphism of V/πV -

algebras, then we can apply proposition 1.4.4 to get a lift F : A→ A[F ] of FrobA.
It is of course less confusing to think of F as a endomorphism of rings on A, which

is the Frobenius endormorphism modulo π. However for functoriality reasons, we
need to be more careful.

By proposition 1.2.3, we are in the situation of the above example when V/πV is
a perfect commutative ring of characteristic p, and when V is a π-adically complete
T2 and π-torsion free commutative ring. In practice, we will always work in such a
setting: think of V as a complete discrete valuation ring of mixed characteristic.

The lifting of morphisms also imply the unicity of dagger smooth lifts. But to
prove this, we first need to demonstrate the “formal inversion lemma”.

Lemma 1.4.6. Let c, n ∈ N. For all i ∈ J1, nK and all j ∈ N∗, fix a polynomial
Pi,j ∈ V [X1, . . . , Xn] satisfying deg (Pi,j) ⩽ c (j + 1).

Then, for all i ∈ J1, nK, there exists unique Si ∈ V [X1, . . . , Xn] JΠK such that:

Xi = Si +
∑
j∈N∗

ΠjPi,j (S1, . . . , Sn) .

Moreover, when one writes:

Si = Xi +
∑
j∈N∗

ΠjQi,j (X1, . . . , Xn) ,

then all the polynomials Qi,j satisfy the same inequality on their degree as the Pi,j.
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Proof. The ring V [X1, . . . , Xn] JΠKn has a product metric induced by the Π-adic
topology, and it is complete for it. Consider the map:

f :
V [X1, . . . , Xn] JΠKn → V [X1, . . . , Xn] JΠKn

(U1, . . . , Un) 7→
(
−
∑
j∈N∗ ΠjPi,j (X1 + U1, . . . , Xn + Un)

)
i∈J1,nK

.

We see that it is a contraction, so by Banach’s theorem it has a unique fixed
point (Z1, . . . , Zn). Since f ((Z1, . . . , Zn)) = (Z1, . . . , Zn), we see that Π divides
(Z1, . . . , Zn). Then defining Si := Xi + Zi for all i ∈ J1, nK answers the first point.

Fix i ∈ J1, nK. Write uniquely Si = Xi +
∑
j∈N∗ ΠjQi,j (X1, . . . , Xn) as in the

statement. Then:

(1.4.7)
∑
j∈N∗

ΠjQi,j (X1, . . . , Xn) +
∑
j∈N∗

ΠjPi,j (S1, . . . , Sn) = 0.

Using the multivariate Taylor expansion, we get for all j ∈ N∗:

Pi,j (S1, . . . , Sn) = Pi,j (X1, . . . , Xn)

+
∑

(a1,...,an)∈Nn

∂
∑n

l=1 al∏n
l=1 ∂Xl

al
(Pi,j) (X1, . . . , Xn)

n∏
l=1

(Sl −Xl)
al .

The sum is finite, and it is divisible by Π because for all l ∈ J1, nK we have
Sl −Xl =

∑
k∈N∗ ΠkQl,k (X1, . . . , Xn).

Injecting these formulas in (1.4.7) gives us, by induction on j ∈ N∗, the inequal-
ities on the degrees. □

The next proposition is paramount is the sense that it provides us the unicity of
flat wcfg lifts of smooth algebras.

Proposition 1.4.8. Let A and B be two flat wcfg lifts of a smooth commutative
V/πV -algebra A. Then A and B are dagger smooth, and isomorphic as V -algebras.

Proof. By theorem 1.4.3, it is enough to prove the proposition when A is dagger
smooth. Indeed proposition 1.3.11 guarantees us that A is a flat V -algebra. Then
by proposition 1.4.4, there exist a morphism φ : A → B of V -algebras, which is a
lift of the identity on A.

For the injectivity of the morphism, since A/πA ∼= B/πB as V -modules, we
find in the same category (A/πA) ⊗V

(
πiV/πi+1V

) ∼= (B/πB) ⊗V
(
πiV/πi+1V

)
for all i ∈ N. By the flatness hypothesis, we find that φ induces an isomorphism
πiA/πi+1A ∼= πiB/πi+1B of V -modules. In particular Ker (φ) ⊂

⋂
i∈N π

iA, and
we can conclude because A is wcfg and in particular T2 for the π-adic topology.

As of surjectivity, consider S a finite set of weak generators of B. Denote by
si with i ∈ J1,#SK each element of S. By hypothesis, for all si ∈ S, there exists
xi ∈ A and bi ∈ B such that φ (xi) = si + πbi. Then there exists c ∈ N, and
for each i ∈ J1,#SK and all j ∈ N∗ there exists Pi,j ∈ V [X1, . . . , X#S ] satisfying
deg (Pi,j) ⩽ c (j + 1) and:

φ (xi) = si +
∑
j∈N∗

πjPi,j (s1, . . . , s#S) .

Then, by the formal inversion lemma 1.4.6, for all i ∈ J1,#SK, there exists unique
Si ∈ V [X1, . . . , X#S ] JΠK such that:

Xi = Si +
∑
j∈N∗

ΠjPi,j (S1, . . . , S#S) .
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Moreover, one has polynomials Qi,j ∈ V [X1, . . . , Xn] for all i ∈ J1,#SK and all
j ∈ N∗ with the same overconvergence inequalities as above, and such that:

Si = Xi +
∑
j∈N∗

πjQi,j (X1, . . . , X#S) .

In particular, we have:

si = φ (xi) +
∑
j∈N∗

ΠjQi,j (φ (x1) , . . . , φ (x#S)) .

This shows that each si is in the image of φ by proposition 1.3.4 applied to A.
The same proposition also implies that φ is surjective. □

Take care that the previous proposition fails when considering weakly complete
lifts instead of wcfg ones. Indeed, the T2 completion of a wcfg lift is a weakly
complete lift, which is in general not wcfg.

We now make a quick digression through Hensel’s lemma following [DLZ].

Proposition 1.4.9. Let C be a weakly complete V -algebra. Let P (X) ∈ C [X].
Let c ∈ C/πC such that P (c) = 0 and P ′ (c) is a unit in C/πC. Then, there exists
a unique c ∈ C such that P (c) = 0 and that its reduction modulo π is c.

Proof. The unicity is Hensel’s lemma applied to Ĉ ⊃ C.

Write uniquely P (X) =
∑deg(P (X))
i=0 tiX

i. Consider the multivariate polynomial

F (X) :=
∑deg(P (X))
i=0 TiX

i ∈ V
[
X,Y, T0, . . . , Tdeg(F (X))

]
. We will work with the

wcfg V -algebra A := V
[
X,Y, T0, . . . , Tdeg(F (X))

]
/ ⟨F (X) , 1− Y F ′ (X)⟩†. We have

A/πA ∼= (V/πV )
[
X,Y, T0, . . . , Tdeg(F (X))

]
/ ⟨F (X) , 1− Y F ′ (X)⟩ as V -algebras.

The solution c defines a morphism of V/πV -algebras:

ψ : (V/πV )
[
X,Y, T0, . . . , Tdeg(F (X))

]
/ ⟨F (X) , 1− Y F ′ (X)⟩ → C/πC,

by sending each Ti for i ∈ J0,deg (P (X))K to the image of ti modulo π, sending X

to c and Y to P ′ (c)
−1

.
Notice that A/πA is a smooth V -algebra because:∣∣∣∣ ∂

∂X (F (X)) ∂
∂Y (F (X))

∂
∂X (1− Y F ′ (X)) ∂

∂Y (1− Y F ′ (X))

∣∣∣∣ = −F ′ (X)
2
,

which maps to an unit in V
[
X,Y, T0, . . . , Tdeg(F (X))

]
/ ⟨F (X) , 1− Y F ′ (X)⟩, so

that we can apply [Sta, 00T7]. Its weak completion A is dagger smooth according
to theorem 1.4.3. By proposition 1.4.4, we can lift ψ to ψ : A → C. The image of
the class of X through ψ is then the solution to our problem. □

1.5. Monsky–Washnitzer cohomology groups

As in the previous two sections, we let V be a commutative Noetherian ring,
and π ∈ V . We have seen that we can lift both objects and morphisms, and that
two lifts of the same object are isomorphic. In contrast, this does not hold for lifts
of the same morphism. Nevertheless, two lifts of the same morphism still bear a
strong relationship.

Definition 1.5.1. Let f, g : A → B be two morphisms of weakly complete V -
algebras. Let C be the weak completion of the commutative V [T ]-algebra B [T ]
with respect to T . For i ∈ {0;π}, consider the two natural morphisms ei : C → B
satisfying ei (T ) = i.

These morphisms are said to be homotopic if there exists a morphism of V -
algebras φ : A→ C such that e0 ◦ φ = f and eπ ◦ φ = g.
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Originally, this definition was written with 1 instead of π, and without weak
completion with respect to T . We draw inspiration from [ES], so that homotopy
becomes an useful definition even without tensoring by Q.

Proposition 1.5.2. Let f, g : A → B be two morphisms of weakly complete V -
algebras. If A is flat, dagger smooth and wcfg, and if f ≡ g mod π, then the maps
are homotopic.

Proof. Let us keep the notations of definition 1.5.1. Consider e0 ⊕ eπ : C → B⊕B.
We can obviously restrict this morphism to its image, so that it is onto and the
image is a weakly complete V [T ]-algebra with respect to T . Moreover, it is clear
that its reduction modulo T is B, because e0 ⊕ eπ (T ) = 0⊕ π.

Notice that Im (f ⊕ g) ⊂ Im (e0 ⊕ eπ). Indeed, for all a ∈ A, by hypothesis on f
and g there exists b ∈ B such that:

f (a)⊕ g (a) = f (a)⊕ (f (a) + πb) = e0 ⊕ eπ (f (a) + Tb) .

Let D be the weak completion of the commutative V [T ]-algebra A [T ] with
respect to T . We can uniquely extend f ⊕ g to a morphism A [T ] → Im (e0 ⊕ eπ)
of V [T ]-algebras. By functoriality, we thus get a morphism of weakly complete
V [T ]-algebras D → Im (e0 ⊕ eπ).

This means that we have the following commutative diagram of V [T ]-algebras,
where the arrows on the left are the reduction mod π of the arrows on the right
when present:

D A

C B

Im (e0 ⊕ eπ) B

f

f

e0⊕eπ IdB

By hypothesis, A is a wcfg V -algebra. Let S ⊂ A be a finite subset of weak
generators of A. Then S is also a set of weak generators of the weakly complete
V [T ]-algebra D. Also, A [T ] is a flat V [T ]-algebra by [Sta, 00HI], so that D is also
flat as a V [T ]-algebra by proposition 1.3.11.

This implies that D is dagger smooth by proposition 1.4.8. So we have a mor-
phism of V [T ]-algebras D → C, and composing with the canonical map A → D
gives the morphism of V -algebras making f and g homotopic. □

Proposition 1.5.3. Two homotopic maps induce the same map on cohomology.

Proof. We shall use the notations of definition 1.5.1. Let f, g : A → B be two
homotopic morphisms of weakly complete V -algebras. By homotopy and functori-
ality, we get morphisms f∗, g∗ : ΩA/V → ΩB/V , ei∗ : ΩC/V → ΩB/V for i ∈ {0, p}
of V -differential graded algerbas which factor through some φ∗ : ΩA/V → ΩC/V .
Here, the de Rham complexes are π-adically T2, not T -adically. It is enough to
show that both ei∗ are homotopic.

But first, let us describe ΩC/V . Consider the tensor product of alternating B-
algebras ΩB/V ⊗B ΩBJT K/B as described in [Bou07a, proposition 14 p. III.54]. It is
the same as the direct sum ΩB/V ⊗B B JT K ⊕ d (T )ΩB/V ⊗B B JT K.

We can turn this tensor product into an alternating V -differential graded algebra
by defining the following differential for each i ∈ N:

d :

ΩB/V ⊗B ΩBJT K/B → ΩB/V ⊗B ΩBJT K/B∑
i∈N T

ixi + d (T )T iyi 7→
∑
i∈N T

id (xi) + d (T )T i ((i+ 1)xi+1 − d (yi)) ,
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where all xi, yi ∈ ΩB/V for all i ∈ N.
Similarly, we can consider the tensor product ΩB/V ⊗B ΩC/B . By proposition

1.3.11, the canonical inclusion C → B JT K is faithfully flat, and in particular uni-
versally injective [Sta, 05CK]. So we can include the latter tensor product into the
former.

We can prove that d restricts well.
In degree zero, we retrieve the ring C. By the universal property of the T2

de Rham complex, the morphism IdC yields a morphism of V -differential graded
algebras ΩC/V → ΩB/V ⊗B ΩC/B .

On the other hand, we can sum the identity morphism with the obvious B-linear
map d (T )C → ΩC/V . So the universal property of the tensor product gives us a
morphism of graded B-modules ΩB/V ⊗BΩC/B → ΩC/V . It is actually a morphism
of V -differential graded algebras, and the universal properties we used show us that
the two arrows we have constructed are inverse of each other. In particular, the
remark made in the proof of [Van, theorem 2.4.4] holds for general V .

Now, the homotopy between the ei∗ is given by the composition of the projection
morphism ΩC/V → d (T )ΩB/V ⊗B C and the integration morphism evaluated at π
given by d (T )ΩB/V ⊗B C → ΩB/V . □

We can now define the Monsky–Washnitzer cohomology groups, and the results
we have just proven gives us a functor.

Definition 1.5.4. Let A be a smooth commutative V/πV -algebra. Let A be a dag-
ger smooth lift of A. Let i ∈ Z. We call Hi

MW

(
A
)
the i-th Monsky–Washnitzer

group of A, and define it as the i-th cohomology group of the localization of the
π-adically T2 de Rham complex ΩA/V ⊗Z Q.

We will now assume the two following theorems, are their proofs are too long for
this course.

Theorem 1.5.5. The Monsky–Wahsnitzer cohomology groups are finite dimen-
sional, when V is a complete discrete valuation field of mixed characteristic 0 and
p, with uniformizing parameter π.

Proof. This has been demonstrated independently by Mebkhout [Meb, théorème
1.0–1.] and Berthelot [Ber97, corollaire 3.2.]. □

Theorem 1.5.6. Let A be a smooth Fq-algebra, where q = pm for some m ∈ N, of
pure dimension n. Then the action of the Frobenius endomorphim FrobA∗ on the
Monsky–Washitzer group, seen here as Frac (W (Fq))-vector spaces, is bijective.

Furthermore, if we denote by N
(
A
)
the number of morphisms of Fq-algebra

A→ Fq, we have:

N
(
A
)
=

n∑
i=0

(−1)
i
tr
(
qnFrobA∗

−m | Hi
MW

(
A
))

.

Proof. The bijectivity of the action of the Frobenius is a result of Monsky and
Washnitzer [MW, theorem 8.6.]. The Lefschetz formula is a result of Monsky [Mon,
theorem 4.5.] combined with Arabia’s theorem 1.4.3. □

Part 2. Kedlaya’s algorithm

In this section, we briefly explain how Kedlaya’s algorithm works.
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2.1. The cohomology of a localized ring

We now assume that p ̸= 2.
Let m ∈ N∗ and q := pm. Let Q (X) ∈ Fq [X] be a monic polynomial off degree

2g+1 for g ∈ N∗, such that Q (X)∧Q′
(X) = 1. This data determines uniquely an

hyperrelliptic curve C with a rational point at infinity.
Let A := Fq [X,Y, Z] /

〈
Y 2 −Q (X) , Y Z − 1

〉
. We will explain later why we are

interested in this ring.
Let Q (X) ∈W (Fq) [X] be a monic polynomial whose reduction mod p is Q (X)

We can lift A to a standard smooth W (Fq)-algebra:

A :=W (Fq) [Y, Z,X] /
〈
Y 2 −Q (X) , Y Z − 1

〉
.

Its weak completion A† is wcfg and dagger smooth. We find the following iso-
morphism of W (Fq)-algebras:

A† ∼=W (Fq) [X,Y, Z]†/
〈
Y 2 −Q (X) , Y Z − 1

〉
.

In particular, if with the obvious convention Y −1 = Z we have:

A† =


2g∑
i=0

∑
j∈Z

ai,jX
iY j ∈W (Fq) JX,Y, ZK |

∃c ∈ N, ∀i ∈ J0, 2gK , ∀j ∈ Z, j ⩽ c (vp (ai,j) + 1)

}
.

Proposition 2.1.1. The A†-module Ω1
A†/W (Fq)

is free of rank 1, is generated by

d (X), and has relations:

d (Z) = −Z2d (Y ) ,

d (Y ) =
1

2
ZQ′ (X) d (X) .

As the p-adically T2 de Rham complex is alternated, we have in particular
ΩiA†/W (Fq)

∼= {0} for all integers i ⩾ 2.

Proof. By functoriality, we have a surjective morphism ofW (Fq) [X,Y, Z]†-modules
Ω1
W (Fq)[X,Y,Z]†/W (Fq)

→ Ω1
A†/W (Fq)

. In particular, the A†-module is generated by

the set {d (X) ; d (Y ) ; d (Z)}.
Moreover, we compute:

d (Z) = 2d (Z)− d
(
Z2Y

)
= 2d (Z)− 2Y Zd (Z)− Z2d (Y )

d (Z) = −Z2d (Y ) ,

from which we derive:

d (Y ) =
1

2

(
d
(
ZY 2

)
+ d (Y )

)
=

1

2

(
Zd
(
Y 2
)
+ Y 2d (Z) + d (Y )

)
=

1

2

(
Zd (Q (X))− Y 2Z2d (Y ) + d (Y )

)
d (Y ) =

1

2
ZQ′ (X) d (X) .

□
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There is an involution ι : C → C. On the ring Fq [X,Y ] /
〈
Y 2 −Q (X)

〉
, this

involution satisfies ι (X) = X and ι (Y ) = −Y . On A, this involution satisfies
ι (X) = X, ι (Y ) = −Y and ι (Z) = −Z. This involution lifts with the same
relations to A†.

We can then split the p-adically T2 de Rham complex in two eigenspaces for the
involution, namely:

A†
+ :=


2g∑
i=0

∑
j∈Z

j≡0 mod 2

ai,jX
iY j ∈ A†

 ,

Ω+ := A†
+d (X) ,

A†
− :=


2g∑
i=0

∑
j∈Z

j≡1 mod 2

ai,jX
iY j ∈ A†

 ,

Ω− := A†
−d (X) .

Lemma 2.1.2. Let n ∈ N∗. We have:

#C (Fqn) = qn + 1− tr
(
qnFrobA∗

−nm | H1
MW

(
A
)
−

)
.

Proof. Recall that Y 2 = Q (X) in A†. We then see that the positive eigenspace of
the involution is actually the p-adically T2 de Rham complex associated to the ring

Fq [X]
[

1
Q(X)

]
.

If (x, y) is a rational point, so is ι ((x, y)). This defines a second distinct point,
except when y = 0. In this case, we simply have Q (x) = 0.

As p ̸= 0, we see that these eigenspaces are also stable by the action of the Frobe-
nius on the Monsky-Washnitzer cohomology. Hence, the Lefschetz trace formula
yields:

#C (Fqn) = #A (Fqn) +
(
qn −#Fqn [X]

[
1

Q (X)

]
(Fqn)

)
+ 1

= tr
(
qnFrobA∗

−nm | H0
MW

(
A
)
−

)
− tr

(
qnFrobA∗

−nm | H1
MW

(
A
)
−

)
+ qn + 1.

For i ∈ J0, 2gK, write Bi (X) We have:

(2.1.3) ∀i ∈ J0, 2gK , ∀j ∈ Z,

d
(
XiY j

)
=

(
j

2
XiY j−2Q′ (X) + iXi−1Y j

)
d (X) .

This implies in particular that H0
MW

(
A
)
− is a Frac (W (Fq))-vector space of

dimension 0. To convince yourself consider the leading monomial in XiY j−2Q′ (X).
□

Proposition 2.1.4. Let P (X) ∈ Frac (W (Fq)) [X] and j ∈ Z odd. Then there is

an algorithm to reduce
[
P (X)Y jd (X)

]
∈ H1

MW

(
A
)
− to a linear combination of

cohomology classes in the set
{[
XiY −1d (X)

]
| i ∈ J0, 2g − 1K

}
.
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Proof. Assume first that j < −1. Let R (X) , S (X) ∈ Frac (W (Fq)) [X] be two
polynomials such that P (X) = R (X)Q (X) + S (X)Q′ (X).[

P (X)Y jd (X)
]

=
[
R (X)Q (X)Y jd (X) + S (X)Q′ (X)Y jd (X)

]
=

[
R (X)Y j+2d (X) + S (X)Q′ (X)Y jd (X)− d

(
2

j + 2
S (X)Y j+2

)]
=

[(
R (X)− 2

j + 2
S′ (X)

)
Y j+2d (X)

]
.

Assume now that j ⩾ 1. Let F (X) ∈ Frac (W (Fq)) [X] be a polynomial such
that F ′ (X) = P (X). Then we have:[

P (X)Y jd (X)
]
=
[
P (X)Y jd (X)

]
=
[
P (X)Y jd (X)− d

(
F (X)Y j

)]
=
[
P (X)Y jd (X)− F ′ (X)Y jd (X)− jF (X)Y j−1d (Y )

]
[
P (X)Y jd (X)

]
=

[
− j
2
F (X)Q′ (X)Y j−2d (X)

]
.

We are now left with the case j = −1. If deg (P ) ⩽ 2g − 1, we have nothing left
to do. Otherwise, for r := deg (P )− 2g we have:

d (XrY ) = rXr−1Y d (X) +Xrd (Y )

=

(
rXr−1Q (X) +

1

2
XrQ′ (X)

)
Y −1d (X) .

So if α is the leading coefficient of P (X), then we have:[
P (X)Y −1d (X)

]
=

[(
P (X)− 2αr

1 + 2g + 2r
Xr−1Q (X)− α

1 + 2g + 2r
XrQ′ (X)

)
Y −1d (X)

]
.

The degree of the polynomial in X in the right-hand side is strictly smaller than
deg (P ), so we are done. □

Proposition 2.1.5. The set
{[
XiY −1d (X)

]
| i ∈ J0, 2g − 1K

}
forms a basis of

H1
MW

(
A
)
−.

Proof. We omit the proof for the time being. □

2.2. The action of the Frobenius endomorphism

In this section, we explain the three main steps of Kedlaya’s algorithm.

Proposition 2.2.1. Let χ (T ) be the characteristic polynomial of FrobA∗
m in

H1
MW

(
A
)
−. We have:

Z (C) =
T 2gχ

(
1
T

)
(1− T ) (1− qT )

.

Moreover, it is enough to compute χ (T ) up to precision pN , where N is an

integer such that N ⩾ gm
2 + logp

((
2g
g

))
.

Proof. By lemma 2.1.2, for all n ∈ N∗ we have:

#C (Fqn) = qn + 1−
2g∑
i=1

αi
n
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where all αi are eigenvalues of qFrobA∗
−m in H1

MW

(
A
)
−, seen as a C-vector space

by the inclusion Frac (W (Fq)) given by the axiom of choice.
But:

Z (C) = exp

(∑
n∈N∗

#C (Fqn)
Tn

n

)

= exp

(∑
n∈N∗

Tn

n
+
∑
n∈N∗

(qT )
n

n
−

2g∑
i=1

∑
n∈N∗

(αiT )
n

n

)

= exp

(
− ln (1− T )− ln (1− qT ) +

2g∑
i=1

ln (1− αiT )

)

Z (C) =
∏2g
i=1 (1− αiT )

(1− T ) (1− qT )
.

Weil conjectures imply that these eigenvalues satisfy, once ordered properly,
αiαg+i = q for all i ∈ J1, gK. We then deduce that these eigenvalues are also the
eigenvalues of FrobA

m
∗.

Write χ (T ) =
∑2g
i=0 aiT

i. By Weil conjectures, we have:

∀i ∈ J1, gK , |ai| ⩽
(
2g

i

)
q

i
2 ⩽

(
2g

g

)
q

g
2 .

The now proven conjectures also imply that χ (T ) = qgT 2gχ
(

1
qT

)
, and a0 = 1 so

that qg−iai = a2g−i for all i ∈ J1, gK. So it suffices to compute the ai for i ∈ Jg, 2gK
up to precision pN where N ⩾ gm

2 + logp

((
2g
g

))
. □

Let σ be the canonical Frobenius lift on W (Fq). We define a Frobenius lift on
A† as follows:

F (X) = Xp,

F (Y ) = Y p
(
1 +

σ (Q) (Xp)−Q (X)
p

Y 2p

) 1
2

,

F (Z) = Y −p
(
1 +

σ (Q) (Xp)−Q (X)
p

Y 2p

)− 1
2

.

So that for all i ∈ J0, 2g − 1K:

F
(
XiY −1d (X)

)
= pXp(i+1)−1Y −p

(
1 +

σ (Q) (Xp)−Q (X)
p

Y 2p

)− 1
2

d (X)

= Xp(i+1)−1Y −p
∑
i∈N

pi+1

i!

i−1∏
k=0

(
1

2
− k

)(
σ (Q) (Xp)−Q (X)

p

Y 2p

)i
d (X) .

Proposition 2.2.2. The reduction of all F
(
XiY −1d (X)

)
becomes integral after

multiplication by a constant.

Proof. We omit the proof. □

We thus now have an algorithm to compute a matrix M associated to FrobA∗
in H1

MW

(
A
)
−. To get the zeta function, we have to compute the characteristic

polynomial of
∏m−1
i=0 σi (M).
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