
CUSPIDAL `-MODULAR REPRESENTATIONS OF GLnpF q

DISTINGUISHED BY A GALOIS INVOLUTION

by

Robert Kurinczuk, Nadir Matringe & Vincent Sécherre

Abstract. — Let F {F0 be a quadratic extension of non-Archimedean locally compact fields of re-
sidual characteristic p ‰ 2 with Galois automorphism σ, and let R be an algebraically closed field of
characteristic ` R t0, pu. We reduce the classification of GLnpF0q-distinguished cuspidal R-represen-
tations of GLnpF q to the level 0 setting. Moreover, under a parity condition, we give necessary con-
ditions for a σ-selfdual cuspidal R-representation to be distinguished. Finally, we classify the distin-
guished cuspidal F`-representations of GLnpF q having a distinguished cuspidal lift to Q`.
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1. Introduction

1.1. Let F {F0 be a quadratic extension of non-Archimedean locally compact fields whose resi-
dual characteristic is a prime number p different from 2. Let σ be its non-trivial automorphism,
and G be the general linear group GLnpF q for some positive integer n. It is a totally disconnec-
ted, locally compact group, on which the involution σ acts componentwise, and the group Gσ of
its σ-fixed points is equal to GLnpF0q.

Now fix an algebraically closed field R of characteristic different from p. A (smooth) represen-
tation π of G on an R-vector space V is said to be distinguished (by Gσ) if V carries a non-zero
Gσ-invariant linear form; more generally, if χ is a smooth character of Gσ with values in Rˆ, the
representation π is said to be χ-distinguished if V carries a non-zero linear form Λ such that

Λpπphqvq “ χphqΛpvq, h P Gσ, v P V.
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1.2. In the case where R is the field of complex numbers, distinguished irreducible representa-
tions of G have been extensively studied:

(1) they are σ-selfdual, that is, the contragredient π_ of a distinguished irreducible represen-
tation π of G is isomorphic to its σ-conjugate πσ ([14, 29, 30]) and their central character is tri-
vial on Fˆ0 ,

(2) a σ-selfdual discrete series representation of G is either distinguished, or κ-distinguished
(κ denotes the character of Fˆ0 whose kernel is the subgroup of F {F0-norms), but not both: this
is the Dichotomy and Disjunction Theorem ([21, 2, 3]),

(3) distinguished generic irreducible representations of G are classified in terms of their cuspi-
dal support ([4, 23, 24]),

(4) distinguished cuspidal representations of G are characterized in terms of their Galois para-
meter ([15]) and in terms of type theory (see [32] and below).

1.3. Distinguished irreducible representations of G with coefficients in a field R of positive cha-
racteristic have been less well studied (see [3, 32, 22, 11]). As in the complex case, they are σ-
selfdual, and their central character is trivial on Fˆ0 . For σ-selfdual supercuspidal representations,
that is, irreducible representations which do not occur as subquotients of parabolically induced
representations from a proper Levi subgroup, one has a Dichotomy and Disjunction Theorem (see
§3.2). One also has a characterization of distinction in terms of Galois parameters ([11] Proposi-
tion 3.15) and in terms of types ([32] Theorem 10.9). But there are explicit examples of σ-selfdual
non-supercuspidal cuspidal representations that are neither distinguished nor κ-distinguished (as
in [32] Remark 2.18) and of Steinberg representations that are both distinguished and κ-distin-
guished ([11] Remark 1.9). Also, there is no known classification of distinguished cuspidal repre-
sentations of GLnpF q for an arbitrary n ě 3 (see [11] for n “ 2).

In this paper, which can be considered as a sequel to [32], where all distinguished supercuspidal
R-representations of G have been classified, we investigate the classification of distinguished cus-
pidal R-representations of G in terms of their supercuspidal support. We:

– reduce this classification to that of distinguished cuspidal representations of level 0, and from
there to finite group theory (see Section 4),

– give a necessary condition of distinction for σ-selfdual cuspidal representations of G that sa-
tisfy a certain parity condition (see Section 5),

– classify the (distinguished, cuspidal) F`-representations of G having a distinguished cuspidal
lift to Q`, where Q` is an algebraic closure of the field of `-adic numbers with residue field F`.
Let us explain these results in more detail.

1.4. Bushnell and Kutzko [8], in work extended to the modular setting by Vignéras [37], have
given an explicit construction of a collection of pairs pJ,λq called extended maximal simple types
(which we will abbreviate to types here), consisting of a compact-mod-centre open subgroup J of
G and an irreducible R-representation λ of J, such that the representations indGJ pλq are (irredu-
cible and) cuspidal, and such that every cuspidal R-representation of G appears in the collection
of indGJ pλq.

We need the following invariants associated to a cuspidal R-representation of G following this
explicit construction by compact induction (see §4.2 and §4.7):

(1) the endo-class Θ: a fine refinement of the level introduced by Bushnell-Henniart in [5] and
which applies equally well to the modular setting,
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(2) the tame parameter field T : a tamely ramified extension of F of degree dividing n, uniquely
determined up to F -isomorphism by Θ,

(3) the relative degree m: a positive integer such thatmrT : F s divides n, uniquely determined
by Θ and n.

Suppose further that Θ is σ-selfdual (which follows if for example the cuspidal representation
itself is σ-selfdual), then there is a uniquely determined tamely ramified extension T0 of F0 con-
tained in T such that T is isomorphic to T0bF0F . The Galois group of T {T0 canonically identifies
with that of F {F0, and the unique non-trivial automorphism of T {T0 extending σ will be denoted
by σ (see §4.3). Our main theorem on reduction to the level 0 setting is then (see Theorem 4.42):

Theorem 1.1. — (1) There is a natural bijection:

(1.1) π ÞÑ πt

from the set of isomorphism classes of cuspidal representations of G with endo-class Θ to the set
of isomorphism classes of cuspidal representations of level 0 of GLmpT q.

(2) The representation π is σ-selfdual if and only if πt is σ-selfdual.
(3) The representation π is GLnpF0q-distinguished if and only if πt is GLmpT0q-distinguished.

The map (1.1) is also compatible with supercuspidal support, see Proposition 4.44 for a precise
statement.

1.5. Let us briefly explain how the map (1.1) above is defined. Let pJ,λq be a type inducing a
cuspidal representation π of G with σ-selfdual endo-class Θ, tame parameter field T and relative
degree m. Then:

(1) The group J has a unique maximal compact subgroup J0, and a unique maximal normal
pro-p subgroup J1.

(2) There is a group isomorphism J0{J1 » GLmplq, where l is the residue field of T .
(3) The restriction of λ to J1 is isotypic for an irreducible representation η of J1, and this re-

presentation η extends (non-canonically) to J.
(4) The choice of a representation κ of J extending η determines a decomposition λ » κb τ ,

where τ is a representation of J trivial on J1, uniquely determined up to isomorphism.
The fact that Θ is σ-selfdual implies that there is a preferred choice for pJ,λq: the group J is
fixed by σ, the representation η is σ-selfdual and there exists a natural isomorphism between the
space of Gσ-invariant linear forms on π and that of JXGσ-invariant linear forms on λ. Such a
type is called generic (see Definition 4.32). We prove (see Proposition 4.17):

Proposition 1.2. — The representation η has a unique extension κ to J which is both σ-selfdual
and JXGσ-distinguished, and whose determinant has order a power of p.

The choice of the representation κ given by Proposition 1.2 thus uniquely determines a repre-
sentation τ of J trivial on J1.

Now there is a natural choice, as explained in §4.10, of a σ-fixed maximal compact subgroup
J0

t of GLmpT q, with normalizer Jt and pro-p-radical J1
t , such that there is a σ-equivariant group

isomorphism:
J{J1 » Jt {J

1
t .

The representation τ then defines a representation of Jt trivial on J1
t , denoted τ t. The cuspidal

representation πt associated with π by (1.1) is then the compact induction of τ t to GLmpT q.
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1.6. Having reduced the classification of distinguished cuspidal R-representations to level 0, we
further reduce this classification to the finite group setting. Let π be a σ-selfdual cuspidal R-re-
presentation of G of level 0 with central character cπ and generic type pJ,λq. Restricting λ to
J0 defines a cuspidal R-representation V of GLnpkq, where k is the residue field of F . We prove
(see Theorem 4.46):

Theorem 1.3. — Suppose n ‰ 1. The representation π is GLnpF0q-distinguished if and only if
its central character cπ is trivial on Fˆ0 and

(1) if F {F0 is unramified, then V is GLnpk0q-distinguished (k0 is the residue field of F0);
(2) if F {F0 is ramified, then n is even, V is GLn{2pkqˆGLn{2pkq-distinguished, the vector spa-

ce of GLn{2pkq ˆGLn{2pkq-invariant linear forms on V has dimension 1, and

s “

ˆ

0 id
id 0

˙

P GLnpkq

acts on this space by the sign cπp$q, where $ is any uniformizer of F .

1.7. Let π be a cuspidal non-supercuspidal R-representation of G. Following [26], we recall in
§3.4 that there are a uniquely determined integer r “ rpπq ě 2 and a supercuspidal R-represen-
tation ρ of GLn{rpF q such that π is isomorphic to Strpρq, where Strpρq denotes the unique generic
subquotient of the parabolically induced representation

ρν´pr´1q{2 ˆ ¨ ¨ ¨ ˆ ρνpr´1q{2

(where ν denote the unramified character which is the absolute value of F composed with the de-
terminant). The representation ρ is not unique in general, but, if π is σ-selfdual and r is odd, and
if one further demands that ρ be σ-selfdual, then ρ is uniquely determined up to isomorphism (see
Proposition 3.8). In this case, we obtain further necessary conditions for distinction (see Theorem
5.1):

Theorem 1.4. — Let π be a σ-selfdual cuspidal non-supercuspidal R-representation of GLnpF q.
Assume that the integer r “ rpπq is odd, thus π is isomorphic to Strpρq for a uniquely determined
σ-selfdual supercuspidal representation ρ of GLn{rpF q. If π is GLnpF0q-distinguished, then

(1) the relative degree m “ mpπq and the ramification index of T {T0 have the same parity,
(2) the representation ρ is GLn{rpF0q-distinguished.

As a corollary, we extend the Disjunction Theorem from the supercuspidal setting (that is, the
statement that, if ` ‰ 2, a supercuspidal R-representation is not both distinguished and κ-dis-
tinguished) to include cuspidal R-representations π with rpπq odd.

1.8. Say that an irreducible F`-representation π of G lifts to Q` if there exists a free Z`-lattice L
equipped with a linear action of G such that the F`-representation of G on LbF` is isomorphic to
π. When this is the case, say that the smooth Q`-representation of G on LbQ` is a lift of π to
Q`. Following [37], any cuspidal F`-representation of G lifts to Q` and any of its lifts is cuspidal.

According to [22] (see Theorem 3.3), any cuspidal F`-representation of G having a Gσ-distin-
guished lift to Q` is Gσ-distinguished. The converse holds for supercuspidal representations (see
[32] and [11]), but not for cuspidal representations in general. In the final section, we classify the
Gσ-distinguished cuspidal F`-representations of G having a Gσ-distinguished cuspidal lift to Q`

(see Propositions 6.1 and 6.2 for a precise statement).
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Structure of the paper

After setting some notation in Section 2, in Section 3 we collect together necessary background
from the literature and prove some basic results on σ-selfdual cuspidal R-representations.

Section 4 constitutes the technical heart of the paper. It reduces the problem of classifying dis-
tinguished cuspidal R-representations to level 0.

In Section 5, under a parity condition, we provide necessary conditions for distinction, allowing
us to deduce the Disjunction Theorem and a lifting theorem.

Finally, in Section 6, we classify those cuspidal F`-representations having a distinguished cus-
pidal lift.
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2. Notation

2.1. Given any non-archimedean locally compact field F , we write OF for its ring of integers, pF
for the maximal ideal of OF , kF for its residue field and qF for the cardinality of kF .

We also write valF for the valuation of F taking any uniformizer to 1, and | ¨ |F for the abso-
lute value of F taking any uniformizer to the inverse of qF .

Given any finite extension L of K, we write NL{K and trL{K for the norm and trace maps.

2.2. Given a locally compact, totally disconnected topological group G and an algebraically clo-
sed field R of characteristic different from p, we consider smooth representations of G on R-vector
spaces. We will abbreviate smooth R-representation to R-representation, or even representation if
the coefficient field R is clear from the context.

An R-character (or character) of G is a group homomorphism from G to Rˆ with open kernel.
Let π be a representation of G. We write π_ for its contragredient. Given a character χ of G,

we write πχ for the representation g ÞÑ χpgqπpgq of G.
Let π be a representation of a closed subgroup H of G. Given any element g P G, we write πg

for the representation x ÞÑ πpgxg´1q of Hg “ g´1Hg. Given any continuous involution σ of G,
we write πσ for the representation π ˝ σ of σpHq. Given any character µ of H XGσ, we say that
π is µ-distinguished if the space HomHXGσpπ, χq is non-zero. If µ is the trivial character, we will
abbreviate µ-distinguished to H XGσ-distinguished, or just distinguished.

2.3. Let us fix a separable quadratic extension F {F0 of non-archimedean locally compact fields
of residual characteristic p, and let σ denote its non-trivial automorphism. Let

(2.1) κ “ κF {F0
: Fˆ0 Ñ t´1, 1u “ Zˆ

denote the Z-valued character of Fˆ0 with kernel NF {F0
pFˆq. When needed, we will consider κ as

a character with values in any algebraically closed field R. We abbreviate q “ qF and q0 “ qF0 .
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We fix a square root

(2.2) q
1{2
0 P R

of q0 in R an define

(2.3) q1{2 “

"

q
1{2
0 if F {F0 is ramified,
q0 if F {F0 is unramified,

which we will use to normalize parabolic induction and restriction functors (see below).

2.4. Given a positive integer n ě 1, the automorphism σ acts on the group GLnpF q component-
wise, thus defines a continuous involution of GLnpF q, still denoted σ. Its fixed points form the
subgroup GLnpF0q.

We denote by ν the unramified character “absolute value of the determinant” of GLnpF q and
by ν1{2 the unramified character taking any element whose determinant has valuation 1 to q´1{2.
We thus have pν1{2q2 “ ν. Similarly, we define the characters ν0 and ν1{2

0 of GLnpF0q.
Given positive integers n1, . . . , nr such that n1` ¨ ¨ ¨ `nr “ n and, for each i “ 1, . . . , r, given

an R-representation πi of GLnipF q, we write

(2.4) π1 ˆ ¨ ¨ ¨ ˆ πr

for the representation of GLnpF q obtained by normalized parabolic induction from π1b ¨ ¨ ¨ b πr
along the parabolic subgroup generated by upper triangular matrices and the standard Levi sub-
group GLn1pF q ˆ ¨ ¨ ¨ ˆGLnrpF q.

An irreducibleR-representation of GLnpF q is said to be cuspidal (respectively, supercuspidal) if
it does not occur as a subrepresentation (respectively, a subquotient) of any representation of the
form (2.4) with r ě 2. Any supercuspidal representation of GLnpF q is cuspidal. When R has cha-
racteristic 0, any cuspidal representation of GLnpF q is supercuspidal. When R has characteristic
` ą 0, the group GLnpF q may have cuspidal non-supercuspidal representations (see §3.4).

Given a representation π of GLnpF q and a character χ of Fˆ, we will write πχ for πpχ ˝ detq.

2.5. Let us fix an algebraic closure Q` of the field of `-adic numbers. Let Z` denote its ring of in-
tegers, and F` denote the residue field of Z`.

We call an irreducible representation π of a locally compact, totally disconnected group G on a
Q`-vector space V integral if it stabilizes a Z`-lattice L in V . In this case, we obtain a smooth F`-
representation Lb F` of G whose isomorphism class may depend on the choice of L.

If G is either the group of rational points of a connected reductive linear algebraic F -group or
a finite group (see [38, Theorem 1] and the Brauer–Nesbitt principle), the smooth F`-representa-
tion L b F` has finite length, and its semisimplification is independent of the choice of L. This
semisimplification is called the reduction modulo ` of π, and is denoted by r`pπq.

Given an irreducible F`-representation ρ of G, we call an irreducible integral Q`-representation
with reduction modulo ` equal to ρ a Q`-lift of ρ.

3. Basic results

In this section, p is an arbitrary prime number, F {F0 is a separable quadratic extension and R
has characteristic ` ‰ p. We fix a positive integer n ě 1.
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3.1. Fundamental results of Flicker and Prasad [14, 29, 30] on irreducible complex representa-
tions of GLnpF q distinguished by GLnpF0q have been extended to irreducible R-representations in
[32] Theorem 4.1.

Theorem 3.1. — Let π be an irreducible representation of GLnpF q distinguished by GLnpF0q.
(1) The central character cπ of π is trivial on Fˆ0 .
(2) The R-vector space HomGLnpF0qpπ,Rq has dimension 1.
(3) The contragredient π_ of π is isomorphic to πσ.

We will say that a representation π of GLnpF q is σ-selfdual if π_ is isomorphic to πσ.

3.2. For supercuspidal representations, we have the following Dichotomy and Disjunction Theo-
rem ([21] Theorem 4, [2] Corollary 1.6 if ` “ 0, [32] Theorem 10.8 if p ‰ 2 and [11] Theorem 3.14
if ` ‰ 0, 2).

Theorem 3.2. — Let ρ be a σ-selfdual supercuspidal R-representation of GLnpF q.
(1) If ` “ 2, then ρ is distinguished.
(2) If ` ‰ 2, then ρ is either distinguished or κ-distinguished, but not both.

3.3. In this paragraph, ` is a prime number different from p and we will consider representations
with coefficients in Q` or F`. The following theorem is [22] Theorem 3.4.

Theorem 3.3. — Let π be an integral σ-selfdual cuspidal Q`-representation of GLnpF q. If π is
distinguished by GLnpF0q, then its reduction mod ` is (irreducible, cuspidal and) distinguished.

It follows that any σ-selfdual cuspidal F`-representation of GLnpF q having a distinguished lift
to Q` is distinguished. For supercuspidal representations, one has the following converse (see [32]
Theorem 10.11 if p ‰ 2, and [11] Theorem 3.4):

Theorem 3.4. — Any GLnpF0q-distinguished supercuspidal F`-representation of GLnpF q has a
GLnpF0q-distinguished lift to Q`.

We also have the following Distinguished Lift Theorem, making Theorem 3.4 more precise.

Theorem 3.5. — Let ρ be a σ-selfdual supercuspidal F`-representation of GLnpF q.
(1) The representation ρ has a σ-selfdual lift to Q`.
(2) Let µ be a σ-selfdual lift of ρ to Q` and suppose that ` ‰ 2. Then µ is distinguished if and

only ρ is distinguished.

Proof. — If p ‰ 2, this is [32] Theorem 10.11. Assume now that p “ 2, thus ` ‰ 2.
By Theorem 3.2, the representation ρ is either distinguished or κ-distinguished. If it is distin-

guished, it has a σ-selfdual lift thanks to Theorem 3.4 and Theorem 3.1(3). If it is κ-distingui-
shed, fix a Q`-character ξ of Fˆ extending the canonical Q`-lift of κ. The reduction mod ` of ξ
is an F`-character of Fˆ extending κ, denoted χ. The representation ρχ is distinguished and su-
percuspidal. It thus has a σ-selfdual lift π. Then πξ´1 is a distinguished lift of ρ. This proves (1).

Let µ be a σ-selfdual lift of ρ, and assume that ρ is distinguished. If µ is not distinguished, it
must then be κ-distinguished. By Theorem 3.3, this implies that ρ is κ-distinguished, which con-
tradicts the Dichotomy and Disjunction Theorem. Conversely, if µ is distinguished, then ρ is dis-
tinguished thanks to Theorem 3.3.
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3.4. From now on, we consider the case of cuspidal non-supercuspidal R-representations, thus `
is a prime number different from p. Let us recall how they are classified in terms of their super-
cuspidal support.

Recall that a representation π of GLnpF q on an R-vector space V is generic if V carries a non-
zero R-linear form Λ such that Λpπpuqvq “ θpuqv for all v P V and all unipotent upper triangular
matrices u, where θpuq “ ψpu1,2 ` ¨ ¨ ¨ ` un´1,nq and ψ is a non-trivial R-character of F .

Let k ě 1 be a positive integer, and ρ be a supercuspidal R-representation of GLkpF q. Accor-
ding to [26] 8.1, for any r ě 1, the induced representation

(3.1) ρν´pr´1q{2 ˆ ¨ ¨ ¨ ˆ ρνpr´1q{2

contains a unique generic irreducible subquotient, denoted Strpρq.
Let epρq be the smallest integer i ě 1 such that ρνi is isomorphic to ρ and tpρq be the torsion

number of ρ, that is, the number of unramified characters χ of Fˆ such that ρχ is isomorphic to
ρ. By [28] Lemme 3.6, these integers are related by the identity

(3.2) epρq “ order of qtpρq mod `.

By [26] Théorème 6.14, one has the following classification.

Proposition 3.6. — Let π be a cuspidal non-supercuspidal R-representation of GLnpF q.
(1) There are a unique positive integer r “ rpπq ě 2 dividing n and a supercuspidal represen-

tation ρ of GLn{rpF q such that π is isomorphic to Strpρq.
(2) There is a unique integer v ě 0 such that r “ epρq`v.
(3) Let ρ1 be a supercuspidal representation of GLn{rpF q. The representation π is isomorphic

to Strpρ
1q if and only if ρ1 is isomorphic to ρνi for some i P Z.

Note that, conversely, by the same references, if ρ is a supercuspidal representation of GLkpF q
and r “ epρq`v for some v ě 0, the representation Strpρq is cuspidal.

3.5. We now classify σ-selfdual cuspidal representations.

Lemma 3.7. — Let ρ be a supercuspidal R-representation of GLkpF q for some k ě 1. Let r ě 2
be such that Strpρq is cuspidal, and suppose that Strpρq is σ-selfdual. Then there is an i P Z, uni-
quely determined mod epρq, such that ρ_σ is isomorphic to ρνi.

Proof. — The representation Strpρq is σ-selfdual if and only if the representation

Strpρq
_σ » Strpρ

_σq

is isomorphic to Strpρq. The result then follows from Proposition 3.6.

Proposition 3.8. — Let π be a cuspidal σ-selfdual representation of GLnpF q. Set r “ rpπq and
write k “ n{r.

(1) If r is odd or ` “ 2, there is a unique σ-selfdual supercuspidal representation ρ of GLkpF q
such that π is isomorphic to Strpρq.

(2) Suppose that r is even and ` ‰ 2.
(a) There are a supercuspidal representation ρ of GLkpF q and an i P t0, 1u such that π is

isomorphic to Strpρq and ρ_σ » ρνi.
(b) Let ρ1 be a supercuspidal representation of GLkpF q and j P t0, 1u such that π is iso-

morphic to Strpρ
1q and ρ1_σ » ρ1νj. Then j “ i, and either ρ1 » ρ or ρ1 » ρνr{2.
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Proof. — If r “ 1, the result is trivial. Let us assume that r ě 2. Fix a supercuspidal irreducible
representation ρ of GLkpF q such that π is isomorphic to Strpρq. By Lemma 3.7, there is an i P Z
such that ρ_σ » ρνi. Changing ρ to ρ1 “ ρνs for some s P Z does not change Strpρq, but changes
i to i´ 2s. If r is odd or ` “ 2, then epρq is odd, thus 2Z` epρqZ “ Z. This proves (1). Similar-
ly, if r is even and ` ‰ 2, then epρq is even: we thus may assume that i P t0, 1u, proving (2.a).
Moreover, if ρ1 and j are as in (2.b), then j ´ i is even, thus j “ i. Moreover, ρ1 is isomorphic to
ρνs for some 0 ď s ă epρq such that ν2stpρq “ 1, thus epρq divides 2s.

3.6. We will need the finite field analogue of 3.4 (see [37] III.2.5 or [9] Theorem 19.3).

Proposition 3.9. — Let k be a finite field of characteristic p.
(1) Let f ě 1 be a positive integer and % be a supercuspidal representation of GLf pkq.

(a) For all u ě 1, the induced representation

%ˆ ¨ ¨ ¨ ˆ % (u times)

has a unique generic irreducible subquotient, denoted stup%q.
(b) Let ep%q be the order of qf mod `. The representation stup%q is cuspidal if and only

if u “ 1 or u “ ep%q`v for some v ě 0.
(2) Let W be a cuspidal representation of GLnpkq. There exist a unique integer u “ rpWq ě 1

dividing n and a unique supercuspidal representation % of GLn{upkq such that W » stup%q.

3.7. As in the previous paragraph, k is a finite field of characteristic p. Let us recall how to pa-
rametrize cuspidal representations of GLnpkq by regular characters ([17], [12] Theorem 3.5 and
[13, 19]).

Let k be an algebraic closure of k. For any integer s ě 1, let ks be the extension of k of degree
s contained in k. Let ∆ denote the group Galpkn{kq. A character of kˆn is ∆-regular if it is fixed
by no non-trivial element of ∆.

Proposition 3.10. — (1) Associated with any ∆-regular Q`-character ξ of kˆn , there is a cus-
pidal Q`-representation Wξ of GLnpkq, unique up to isomorphism, such that

tr Wξpxq “ p´1qn´1 ¨
ÿ

δP∆

ξpxδq

for all x P kˆn of degree n over k, where kˆn is considered as a maximal torus in GLnpkq.
(2) The correspondence

ξ ÞÑ Wξ

induces a bijection from the set of ∆-conjugacy classes of ∆-regular Q`-characters of kˆn to that
of isomorphism classes of cuspidal Q`-representations of GLnpkq.

By reduction mod `, we get the following classification.

Proposition 3.11. — (1) Given any ∆-regular Q`-character ξ of kˆn , the reduction mod ` of
Wξ, denoted Wξ, is irreducible and cuspidal, and it only depends on the reduction mod ` of ξ.

(2) Reduction mod ` induces a bijection from the set of ∆-conjugacy classes of F`-characters of
kˆn having a ∆-regular lift to Q` to that of isomorphism classes of cuspidal F`-representations of
the group GLnpkq.
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(3) The integer rpWξq is the greatest divisor r of n such that the reduction of ξ mod ` factorizes
through a character of kˆn{r.

Definition 3.12. — A parameter of a cuspidal representation ρ of GLnpkq is a character of kˆn
whose ∆-conjugacy class corresponds to ρ by the bijection of either Proposition 3.10 or 3.11.

3.8. Finally, we will need the following distinction criterion for cuspidal Q`-representations (see
[18] Proposition 6.1 and [10] Lemme 3.4.10) of GLnpkq when p is odd.

Proposition 3.13. — Assume that q is odd, n is even and write n “ 2u. We consider the group
GLupkq ˆGLupkq as a Levi subgroup of GLnpkq. Let ξ be a ∆-regular Q`-character of kˆn .

(1) The following assertions are equivalent.
(a) The cuspidal Q`-representation Wξ is GLupkq ˆGLupkq-distinguished.
(b) The space of GLupkq ˆGLupkq-invariant linear forms on Wξ has Q`-dimension 1.
(c) The cuspidal Q`-representation Wξ is selfdual.
(d) The character ξ is trivial on kˆu .

(2) Assume that the conditions of (1) are satisfied, and fix an element α P kˆn such that α R kˆu
and α2 P kˆu . The element

(3.3) s “

ˆ

0 id
id 0

˙

P GLnpkq,

where id is the identity in GLupkq, normalizes the group GLupkq ˆGLupkq and acts on the Q`-
vector space of GLupkq ˆGLupkq-invariant linear forms on Wξ by the sign ´ξpαq.

Remark 3.14. — Suppose that Wξ is GLupkqˆGLupkq-distinguished. By [32] Lemma 2.6, the
cuspidal F`-representation Wξ is GLupkq ˆ GLupkq-distinguished as well. More precisely, if we
fix a non-zero GLupkqˆGLupkq-invariant Q`-linear form Λ on Wξ together with a GLnpkq-stable
Z`-lattice L Ď Wξ, then the associated F`-linear form

Λ : Lb F` Ñ ΛpLq b F`

is non-zero and GLupkqˆGLupkq-invariant. Moreover, if s acts on Λ by a sign c P t´1, 1u Ď Qˆ` ,
then s acts on Λ by the image of c in Fˆ` .

4. Reduction to level zero

In this section, p is odd, ` is any prime number different from p and R has characteristic 0 or
`. Let us fix a positive integer n ě 1, and set G “ GLnpF q. We fix a character

(4.1) ψ : F Ñ Rˆ

which is trivial on pF but not on OF .
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4.1. Let us recall the definitions and main results of [8, 7, 27, 3] which we will need.
Let ra, βs be a simple stratum in the algebra MnpF q of nˆn matrices with entries in F . Recall

that a is a hereditary OF -order of MnpF q and β is an element of MnpF q such that
– the F -algebra E “ F rβs is a field, and
– the multiplicative group Eˆ normalizes a

(plus an extra technical condition on β which is not necessary to recall here: see [8] 1.5.5).
Let Ka be the normalizer of a in G and pa be its Jacobson radical, and set U1

a “ 1` pa. Let
B be the centralizer of E in MnpF q. The intersection b “ aXB is a hereditary order in B.

Associated with ra, βs in [8] Chapter 3, there are compact mod centre open subgroups

H1pa, βq Ď J1pa, βq Ď J0pa, βq Ď Jpa, βq Ď Ka

and a non-empty finite set Cpa, βq of characters of H1pa, βq called simple characters, depending
on the choice of (4.1). We write J “ Jpa, βq, J0 “ J0pa, βq, J1 “ J1pa, βq and H1 “ H1pa, βq for
simplicity.

We will only be interested in the case where b is a maximal order in B, in which case the sim-
ple stratum ra, βs and the simple characters in Cpa, βq are said to be maximal. For the following
result, see [7] 2.1, 3.2 and [8] 5.1.1.

Proposition 4.1. — Let ra, βs be a maximal simple stratum.
(1) The group J0 is the unique maximal compact subgroup of J, and J1 is its unique maximal

normal pro-p-subgroup.
(2) One has J “ EˆJ0 “ pJXBˆqJ1 and

(4.2) JXBˆ “ Kb, J0 XBˆ “ bˆ, J1 XBˆ “ U1
b.

(3) There is an isomorphism of E-algebras

(4.3) B »MmpEq, m “ n{rE : F s,

sending bˆ to the maximal compact open subgroup GLmpOEq, which induces isomorphisms

(4.4) J0{J1 » bˆ{U1
b » GLmplq

where l is the residue field of E.
(4) Given any simple character θ P Cpa, βq, we have

(a) the normalizer of θ in G is equal to J, and
(b) there is an irreducible representation η of J1, unique up to isomorphism, whose res-

triction to H1 contains θ, and such a representation extends to J.

The representation η of (4.b) is called the Heisenberg representation associated with θ. If κ
is a representation of J extending η, any other extension of η to J has the form κξ for a unique
character ξ of J trivial on J1.

Remark 4.2. — (1) An isomorphism as in Proposition 4.1(3) comes from the choice of an
OE-basis of an OE-lattice L in Fn whose endomorphism algebra is b.

(2) Changing the isomorphism (4.3), that is, changing the basis of L above, has the effect of
conjugating the identification (4.4) by an inner automorphism of GLmplq.

A character θ of an open pro-p-subgroup H of G will be called a maximal simple character if
there is a maximal simple stratum ra, βs in MnpF q such that H “ H1pa, βq and θ P Cpa, βq. Gi-
ven a maximal simple character θ of G, we will write H1

θ for the group on which θ is defined, Jθ
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for its G-normalizer, J0
θ for its unique maximal compact subgroup, J1

θ for its unique maximal nor-
mal pro-p-subgroup and T for the maximal tamely ramified extension of F in E “ F rβs. The
following result shows how the latter depends on the choice of ra, βs (see [7] 2.1, 2.5 and 2.6).

Proposition 4.3. — Let ra1, β1s be a simple stratum such that θ P Cpa1, β1q, and set E1 “ F rβ1s.
(1) The orders a, a1 are equal and E, E1 have the same degree over F .
(2) The simple stratum ra, β1s is maximal.
(3) The maximal tamely ramified extension of F in E1 is J1

θ-conjugate to T .

It follows that the G-conjugacy class of the simple character θ uniquely determines the integer
m in (4.3), as well as the extension T up to G-conjugacy (or equivalently up to F -isomorphism).
However, the fields E, E1 need not be isomorphic (see [7] Example 2.1).

4.2. In this paragraph only, we let n vary among all positive integers, and consider the set

CmaxpF q “
ď

ra,βs

Cpa, βq

where the union is taken over all maximal simple strata of MnpF q, for any n ě 1. It is endowed
with an equivalence relation called endo-equivalence ([5, 6]). An equivalence class for this equi-
valence relation is called an endo-class (see [3] 3.2).

Given a maximal simple character θ P CmaxpF q with endo-class Θ, the degree rE : F s and the
F -isomorphism class of its tame parameter field T only depend on Θ. They are called the degree
and tame parameter field of Θ, respectively.

For a given n, any two maximal simple characters of GLnpF q are endo-equivalent if and only
if they are GLnpF q-conjugate.

Remark 4.4. — Note that endo-equivalence is defined in [5, 6] for arbitrary simple characters,
not only for maximal ones, but we will not need this extra generality.

4.3. We go back to the situation of Paragraph 4.1, assuming further that the character ψ of (4.1)
is σ-invariant, which is possible since p ‰ 2. As in [32], we will say that:

– a simple stratum ra, βs in MnpF q is σ-selfdual if a is σ-stable and σpβq “ ´β,
– a simple character θ is σ-selfdual if the group H1

θ is σ-stable and θ´1 ˝ σ “ θ,
– an endo-class Θ of (maximal) simple characters is σ-selfdual if for some (or equivalently for

any) θ P Θ, the character θ´1 ˝ σ is in Θ.

Proposition 4.5. — Let θ be a σ-selfdual maximal simple character.
(1) There is a σ-stable simple stratum ra, βs such that θ P Cpa, βq.
(2) Let E0 be the σ-fixed points of E and l0 be its residue field. There exists an isomorphism

(4.3) inducing an isomorphism (4.4) which transports the action of σ on J0{J1 to
(a) the action of the non-trivial element of Galpl{l0q on GLmplq if E{E0 is unramified,
(b) the adjoint action of

(4.5)
ˆ

´idi 0
0 idm´i

˙

P GLmplq

on GLmplq if E{E0 is ramified, for a uniquely determined integer i P t0, . . . , tm{2uu.
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Remark 4.6. — Choose a basis of L as in Remark 4.2, with the additional condition that its
vectors are σ-invariant. The isomorphism (4.3) associated with it then transports the action of σ
on B to that of the generator of GalpE{E0q on MmpEq. When E{E0 is ramified, this corresponds
to the case where i “ 0 in (4.5).

If θ is a σ-selfdual maximal simple character, we will write T0 for the maximal tamely ramified
extension of F0 in E0, that is, T0 “ T X E0. By [3] Lemma 4.10, the canonical homomorphism

(4.6) T0 bF0 F Ñ T

is an isomorphism. Also, T {T0 and E{E0 have the same ramification index. By [3] Lemma 4.29,
the F0-isomorphism class of T0 is uniquely determined by the endo-class Θ of θ. And it follows
from (4.6) that the F0-isomorphism class of T0 determines the F -isomorphism class of T .

The following result is given by [32] Proposition 6.12, Lemma 6.20 and [33] Lemme 3.28. (The
latter reference in [33] is for representations with coefficients in R “ C, but its proof is still valid
in the `-modular case.)

Proposition 4.7. — Let θ be a σ-selfdual maximal simple character.
(1) The Heisenberg representation η of θ is σ-selfdual and J1XGσ-distinguished, and the space

HomJ1XGσpη,Rq has dimension 1.
(2) For any representation κ of J extending η, there are

(a) a unique character ξ of J trivial on J1 such that κ_σ is isomorphic to κξ,
(b) a unique character χ of JXGσ trivial on J1 XGσ such that

(4.7) HomJ1XGσpη,Rq “ HomJXGσpκ, χ
´1q,

and the restriction of ξ to JXGσ is equal to χ2.
(3) Given a representation κ as in (2) and an irreducible representation τ of J trivial on J1,

the canonical linear map

(4.8) HomJ1XGσpη,Rq bHomJXGσpτ , χq Ñ HomJXGσpκb τ , Rq

is an isomorphism of R-vector spaces.
(4) There exists a σ-selfdual representation of J extending η.

Conversely, let Θ be a σ-selfdual endo-class of degree dividing n. By [3] Section 4, it contains
a σ-selfdual maximal simple character θ in G, and we have the following classification.

Proposition 4.8. — Let T {T0 be the quadratic extension associated with Θ as above, and let
us write m “ n{degpΘq.

(1) If T {T0 is unramified, the G-conjugacy class of θ contains a unique Gσ-conjugacy class of
σ-selfdual simple characters.

(2) If T {T0 is ramified, the number of Gσ-conjugacy classes of σ-selfdual simple characters in
the G-conjugacy class of θ is equal to tm{2u`1, each class corresponding bijectively to an integer
i P t0, . . . , tm{2uu characterized by Proposition 4.5(2.b).

Remark 4.9. — When T {T0 is ramified, we define (as in [3, 32]) the index of a σ-selfdual ma-
ximal simple character θ to be the integer i P t0, . . . , tm{2uu associated with its Gσ-conjugacy
class. By [3] Remark 4.28 or [32] 5.D, if θ has index 0 and if

yi “ diagp$, . . . ,$, 1, . . . , 1q P GLmpEq » Bˆ, $ a uniformizer of E occurring i times,

for some i P t0, . . . , tm{2uu, then θyi is a σ-selfdual maximal simple character of index i.
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4.4. Let θ be a maximal simple character, and ra, βs be a simple stratum such that θ P Cpa, βq.
As in 4.1, write J “ Jθ, J0 “ J0

θ, J1 “ J1
θ and H

1 “ H1
θ . Let η be the Heisenberg representation

of J1 associated with θ. In this paragraph, we give a slightly generalized version of [7] 3.3.
Fix an OE-lattice L in V “ Fn whose endomorphism algebra is b. (It is uniquely determined

up to homothety as b is maximal.) Fix a divisor u ě 1 of m and decompositions

(4.9) L “ L˚ ‘ ¨ ¨ ¨ ‘ L˚, V “ V˚ ‘ ¨ ¨ ¨ ‘ V˚,

in which V˚ is an E-vector space of dimension m{u and L˚ is an OE-lattice of rank m{u in V˚.
It defines a Levi subgroup M of G. Fix a pair pQ´, Q`q of M -opposite parabolic subgroups of G
with Levi componentM , and write N´, N` for their unipotent radicals. Define a˚ “ EndOF pL˚q.
It is a hereditary order, and ra˚, βs is a maximal simple stratum in EndF pV˚q. Write J˚, J0

˚, J1
˚

and H1
˚ for the subgroups associated with it. Compare with [7] 3.3, which corresponds to the par-

ticular case where u “ m.
The next result follows from [5] Example 10.9 (compare with Lemma 1 in [7] 3.3).

Lemma 4.10. — (1) There are Iwahori decompositions

H1 “ pH1 XN´q ¨ pH
1 XMq ¨ pH1 XN`q,

H1 XM “ H1
˚ ˆ ¨ ¨ ¨ ˆH

1
˚

and

J1 “ pJ1 XN´q ¨ pJ
1 XMq ¨ pJ1 XN`q,

J1 XM “ J1
˚ ˆ ¨ ¨ ¨ ˆ J1

˚.

(2) The character θ is trivial on H1XN´, H1XN` and there exists a unique simple character
θ˚ P Cpa˚, βq such that θ agrees with θ˚ b ¨ ¨ ¨ b θ˚ on H1 XM .

Moreover, the map θ ÞÑ θ˚ defined by Lemma 4.10(2) is a bijection from Cpa, βq to Cpa˚, βq:
this is an instance of the transfer of [8] 3.6.

Let η˚ denote the Heisenberg representation of J1
˚ associated with θ˚. Compare the next result

with Lemma 2 in [7] 3.3 and the discussion after it.

Lemma 4.11. — Let κ˚ be a representation of J˚ extending η˚.
(1) The set J` “ pH

1 XN´q ¨ pJ X Q`q is a group, and there is a unique representation κ`
of J` which is trivial on H1 XN´, J0 XN` and agrees with κ˚ b ¨ ¨ ¨ b κ˚ on JXM .

(2) The representation rκ` of pJ1 XN´q ¨ pJXQ`q “ J1J` induced by κ` extends η.
(3) There is a unique irreducible representation κ of J extending rκ`.

Proof. — That J` is a group follows from the fact that H1 is normalized by J, thus by JXQ`.
The existence of κ` follows from the containment

pJ0 XN`q ¨ pH
1 XN´q Ď pH

1 XN´q ¨ pJ
1 XMq ¨ pJ0 XN`q

(see the argument of [31] 2.3). Mackey’s formula implies that the restriction of rκ` to J1 is

IndJ1

J1XJ`
pκ`q.

The restriction of κ` to J1XJ` “ pH
1XN´q ¨ pJ

1XQ`q is the unique representation η` which
is trivial on H1 XN´, J1 XN` and agrees with η˚ b ¨ ¨ ¨ b η˚ on J1 XM . The representation it
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induces to J1 is isomorphic to η: indeed, this representation contains θ by Lemma 4.10(2), and
it has dimension

dimpη˚ b ¨ ¨ ¨ b η˚q ¨ pJ
1 XN´ : H1 XN´q “ pJ1 XM : H1 XMq1{2 ¨ pJ1 XN´ : H1 XN´q

“ pJ1 : H1q1{2

which is the dimension of η (see [27] 2.3).
It remains to prove (3). First, uniqueness follows from the fact that any two such extensions

differ from a character of J trivial on J1J`, and such a character is trivial since p ‰ 2. Existen-
ce follows from [8] 5.2.4 (see [27] 2.4 in the modular case).

The reader will pay attention to the fact that JXM is not equal to J˚ ˆ ¨ ¨ ¨ ˆ J˚ in general
(unless u “ 1), but is generated by J0

˚ ˆ ¨ ¨ ¨ ˆ J0
˚ and Eˆ (the latter being diagonal in M).

Lemma 4.12. — (1) The map

(4.10) κ˚ ÞÑ κ

from isomorphism classes of representations of J˚ extending η˚ to isomorphism classes of repre-
sentation of J extending η is surjective.

(2) Any two representations of J˚ extending η˚ have the same image if and only if they are
twists of each other by a character of J˚ trivial on J0

˚ and of order dividing u.

Proof. — The case where u “ m is given by Corollary 1 in [7] 3.3, and the general case follows
by transitivity.

Remark 4.13. — Suppose that u is equal to m. Let y PM XBˆ and write θ1 “ θy P Cpay, βq.
The groups associated with θ1 are J1 “ Jy, etc. The group isomorphism Bˆ » GLmpEq identifies
M XBˆ with the diagonal torus Eˆˆ ¨ ¨ ¨ˆEˆ, and Eˆ normalizes θ˚. The character θ1 is thus
trivial on H1y XN´, H1y XN` and agrees with θ˚ b ¨ ¨ ¨ b θ˚ on H1y XM “ H1 XM . If κ˚ is
a representation of J˚ extending η˚, the representation of J1 corresponding to it by (4.10) is κy.

4.5. Suppose now that the simple character θ and the simple stratum ra, βs of 4.4 are σ-selfdual.
The groups J, J0, J1 and H1 are thus σ-stable. Suppose also that the decompositions (4.9) are
σ-stable. The Levi subgroup M is thus σ-stable, and we may assume that Q´, Q` are σ-stable
as well. Also, the simple stratum ra˚, βs and the simple character θ˚ given by Lemma 4.10 are
σ-selfdual. Let G˚ denote the group AutF pV˚q. It is isomorphic to GLn{upF q.

We may also assume that our choice of basis induces an isomorphism of groups (4.4) between
J0{J1 and GLmplq as in Proposition 4.5(4), transporting the action of σ on J0{J1 to

– the action of the non-trivial element of Galpl{l0q on GLmplq if T {T0 is unramified,
– the adjoint action of (4.5) on GLmplq for some i P t0, . . . , tm{2uu, if T {T0 is ramified.

Let κ˚ be a representation of J˚ extending η˚, and let κ correspond to it by (4.10).

Lemma 4.14. — If κ˚ is σ-selfdual, then κ is σ-selfdual.

Proof. — First, κ_σ` is trivial on both H1 XN´, J1 XN` and agrees with κ_σ˚ b ¨ ¨ ¨ b κ_σ˚ on
JXM . If κ˚ is σ-selfdual, it follows by uniqueness that κ_σ` is σ-selfdual, thus rκ_σ` is σ-selfdual
as well. The unique representation of J extending rκ_σ` is κ_σ, hence κ is σ-selfdual.
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We will need the following lemma. Let $ be a uniformizer of E such that

(4.11) σp$q “

"

$ if T {T0 is unramified,
´$ if T {T0 is ramified.

Note that the group J is generated by J0 and $.

Lemma 4.15. — The group JXGσ is generated by J0 XGσ and an element $1 such that
(1) $1 “ $ if T {T0 is unramified,
(2) $1 “ $2 if T {T0 is ramified and m ‰ 2i,
(3) $1 P $J0 if T {T0 is ramified and m “ 2i.

Proof. — If T {T0 is unramified, see [32] Lemma 9.1. Suppose that T {T0 is ramified, and assume
that there is an x P JXGσ, x R x$2,J0XGσy. We have x “ $vy where v P Z is odd and y P J0

satisfies σpyq “ ´y. Reducing mod J1, we get an α P GLmplq such that σpαq “ ´α. Since the
involution σ acts on GLmplq by conjugacy by

δ “ diagp´1, . . . ,´1, 1, . . . , 1q

(where ´1 occurs i times), this implies that δ and ´δ are GLmplq-conjugate, thus m “ 2i. Con-
versely, if m “ 2i, then

(4.12) w “

ˆ

0 idi
idi 0

˙

P J0 XBˆ “ GL2ipOEq

is σ-anti-invariant, and $1 “ $w has the required property.

We now investigate the behavior of the map (4.10) with respect to distinction. The case where
u “ m will be sufficient for our purpose (see Paragraph 4.6).

Lemma 4.16. — Suppose that u “ m and κ˚ is J˚ XG
σ
˚-distinguished.

(1) If T {T0 is unramified, or if T {T0 is ramified and m ‰ 2i, the representation κ is JXGσ-
distinguished.

(2) If T {T0 is ramified and m “ 2i, there exists a quadratic character ξ of J trivial on J0 such
that κξ is JXGσ-distinguished.

Proof. — The representation κ` is J`XG
σ-distinguished, thus rκ` is J1J`XG

σ-distinguished.
It follows that κ is J1J` XG

σ-distinguished. Let χ be the character of JXGσ associated with
κ by Proposition 4.7. It is trivial on J1J` XG

σ. Restricting to J0 XGσ, it is a character of

pJ0 XGσq{pJ1 XGσq » GLmplq
σ.

Since JXM Ď J`, it is trivial on the image of pJXMq X pJ0 XGσq in GLmplq
σ, which is made

of the σ-fixed points of the diagonal torus M “ lˆ ˆ ¨ ¨ ¨ ˆ lˆ.
If T {T0 is unramified, we have GLmplq

σ “ GLmpl0q and Mσ “ lˆ0 ˆ ¨ ¨ ¨ ˆ l
ˆ
0 , thus χ is trivial

on J0 XGσ. If T {T0 is ramified, we have GLmplq
σ “ GLiplq ˆGLm´iplq and Mσ “ M. Again, χ

is trivial on J0 XGσ.
By Lemma 4.15, it remains to consider the value of χ at $1. If T {T0 is unramified, or if T {T0

is ramified and m ‰ 2i, we have $1 P J1J` XG
σ, thus χ is trivial.

Now assume that T {T0 is ramified and m “ 2i. Let ξ be the quadratic character of J trivial
on J0 defined by ξp$1q “ χp$1q. Then κξ is JXGσ-distinguished.
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We will prove in Paragraph 4.6 that the quadratic character ξ of Lemma 4.16(2) is always tri-
vial: see Corollary 4.20.

4.6. As in Paragraph 4.5, the simple character θ and the simple stratum ra, βs are both maximal
σ-selfdual, and η is the Heisenberg representation of J1 associated with θ. The next proposition,
which says that η has a canonical extension to J, is the core of our proof of Theorem 4.42.

Proposition 4.17. — There is, up to isomorphism, a unique representation κ of J extending η
satisfying the following conditions:

(1) it is both σ-selfdual and JXGσ-distinguished,
(2) its determinant has order a power of p.

This unique representation will be denoted κθ.

Remark 4.18. — This extends (and makes more precise) the results of [32] (see ibid., Propo-
sitions 7.9, 9.4) where θ is assumed to be generic and either T {T0 is unramified and m is odd, or
T {T0 is ramified and m P t1, 2iu. See also [32] Remarks 9.5 and 9.9.

Proof. — Suppose first that there exists a representation satisfying (1). As in the proof of [33]
Corollary 6.12, one then easily proves the existence of a representation κ satisfying (1) and (2).
Let us prove that such a representation is unique. Any other representation of J satisfying the
conditions of the proposition is of the form κφ for some character φ of J which is σ-selfdual and
trivial on pJXGσqJ1, and whose order is a power of p. The restriction of φ to J0 can be consi-
dered as a character of GLmplq. Since the latter group is not isomorphic to GL2pF2q (for p ‰ 2),
this character factors through the determinant. Its order is thus prime to p, which implies that
φ is trivial on J0. It is thus a character of J{pJ X GσqJ0 which, by Lemma 4.15, has order at
most 2. Uniqueness follows from the fact that p ‰ 2.

We are now reduced to proving the existence of a representation κ satisfying (1). If m “ 1,
this follows from [32] Propositions 7.9, 9.4. (See also Remark 4.18.)

Now consider the constructions of 4.4 and 4.5 with u “ m. Thanks to the case where m is
equal to 1, there is a representation κ˚ of J˚ extending η˚ which is both σ-selfdual and J˚XG

σ
˚-

distinguished. Let κ be the representation of J extending η associated with it by (4.10). Lemma
4.14 implies that it is σ-selfdual, and Lemma 4.16 implies that there is a quadratic character ξ
of J trivial on J0 such that κξ is JXGσ-distinguished. Since ξ is unramified and quadratic, κξ
is also σ-selfdual and extends η.

Remark 4.19. — Notice that this gives another proof of [32] Propositions 7.9, 9.4, based on
the case m “ 1 only.

Now we can improve Lemma 4.16. Suppose we are in the situation of Paragraphs 4.4 and 4.5,
with u “ m.

Corollary 4.20. — Suppose that u “ m. Let κ˚ be a representation of J˚ extending η˚ and κ
correspond to it by the map (4.10). If κ˚ is J˚XG

σ
˚-distinguished, then κ is JXGσ-distinguished.

Proof. — The result is given by Lemma 4.16, except when T {T0 is ramified and m “ 2i, which
we assume now. Suppose that κ˚ is J˚XG

σ
˚-distinguished. By Lemma 4.16, there is a quadratic

character ξ of J trivial on J0 such that κξ is JXGσ-distinguished. Let κθ be the representation
given by Proposition 4.17 and write κξ “ κθφ for some character φ of J trivial on pJXGσqJ1.
Restricting to J0, the character φ can be seen as a character of GLmplq of the form α ˝ det, for
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some character α of lˆ, which is trivial on GLmplq
σ “ GLiplq ˆ GLiplq. This implies that α is

trivial, thus φ is trivial on J0. Also, φ is trivial at $1 P $J0 by Lemma 4.15. It is thus trivial.
In conclusion, we have κ “ κθξ. Taking determinants, we get

(4.13) det κ “ ξ ¨ det κθ.

Now there is a y P M X Bˆ such that θ1 “ θy P Cpay, βq is a σ-selfdual maximal simple charac-
ter of index 0 (in the sense of Remark 4.9). By Remark 4.13, the simple character of Cpa˚, βq
associated with θ1 by Lemma 4.10 is still θ˚, and the representation of J1 “ Jy corresponding
to κ˚ by (4.10) is κy. Let κθ1 be the representation associated with θ1 by Proposition 4.17. By
Lemma 4.16, κ1 is distinguished. By the discussion above, it follows that

(4.14) det κy “ det κθ1 .

But the characters det κ, det κy have the same order (since they are conjugate to each others),
and the latter one has order a power of p thanks to (4.14). Now (4.13) implies that ξ has order
a power of p. Since ξ is quadratic and p ‰ 2, this character is trivial.

We extract from the proof of Corollary 4.20 the following valuable corollary.

Corollary 4.21. — Suppose that u “ m. Let κθ˚ and κθ be the representations associated with
θ˚ and θ by Proposition 4.17, respectively. Then the map (4.10) takes κθ˚ to κθ.

We also have the following corollary, which extends [32] Lemma 7.10(3), Corollary 9.6(1).

Corollary 4.22. — Any JXGσ-distinguished representation of J extending η is σ-selfdual.

Proof. — Let κ be a JXGσ-distinguished representation of J extending η, and ξ be the unique
character of J trivial on J1 such that κ “ κθξ. We have to prove that ξ´1 ˝σ “ ξ. The fact that
κ is distinguished implies that ξ is trivial on pJXGσqJ1. Restricting to J0, the character ξ can
be seen as a character of GLmplq of the form α ˝ det, for some character α of lˆ.

If T {T0 is unramified, α is trivial on lˆ0 , thus ξ
´1 ˝ σ and ξ coincide on J0. They also coinci-

de on $ P JXGσ, thus they are equal.
If T {T0 is ramified, α is trivial, thus ξ´1 ˝ σ and ξ are both trivial on J0. Since ξ is trivial on

$2 P JXGσ, we get ξ´1 ˝ σp$q “ ξ´1p´$q “ ξ´1p$q “ ξp$q, which finishes the proof.

4.7. We now come to the type theoretic description of cuspidal representations of G. The follow-
ing proposition follows from [8] Theorem 8.4.1, Corollary 6.2.3, Theorem 5.7.1 (see [27] Théo-
rèmes 3.4, 3.7 and [34] Theorem 7.2 in the modular case).

Proposition 4.23. — Let π be a cuspidal representation of G. There is, up to G-conjugacy, a
unique simple character θ such that the restriction of π to H1

θ contains θ, and it is maximal.

Let π be a cuspidal representation of G, and let θ be a simple character occurring in π. Asso-
ciated with it, there are:

– the positive integer mpπq “ m ě 1 defined by (4.3), called the relative degree of π,
– the G-conjugacy class (or equivalently the F -isomorphism class) of the tamely ramified ex-

tension T of F associated with θ, called the tame parameter field of π,
– the endo-class Θ of θ, called the endo-class of π.

(Note that, when π has level 0, one has m “ n and T “ F , and Θ is the null endo-class.)
Write J “ Jθ, J0 “ J0

θ, J1 “ J1
θ and let η be the Heisenberg representation of θ. The next

proposition follows from [27] Lemme 5.3, Theorem 3.11.
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Proposition 4.24. — Let κ be a representation of J extending η, and define a representation
of J on the space HomJ1pκ, πq by making x P J act on f P HomJ1pκ, πq by

x ¨ f “ πpxq ˝ f ˝ κpxq´1.

This representation, denoted τ , has the following properties:

(1) It is irreducible, and trivial on J1.
(2) If one identifies J0{J1 with a finite general linear group as in (4.4), its restriction to J0 is

the inflation of a cuspidal representation.
(3) The compact induction of κb τ from J to G is isomorphic to π.

Any two representations of J extending η differ from a character of J trivial on J1. The pair

(4.15) pJ,κb τ q

thus only depends on π and the choice of θ, and not on the choice of κ.
When π varies among all cuspidal representations of G and θ varies among all maximal simple

characters in π, the pairs (4.15) are called extended maximal simple types in [8, 27], which we
will abbreviate to types here. A given cuspidal representation of G thus contains, up to G-conju-
gacy, a unique type pJ,λq: there is a unique maximal simple character θ such that Jθ “ J and
θ occurs in the restriction of λ to H1

θ , a representation κ of J which restricts irreducibly to J1

and a representation τ of J trivial on J1 such that λ is isomorphic to κb τ .

Remark 4.25. — If a is a maximal order in MnpF q, the trivial character of U1
a is a maximal

simple character, with E “ T “ F and m “ n. The cuspidal representations of G that contain
such a simple character are precisely the cuspidal representations of level 0.

Fix a representation κ of J extending η and define τ as in Proposition 4.24, and fix a simple
stratum ra, βs such that θ P Cpa, βq and an isomorphism (4.3). This gives a field E and an iso-
morphism J0{J1 » GLmplq, where l is the residue field of T .

By Proposition 4.24(2), the restriction of τ to J0 is the inflation of a cuspidal irreducible re-
presentation, denoted V.

On the other hand, the representation τ has a central character : it is a character of the cen-
tre EˆJ1{J1 of J{J1, or equivalently a tamely ramified character of Eˆ. Since E is totally wild-
ly ramified over its maximal tamely ramified subextension T , any tamely ramified character of
Eˆ factors through the norm NE{T . The restriction of τ to Eˆ is thus a multiple of ω ˝ NE{T

for a uniquely determined tamely ramified character ω of Tˆ.
The data V and ω are subject to the compatibility condition that the restriction of V to lˆ is

a multiple of the character of lˆ whose inflation to OˆT is the restriction of ωpe , with pe “ rE : T s.
Associated with V by Proposition 3.9, there are a unique integer u ě 1 dividing m and a unique
supercuspidal representation % of GLm{uplq such that V is isomorphic to stup%q. The next impor-
tant result is [28] Lemma 3.2. The integer rpπq has been defined in Paragraph 3.4.

Lemma 4.26. — The integer u is equal to rpπq.

It follows that rpπq divides m, and that π is supercuspidal if and only if V is supercuspidal.
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4.8. Write r “ rpπq and k “ n{r, and let ρ be a supercuspidal representation of GLkpF q such
that π is isomorphic to Strpρq given by Proposition 3.6. In this paragraph, we will compare the
type theoretic description of π with that of ρ. As in 4.7, we fix a representation κ of J extending
η. It defines an irreducible representation τ of J trivial on J1, then a cuspidal representation V
of GLmplq and a tamely ramified character ω of Tˆ. There is also a (unique) supercuspidal repre-
sentation % of GLm{rplq such that V is isomorphic to strp%q.

Since r divides m, we may apply the results of 4.4 to the case where u “ r, which we assume
now. Let θ˚ be the simple character associated with θ by Lemma 4.10.

Lemma 4.27. — The representation ρ contains θ˚.

Proof. — This follows from the descriptionp1q of Strpρq in [26] Section 6.

Consequently, π and ρ have the same endo-class. We have the following immediate corollary.

Corollary 4.28. — We have mpπq “ mpρqr and the representations π, ρ have the same tame
parameter field.

Let η˚ be the Heisenberg representation associated with θ˚, and let κ˚ be a representation of
J˚ extending η˚ such that the representation of J associated with it by (4.10) is κ. It defines an
irreducible representation τ ˚ of J˚ trivial on J1

˚, such that the pair pJ˚,κ˚ b τ ˚q is a type in ρ.
Associated with this, there are a cuspidal representation %˚ of GLm{rplq (which is supercuspidal
thanks to the comment after Lemma 4.26) and a tamely ramified character ω˚ of Tˆ. The fol-
lowing proposition compares the pairs p%, ωq and p%˚, ω˚q associated with τ and τ ˚.

Proposition 4.29. — We have % » %˚ and ω “ ωr˚.

Proof. — Again, the fact that % is isomorphic to %˚ follows from the description of Strpρq in [26]
Section 6. It thus remains to prove the second equality. For this, consider the action of J on

(4.16) HomJ1pκ,I pρ, rqq

where I pρ, rq is the parabolically induced representation (3.1). By [35] Proposition 5.6, its res-
triction to J0 is the inflation of the induced representation %˚ˆ ¨ ¨ ¨ ˆ %˚ of GLmplq. By tracking
the action of Eˆ in the arguments of [35] Section 5, we see that it acts on the space (4.16) by
the character

ωr˚ ˝NE{T .

In particular, Eˆ acts through this character on the subquotient HomJ1pκ, πq, which is τ .

4.9. Suppose that the cuspidal representation π is σ-selfdual. We say a type pJ,λq is σ-selfdual
if J is σ-stable and λ_σ is isomorphic to λ. The next result is [3] Theorem 4.1.

Proposition 4.30. — The representation π contains a σ-selfdual type.

A type pJ,λq contains a unique simple character θ such that Jθ “ J: it follows that, if pJ,λq
is σ-selfdual, θ is σ-selfdual as well. In particular, π contains a σ-selfdual simple character.

Let θ be a σ-selfdual simple character occurring in π, and ra, βs be a σ-selfdual simple stratum
such that θ P Cpa, βq (which exists by Proposition 4.5). The Gσ-conjugacy class (or equivalently

p1qWarning: the representation denoted Stpρ, rq in [26] corresponds to Strpρν
pr´1q{2

q, and the one denoted Strpρq

in [26] corresponds to Stvpρν
pv´1q{2

q with v “ epρq`r.
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the F0-isomorphism class) of the tamely ramified extension T0 of E0 associated with θ only de-
pends on π. Associated with π, there is thus a quadratic extension T {T0.

Remark 4.31. — When π has level 0, one has T0 “ F0.

If follows from Proposition 4.8 that π contains
– only one Gσ-conjugacy class of σ-selfdual types if T {T0 is unramified,
– tm{2u` 1 different Gσ-conjugacy classes of σ-selfdual types if T {T0 is ramified.

Among these Gσ-conjugacy classes of σ-selfdual types, one is of particular importance.

Definition 4.32. — A σ-selfdual type pJ,λq is said to be generic if either T {T0 is unramified,
or T {T0 is ramified and the integer i of Proposition 4.5(2.b) is equal to tm{2u.

A σ-selfdual cuspidal representation of G thus contains, up to Gσ-conjugacy, a unique generic
σ-selfdual type. The next result is [32] Theorem 10.3 (see also [3] Section 6).

Proposition 4.33. — Let π be a σ-selfdual cuspidal representation of G and pJ,λq be its generic
σ-selfdual type. Then π is distinguished if and only if λ is JXGσ-distinguished.

If pJ,λq is a σ-selfdual type, and if θ is the unique simple character contained in λ such that
Jθ “ J, we will write λw for the unique representation κθ of J extending the Heisenberg repre-
sentation of θ given by Proposition 4.17. The next result extends [32] Propositions 7.9, 9.8 to
the case of arbitrary σ-selfdual cuspidal representations.

Proposition 4.34. — Let π be a σ-selfdual cuspidal representation of G. Let pJ,λq be a generic
σ-selfdual type in π and τ be the representation of J trivial on J1 such that λ is isomorphic to
λw b τ . Then π is distinguished if and only if τ is JXGσ-distinguished.

Proof. — This follows from Proposition 4.33 together with the fact that

HomJXGσpλ, Rq » HomJXGσpλw, Rq bHomJXGσpτ , Rq

and HomJXGσpλw, Rq has dimension 1 (see Proposition 4.7(4)).

Fix isomorphisms

(4.17) B »MmpEq, J0{J1 » GLmplq,

as in Proposition 4.5(4). The restriction of τ to J X Bˆ is a generic σ-selfdual type of level 0
in Bˆ » GLmpEq and J{J1 is naturally isomorphic to pJXBˆq{pJ1 XBˆq. The representation
τ is thus distinguished by J X Gσ if and only if its restriction to J X GLmpEq is distinguished
by JXGLmpE0q. Proposition 4.34 used twice thus implies that π is distinguished by Gσ if and
only if the cuspidal representation of level 0 of GLmpEq compactly induced from the restriction
of τ to JXGLmpEq is distinguished by GLmpE0q.

However, the field extension E is not canonical. In 4.10, we will canonically associate with π
a σ-selfdual cuspidal representation πt of level 0 of GLmpT q, which is GLmpT0q-distinguished if
and only if π is Gσ-distinguished, where T {T0 is the quadratic extension associated with π. Our
strategy is inspired from [7] Section 3.

The following proposition relates the parity of m{r to the ramification of T {T0.
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Proposition 4.35. — Let π be a σ-selfdual cuspidal representation of GLnpF q with quadratic ex-
tension T {T0, and write m “ mpπq, r “ rpπq. Then

m{r is
"

odd if T {T0 is unramified,
either even or equal to 1 if T {T0 is ramified.

Proof. — Write π as Strpρq as in Proposition 3.8 with ρσ_ » ρνi for some i P t0, 1u. Then ρνi{2
is a σ-selfdual supercuspidal representation of GLn{rpF q, and the quadratic extension associated
with it is T {T0. Applying [32] Propositions 8.1, 9.8, we get the expected result.

4.10. In order to prove Theorem 4.42, it will be useful to consider the slightly more general si-
tuation where π is a cuspidal representation of G with σ-selfdual endo-class Θ. Thus π itself
needs not be σ-selfdual. However, it has a relative degree m and, since Θ is σ-selfdual, there is
a quadratic extension T {T0 associated with it. Moreover, by Proposition 4.8, it contains, up to
Gσ-conjugacy, a unique generic σ-selfdual maximal simple character θ. Let J be its normalizer
in G and κθ be the representation of J given by Proposition 4.17. Then π contains a unique
type of the form

(4.18) pJ,κθ b τ q

for a uniquely determined irreducible representation τ of J trivial on J1. Fix a σ-selfdual simple
stratum ra, βs and isomorphisms (4.17) as in Proposition 4.5.

First, we define an open and compact mod centre subgroup Jt of GLmpT q as follows:
– if T {T0 is unramified, Jt is the normalizer of GLmpOT q in GLmpT q,
– if T {T0 is ramified, and if t is a uniformizer of T such that σptq “ ´t, then Jt is the nor-

malizer in GLmpT q of the conjugate of GLmpOT q by the diagonal element

diagpt, . . . , t, 1, . . . , 1q P GLmpT q

where t occurs tm{2u times.
The group Jt (which does not depend on the choice of t in the ramified case) has a unique maxi-
mal compact subgroup J0

t and a unique normal maximal pro-p-subgroup J1
t . The natural group

isomorphism

(4.19) J0
t {J

1
t » GLmplq

transports the action of σ P GalpT {T0q on J0
t {J

1
t to

– the action of the non-trivial element of Galpl{l0q on GLmplq if T {T0 is unramified,
– the adjoint action of

(4.20)
ˆ

´idtm{2u 0
0 idm´tm{2u

˙

P GLmplq,

on GLmplq if T {T0 is ramified.

Remark 4.36. — When T {T0 is ramified, the isomorphism (4.19) depends on the choice of t :
changing t to another uniformizer t1 conjugates the isomorphism by the σ-invariant element

diagpα, . . . , α, 1, . . . , 1q P GLmplq

where α (which occurs i times) is the image of t1t´1 in lˆ. This element is central in GLmplq
σ.
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We now associate to τ an irreducible representation τ t of Jt trivial on J1
t . On the one hand,

the restriction of τ to J0 is the inflation of an irreducible cuspidal representation V of GLmplq.
On the other hand, the restriction of τ to Eˆ is a multiple of ω ˝ NE{T for a uniquely determi-
ned tamely ramified character ω of Tˆ: see 4.7. Note that rE : T s “ pe for some e ě 1.

Lemma 4.37. — Let V and ω be as above.

(1) There is a unique representation τ t of Jt trivial on J1
t such that

(a) the restriction of τ t to Tˆ is a multiple of the character ω,
(b) the restriction of τ t to J0

t is the inflation of Vpp
´eq, where Vpp

´eq is the representation
of GLmplq obtained from V by applying the automorphism x ÞÑ xp

´e.
(2) The pair pJt, τ tq is a level 0 type in GLmpT q.
(3) Up to isomorphism, the representation τ t only depends on τ , and not on the choice of the

σ-selfdual simple stratum ra, βs, the uniformizer t and the identification J0{J1 » GLmplq.

Proof. — Uniqueness follows from the fact that Jt is generated by J0
t and Tˆ, and the existence

of τ t follows from the fact that the restriction of Vpp
´eq to lˆ is a multiple of the character of lˆ

defined by the restriction of ω to the units of Tˆ. Since Vpp
´eq is cuspidal, the pair pJt, τ tq is a

level 0 type by construction. It remains to prove (3). Since it will require techniques which are
not used anywhere else in the paper, we will prove it apart, in Paragraph 4.13.

It will be convenient to give another description of the representation τ t.

Lemma 4.38. — (1) There is a unique group isomorphism π : J{J1 Ñ Jt{J
1
t such that

(a) its restriction to GLmplq is the automorphism acting entrywise by φ : x ÞÑ xp
e,

(b) for all x P Eˆ, the image of xJ1 is NE{T pxqJ
1
t .

(2) The isomorphism π is σ-equivariant.
(3) The representation τ t is isomorphic to τ ˝ π´1.

Proof. — Again, uniqueness follows from the the fact that J is generated by J0 and Eˆ. Exis-
tence follows from the fact that NE{T pxq “ xp

e for all x P OˆE of order prime to p, and that NE{T

induces a group isomorphism from Eˆ{p1` pEq to Tˆ{p1` pT q.
Define π1 to be σ ˝π ˝σ´1. The restriction of π1 to Eˆ corresponds to σ ˝NE{T ˝σ

´1, which
is equal to NE{T since E and T are stable by σ. The restriction of π1 to GLmplq is

– the automorphism defined by making σ ˝ φ ˝ σ´1 “ φ P Galpl{Fpq act entrywise if T {T0 is
unramified,

– the automorphism Adpδ´1φpδqq ˝ φ “ φ if T {T0 is ramified, where δ is the φ-invariant ma-
trix defined by (4.5).

The fact that π is σ-equivariant now follows from its uniqueness, and (3) is immediate.

Now let us describe the behavior of τ ÞÑ τ t with respect to duality and distinction.

Lemma 4.39. — (1) The representation τ t is σ-selfdual if and only if τ is σ-selfdual.
(2) The representation τ t is Jt XGLmpT0q-distinguished if and only if τ is JXGσ-distingui-

shed.
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Proof. — Saying that τ is σ-selfdual is equivalent to saying that the representation V and the
character ω ˝NE{T are σ-selfdual. Assertion (1) follows from the fact that pVpp´eqq_σ is isomor-
phic to pV_σqpp´eq and pω ˝NE{T q

´1 ˝ σ is equal to pω´1 ˝ σq ˝NE{T .
Assertion (2) follows from the fact that τ t ˝ π “ τ and π maps pJ{J1qσ to pJt{J

1
t q
σ.

Corollary 4.40. — The pair pJt, τ tq is a generic σ-selfdual type if and only if pJ,κθ b τ q is a
generic σ-selfdual type.

Proof. — This follows from Lemma 4.39(1), thanks to our choice of Jt (see (4.20)).

4.11. We still are in the situation of Paragraph 4.10. Consider the compactly induced represen-
tation

(4.21) πt “ ind
GLmpT q
Jt

pτ tq.

It satisfies the following properties.

Proposition 4.41. — (1) The representation πt is cuspidal, irreducible and has level 0.
(2) One has mpπtq “ m and rpπtq “ r.
(3) The representation πt is σ-selfdual if and only if π is σ-selfdual.
(4) The representation πt is GLmpT0q-distinguished if and only π is GLnpF0q-distinguished.

Proof. — Assertion (1) follows from the fact that πt is compactly induced from a level 0 type in
GLmpT q (see Lemma 4.37 and Remark 4.25). The first equality of Assertion (2) follows from
Remark 4.25, and the second one from Lemma 4.26.

Suppose that π is σ-selfdual. Then τ is σ-selfdual (see 4.9). By Lemma 4.39, the representa-
tion τ t is σ-selfdual as well. By compact induction, it follows that πt is σ-selfdual. The argument
also works the other way round, proving (3). Assertion (4) follows from Proposition 4.34 together
with Lemma 4.39(2).

Theorem 4.42. — (1) The process

(4.22) π ÞÑ πt

induces a bijection from the set of isomorphism classes of cuspidal representations of G with endo-
class Θ to that of cuspidal representations of level 0 of GLmpT q.

(2) The bijection (4.22) maps σ-selfdual representations onto σ-selfdual representations and Gσ-
distinguished representations onto GLmpT0q-distinguished representations.

(3) For any cuspidal representation π with endo-class Θ and any tamely ramified character χ
of Fˆ, the representation pπχqt is isomorphic to πtpχ ˝NT {F q.

Proof. — For (1), let π0 be a cuspidal representation of level 0 of GLmpT q. It contains a level 0
type pJt, τ 0q for a uniquely determined representation τ 0 of Jt trivial on J1

t . It then suffices to
check that the process

π0 ÞÑ indGJ pκθ b pτ 0 ˝ πqq

gives the inverse bijection. For (3), notice that if π contains the type pJ,κθbτ q, then πχ contains
the type pJ,κθ b τχJq, where χJ is the unique character of J trivial on J1 whose restriction to
JXBˆ » GLmpEq is equal to pχ ˝NE{F q ˝ detE where detE is the determinant on B »MmpEq.
Then pτχJqt is isomorphic to the representation τ t twisted by the character of Jt trivial on J1

t

given by pχ ˝NT {F q ˝ detT , where detT is the determinant on MmpT q. Assertion (2) is given by
Proposition 4.41.
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Corollary 4.43. — Let µ be a tamely ramified character of Fˆ0 . A cuspidal representation π of
GLnpF q with endo-class Θ is distinguished by µ if and only if πt is distinguished by µ ˝NT0{F0

.

Proof. — Fix a tamely ramified character ξ of Fˆ extending µ. Then π is µ-distinguished if and
only if πξ´1 is distinguished, and pπξ´1qt is isomorphic to πtpξ

´1 ˝NT {F q. Thus π is µ-distingui-
shed if and only if πt is distinguished by the character ξ ˝NT {F |Tˆ0

“ µ ˝NT0{F0
.

Finally, let us describe the compatibility of the process (4.22) with the description of cuspidal
representations in terms of supercuspidal ones of 4.8.

Proposition 4.44. — Let π be a cuspidal representation of G with endo-class Θ and r “ rpπq.
Let ρ be a supercuspidal representation of GLn{rpF q such that π is isomorphic to Strpρq. Then πt

is isomorphic to Strpρtq.

Remark 4.45. — Note that this makes sense since, by Corollary 4.28, the representations π, ρ
have the same endo-class Θ, thus the same quadratic extension T {T0.

Proof. — The representation π contains a type of the form pJ,κθ b τ q for a unique representa-
tion τ of J trivial on J1. Fix a σ-selfdual simple stratum ra, βs and isomorphisms (4.17) as in
Proposition 4.5. Associated with τ , there are a tamely ramified character ω of T , and a cuspidal
representation V “ strp%q of GLmplq, for some supercuspidal representation % of GLm{rplq. The
representation τ is entirely determined by the fact that

– its restriction to J0 is the inflation of V,
– its restriction to Eˆ is a multiple of the character ω ˝NE{T .

We now use the results of 4.4 and 4.5 for u “ r. Let θ˚ be the simple character associated with θ
by Lemma 4.10. Thanks to Corollary 4.21, the representation κθ˚ corresponds to κθ via the map
(4.10). Paragraph 4.8 says that ρ contains the type pJ˚,κθ˚bτ ˚q, where τ ˚ is the representation
of J˚ trivial on J1

˚ determined by
– its restriction to J0

˚ is the inflation of %,
– its restriction to Eˆ is a multiple of ω˚ ˝ NE{T , where ω˚ is a tamely ramified character of

Tˆ such that ωr˚ “ ω.
Thus ρt is compactly induced from the level 0 type pJ˚,t, τ ˚,tq where τ ˚,t is determined by

– its restriction to J0
˚,t is the inflation of %pp´eq,

– its restriction to Tˆ is a multiple of ω˚.
Thus Strpρtq is compactly induced from the level 0 type pJt, δq where δ is determined by

– its restriction to J0
t is the inflation of strp%

pp´eqq » Vpp
´eq,

– its restriction to Tˆ is a multiple of ωr˚ “ ω.
It follows that δ is isomorphic to τ t, whence Strpρtq is isomorphic to πt.

4.12. Finally, let π be a σ-selfdual cuspidal representation of G, of level 0. It has a central cha-
racter cπ and its generic type pJ,λq defines a cuspidal representation V of GLnpkq. Assume that
n ‰ 1. In the spirit of Proposition 4.34, we give a necessary and sufficient condition for π to be
distinguished by GLnpF0q in terms of cπ and V.

Theorem 4.46. — The representation π is GLnpF0q-distinguished if and only if its central cha-
racter cπ is trivial on Fˆ0 and

(1) if F {F0 is unramified, then V is GLnpk0q-distinguished,
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(2) if F {F0 is ramified, then n is even, V is GLn{2pkqˆGLn{2pkq-distinguished, the vector spa-
ce of GLn{2pkq ˆGLn{2pkq-invariant linear forms on V has dimension 1 and

(4.23) s “

ˆ

0 id
id 0

˙

P GLnpkq

acts on this space by the sign cπp$q, where $ is any uniformizer of F .

Proof. — By Proposition 4.34, the representation π is GLnpF0q-distinguished if and only if λ is
JXGσ-distinguished. In the unramified case, the result follows from the fact that JXGσ is ge-
nerated by Fˆ0 and J0XGσ (see Lemma 4.15) and pJ0XGσq{pJ1XGσq identifies with GLnpk0q.

Assume now that we are in the ramified case. Since cπ is trivial on Fˆ0 and 1` pF , its value
at $ does not depend on the choice of a uniformizer $ of F . We thus may and will assume that
σp$q “ ´$, thus cπp$q P t´1, 1u. By Lemma 4.15 again, JXGσ is generated by Fˆ0 , J0 XGσ

and $w, where the element w P J0 is defined by (4.12). The quotient pJ0XGσq{pJ1XGσq iden-
tifies with GLn{2pkqˆGLn{2pkq, the image of w in J0{J1 » GLnpkq is the element s, the space of
GLn{2pkqˆGLn{2pkq-invariant linear forms on V has dimension 1 by [32] Corollary 2.16 and $s
acts on this space as cπp$qs.

Putting Theorems 4.42 and 4.46 together, we have thus reduced the problem of characterizing
distinguished cuspidal representations of GLnpF q to a problem about distinction of cuspidal re-
presentations of finite general linear groups.

4.13. In this paragraph, we prove Lemma 4.37(3). First, by Remarks 4.2, 4.36, changing (4.17)
and t does not affect the isomorphism class of τ t. Let ra, β1s be another σ-selfdual maximal sim-
ple stratum such that θ P Cpa, β1q. Conjugating by J1, we may and will assume that the maximal
tamely ramified extension of F in E1 “ F rβ1s is T . This gives us another isomorphism π1 from
J{J1 to Jt{J

1
t . By construction, it coincides with π on J0{J1 and the image of xJ1 by π1 is equal

to NE1{T pxqJ
1 for all x P E1ˆ. We are going to prove that π1 is equal to π. The result will then

follow from the fact that τ t is equal to τ ˝π. For this, it suffices to prove that π and π1 take the
same value at some given uniformizer of E1. Let $, $1 be uniformizers of E, E1 respectively.

The centre of J{J1 is EˆJ1{J1 “ E1ˆJ1, thus E1ˆ Ď EˆJ1. We thus may write $1 P $ζJ1

for some root of unity ζ of Tˆ of order prime to p. Changing $1 to $1ζ´1, we may and will
assume that $1 P $J1. It suffices to prove the following claim.

Claim 4.47. — We have NE1{T p$
1q ” NE{T p$q mod 1` pT .

First, this is true when m “ 1. Indeed, writing GT for the centralizer of T in G and detT for
the determinant on GT , we have detT pxq “ NE{T pxq for all x P Eˆ, thus

NE1{T p$
1q “ detT p$

1q P detT p$q ¨ detT pJ
1 XGT q “ NE{T p$q ¨ p1` pT q.

Now assume that m ą 1. We use the results of 4.4 for u “ m. Let θ˚ P Cpa˚, βq denote the
transfer of θ as in Lemma 4.10. Fix a T -embedding

ι : E1 Ñ EndT pV˚q Ď EndF pV˚q

such that a˚ is normalized by ιE1ˆ, and transfer θ to θ‚ P Cpa˚, ιβ1q in the sense of [8] 3.6. The
simple character θ is in Cpa, βq X Cpa, β1q. It follows from [5] Theorem 8.7 that θ˚, θ‚ intertwine
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in G˚, and from [8] Theorem 3.5.11 that θ‚ “ θx˚ for some x P Ka˚ . Changing ι to Adpxq ˝ ι, we
thus may assume that θ‚ “ θ˚ P Cpa˚, βq X Cpa˚, ιβ

1q. By using ι, we get a diagonal embedding

E1 Ñ EndT pV˚q ˆ ¨ ¨ ¨ ˆ EndT pV˚q Ď EndT pV q

denoted φ, which is the identity on Tˆ. The Skolem-Noether theorem implies that φ “ Adpgq for
some g P GT . Conjugating by g, we thus may assume that Eˆ and E1ˆ are both diagonal in M .
The identity $1 P $J1 thus implies $1 P $J1

˚. We are thus reduced to the case where m “ 1.

Remark 4.48. — The fact that τ t does not depend on the choice of β is claimed in [7] Lem-
ma 3.6. However, Property (b) of this lemma does not hold: using the notation of ibid., the res-
triction of λJξ to Pˆ is a multiple of the character ξ ˝NP {T , whereas the restriction of pξ|TˆqJ to
Pˆ is pξ ˝NP {T q

s. (Note that P corresponds to our E, and s corresponds to our m.)

5. The odd case

In this section, p is odd, ` is any prime number different from p and the field R has characteris-
tic `. This section is devoted to the proof of the following theorem.

Theorem 5.1. — Let π be a σ-selfdual cuspidal non-supercuspidal R-representation of GLnpF q.
Assume that the integer r “ rpπq is odd, thus π is isomorphic to Strpρq for a uniquely determined
σ-selfdual supercuspidal representation ρ of GLkpF q, with k “ n{r. If π is GLnpF0q-distinguished,
then

(1) the relative degree m “ mpπq and the ramification index of T {T0 have the same parity,
(2) the representation ρ is GLkpF0q-distinguished.

Note that the fact that r is odd and r ‰ 1 implies that ` ‰ 2.

5.1. Before we start the proof of Theorem 5.1, let us prove the following Disjunction Theorem.

Corollary 5.2. — Let π be a σ-selfdual cuspidal R-representation of GLnpF q. Assume that rpπq
is odd. Then π cannot be both distinguished and κ-distinguished.

Proof. — Assume that π is both distinguished and κ-distinguished, and let χ be a tamely rami-
fied character of Fˆ extending κ. Then πχ is distinguished, it is isomorphic to Strpρχq and ρχ is
supercuspidal and σ-selfdual. Theorem 5.1 applied to both π and πχ implies that ρ is both dis-
tinguished and κ-distinguished. This contradicts Theorem 3.2.

We also have the following Distinguished Lift Theorem.

Corollary 5.3. — Let π be a GLnpF0q-distinguished cuspidal F`-representation of GLnpF q with
rpπq odd. There is a GLnpF0q-distinguished integral generic Q`-representation of GLnpF q whose
reduction mod ` contains π.

Proof. — Write π as Strpρq with ρ distinguished. Let µ be a distinguished integral cuspidal lift of
ρ, which exists by Theorem 3.5. Then the generic representation Strpµq satisfies the required pro-
perty (see [1] Theorem 1.3 or [23] Corollary 4.2 when F has characteristic zero, and observe that
the argument in [23] holds verbatim in positive characteristic thanks to [20, Theorem 4.7]).
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Remark 5.4. — A GLnpF0q-distinguished integral generic Q`-representation of GLnpF q as in
Corollary 5.3 may not be cuspidal. See Section 6 for the classification of all distinguished cuspidal
F`-representations of GLnpF q having a cuspidal distinguished lift to Q`.

Finally, compare Theorem 5.1 with the following finite field analogue.

Proposition 5.5. — Let k{k0 be a quadratic extension of finite fields of characteristic p. Let %
be a supercuspidal R-representation of GLf pkq for some f ě 1, and r be an odd integer such that
strp%q is cuspidal. If strp%q is distinguished by GLfrpk0q, then % is distinguished by GLf pk0q.

Proof. — First, [32] Remark 4.3 tells us that strp%q is σ-selfdual (where σ is here the nontrivial
automorphism of k{k0). Proposition 3.9 implies that % is σ-selfdual. By [32] Lemma 2.5, it is dis-
tinguished by GLf pk0q.

5.2. Let us prove Theorem 5.1(1). Since r is odd, m has the same parity as m{r, and, since π is
non-supercuspidal, we have r ą 1, thus m ą 1. It follows from [32] Proposition 7.1 that, if m is
odd, T {T0 is unramified, and from Proposition 4.35 that, if m is even, T {T0 is ramified.

5.3. We now start the proof of Theorem 5.1(2). We thus have a distinguished cuspidal repre-
sentation π of GLnpF q, which we write Strpρq with ρ supercuspidal and σ-selfdual.

Associated with π, there are a positive divisor m of n, a quadratic extension T {T0 and a cus-
pidal representation πt of GLmpT q. By Proposition 4.41, the representation πt has level 0, it is
distinguished by GLmpT0q and it satisfies rpπtq “ r.

Similarly, associated with ρ, there is a supercuspidal σ-selfdual representation ρt of GLm{rpT q,
which has level 0, and is distinguished by GLm{rpT0q if and only if ρ is distinguished by GLkpF0q.
By Proposition 4.44, the representation πt is isomorphic to Strpρtq.

It follows that, in order to prove Theorem 5.1(2), we may assume that π has level 0.

5.4. Let π be a distinguished cuspidal representation of level 0 of GLnpF q. Associated with it,
there are its central character cπ and a cuspidal representation V of GLnpkq (see §4.7).

The representation π is isomorphic to Strpρq for a unique σ-selfdual supercuspidal representa-
tion ρ, and ρ has level 0. Associated with ρ, there are its central character cρ and a supercuspidal
representation % of GLkpkq. We have the relation

(5.1) cπ “ pcρq
r

and, by Proposition 4.29, the representation V is isomorphic to strp%q.
Since π is distinguished, its central character is trivial on Fˆ0 . Since ρ is σ-selfdual, the restric-

tion of cρ to Fˆ0 has order at most 2. Restricting the relation (5.1) to Fˆ0 , and since r is odd, we
deduce that cρ is trivial on Fˆ0 .

5.5. In this paragraph, we will assume that F {F0 is unramified. By Theorem 4.46, the represen-
tation V is distinguished by GLnpk0q. By [32] Remark 4.3, it is thus σ-selfdual, that is

strp%q » V » Vσ_ » strp%
σ_q.

It follows from Proposition 3.9 that % is σ-selfdual. By [32] Lemma 2.5, it is thus distinguished
by GLkpk0q. Applying Theorem 4.46 again, we deduce that ρ is distinguished by GLkpF0q. This
proves Theorem 5.1 in the unramified case.
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5.6. From now on, and until the end of this section, we assume that F {F0 is ramified. By Theo-
rem 4.46, we may write n “ 2u for some integer u ě 1. We write G “ Gn “ GLnpkq, H “ Hn “

GLupkq ˆGLupkq and K “ Kn for the normalizer of H in G, which is generated by H and

s “ sn “

ˆ

0 id
id 0

˙

P G

where id is the identity in GLupkq. It will be convenient to introduce the following definition.

Definition 5.6. — Let c P t´1, 1u Ď Rˆ. An irreducible R-representation V of G is said to be
c-distinguished by H if V is H-distinguished and s acts on the space of H-invariant linear forms
on V by multiplication by c.

By Theorem 4.46, the representation V is H-distinguished and s acts on the 1-dimensional vec-
tor space HomHpV, Rq by the sign c “ cπp$q. In other words, V is c-distinguished by H. We are
now reduced to proving the following result. (Note that k is even since n is even and r is odd.)

Proposition 5.7. — The supercuspidal representation % is c-distinguished by Hk.

Indeed, since r is odd, the identity (5.1) together with Proposition 5.7 will give us c “ cρp$q. It
will then follow from Theorem 4.46 that ρ is GLkpF0q-distinguished.

5.7. Let π be an irreducible F`-representation of G. The natural map

HomF`Hpπ,F`q bRÑ HomRHpπ bR,F` bRq

defined by f b r ÞÑ rpf b idq is an isomorphism of R-vector spaces. Moreover, these spaces have
dimension at most 1, and it follows from this isomorphism that π is c-distinguished by H if and
only if π bR is c-distinguished by H.

Since G is finite, any irreducible R-representation of G is defined over F`, that is, isomorphic to
π0bR for some irreducible F`-representation π0 of G. In order to prove Proposition 5.7, we thus
may assume that R is equal to F`.

5.8. From now on, we assume that R is equal to F`. The remaining part of the section will be de-
voted to the proof of Proposition 5.7.

Lemma 5.8. — There exists a c-distinguished irreducible Q`-representation of G whose reduc-
tion mod ` contains V.

Proof. — Let χ denote the unique F`-character ofK trivial onH such that χpsq “ c. Since V is c-
distinguished, it embeds in IndGKpχq. Equivalently, the representation IndGKpχq, which is selfdual
(as χ is equal to χ´1), surjects onto the contragredient W of V. Let Π be a projective indecompo-
sable F`-representation of G whose unique irreducible quotient is isomorphic to W. Let rΠ be the
unique projective Z`-representation of G such that rΠbF` is isomorphic to Π. Let Λ be a surjecti-
ve homomorphism from IndGKpχq to W. By projectivity, it defines a non-zero homomorphism Λ1

from Π to IndGKpχq, then a non-zero homomorphism Λ2 from rΠ to IndGKprχq, where rχ is the cano-
nical Z`-lift of χ.

By inverting `, we deduce that there is an irreducible Q`-representation X of G occurring in
each of the semi-simple representations J “ IndGKprχqbQ` and rΠbQ`. It is thus c-distinguished
and, by [36] 15.4, its reduction mod ` contains W.
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Now observe that, since rχ is quadratic, J is selfdual. The contragredient of X is thus c-dis-
tinguished and its reduction mod ` contains V.

5.9. Let τ be a c-distinguished irreducible Q`-representation as in Lemma 5.8. Consider its cus-
pidal support: there are positive integers n1, . . . , nt such that n1 ` ¨ ¨ ¨ ` nt “ n and, for each i
in t1, . . . , tu, a cuspidal irreducible Q`-representation ρi of GLnipkq, such that τ occurs as a com-
ponent of the parabolically induced representation ρ1ˆ ¨ ¨ ¨ ˆ ρt, denoted W. The representation
W is thus c-distinguished. We claim the following.

Claim 5.9. — There is an i P t1, . . . , tu such that ni is even and ρi is c-distinguished by Hni .

Before proving this claim in the next paragraph, let us explain how it implies Proposition 5.7.
Propositions 3.9 and 3.11 imply that, for each i P t1, . . . , tu, the reduction mod ` of ρi is irre-

ducible and cuspidal, of the form strip%iq for a unique positive integer ri and a unique supercuspi-
dal representation %i. Since the reduction mod ` of τ contains V, the representation V occurs as
an irreducible component of the parabolically induced representation r`pρ1q ˆ ¨ ¨ ¨ ˆ r`pρtq. Uni-
queness of the supercuspidal support implies that %i » % for all i. It follows that either ri “ 1 or
ri “ ep%q`vi for some vi ě 0. Observe that, as r “ ep%q`v for some v ě 0 and r is odd, the integer
ep%q is odd, thus ri is odd in any case, for all i.

Fix an integer i as in Claim 5.9, and let ξi be a parameter for ρi in the sense of Definition 3.12.
It is a Galpkni{kq-regular Z`-character of kˆni . By Proposition 3.13, it is trivial on kˆui , where ui
is defined by ni “ 2ui, and it takes the unique element of kˆni{k

ˆ
ui of order 2 to ´c.

Since the reduction mod ` of ρi is strip%q, the reduction mod ` of ξi takes the form ϑ ˝Nkni{kk

where ϑ is a parameter for %.
Since ni “ rik and ri is odd, ϑ is trivial on kˆl (where k “ 2l) and takes the element of kˆk {k

ˆ
l

of order 2 to ´c.
By Proposition 3.13, the canonical Z`-lift of ϑ is the parameter of a c-distinguished Q`-lift of

%, which implies that % is c-distinguished (see Remark 3.14). This proves Proposition 5.7.

5.10. The remaining part of this section will be devoted to the proof of Claim 5.9. We follow the
argument of [25] Section 3, which simplifies in our situation since we deal with finite groups. Let
A denote the set of t-uples α “ pα1, . . . , αtq where

(1) for each i, the element αi is a family of t` 1 non-negative integers of the form

αi “ pni,1, . . . , ni,i´1, n
`
i,i, n

´
i,i, ni,i`1, . . . , ni,tq

of sum ni,
(2) one has n`1,1 ` ¨ ¨ ¨ ` n

`
t,t “ n´1,1 ¨ ¨ ¨ ` n

´
t,t and ni,j “ nj,i for all i ‰ j.

For an α P A, it will be convenient to set ni,i “ n`i,i ` n
´
i,i for each integer i P t1, . . . , tu.

As in [25] 3.1, the set A parametrizes the set of pP,Hq-double cosets in G, where P in the para-
bolic subgroup of G generated by upper triangular matrices and the standard Levi subgroup M
isomorphic to Gn1 ˆ ¨ ¨ ¨ ˆGnt . Let us explain how this parametrization works. Associated with
any α P A, there are

– a standard Levi subgroup

Mα “ pGn1,1 ˆGn1,2 ˆ ¨ ¨ ¨ ˆGn1,tq ˆ ¨ ¨ ¨ ˆ pGnt,1 ˆGnt,2 ˆ ¨ ¨ ¨ ˆGnt,tq ĎM,
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– a diagonal element

dα “ diag

˜˜

idn`1,1
´idn´1,1

¸

, idn1,2 , . . . , idn1,t , . . . , idnt,1 , idnt,2 , . . . ,

˜

idn`t,t
´idn´t,t

¸¸

PMα,

– a permutation matrix wα P G defined as follows: decompose t1, . . . , nu as the disjoint union
of intervals Ji,j “ tai,j , ai,j ` 1, . . . , bi,ju of length ni,j , for each i, j P t1, . . . , tu, where a1,1 “ 1,
ai,j`1 “ bi,j ` 1 if j ‰ t and ai`1,1 “ bi,t ` 1 if i ‰ t; then wα is the involution which
‚ restricts to the identity on Ji,i for each i,
‚ exchanges the intervals Ji,j and Jj,i if i ‰ j, and sends the kth element of any of these inter-

vals to the kth element of the other one, for all k P t1, . . . , ni,ju.
A system of representatives pxαqαPA of pP,Hq-double cosets in G is then obtained by any choice
of xα P G such that

(5.2) xα

ˆ

idu
´idu

˙

x´1
α “ eα,

where eα “ dαwα.

Definition 5.10. — An α P A is called admissible if, for any i, there exists a unique j such that
ni,j ‰ 0. This defines an involution σα : i ÞÑ j on t1, . . . , tu.

When this is the case, let us write Hα for the subgroup of M made of the diagpg1, . . . , gtq PM
such that

gσαpiq “ gi for all i P t1, . . . , tu,
gi P GLn`i,i

pkq ˆGLn´i,i
pkq for all i fixed by σα.

Moreover, if n`i,i “ n´i,i for all i P t1, . . . , tu, we define a matrix kα “ diagpk1, . . . , ktq PM by

ki “ idni “ ´kσαpiq if i ă σαpiq, ki “ sni if i “ σαpiq.

This matrix normalizes Hα, and we write Kα for the group generated by Hα and kα.
We denote by θα the inner automorphism of the group PGLnpkq induced by conjugacy by eα

(which normalizes Mα). It is not hard to check that:

Lemma 5.11. — Let Z denote the centre of G.
(1) An α P A is admissible if and only if M{Z is θα-stable in G{Z “ PGLnpkq.
(2) Suppose that α P A is admissible. The preimage of pM{Zqθα in G, denoted by Lα, is

"

Kα if n`ii “ n´ii for all i,
Hα otherwise.

When Lα “ Kα, we denote by χα the character ofKα trivial onHα and sending kα to c. Other-
wise, we set χα to be the trivial character of Lα “ Hα. We have the following lemma.

Lemma 5.12. — Suppose that α is admissible and Lα “ Kα. Then there is a system of repre-
sentatives pxαqαPA of pP,Hq-double cosets of G satisfying both (5.2) and xαsnx´1

α “ kα.

Proof. — Let us setmi “ n`i,i “ n´i,i “ ni,i{2 for any integer i P t1, . . . , tu such that σαpiq “ i. For
each α P A, we look for a matrix xα P G such that

xα

ˆ

idu
´idu

˙

x´1
α “ eα and xα

ˆ

idu
idu

˙

x´1
α “ kα.
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To make an explicit choice of xα P G, it will be convenient to introduce the matrix vα P G defined
as follows: for all integers i, j P t1, . . . , tu, the pi, jq-block of vα in Mni,nj pkq is

– the identity matrix idni if j “ i or j “ σαpiq ă i,
– its opposite ´idni if j “ σαpiq ą i,
– and 0 otherwise.

Then we choose yα the permutation matrix corresponding to the permutation of minimal length
(with the usual generators of the symmetric group) satisfying

yα

ˆ

idu
´idu

˙

y´1
α “ lα

where lα “ diagpl1, . . . , ltq PM is defined by

li “ idni “ ´lσαpiq if i ă σαpiq, li “

ˆ

idmi
´idmi

˙

if i “ σαpiq.

Finally we put xα “ vαyα, which has the desired property thanks to the equality

(5.3)
ˆ

idk ´idk
idk idk

˙ˆ

idk
´idk

˙ˆ

idk ´idk
idk idk

˙´1

“ s2k

valid for any k ě 1. With this choice, the careful reader checks by a computation relying again on
Equality (5.3), that yαsny´1

α “ v´1
α kαvα, which is the desired equality.

Now we have the following lemma.

Lemma 5.13. — There is an admissible α P A such that HomLαpρ1 b ¨ ¨ ¨ b ρt, χαq is non-zero.

Proof. — Given any subgroup X of G, we will write X for its image in G{Z “ PGLnpkq. In par-
ticular, we have G “ G{Z. Note that K “ K{Z is the subgroup of G made of all elements fixed
by conjugacy by

ˆ

idu 0
0 ´idu

˙

mod Z.

Let χ be the unique character of K trivial on H such that χpsq “ c. The character that it induces
on K will still be denoted by χ. Since W is c-distinguished, Mackey’s formula implies that there
is an x P G such that ρ, the representation of P inflated from ρ1b¨ ¨ ¨bρt, is distinguished by the
character χx|PXKx . We derive from ρ a representation ρ of P distinguished by χx|PXKx .

In fact, because H is a subgroup of K, we can chose x to be some xα for α P A. Now we claim
that for all non admissible α P A, the space

(5.4) HomPXKxα pρ, χ
xαq

is zero, so in particular x can only be of the form xα for admissible α. Indeed, it follows from [25]
Proposition 3.5 that, for a non admissible α, the group P XHxα contains a non trivial unipotent
radical Uα of some parabolic subgroup ofM , but the character χα is trivial on Uα, so if the space
(5.4) were not reduced to zero, we would deduce that HomUαpρ,Rq is non-zero, contradicting the
cuspidality of ρ. Hence we deduce x “ xα for an α which is admissible. In this case, M XKxα is
equal to M θα , so that the space

HomMθα pρ, χ
xαq “ HomLαpρ, χ

xαq

is non-zero. If Lα “ Kα, then χxα is equal to χα thanks to Lemma 5.12. Otherwise, χxα and χα
are trivial, thus equal. The statement now follows.
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Recall that, for any i P t1, . . . , tu, either ri “ 1 or ri “ ep%q`vi for some vi ě 0.

Lemma 5.14. — Let α P A be as in Lemma 5.13. Then the involution σα has a fixed point.

Proof. — Let I1 be the set of i P t1, . . . , tu such that ri ą 1, let t1 be the cardinality of this set,
and define t0 “ t´ t1. The identity r “ r1 ` ¨ ¨ ¨ ` rt implies

r “ t0 ` ep%q ¨
ÿ

iPI1

`vi .

Since r, ep%q and ` are odd, it follows that t0 ` t1 “ t is odd. Thus σα has a fixed point.

Claim 5.9 now follows from Lemmas 5.13, 5.14. Indeed, by Lemma 5.13, there is an admissible
α P A such that HomLαpρ1 b ¨ ¨ ¨ b ρt, χαq is non-zero. Since Lα contains Hα, the representation
ρi is, for all i fixed by σα, distinguished by the Levi subgroup

GLn`i,i
pkq ˆGLn´i,i

pkq.

By [32] Proposition 2.14, this implies that n`i,i “ n´i,i for all i fixed by σα, thus Lα “ Kα. By
Lemma 5.14, there in an integer i P t1, . . . , tu fixed by σα. The ith block of Lα “ Kα is Kni and
χαpkiq “ c. Thus ρi is c-distinguished.

6. Distinguished lift theorems

In this section, p is odd and ` is a prime number different from p. We look for a necessary and
sufficient condition for an F`-cuspidal representation of GLnpF q to have a GLnpF0q-distinguished
lift to Q`. Since the case of supercuspidal representations is treated by Theorems 3.3 and 3.4, we
will concentrate on non-supercuspidal cuspidal representations.

6.1. We will prove the following two propositions.

Proposition 6.1. — Let π be a σ-selfdual cuspidal F`-representation of GLnpF q with quadratic
extension T {T0 and m “ mpπq. Assume that r “ rpπq ą 1 is odd. Then π has a distinguished lift
to Q` if and only if

(1) the representation π is isomorphic to Strpρq for some GLn{rpF0q-distinguished supercuspi-
dal representation ρ of GLn{rpF q,

(2) if e, e0 are the orders of the cardinalities of the residue fields l, l0 of T , T0 mod `, then
(a) either T {T0 is unramified and e0 is even,
(b) or T {T0 is ramified and m{e is odd.

Note that the assumption “r ą 1 is odd” in Proposition 6.1 implies that ` ‰ 2.

Proposition 6.2. — Let π be a σ-selfdual cuspidal F`-representation of GLnpF q with quadratic
extension T {T0 and m “ mpπq. Assume that r “ rpπq is even. Then π has a distinguished lift to
Q` if and only if

(1) the extension T {T0 is ramified,
(2) one has m “ r,
(3) if we denote by ν0 the normalized absolute value of F0, then

(a) either ` ‰ 2 and π is isomorphic to Stmpρq for some supercuspidal representation ρ of
GLn{mpF q which is either κ-distinguished or ν´1

0 -distinguished,
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(b) or ` “ m “ r “ 2, the cardinality of the residue field of T0 is congruent to ´1 mod 4
and π is isomorphic to St2pρq where ρ is a GLn{2pF0q-distinguished supercuspidal represen-
tation of GLn{2pF q.

We also formulate the following conjecture making Proposition 6.2 more precise.

Conjecture 6.3. — If π is a σ-selfdual cuspidal F`-representation of GLnpF q such that the in-
teger rpπq is even, the following assertions are equivalent:

(1) the representation π is distinguished,
(2) the representation π has a distinguished lift to Q`,
(3) the three conditions of Proposition 6.2 hold.

By Proposition 6.2, Theorem 3.3, we know that (2) implies (1) and is equivalent to (3). We thus
conjecturate that (1) implies (3). See [11] Theorem 4.6 for the case n “ r “ 2.

6.2. Let π be a σ-selfdual cuspidal F`-representation of G “ GLnpF q. Let pJ,λq be a generic σ-
selfdual type in π, let λw be the representation of J given by Proposition 4.17 (see Paragraph 4.9)
and τ be the representation of J trivial on J1 such that λ is isomorphic to λw b τ . Associated
with π by (4.21), there is also a σ-selfdual cuspidal F`-representation πt of GLmpT q.

Lemma 6.4. — The following assertions are equivalent.
(1) The representation π has a GLnpF0q-distinguished lift to Q`.
(2) The representation λ has a JXGLnpF0q-distinguished lift to Q`.
(3) The representation τ has a JXGLnpF0q-distinguished lift to Q`.
(4) The representation πt has a GLmpT0q-distinguished lift to Q`.

Proof. — Fix a σ-selfdual simple stratum ra, βs as well as isomorphisms (4.17) as in Proposition
4.5. Let θ P Cpa, βq be the σ-selfdual maximal simple character associated with λ, and rθ be its
unique Q`-lift: this is a σ-selfdual maximal simple character (with respect to the unique Q`-lift rψ
of the character ψ given by (4.1)) having the same G-normalizer J as θ.

Let rλw be the Q`-representation of J associated with rθ by Proposition 4.17. It is JXGσ-dis-
tinguished and σ-selfdual, and its determinant has order a power of p. It is thus integral. Let us
consider its reduction mod `. On the one hand, it is JXGσ-distinguished, σ-selfdual, and its de-
terminant has order a power of p. On the other hand, [27] Proposition 2.37 implies that it is an
irreducible representation extending the Heisenberg representation associated with θ. By unique-
ness, we deduce that rλw is a Q`-lift of λw.

Suppose that π has a Gσ-distinguished Q`-lift rπ. Thus rπ is a σ-selfdual and cuspidal represen-
tation of G containing the maximal simple character rθ. By Proposition 4.33, this representation
rπ contains a distinguished generic σ-selfdual type, which we may assume to be of the form pJ, rλq

with rλ “ rλw b rτ and the representation rτ is JXGσ-distinguished. Reducing mod `, we deduce
that π contains the type λw b δ where δ is the reduction mod ` of rτ . But π also contains the
type λw b τ , thus δ is isomorphic to τ , and the reduction mod ` of rλ is isomorphic to λ. Thus
(1) implies both (2) and (3).

Conversely, suppose that τ has a distinguished Q`-lift rτ . Then the pair pJ, rλw b rτ q is a dis-
tinguished type whose compact induction to G is a Gσ-distinguished Q`-lift of π, and whose re-
duction mod ` is isomorphic to λw b τ » λ. Thus (3) implies both (1) and (2).
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Applying these results to the representation πt, we get that πt has a distinguished lift to Q` if
and only if τ t has a distinguished lift to Q`. The fact that τ is isomorphic to τ t ˝π (by Lemma
4.38) thus implies that (4) is equivalent to (3).

It follows from Lemma 6.4, together with Corollary 4.43 and Proposition 4.44, that, in order to
prove Propositions 6.1 and 6.2, it suffices to prove them for σ-selfdual cuspidal F`-representations
of level 0. (For Proposition 6.2(3.a), it also follows from the fact that κF {F0

˝ NT0{F0
“ κT {T0

and νF0 ˝NT0{F0
“ νT0 .)

6.3. We continue with the situation of Paragraph 6.2, assuming further that π has level 0. Thus
π is a σ-selfdual cuspidal F`-representation of G of level 0. We will also assume that π is non-su-
percuspidal, that is, r “ rpπq ą 1. Let pJ,λq be a generic σ-selfdual type in π. Associated with
it in Paragraph 4.7, there are

– a σ-selfdual tamely ramified character ω of Fˆ, which is the central character cπ of π,
– and a σ-selfdual cuspidal representation V of GLnpkq of the form strp%q for some supercuspi-

dal representation % of GLn{rpkq, uniquely determined up to isomorphism (thus V is non-super-
cuspidal).
Recall that the restriction of λ to J0 is the inflation of V, and that its restriction to Fˆ is a mul-
tiple of ω. Since V is σ-selfdual, Proposition 3.9 implies that % is σ-selfdual.

The action of σ on GLnpkq is described in Proposition 4.5: this is the action of the non-trivial
automorphism of k{k0 if F {F0 is unramified, and the adjoint action of (4.5) with i “ tm{2u other-
wise.

Let us fix a uniformizer $ of F such that $ P F0 if F {F0 is unramified, and $2 P F0 if F {F0 is
ramified. (One thus has σp$q “ ´$ in the ramified case.)

Lemma 6.5. — The representation π has a GLnpF0q-distinguished lift to Q` if and only if V has
a GLnpkq

σ-distinguished lift rV to Q` such that
(1) if F {F0 is unramified, then ωp$q “ 1,
(2) if F {F0 is ramified, then n is even and (4.23) acts on the space of GLn{2pkqˆGLn{2pkq-in-

variant linear forms on rV by a sign whose reduction mod ` is equal to ωp$q.

Proof. — By Lemma 6.4, the representation π has a GLnpF0q-distinguished lift if and only if the
type λ has a JXGLnpF0q-distinguished lift to Q`. Suppose λ has a distinguished lift rλ. Then the
pair pJ, rλq is the generic type of a distinguished cuspidal Q`-representation rπ, compactly induced
from rλ. Associated with it, there are

– a cuspidal Q`-representation rV of GLnpkq lifting V,
– a tamely ramified Q`-character rω of Fˆ lifting ω.

By Theorem 4.46, the character rω is trivial on Fˆ0 and rV is distinguished by GLnpkq
σ. If F {F0

is unramified, then rωp$q “ 1, thus ωp$q “ 1. If F {F0 is ramified, then n “ 2u for some u ě 1

and rV is rωp$q-distinguished (in the sense of Definition 5.6), and the reduction mod ` of rωp$q is
equal to ωp$q.

Conversely, suppose that V has a GLnpkq
σ-distinguished lift rV satisfying the conditions of the

lemma. Let rω be a Q`-lift of ω coinciding on the units of F with the inflation of the central cha-
racter of rV, and

(1) if F {F0 is unramified, then rωp$q “ 1,
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(2) if F {F0 is ramified, then rωp$q P t´1, 1u and the representation rV is rωp$q-distinguished.
Inflate rV to J0, and extend it to a representation rλ of J by demanding that the restriction of rλ
to Fˆ is a multiple of rω. The representation rλ is then a JXGLnpF0q-distinguished lift of λ.

6.4. In this paragraph, we assume that F {F0 is unramified.

Lemma 6.6. — Let W be a σ-selfdual cuspidal F`-representation of GLnpkq. It has a GLnpk0q-
distinguished lift to Q` if and only if n is odd and

(1) either W is supercuspidal,
(2) or W is non-supercuspidal and the order of the cardinality of k0 mod ` is even (thus ` ‰ 2).

Proof. — By [16] Theorem 3.6, an irreducible Q`-representation of GLnpkq is GLnpk0q-distin-
guished if and only if it is σ-selfdual.

First, the condition on the parity of n is necessary: see [32] Lemma 2.3 for instance. Now as-
sume that n is odd. If ` ‰ 2, the result is given by [22] Proposition 4.6. If ` “ 2, then W has the
form strp%q, where % is a supercuspidal representation of GLn{rpkq and r “ 2v for some v ě 0.
Since n is odd, W must be supercuspidal, and the result is given by [32] Remark 2.7.

Remark 6.7. — Let q be the cardinality of k and q0 be that of k0. Let e and e0 be the orders
of q and q0 mod `, respectively. Note that r “ ep%q`v for some v ě 0, where ep%q is the order of
qf mod ` with f “ n{r. If n is odd, then f and r are odd, thus ep%q is odd. But ep%q “ e{pe, fq.
It follows that e “ e0{pe0, 2q is odd. Thus e0 is not divisible by 4.

Example 6.8. — Let W be the σ-selfdual cuspidal F`-representation step1q of GLepkq. We have
e “ e0{pe0, 2q, which is odd if and only if e0 is not divisible by 4. Thus W has a GLepk0q-distin-
guished lift to Q` if and only if e0 is divisible by 2 but not by 4.

Suppose first that π has a distinguished lift to Q`. On the one hand, the generic type of such
a lift defines a σ-selfdual cuspidal Q`-representation of GLnpkq, and [32] Lemma 2.3 implies that
n is odd, thus r is odd. On the other hand, Theorem 3.3 implies that π is distinguished. It thus
follows from Theorem 5.1 that π is isomorphic to Strpρq for some distinguished supercuspidal re-
presentation ρ of GLn{rpF q. Finally, Lemma 6.5 says that V has a distinguished lift. It follows
from Lemma 6.6 that the order e0 of the cardinality of k0 mod ` is even.

We thus proved that, when F {F0 is unramified, if π has a distinguished lift, then r is odd and
Conditions (1), (2.a) of Proposition 6.1 are satisfied.

Conversely, suppose that the conditions (1), (2.a) of Proposition 6.1 are satisfied. Then V has a
distinguished lift rV. By Lemma 6.5, the representation π has a GLnpF0q-distinguished lift to Q`

if and only if ωp$q “ 1. By Paragraph 4.8, the central character ω˚ of ρ satisfies ωr˚ “ ω. Since
ρ is distinguished, we have ω˚p$q “ 1, thus ωp$q “ ω˚p$q

r “ 1.
We proved Proposition 6.1 in the case when F {F0 is unramified.

6.5. In this paragraph, we assume that F {F0 is ramified. Let q denote the cardinality of k, and
let e denote the order of q mod `.

Lemma 6.9. — Let W be a selfdual cuspidal F`-representation of GLnpkq, isomorphic to strp%q
for some selfdual supercuspidal representation of GLn{rpkq. Write u “ tn{2u. Then W has a lift
to Q` which is distinguished by GLupkq ˆGLn´upkq if and only if

(1) either W is supercuspidal,
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(2) or W is non-supercuspidal, n is even and
(a) either ` ‰ 2 and r, n{e are odd,
(b) or ` ‰ 2 and r “ n,
(c) or ` “ n “ r “ 2 and q is congruent to ´1 mod 4, and % is trivial.

Proof. — First note that n must be either even or equal to 1: see [32] Lemma 2.17 for instance.
Also, the supercuspidal case is given by [32] Remark 2.21. Let us assume that W is non-super-
cuspidal (thus n is even, and we will write n “ 2u). We use the notation of Paragraph 3.7.

Set f “ n{r and let α be a Galpkf{kq-regular F`-character of kˆf of order A which is a para-
meter of % in the sense of Definition 3.12. Let rυ be the canonical Q`-lift of

υ “ α ˝Nkn{kf ,

that is, its unique lift of order A. LetĂW be a cuspidal lift of W. It is parametrized by a Galpkn{kq-
regular character of kˆn lifting υ, that is, of the form rυφ, where φ is a Q`-character of kˆn of order
`s for some s ě 0. Since W is not supercuspidal, one has s ě 1. The character rυφ has order A`s.

By Proposition 3.13, the representation ĂW is distinguished by GLupkqˆGLupkq if and only if
it is selfdual, which is also equivalent (see for instance [32] (2.7)) to A`s dividing qu`1. Similarly,
the fact that % is selfdual is equivalent to

– either f “ 1 and % is a quadratic character (thus A is equal to 1 or 2),
– or f is even and A divides qf{2 ` 1 (thus A ą 2 since q has order f ě 2 mod A).

Suppose that ` ‰ 2 and f is even. If ĂW is distinguished, then A divides qf{2 ` 1 and qu ` 1.
Since u “ rf{2, we have

qu ` 1 “ 1` p´1qr `
r
ÿ

i“1

ˆ

r

i

˙

p´1qr´ipqf{2 ` 1qi

thus A divides 1 ` p´1qr. Since A ą 2, it follows that r is odd. Also, ` divides qu ` 1, that is,
the order of qu mod ` is e{pe, uq “ 2, which implies that n{e is odd. Conversely, suppose that r
and n{e are odd. The fact that A divides qf{2 ` 1 and r is odd implies that A divides qu ` 1.
Now `s divides qn ´ 1 “ pqu ` 1qpqu ´ 1q. If ` divides qu ´ 1, then e divides u “ n{2, thus n{e is
even: contradiction. Thus `s divides qu ` 1, thus ĂW is distinguished.

Suppose that ` ‰ 2 and f “ 1. Then % is a character of kˆ, thus r “ e`v for some v ě 0. This
gives n{e “ `v, which is odd. The same argument as above implies that qu ` 1 is a multiple of
`s. It is also a multiple of A P t1, 2u since it is even. Thus ĂW is distinguished.

Now suppose that ` “ 2. If ĂW is distinguished and f is even, then, as in the case where ` ‰ 2,
the integer A ą 2 divides qf{2 ` 1 and qrf{2 ` 1, thus r is odd. But the fact that W is cuspidal
implies that r is a power of 2. It follows that r “ 1: contradiction. Thus f “ 1, that is W is the
representation stnp1q with n “ 2t for some t ě 1. Moreover, q has order m mod 2s, that is, 2s

divides qn ´ 1 but not qu ´ 1. Set

a “ υ2pq
u ` 1q, b “ υ2pq

u ´ 1q.

We have b ă s ď a` b and minpa, bq “ 1. The fact that ĂW is distinguished implies s ď a, which
gives b “ 1 ă a, that is 4 divides qu ` 1. Since u is a power of 2, we deduce that 4 divides q ` 1
and u “ 1.
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Conversely, suppose that ` “ n “ r “ 2 and 4 divides q ` 1 (hence b “ 1 ă a). Then any Q2-
character of kˆ2 of order 2a parametrizes a distinguished cuspidal Q2-representation of GL2pkq lif-
ting W “ st2p1q.

Example 6.10. — The fact that GLf pkq has a selfdual supercuspidal F`-representation is equi-
valent to the fact that there is an k-regular F`-character of kˆf which is trivial on kˆf{2, that is,
there exists an integer A with the following properties:

(1) A is prime to ` and the order of q mod A is equal to f ,
(2) A divides qf{2 ` 1.

Now suppose that ` ą 2 and f “ 2. Thus GL2pkq has a selfdual supercuspidal F`-representation
if and only if there exists an integer A prime to ` dividing q ` 1 but not q ´ 1, that is, if and
only if q ` 1 has a prime divisor different from 2 and `. Assume this is the case, and let % be
a selfdual supercuspidal F`-representation of GL2pkq. Let W be the selfdual cuspidal F`-repre-
sentation strp%q of GLnpkq with r “ e{pe, 2q and m “ 2r. Then r is odd if and only if e is not
divisible by 4, and n{e “ 2{pe, 2q is odd if and only if e is even. If we take q “ 9 and ` “ 7, we
get r “ 3 and n{e “ 2. If we take q “ 5, we get q ´ 1 “ 4 and q6 ´ 1 “ 1953ˆ 8. Thus if ` is a
prime divisor of 1953, we get r “ 3 and n{e “ 6.

In addition, we have the following result. We assume that n “ 2u for some u ě 1.

Lemma 6.11. — Let W be a selfdual cuspidal F`-representation of GLnpkq of the form stnp%q for
some quadratic character % of kˆ. Assume W is distinguished by GLupkqˆGLupkq. Then (4.23)
acts on the space of GLupkq ˆGLupkq-invariant linear forms on W by

"

´1 if % is trivial,
p´1qupq´1q{2 if % is non-trivial.

Proof. — Let c be the sign such that W is c-distinguished. If ` “ 2, the result is immediate since
the only sign is 1. Assume that ` ‰ 2. By Lemma 6.9, the representation W has a distinguished
cuspidal Q`-lift. Let ĂW be such a Q`-lift and ξ be a parameter for ĂW. Let α be an element of kn
such that α R ku and α2 P ku. By Proposition 3.13, the representation ĂW is ´ξpαq-distinguished
by GLupkq ˆGLupkq. Since ĂW lifts W, we have

– the reduction mod ` of the parameter ξ is equal to p%˝Nkn{kqφ where φ is a character whose
order is a power of ` (see Proposition 3.11),

– the reduction mod ` of ´ξpαq is equal to c (see Remark 3.14).

On the one hand, the character ξ is trivial on kˆu since ĂW is selfdual (see Proposition 3.13). On
the other hand, % ˝Nkn{k is trivial on kˆu since % is quadratic and the index of kˆu in kˆn is even.
We deduce that φ is trivial on kˆu , thus φpαq is a sign. Since it has order a power of ` ‰ 2, it is
trivial. It follows that

c “ ´%pNkn{kpαqq.

If % is trivial, this gives c “ ´1, as expected. Assume now that % is non-trivial. It thus coincides
with κ on kˆ. Since α2 is not a square in kˆu , its ku{k-norm is not a square in kˆ. Thus

c “ ´κpNku{kpα
qu`1qq “ ´p´1qpq

u`1q{2

and one verifies that this is equal to κp´1qu “ p´1qupq´1q{2 as expected.
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6.6. Let us prove Proposition 6.1 when F {F0 is ramified. Assume that r is odd, and suppose that
π has a distinguished lift to Q`. By Theorem 3.3, it is distinguished. Thus Theorem 5.1 implies
that n{r is even and π is isomorphic to Strpρq for some distinguished supercuspidal representation
ρ of GLn{rpF q. Lemma 6.5 says that V has a distinguished lift. It follows from Lemma 6.9 that
n{e is odd.

Conversely, assume that r is odd, π is isomorphic to Strpρq for some distinguished supercuspi-
dal representation ρ of GLn{rpF q of level 0, n is even and n{e is odd. It follows from Lemma 6.9
that V has a distinguished lift rV. Let ε P t´1, 1u be the unique sign such that rV is ε-distinguished
by GLupkq ˆGLupkq in the sense of Definition 5.6, with n “ 2u. By Lemma 6.5, the represen-
tation π has a distinguished lift if and only if ωp$q is equal to the image of ε in Fˆ` , denoted c.
We are going to prove that this is the case. Let ω˚ be the central character of ρ. By Theorem
4.46, we have

– the representation % is ω˚p$q-distinguished by GLk{2pkq ˆGLk{2pkq.
(Note k is even since n is even and r is odd.) By Proposition 4.29, we have

– the sign ωp$q is equal to ω˚p$qr “ ω˚p$q.
Let α be the unique sign such that V is α-distinguished by GLupkq ˆGLupkq. By Remark 3.14,
we have α “ c. On the other hand, we have α “ ω˚p$q by Proposition 5.7. Putting these facts
together, we get ωp$q “ ω˚p$q “ α “ c as expected. This proves Proposition 6.1 if F {F0 is ra-
mified. Together with Paragraph 6.4, this finishes the proof of Proposition 6.1.

6.7. In this paragraph and the next one, we prove Proposition 6.2. Assume that r is even, and
let q be the cardinality of k. Since r divides n, we have n “ 2u for some u ě 1.

Suppose that π has a distinguished lift. By Paragraph 6.4, this implies that F {F0 is ramified.
By Lemma 6.5, the representation V has a distinguished Q`-lift. By Lemma 6.9, one has r “ n,
thus V is isomorphic to stnp%q for a character % of kˆ of order at most 2. Besides, if ` “ 2, then
n “ 2 and q is congruent to ´1 mod 4. Since r “ n, the representation π is isomorphic to Stnpρq
for a tamely ramified character ρ of Fˆ whose restriction to the units of F is the inflation of %.

Suppose first that ` “ 2. Since π is distinguished (by Theorem 3.3), it is σ-selfdual (by Theo-
rem 3.1). It follows from Proposition 3.8 that the representation ρ is σ-selfdual and from Theo-
rem 3.2 that it is Fˆ0 -distinguished, as expected.

Suppose now that ` ‰ 2. By Proposition 3.8, we may choose ρ so that ρ´1 ˝ σ “ ρνi for some
i P t0, 1u, that is, ρ ˝ NF {F0

“ ν´i. It remains to prove that the restriction of ρ to Fˆ0 is either
κ or ν´1

0 .
Let c be the sign by which the element (4.23) acts on the space of GLupkqˆGLupkq-invariant

linear forms on V, which is given by Lemma 6.11. Remind that we have fixed a uniformizer $ of
F such that σp$q “ ´$, thus $0 “ $2 is a uniformizer of F0. The representation π is distin-
guished (by Theorem 3.3) and it follows from Theorem 4.46 that c “ cπp$q. We have

(6.1) cπp$q “ ρp$qn “ ρp$0q
u.

On the other hand, the identity ρ ˝NF {F0
“ ν´i implies that ρp´$0q “ qi.

Lemma 6.12. — We have qu ” ´1 mod `.

Proof. — Since r ě 2 and π is cuspidal, r has the form epρq`v for some v ě 0, where epρq is the
order of qk mod ` by (3.2). In particular, pqkqr “ qn is congruent to 1 mod `. Moreover, since `
is odd, one has qu ” ´1 ‰ 1 mod `.
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It follows from Lemma 6.12 and (6.1) that

c “

"

p´1qi if % is trivial,
p´1qi ¨ κp´1qu otherwise (that is, if % “ κ).

Comparing with Lemma 6.11, we get the following corollary.

Corollary 6.13. — We have i “ 1 if % is trivial, and i “ 0 if % is non-trivial.

If i “ 0, then ρ is selfdual. By Theorem 3.2, it is either distinguished or κ-distinguished. Since
its restriction to the units of F is the inflation of % “ κ, we deduce that ρ is κ-distinguished.

If i “ 1, then ρν1{2 is unramified and selfdual. By Theorem 3.2, it is distinguished. Thus the
restriction of ρ to Fˆ0 is equal to ν´1{2|Fˆ0

“ ν´1
0 .

6.8. Let us finish the proof of Proposition 6.2. Assume that n “ r “ 2u for some u ě 1, the
extension F {F0 is ramified and π is isomorphic to Stnpρq for some tamely ramified character ρ of
Fˆ. We also assume that

– either ` ‰ 2 and the restriction of ρ to Fˆ0 is either κ or ν´1
0 ,

– or ` “ n “ r “ 2, q is congruent to ´1 mod 4 and ρ is trivial on Fˆ0 .
It follows from Lemma 6.9 that V has a distinguished Q`-lift rV, which is ε-distinguished for some
sign ε P t´1, 1u. By Lemma 6.5, the representation π has a distinguished lift to Q` if and only if
the reduction of ε mod `, denoted c, is equal to ωp$q. Let us prove that this is the case. On the
one hand, we have ωp$q “ ρp$qn “ ρp$0q

u. If ` “ 2, we have ωp$q “ 1. Otherwise, we have

ωp$q “

"

qu if the restriction of ρ to Fˆ0 is ν´1
0 ,

κp´1qu if the restriction of ρ to Fˆ0 is κ.
On the other hand, V is distinguished, and it is isomorphic to stnp%q where % is the character of
kˆ defined by the restriction of ρ to the units of F . One thus may apply Lemma 6.11, which
says that V is α-distinguished, with

α “

"

´1 if % is trivial,
p´1qupq´1q{2 if % is non-trivial.

Note that α “ c by Remark 3.14, and that % is trivial if and only if the restriction of ρ to Fˆ0 is
equal to ν´1

0 . Together with Lemma 6.12, this gives ωp$q “ c as expected.
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