Erratum Smooth representations of $\operatorname{GL}_m(D)$ V: endo-classes

Kazutoshi Kariyama drawn our attention to the fact that an argument is missing in our proof of [1] Proposition 4.5. We cannot use [1] Theorem 4.2 at the end of the proof, since we do not know that $(d, f_F(\beta_1)) = (d, f_F(\beta_2))$ at this stage.

In this erratum, we explain why [1] Proposition 4.5 can be replaced by the following statement. We use the notation of [1].

For i = 1, 2, let (k, β_i) be a simple pair over F, let $[\Lambda, n_i, m_i, \varphi_i(\beta_i)]$ be a realization of (k, β_i) in A and let θ_i be a simple character in $\mathcal{C}(\Lambda, m_i, \varphi_i(\beta_i))$.

Proposition 0.1. — Assume θ_1 and θ_2 intertwine in A^{\times} , and either $[F[\beta_1]:F] = [F[\beta_2]:F]$ or $m_1 = m_2$.

(1) We have:

$$n_1 = n_2,$$

 $e_F(\beta_1) = e_F(\beta_2),$
 $f_F(\beta_1) = f_F(\beta_2),$
 $k_F(\beta_1) = k_F(\beta_2).$

(2) There is a simple central F-algebra A' together with realizations $[\Lambda', n_i, m_i, \varphi'_i(\beta_i)]$ of the pairs (k, β_i) in A' (with the same n_i and m_i), with i = 1, 2, which are sound and have the same embedding type, and such that θ'_1 and θ'_2 intertwine in A'^{\times} , where $\theta'_i \in \mathbb{C}(\Lambda', m_i, \varphi'_i(\beta_i))$ denotes the transfer of θ_i .

Proof. — Set $f = (f_F(\beta_1), f_F(\beta_2))$. For i = 1, 2, let K_i be the unramified subextension of $F[\beta_i]$ over F of degree f. Using [1] Lemma 4.4, we may assume that $(F[\varphi_1(\beta_1)], \Lambda)$ and $(F[\varphi_2(\beta_2)], \Lambda)$ both have Fröhlich invariant 1. The same holds for $(\varphi_1(K_1), \Lambda)$ and $(\varphi_2(K_2), \Lambda)$. Passing to the lattice sequence $\Lambda' = \Lambda^{\ddagger}$ for a sufficiently large coefficient l, we may, thanks to [1] Lemma 4.3, assume that the embeddings $(\varphi'_1(K_1), \Lambda')$ and $(\varphi'_2(K_2), \Lambda')$

- have the same Fröhlich invariant (equal to 1),

- and that they are sound and respectively $\varphi'_1(K_1)$ -special and $\varphi'_2(K_2)$ -special.

Since they have the same degree f by construction, [1] Theorem 4.2 implies that they have the same embedding type. Using the same argument as in the proof of [2] 8.4 (or of [1] Lemma 4.7), we find that $n_1 = n_2$, denoted n.

Assume that $[F[\beta_1]:F] = [F[\beta_2]:F]$ and $m_1 \ge m_2$. Following the proof of [1] Lemma 4.7, we get that the stratum $[\Lambda', n, m_1, \varphi'_2(\beta_2)]$ is simple, θ'_1 intertwines with the restriction θ'_0 of θ'_2 to $H^{m_1+1}(\Lambda', \varphi'_2(\beta_2))$ and $e_F(\beta_1) = e_F(\beta_2)$, $f_F(\beta_1) = f_F(\beta_2)$ and $k_F(\beta_1) = k_F(\beta_2)$. Also, θ'_1 is conjugate to θ'_0 . Now we know that $[\Lambda', n, m_1, \varphi'_1(\beta_1)]$ and $[\Lambda', n, m_2, \varphi'_2(\beta_2)]$ are sound and have the same embedding type, thanks to [1] Theorem 4.2. The fact that θ'_1 and θ'_2 intertwine in A'^{\times} follows from [1] Proposition 2.6. Assume that $m_1 = m_2$. Applying [3] Theorem 10.3 (see [1] Theorem 1.16) we get $e_F(\beta_1) = e_F(\beta_2)$ and $f_F(\beta_1) = f_F(\beta_2)$. We thus get the identity $[F[\beta_1]:F] = [F[\beta_2]:F]$ and are reduced to the previous case.

Remark 0.2. — Lemmas 4.7 and 4.14 of [1] are somewhat encapsulated in this new statement Proposition 0.1: the first one uses the assumption $[F[\beta_1]:F] = [F[\beta_2]:F]$, the second one uses the assumption $m_1 = m_2$.

Remark 0.3. — Skodlerack [4] Proposition 5.30 fills a gap in the proof of [3] Proposition 9.1 on which [3] Theorem 10.3 relies: see the comment about it in the proof of [4] Proposition 5.31.

References

- P. Broussous, V. Sécherre and S. Stevens, Smooth representations of GL_m(D), V: endo-classes, Documenta Math. 17 (2012), 23–77.
- C. J. Bushnell and G. Henniart, Local tame lifting for GL(N), I: simple characters, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 105–233.
- 3. M. Grabitz, Simple characters for principal orders in $M_m(D)$, J. Number Theory 126 (2007), 1–51.
- 4. D. Skodlerack, Semisimple characters for inner forms, I: $GL_m(D)$, preprint version available on arxiv https://arxiv.org/abs/1703.04904v2.