Endo-parameters of *p*-adic classical groups

Daniel Skodlerack

(joint with Robert Kurinczuk (ICL) and Shaun Stevens (UEA))

Institute of Mathematical Sciences ShanghaiTech University

17th of July 2020

Classical groups

We are given:

- F non-Arch. local field of odd residual characteristic, e.g. $\mathbb{Q}_p = \{\sum_{i=m}^{\infty} a_i p^i | m \in \mathbb{Z}, \ a_i \in \{0, \dots, p-1\}\}$ (locally compact, connected components are points)
- F/F_o a field extension, $[F:F_o] \leq 2$ and $\langle (\bar{\ }) \rangle = Gal(F/F_o)$.
- $\dim_F V < \infty$, $h: V \times V \rightarrow (F, \bar{\ })$ an $\epsilon \in \{\pm 1\}$ -hermitian form.

We consider the groups:

$$\widetilde{G} = \mathsf{Aut}_F(V)$$

$$G = U(h) \subseteq \widetilde{G}$$

the group of isometries of h.

Complex smooth representations

Let H be a locally compact group.

 \mathbb{C} -representation: action of H on a \mathbb{C} -vector space W

$$H \times W \to W$$
, $(x, w) \mapsto \rho(x)w$

with a group homomorphism

$$\rho: \mathbf{H} \to \mathsf{Aut}_{\mathbb{C}}(\mathbf{W}).$$

smooth: Every w is fixed by some open subgroup (depending on w)

Example: Character: $\chi: \mathcal{H} \to \mathbb{C}^{\times}$, $((x, z) \mapsto \chi(x)z, \ z \in \mathbb{C})$

 χ is smooth $\Leftrightarrow \ker(\chi)$ is open.

From now on: We only consider smooth representations

Semisimple characters for $\widetilde{G}=\mathsf{Aut}_F(V)$ (Bushnell–Kutzko, Stevens)

Certain characters on pro-p subgroups of $\widetilde{\mathrm{G}}$

$$\theta: K \to \mathbb{C}^{\times}.$$

One needs arithmetic data ("semisimple stratum"):

• $\beta \in \mathsf{End}_F(V) = \mathsf{Lie}(\widetilde{G})$ such that

$$F[\beta] = \text{product of fields} = \prod_{i \in I} F[\beta_i]$$

ullet Λ \mathfrak{o}_{F} -lattice sequence

$$\Lambda: \mathbb{Z} \to {\mathfrak{o}_F - \text{lattices of V}}$$

(" \subseteq "-decreasing, $\varpi_F \Lambda(z) = \Lambda(z + e)$ for all $z \in \mathbb{Z}$ for some $e \in \mathbb{N}$ " ϖ_F translates Λ ")

- condition 1: $\Lambda = \bigoplus_{i \in I} \Lambda^i$, $x \in F[\beta_i]^\times$ translates Λ^i (β_i in negative direction if $\beta_i \neq 0$.)
- condition 2: condition on "critical exponent"

Example

Take

$$V = v_1 F \oplus v_2 F \oplus v_3 F, \ \beta = \begin{pmatrix} \varpi^{-1} \\ \varpi^{-1} \\ 1 \end{pmatrix}$$

and Λ :

$$\dots \supseteq v_1 \mathfrak{p}^{-1} \oplus v_2 \mathfrak{o} \oplus v_3 \mathfrak{o} \supseteq v_1 \mathfrak{o} \oplus v_2 \mathfrak{o} \oplus v_3 \mathfrak{o}$$

$$\supseteq v_1 \mathfrak{o} \oplus v_2 \mathfrak{o} \oplus v_3 \mathfrak{p} \supseteq v_1 \mathfrak{o} \oplus v_2 \mathfrak{p} \oplus v_3 \mathfrak{p} \supseteq \dots$$

 $(\mathfrak{p} = \mathfrak{p}_F = \{x \in F | |x| < 1\}, \text{ the valuation ideal of } F)$

$$F[\beta]$$
 is a field, $[F[\beta] : F] = 3$.

Semisimple characters

Set of semisimple characters:

- $\bullet \ (\beta, \Lambda) \ \leadsto \ K(\beta, \Lambda) \leqslant \widetilde{G} = \mathsf{Aut}_F(V) \ \mathsf{copen} \ \big(\mathsf{compact} \ \mathsf{open}\big), \\ \mathsf{pro-} p$
- $\mathscr{C}(\Lambda, \beta)$ set of certain characters on $K(\beta, \Lambda)$.

Example: β , Λ

$$\mathrm{K}(eta, \mathsf{\Lambda}) = (1 + \mathfrak{p}_{\mathrm{F}[eta]})^{ imes} \left(egin{array}{ccc} 1 + \mathfrak{p} & \mathfrak{p} & \mathfrak{o} \\ \mathfrak{p} & 1 + \mathfrak{p} & \mathfrak{p} \\ \mathfrak{p}^2 & \mathfrak{p} & 1 + \mathfrak{p} \end{array}
ight)$$

Facts

Fact 1 (\widetilde{G}) : (Bushnell–Kutzko 93, Dat 09, Stevens 05)

Every representation of $\widetilde{\mathrm{G}}$ contains a semisimple character.

Fact 2 (\widetilde{G}): (Mackey theory)

If (θ_1, K_1) , (θ_2, K_2) are contained in some irreducible representation of \widetilde{G} , then θ_1 and θ_2 intertwine:

$$\exists_{g \in \widetilde{G}} : {}^g \theta_1 = \theta_2 \text{ on } g K_1 g^{-1} \cap K_2.$$

We write $\theta_1 \stackrel{\widetilde{G}}{\sim} \theta_2$.

Fact 3 ($\widetilde{\mathrm{G}}$): (Kurinczuk-S-Stevens)

Let $\theta_1, \theta_2, \theta_3$ be semisimple characters. $\theta_1 \overset{\tilde{G}}{\sim} \theta_2 \overset{\tilde{G}}{\sim} \theta_3 \Longrightarrow \theta_1 \overset{\tilde{G}}{\sim} \theta_3$.

(important for classification of irr. representations)

Simple restrictions

Simple restrictions:
$$F[\beta] = \prod_{i \in I} F[\beta_i]$$
; $V = \bigoplus_{i \in I} V^i$

$$\mathbf{M} = \{g \in \widetilde{\mathbf{G}} | \ g\mathbf{V}^i \subseteq \mathbf{V}^i, \ i \in \mathbf{I}\}$$

Then for $\theta \in \mathscr{C}(\Lambda, \beta)$

$$\theta|_{\mathcal{M}\cap\mathcal{K}(\beta,\Lambda)}=\otimes_{i\in\mathcal{I}}\theta_i$$

with

$$\theta_i \in \mathscr{C}(\Lambda^i, \beta_i),$$

a simple character. ($F[\beta_i]$ is a field)

For G = U(h): Self-dual semisimple char.

h defines a duality: Take L, an $\mathfrak{o} = \mathfrak{o}_F$ -lattice in V.

$$\mathbf{L}^\# = \{ v \in \mathbf{V} | \ \mathit{h}(\mathbf{L}, v) \subseteq \mathfrak{p} \}$$

 $\rightsquigarrow \Lambda \mapsto \Lambda^{\#}$

$$\ldots \supseteq (\Lambda(1))^\# \supseteq (\Lambda(0))^\# \supseteq (\Lambda(-1))^\# \supseteq (\Lambda(-2))^\# \supseteq \ldots$$

 (β, Λ) is called self-dual if

- $\Lambda, \Lambda^{\#}$ differ by a translation
- $-\beta = \sigma_h(\beta)$, i.e. $\beta \in Lie(G)$

 σ_h is the adjoint-anti-involution of h

Self-dual semisimple characters:

$$\mathscr{C}_{-}(\Lambda, \beta) = \{\theta|_{K(\beta, \Lambda) \cap G} | \theta \in \mathscr{C}(\Lambda, \beta)\}$$

Fact 1(G), Fact 2(G), Fact 3(G) hold.

Transfer between semisimple characters

- Fix β . Take Λ, Λ' . (giving semis. strata)
 - $\exists ! \ \tau_{\Lambda',\Lambda} : \mathscr{C}(\Lambda,\beta) \xrightarrow{\sim} \mathscr{C}(\Lambda',\beta)$, s.t. θ and $\tau_{\Lambda',\Lambda}(\theta)$ coincide on $K \cap K'$.
- more general: Embeddings $\varphi: F[\beta] \hookrightarrow \operatorname{End}_F(V)$, s.t. $(\Lambda, \varphi(\beta))$ is a stratum. We have maps:

$$\tau_{\Lambda',\varphi',\Lambda,\varphi}: \mathscr{C}(\Lambda,\varphi(\beta)) \xrightarrow{\sim} \mathscr{C}(\Lambda',\varphi'(\beta))$$

transitivity of transfer

$$\tau_{\Lambda_3,\Lambda_2} \circ \tau_{\Lambda_2,\Lambda_1} = \tau_{\Lambda_3,\Lambda_1}.$$

Pss-character (Bushnell-Henniart 96, K-S-S)

Fix β .

Domain: $\mathcal{Q}(\beta) = \{(V, \varphi, \Lambda) | (\varphi(\beta), \Lambda) \text{ semisimple stratum} \}$

Range: $\mathfrak{C}(\beta) = \bigcup_{(V,\varphi,\Lambda)\in\mathscr{Q}(\beta)} \mathscr{C}(\Lambda,\varphi(\beta)).$

Pss-character (potentially semisimple character):

$$\Theta: \mathcal{Q}(\beta) \to \mathfrak{C}(\beta),$$

s.t. values are related by transfer:

$$\Theta(V',\varphi',\Lambda') = \tau_{\Lambda',\Lambda}(\Theta(V,\varphi,\Lambda)) \in \mathscr{C}(\Lambda',\varphi'(\beta)).$$

Endo-equivalence: Given Θ supported on β and Θ' supported on β' .

$$\Theta \approx \Theta' \Leftrightarrow_{\mathsf{Def.}} \mathsf{im}(\Theta) \cap \mathsf{im}(\Theta') \neq \emptyset.$$

GL-endo-parameter

Notation: $[\Theta]$ endo-class of Θ .

$$[\Theta] = \{ [\Theta_i] | i \in I \}$$
 (simple restrictions), "ps-characters".

We collect simple endo-classes: $\mathscr{E} = \{ [\Theta] | \Theta \text{ ps-char.} \}.$

We need the degree: $deg([\Theta]) = [F[\beta] : F]$.

GL-endo-parameter:

$$\mathfrak{f}:\mathscr{E}\to\mathbb{N}_0$$

of finite support.

(K-S-S)

There is a canonical bijection from the set of intertwining classes of semisimple characters of \widetilde{G} to the set of those $GL\text{-endo-parameters}\ \mathfrak f$ which satisfy

$$\mathsf{dim}_F\,V = \sum_{[\Theta] \in \mathscr{E}} \mathsf{deg}([\Theta])\mathfrak{f}([\Theta])$$

Pss-characters for classical groups

We want to parametrize G-intertwining classes of self-dual semisimple characters. Fix β self-dual and $(\varepsilon, F/F_o)$.

Domain and range:

•
$$\mathcal{Q}_{-}(\beta) = \{((V, h), \varphi, \Lambda) | (V, \varphi, \Lambda) \in \mathcal{Q}(\beta), \varphi, \Lambda \text{ self-dual}\}$$

•
$$\mathfrak{C}_{-}(\beta) = \bigcup_{((V,h),\varphi,\Lambda)} \mathscr{C}_{-}(\Lambda,\varphi(\beta))$$

Self-dual pss-char. supported on β :

$$\Theta_{-}: \mathcal{Q}_{-}(\beta) \to \mathfrak{C}_{-}(\beta)$$

s.t.

$$\Theta_{-}((V, h), \varphi, \Lambda) \in \mathscr{C}_{-}(\Lambda, \varphi(\beta))$$

and the values are related by transfer.

Self-dual endo-equivalence

Endo-equivalence: Given Θ_- supp. on β and Θ'_- supp. on β' :

$$\Theta_- \approx \Theta'_- \Leftrightarrow_{\mathsf{Def}} \mathsf{im}(\Theta_-) \cap \mathsf{im}(\Theta'_-) \neq \varnothing$$

 Θ_{-} has a lift Θ via restriction (Glauberman)

$$\mathscr{C}(\Lambda, \varphi(\beta)) \to \mathscr{C}_{-}(\Lambda, \varphi(\beta)).$$

K-S-S

$$\Theta_- \approx \Theta'_- \Leftrightarrow \Theta \approx \Theta'$$

Ingredients for self-dual endo-parameters

Action on \mathscr{E} : $\Sigma = \{1, \sigma\}$ an abstract group. There is a map of order 2:

$$\mathscr{E} \to \mathscr{E}, \ [\Theta] \mapsto \sigma([\Theta])$$

Suppose Θ_{-} is supp. on β with lift Θ and simple restrictions Θ_{i} . Then $\{[\Theta_{i}]|i\in I\}$ is Σ -stable.

$$[\Theta_{-}]$$
 is simple (i.e. $F[\beta]$ is a field) $\Longrightarrow \sigma([\Theta]) = [\Theta]$.

Concordance: Concordance is an equivalence relation on pairs (φ, h) , $\varphi : F[\beta] \hookrightarrow \operatorname{End}_F(V)$ simple self-dual. (for different β) Write: $(\varphi, h) \overset{\operatorname{conc}}{\sim} (\varphi', h')$

Concordance

Typical application for concordance: Suppose θ_- and θ'_- are self-dual simple and h=h' (possibly $\beta \neq \beta'$). Then

$$\theta_- \overset{G}{\sim} \theta'_- \Leftrightarrow \theta \overset{\tilde{G}}{\sim} \theta' \text{ and } (\varphi, h) \overset{\mathsf{conc}}{\sim} (\varphi', h).$$

Special case $\beta = \beta'$: $(\varphi, h) \overset{\mathsf{conc}}{\sim} (\varphi', h) \Leftrightarrow \exists_{g \in G} \ g \varphi(\beta) g^{-1} = \varphi'(\beta)$

Witt types: Take $\mathcal{O} \in \mathscr{E}/\Sigma$. $\mathrm{WT}(\mathcal{O})$ is the set of concordance data for \mathcal{O} . (elements are called Witt types). For $|\mathcal{O}|=2$ it has no relevant data.

Self-dual endo-parameter

Self-dual endo-parameter: A section \mathfrak{f}_- of

$$\bigsqcup_{\mathcal{O} \in \mathscr{E}/\Sigma} (\mathrm{WT}(\mathcal{O}) \times \mathbb{N}_0) \to \mathscr{E}/\Sigma$$

of finite support.

(Kurinczuk-S-Stevens)

There is a canonical bijection from the **set of** G-**intertwining classes of self-dual semisimple characters** for G to the set of **self-dual endo-parameters adapted to** h.