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Quivers and their representations

A quiver Q = oriented graph.

Q is finite if the set of its vertices and the set of its arrows are finite.

Fix a field k . A representation of Q is a diagram of vector spaces of
the form given by Q.

Example

The quiver
→
A3 : 1 α←− 2

β−→ 3 is an orientation of the Dynkin diagram
A3 : • − • − •
A representation of

→
A3 is a diagram

V1
fα←− V2

fβ−→ V3,

where V1,V2,V3 are k−vector spaces, fα, fβ are linear maps.
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Quiver representations and path algebras

Fin.-dim. representations of Q form an abelian category repk (Q).

The path algebra kQ is the k -algebra with basis given by the paths in
Q, and with multiplication given by concatenation of paths.

Let Q be a acyclic quiver. We have an equivalence of categories

mod kQ ∼→ repk (Q).

This category is Krull-Schmidt: every representation of Q can be
written as a direct sum of indecomposable representations in a
unique way (up to isomorphism and permutation of summands).
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Gabriel’s theorems

Theorem (Gabriel)
An (acyclic, connected) quiver has finitely many indecomposable
representations if and only if it is an orientation of an ADE Dynkin
diagram.
If Q is an orientation of the ADE diagram ∆, then there is a 1-to-1
correspondence between the isomorphism classes of non-trivial
indecomposable objects in repk (Q)

∼→ mod kQ and the positive roots in
the root system of ∆.

Theorem (Gabriel)
Let A be a finite-dimensional k−algebra. Then there exists a quiver Q
and an ideal I in kQ such that mod A ∼→ mod(kQ/I).
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Hall algebras

Fix k = Fq. Let C be a small k−linear abelian category such that

|Hom(A,B)| <∞, |Ext1(A,B)| <∞, ∀A,B ∈ C.

Definition-Theorem (Ringel)
The Hall algebra H(C) is the Q−algebra with a basis {uX | X ∈ Iso(C)}
and multiplication

uA ∗ uC =
∑

B∈Iso(C)

|Ext1(A,C)B|
|Hom(A,C)|

uB.

H(C) is associative and unital. It is usually not q−commutative.

Here Ext1(A,C)B ⊂ Ext1(A,C) is given by short exact sequences

C � B′ � A

with B′ ∼→ B.
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Example: mod kA2 = mod k(1 −→ 2)

P1
$$

S2

::

S1oo

(k 1→ k)

((
(0→ k)

66

(k → 0)oo

uS2 ∗ uS1 = uS1⊕S2 ;

uS1 ∗ uS2 = uS1⊕S2 + (q − 1)uP1 .

uP1 =
1

q − 1
[uS1 ,uS2 ]. (1)

g(A2) = sl3; n+(A2) =
{( 0 a b

0 0 c
0 0 0

)}
Gabriel : α1 7→ S1, α2 7→ S2, α1 + α2 7→ P1.

Ringel :
( 0 0 1

0 0 0
0 0 0

)
=
[( 0 1 0

0 0 0
0 0 0

)
,
( 0 0 0

0 0 1
0 0 0

)]
 (1)
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Hall algebras and quantum groups

Theorem (Ringel-Green)
Let Q be a finite acyclic quiver. Then there is a Hopf algebra map

U√q(b−(Q)) ↪→ Hex
tw (mod kQ).

This is an isomorphism if and only if Q is of Dynkin type.

U√q(b−(Q)) is the Borel part of the quantized Kac-Moody algebra
associated to Q.
Hex

tw (mod kQ) is H(mod kQ) extended by QK0(mod kQ), with the
multiplication twisted by the square root of the Euler form (one
should consider it over Q(

√
q)). It has a Hopf algebra structure.

Green and Xiao endowed the (twisted extended) Hall algebra of any
hereditary abelian category with a Hopf algebra structure.
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Exact structures

Quillen: Exact categories. Axiomatize extension-closed subcategories
of abelian categories.

Examples
The full subcategory of projective objects in an abelian category.
Categories of vector bundles and of torsion sheaves on a scheme.
Torsion and torsion free subcategories of abelian categories.

Theorem (Hubery)

Let E be a Hom− and Ext1−finite, k−linear small exact category. The
Hall algebra H(E) defined in the same way is associative and unital.
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Exact structures II

Axiomatics suggests that an additive category may admit many
different exact structures: one can choose different classes of
admissible short exact sequences (= conflations).

Let (A, E) be an additive category endowed with an exact structure.
Then Ext1

E(−,−) : Aop ×A → Ab is an additive bifunctor.

Upshot: E is uniquely determined by Ext1
E(−,−).

Any extension-closed full subcategory of (A, E) has an induced
exact structure (with the same Ext1

E(−,−)).
Any closed additive sub-bifunctor F ⊂ Ext1(−,−) defines a
“smaller”, or relative, exact structure on A. This is equivalent to
taking a sub-class of conflations (satisfying Quillen’s axioms).
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Hall algebras II

The Hall algebra of an exact category depends not only on the
underlying additive category. It depends on the choice of exact
structure!

Example

Ringel-Green: Htw (mod kQ,ab)
∼← U√q(n+).

For any additive category A, the Hall algebra H(A, add) of the split
exact structure is a polynomial algebra in q−commuting variables.
H(mod kA2, add) is the polynomial algebra in uS1 ,uS2 , and uP1 ,
modulo relations:

uS2 ∗ uS1 = uS1⊕S2 = uS1 ∗ uS2 ;

uS1 ∗ uP1 = uS1⊕P1 =
1
q

uP1 ∗ uS1 ;

uS2 ∗ uP1 = quS2⊕P1 = quP1 ∗ uS2 .
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Degree functions and filtrations

Definition
Consider a function w : Iso(A)→ N. We say that w is

additive if w(M ⊕ N) = w(M) + w(N) for all M and N;
an E−quasi-valuation if w(X ) ≤ w(M ⊕ N) whenever there exists
a conflation N � X � M in E .
an E−valuation if it is an additive E−quasi-valuation.

If A is Krull-Schmidt, an additive function is the same as a function on
indecomposables: Ind(A)→ N. Suppose A is Hom− finite.

Example
wX := dim Hom(X ,−) is a valuation for any exact structure on A..
If X is E−projective, it is additive on conflations in E .
dim End(−) is a quasi-valuation for any exact structure on A. But it
is usually not additive.
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Main Theorems

Let A be a Hom−finite k−linear idempotent complete additive
category. Let E be an Ext1−finite exact structure on A.

Theorem I (F.-G.)
Each E−valuation w : Iso(A)→ N induces a filtration Fw on H(E). The
associated graded is H(E ′) for a smaller exact structure E ′ ≤ E on A.

A is locally finite if ∀X ∈ A, there exists only finitely many
Y ,Z ∈ Ind(A) s.t. Hom(X ,Y ) 6= 0, Hom(Z ,X ) 6= 0.

Theorem II (F.-G.)
Suppose A is locally finite. Then for each exact substructure E ′ < E ,
there exists an E−valuation w such that

grFw
(H(E)) = H(E ′).

As w , one can take a (formal) sum of dim(Hom(X ,−)).
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Lattice of exact structures I

Exact structures on an additive category form a poset.

Theorem (Brüstle-Hassoun-Langford-Roy)
This is a bounded complete lattice.

For any conflation δ : A
f
↪→ B

g
� C in E , one has an exact sequence of

right A−modules Aop → Ab

0→ Hom(−,A)
Hom(−,f )−→ Hom(−,B)

Hom(−,g)−→ Hom(−,C).

The contravariant defect of δ is Coker(Hom(−,g)).
The category def E of contravariant defects of conflations in E is an
abelian category. Its simple objects are the defects of
Auslander-Reiten (= almost split) conflations.
If A is Krull-Schmidt and locally finite, each object in def E (for each E !)
has finite length.
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Lattice of exact structures II

Theorem (..., Buan, Rump, Enomoto, F.-G.)
Each additive category A admits a unique maximal exact structure
(A, Emax). There is a lattice isomorphism between

The lattice of exact structures on A;
The lattice of Serre subcategories of the category def(A, Emax).

If A is locally finite, these lattices are Boolean: they are isomorphic to
the power set of AR−conflations of Emax.
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Sketches of the proofs

Proof of Theorem I
Each E−valuation w induces a function w̃ : Iso(def E)→ N. This
function is additive on short exact sequences.
Then Ker(w̃) is a Serre subcategory of def E . So it defines an exact
substructure E ′ ≤ E . Then grFw

(H(E)) = H(E ′).

Proof of Theorem II
Let Ex+(E) be a sub-semigroup of K add

0 (A) generated by alternating
sums [X ]− [Y ] + [Z ] for all conflations X � Y � Z .
Let AR+(E) be its sub-semigroup generated by alternating sums for all
AR−conflations.
If A is locally finite, then Ex+(E) = AR+(E) for each exact structure E
on A. Using this, we can prove that grFw

(H(E)) = H(E ′), for

w :=
∑

X∈Ind(proj(E ′))\ Ind(proj(E))

dim Hom(X ,−).
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Cones

Assume that A has finitely many indecomposables. Consider
ΛE,E

′
:= Ker (K0(E ′)� K0(E)). Let

CE,E ′ ⊆ ΛE,E
′ ⊗Z R

be the polyhedral cone generated by [X ]− [Y ] + [Z ], for all conflations
X � Y � Z in E \ E ′.

Proposition

CE,E ′ is simplicial. Its extremal rays are given by AR-conflations in
E \ E ′. Its face lattice is isomorphic to the interval [E ′, E ].
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Cones II

For a pair of exact structures E ′ < E , we define the (Hall algebra)
degree cone:

DE,E ′ := {d ∈ RInd(A) | d induces an algebra filtration,grd(H(E)) = H(E ′)}.

From Theorems I and II, we have:

DE,E ′ = {ϕ ∈ (K add
0 (A)⊗Z R)∗ | for any x ∈ CE,E ′ , ϕ(x) > 0;

for any y ∈ CE ′ , ϕ(y) = 0}.

Up to linearity subspace, the cones CE,E ′ and DE,E ′ are polar dual to
each other.

Mikhail Gorsky Exact structures and Hall algebras 17 / 29



Example: A3 ↔ sl4

Q = 1 −→ 2←− 3.

Auslander-Reiten quiver:
P1

��

S3oo

S2

>>

  

I2

>>

  

oo

P3

??

S1.oo

AR-conflations:
(1) S2 � P1 ⊕ P3 � I2

(2) P1 � I2 � S3

(3) P3 � I2 � S1

We have 23 = 8 different exact structures.
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We identify K add
0 (A) with Z6. Let x1, · · · , x6 be coordinates of Z6. Then

K0(E1) = Z6/(x1 − x2 − x3 + x4)

and
K0(E12) = Z6/(x1 − x2 − x3 + x4, x2 − x4 + x5).

The kernel of K0(E1)� K0(E12):

Z(x2 − x4 + x5).

CE12,E1 = R≥0(x2 − x4 + x5).

The dual cone DE12,E1 : d = (d1, · · · ,d6) ∈ R6 s.t. d2 + d5 > d4 and
d1 + d4 = d2 + d3.

Its closure is a 5-dimensional cone in R6 having a 4-dimensional
linearity space.
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We denote �12 and �1 the multiplications in the Hall algebra H(Q, E12)
and H(Q, E1) respectively.
The only products of generators that are not given simply by the
multiples of classes of their direct sums are the following:

[I2] �12 [S2] = [I2 ⊕ S2] + (q − 1)[P1 ⊕ P3],

[S3] �12 [P1] = [S3 ⊕ P1] + (q − 1)[I2].

[I2] �1 [S2] = [I2 ⊕ S2] + (q − 1)[P1 ⊕ P3],

[S3] �1 [P1] = [S3 ⊕ P1].
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[I2] �12 [S2]− q[S2] �12 [I2] = (q − 1)[P1] �12 [P3],

[S3] �12 [P1]− [P1] �12 [S3] = (q − 1)[I2].

[I2] �1 [S2]− q[S2] �1 [I2] = (q − 1)[P1] �1 [P3],

but the second relation transforms to

[S3] �1 [P1]− [P1] �1 [S3] = 0.

Each point d ∈ DE12,E1 gives rise to a filtration on H(Q, E12) whose
associated graded algebra is exactly H(Q, E1).
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Comultiplication, quantum groups and Hall algebras

CZ/2(mod kQ) is the category of 2-periodic complexes:

M0 d0
// M1

d1
oo , d1 ◦ d0 = d0 ◦ d1 = 0.

Theorem (Ringel-Green,...,Bridgeland, G., Lu-Peng,...)
Let Q be a finite acyclic quiver. Then

U√q(g(Q)) ↪→
((
Htw (CZ/2(mod kQ),ab)/I

)
[S−1]

)
red

.

This is an isomorphism if and only if Q is of Dynkin type.

This is only an algebra map!

gldim(CZ/2(mod kQ),ab) =∞.

So Green’s comultiplication is not compatible with the multiplication.
Can we recover the comultiplication?
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CZ/2(mod kA2)

CZ/2(mod kQ)
∼→ mod kQ̃/I, for certain Q̃, I.

Q = A2. Then Q̃ :

•

•

•

•

-

-

β

α

6

?

6

?

µ1 µ2 µ3 µ4

I is generated by:

µ1µ2, µ2µ1, µ3µ4, µ4µ3,

βµ2 − µ4α, αµ1 − µ3β.
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Nilpotent parts:

0

X

0

Y

-

-

0

α

6

?

6

?

0 0 0 0

X

0

Y

0

-

-

β

0

6

?

6

?

0 0 0 0
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2 copies of U√q(h): Group algebra of the Grothendieck group of
acyclic complexes.

Generated by:

k

k

0

0

-

-

0

0

6

?

6

?

1 0 0 0

k

k

0

0

-

-

0

0

6

?

6

?

0 1 0 0

0

0

k

k

-

-

0

0

6

?

6

?

0 0 1 0

0

0

k

k

-

-

0

0

6

?

6

?

0 0 0 1
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Define an exact structure ECE on CZ/2(mod kQ) as follows:

A• → B• → C•

is a conflation if

Ai → Bi → C i and H i(A•)→ H i(B•)→ H i(C•)

are short exact for i = 0,1.

(CZ/2(mod kQ), ECE ) is hereditary. But Green’s theorem used the
abelian exact structure, so it doesn’t apply. Still...
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Theorem

U√q(g(Q)) ↪→
((
Htw (CZ/2(mod kQ), ECE )/I

)
[S−1]

)
red

is a coalgebra homomorphism.

The RHS is a twisted extended Hall algebra of
(grZ/2(mod kQ),ab). This category is hereditary and abelian!
This induces a comultiplication on the RHS compatible with the
multiplication. It coincides with Green’s comultiplication w.r.t. E .
The RHS is an algebra degeneration of((
Htw (CZ/2(mod kQ),ab)/I

)
[S−1]

)
red .

The comultiplication above is compatible with the multiplication of
Htw (CZ/2(mod kQ),ab).
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Generalized quantum doubles

U√q(g(Q)) is the (reduced) Drinfeld double of U√q(g(Q)).

With A,B Hopf algebras and ϕ : A× B → k a Hopf pairing, one can
associate a Hopf algebra called the generalized quantum double
Dϕ(A,B). As a coalgebra, it is just A⊗ B.

The Drinfeld double: ϕ is non-degenerate.
Tensor product: ϕ is as degenerate as possible.

Conjecture
All generalized quantum doubles of U√q(b−(Q)) are realized by Hall
algebras of some of exact structures in [ECE ,ab].
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Further directions

Prove Theorem II in general case without using Auslander-Reiten
theory. We have a conjectural approach, but it’s too early to say
anything.
Degenerations of derived Hall algebras of triangulated categories
(defined by Toën and Xiao-Xu). Involves extriangulated
structures defined by Nakaoka-Palu.
(w. X. Fang, Y. Palu, P.-G. Plamondon, M. Pressland) Use some
relative structures on cluster categories to study degenerations
of quantum cluster algebras.
Cohomological HA, K-theoretic HA,... The PBW theorem is known
for them, but it is proved differently.
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