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Schur-Weyl duality

Let V be a finite dimensional vector space, Sk the symmetric group on k
elements and GL(V ) the group of invertible transformations of V . We have two
actions on the tensor product V⊗k :

Sk y V ⊗ · · · ⊗ V x GL(V )

σ ∈ Sk , σ(v1 ⊗ · · · ⊗ vk) = vσ(1) ⊗ · · · ⊗ vσ(k)

g ∈ GL(V ), g(v1 ⊗ · · · ⊗ vk) = g(v1)⊗ · · · ⊗ g(vk)

Theorem (Schur-Weyl duality)

The subalgebras of End(V⊗k) generated by the two above actions are mutual
centralizers.



The classical case - definition and properties

Let n be a positive integer and δ an indeterminate. The Brauer algebra Brn(δ)
(Brauer, 1937) is the Z[δ]-algebra with a basis consisting of the graphs of two
(ordered) rows of n points and n edges between these points, no two of them
meeting. Examples (for n = 4):

A =
,

B =

C =



The classical case - definition and properties

Multiplication of two graphs is given by ‘concatenation’. Any cycle that occurs
gives a factor of δ:

A

B

= = AB

B

C

= δ· = BC



The classical case - definition and properties

It can also be defined as the Z[δ]-algebra with generators si , ei , i = 1, . . . , n − 1
subject to the relations:

s2i = 1 eiei±1ei = ei
si sj = sjsi , for |i − j | > 1 si si±1ei = ei±1ei

si si+1si = si+1si si+1 ei si±1si = eiei±1
e2i = δei siei = ei si = ei

eiej = ejei , for |i − j | > 1 ei si±1ei = ei
siej = ejsi , for |i − j | > 1

si : . . .

i i + 1

. . . ei : . . .

i i + 1

. . .



The classical case - Schur-Weyl duality

The algebra Brn(δ) is a natural extension of the group algebra of the symmetric
group, which is generated by the elements si , or equivalently, the graphs with no
horizontal lines. For integer d , Brn(d) acts on V⊗n where V is a d-dimensional
vector space, the action of an element ei defined by:

ei (v1 ⊗ . . . vi−1 ⊗ vi ⊗ vi+1 ⊗ . . . vn)

= v1 ⊗ . . . vi−1 ⊗ (
d∑

k=1

〈vi , vi+1〉uk ⊗ uk)⊗ · · · ⊗ vn,

where u1, . . . , ud is an orthonormal basis for V .

Theorem (Schur-Weyl duality - Brauer, 1937)

The image of Brn(d) inside End(V⊗n) is the centralizer of the subalgebra
generated by the action of O(V ), the group of orthogonal transformations of V .



The classical case - definition and properties

The representation theory of Brn(d) was clarified by Wenzl in 1988:

Theorem (Wenzl, 1988)

The algebra Brn(d) is semisimple if and only if d is not an integer or if d > n. As
a consequence, for generic δ, Brn(δ) is semisimple.

Remarks: In contrast to the following,

this result describes the case for specific values of δ as well. He also, gave
an inductive description of the representations of the algebra.

it is in a large part based on the existence and nodegeneracy of certain
traces (conditional expectations) on these algebras.



Complex reflection groups

Definition

Let V be a complex vector space. A finite subgroup W ⊂ GL(V ) is called a
complex reflection group if it is generated by reflections, i.e. transformations that
fix a 1-codimensional subspace (reflecting hyperplane).

Symmetric group as all finite real reflection groups or, otherwise known,
Coxeter groups are complex reflections groups. Coxeter groups can be
classified by means of dynkin diagrams.

Irreducible complex reflection groups were classified by Shephard and Todd
in 1954. They can be distinguished into:

1 the imprimitive groups which form an infinite series with three
parameters G (m, p, n),

2 the 34 exceptional primitive complex reflection groups.



Generalizations to other reflection groups

There have been many definitions of Brauer-type algebras associated to real and
complex reflection groups other that the symmetric group, such as:

the cyclotomic Brauer algebra by Häring-Oldenburg (2001) associated to
groups of type G (m, 1, n) and,

its generalization to type G (m, p, n) by Bowman (2013).

The Brauer algebra for diagrams of simply laced type by
Cohen-Gijsbers-Wales (2005),

the Brauer algebra defined by Chen (2011) associated to every complex
reflection group.

The first two algebras are defined diagrammaticaly in a way similar to the original
case. We will be concerned with the last two cases.



The Brauer-Chen algebra - definition

Let W be a complex reflection group with set of reflections R. The Brauer-Chen
algebra over a field k is defined by generators w ∈W and eH , indexed by the
hyperplanes of the reflections of W subject to the relations:

e2H = δeH

weH = ewHw

weH = eHw = eH , if H ⊂ ker(w − 1)

eH1eH2 = eH2eH1 , if H1,H2 are transverse

eH1eH2 =
∑

s∈R,sH2=H1
µsseH2 , if H1,H2 are not transverse,

where δ is an indeterminate and µs ∈ k , s ∈ R is a set of invariants. The
hyperplanes of two reflections of W are called transverse if they are the only ones
that contain their intersection.



The Brauer-Chen algebra - results

As Chen originally proved, among other properties the Brauer-Chen algebra:

is finite dimensional,

is isomorphic to the algebra of Cohen-Gijsbers-Wales for Coxeter groups of
simply laced type,

contains the cyclotomic Brauer algebra as a direct component, in the case of
groups of type G (m, 1, n),

is semisimple in the case of dihedral groups, (a basis is provided as well).



The Brauer-Chen algebra - results

In 2007, Cohen-Frenk-Wales completely determined the representations of the
Brauer algebra of simply laced type.

Theorem (Cohen-Frenk-Wales, 2007)

Let W be a coxeter group of simply laced type. Then:

The algebra Br(W ) is semisimple.

There is a bijection

Irr(Br(W ))↔ (B, ρ),

B: orbits of certain ‘admissible’ collections of orthogonal roots
ρ: irreducible representations of W (CB), a subgroup of W associated to B.

The dimension of Br(W ) is: ∑
B
|B|2|W (CB)|.



The Brauer-Chen algebra - results
In 2019, Marin defined a natural truncation of Br(W ) and determined the
representations of the first quotient algebra Br1(W ).

Theorem (Marin, 2019)

The algebra Br1(W ) is semisimple.

There is a bijection

Irr(Br1(W ))↔ (H, θ),

H: orbits of hyperplanes of W
θ: irreducible representations of NW (WH)/WH where WH is the reflection
subgroup associated to some H ∈ H.

Restricted to W , the representation corresponding to the pair (H, θ) is the
IndW

N(WH )
θ.

The dimension of Br1(W ) is:

|W |+
∑
H
|H| · |W |/|WH |.



The Brauer-Chen algebra - results

Two important aspects of this result:

it covers the cases of groups with no pair of transverse hyperplanes,

it generalizes the contruction of Cohen-Frenk-Wales for collections of roots
of cardinality 1 to all complex reflection groups.



The Brauer-Chen algebra - results
A generalization of the two previous results is the following:

Theorem (A.)

The algebra Br(W ) is semisimple.

There is a bijection

Irr(Br(W ))↔ (B, ρ)

B: orbit of collections of transverse hyperplanes of W
ρ: ‘admissible’ representations of Stab(B) for some B ∈ B

Restricted to W , the representation corresponding to (B, ρ) is the induced
representation IndW

Stab(B)ρ.

Remarks:

Orthogonal roots → transverse hyperplanes.

Admissible collections → admissible representations.



The Brauer-Chen algebra - results

Special cases

Once the previous result has been established, we can explicitly treat every case
manually or computanionally. In particular:

For complex reflection groups of the infinite series it is easily done manually.

For the 34 exceptional reflection groups it can be done by computer. It
comes down to solving some linear systems.



The Brauer-Chen algebra - results

Possible future goals on the subject

To complete the picture one may want:

to show that the necessary relations for a representation to be admissible
can always be ‘contained’ in a subgroup;

to identify this subgroup in general.

The form of the linear systems that occur in the admissibility of the
representations satisfy certain properties, which seem to be very limiting. One way
to answer these questions would be to give a general way of solving such systems.



Thank you!


