Equivariant cobordism of horospherical varieties Séminaire Versailles

Henry July

 $\mathsf{BUW}/\mathsf{UVSQ}$

Mai 04, 2021

1 Algebraic cobordism $\Omega^*(X)$

2 Horospherical varieties

3 Equivariant cobordism for torus actions

Let k be a field of characteristic zero.

- We will consider the category of smooth quasi-projective k-schemes and denote it by Sm_k.
- G will denote a linear algebraic connected reductive group of dimension g over k.
- Surthermore, all representations of G will be finite-dimensional.
- Let $B \subseteq G$ be a Borel subgroup, $T \subseteq B$ a maximal torus, W the Weyl group of (G, T) and U the unipotent radical of B.

Definition

Let $X \in \mathbf{Sm}_k$. A cobordism cycle over X is a family

 $(f: Y \rightarrow X, L_1, ..., L_r)$ consisting of

- **()** a projective morphism $f: Y \to X$ where $Y \in \mathbf{Sm}_k$ is integral and
- 2 a finite sequence $(L_1, ..., L_r)$ of r line bundles over Y (this might be empty).

The dimension of this cobordism cycle is $\dim_k(Y) - r \in \mathbb{Z}$.

- Let Z_{*}(X) be the free graded abelian group generated by the isomorphism classes of cobordism cycles over X.
- Smooth pullbacks and projective push-forwards exist and have the same properties as in CH_{*}.
- **③** $\Omega_*(X)$ is given by imposing three axioms on $\mathcal{Z}_*(X)$.

Classes

- In CH_{*} we allow any closed subscheme to define a class.
- **2** In Ω_* we allow only **smooth** schemes to define a class.

Formal group laws for Chern classes

- **4** Additive formal group law: $F_{CH}(u, v) = u + v$
- **2** Multiplicative formal group law: $F_{\mathcal{K}}(u, v) = u + v buv$
- **③** Universal formal group law: $F_{\mathbb{L}} = \sum_{i,j} a_{i,j} u^i v^j \in \mathbb{L}[[u, v]]$

Proposition (Levine-Morel)

The functor $X \mapsto \Omega^*(X)$ is the universal oriented cohomology theory on \mathbf{Sm}_k . Thus, given an oriented cohomology theory A^* on \mathbf{Sm}_k , there is a unique morphism $\theta : \Omega^* \to A^*$ of oriented cohomology theories.

Proposition (Levine-Morel)

The canonical homomorphism $\Psi : \mathbb{L}^* \to \Omega^*(k)$ is an isomorphism.

Proposition (Levine-Morel)

The canonical morphism $\Omega^* \to CH^*$ induces an isomorphism $\Omega^* \otimes_{\mathbb{L}^*} \mathbb{Z} \xrightarrow{\cong} CH^*$.

Proposition (Krishna)

Let $\{(V_j, U_j)\}_{j\geq 0}$ be a "nice enough" sequence of I_j -dimensional good pairs. Then for any scheme $X \in G - \mathbf{Sch}_k$ of dimension d and any $i \in \mathbb{Z}$, one has

$$\Omega_i^{\mathcal{G}}(X) \xrightarrow{\cong} \varprojlim_j \Omega_{i+l_j-g} \left(X \times^{\mathcal{G}} U_j \right).$$

Moreover, such a sequence of good pairs always exists.

1) Algebraic cobordism $\Omega^*(X)$

Equivariant cobordism for torus actions

Definition

- Let X be a normal G-variety.
 - We call a closed subgroup $H \subseteq G$ containing U horospherical. In this case, the homogeneous space G/H is said to be horospherical.
 - We call X horospherical if it contains an open orbit isomorphic to a horospherical homogeneous space.

Remark

G/H horospherical can be described as torus bundle over flag variety G/P with fiber P/H for $P = N_G(H)$. (Pasquier)

- Normal toric varieties are horospherical.
- Plag varieties are horospherical.

Example IG(2,5)

Let ω be an antisymmetric form of maximal rank on a complex vector space V of dimension 5. We denote by IG(2,5) the Grassmannian of vector subspaces of V which are isotropic for ω , i.e.

$$\mathsf{IG}(2,5):=\{\Sigma\in V\mid \dim \Sigma=2, \ \omega|_{\Sigma}=0\}.$$

In fact, IG(2,5) is Sp₄-horospherical.

1) Algebraic cobordism $\Omega^*(X)$

2 Horospherical varieties

3 Equivariant cobordism for torus actions

Proposition 1 (Krishna)

Let T be of rank n. Then there is a graded \mathbb{L} -algebra isomorphism

$$\mathbb{L}[[t_1,...,t_n]]_{\mathrm{gr}} \xrightarrow{\cong} \Omega^*_T(k).$$

Proposition 2 (Krishna)

Let $X \in T - \mathbf{Sm}_k$ be projective. Further, let X^T consist of finitely many fixed points $x_1, ..., x_s$ and let $i : X^T \hookrightarrow X$ denote the inclusion. Then $i^* : \Omega^*_T(X)_{\mathbb{Q}} \to \Omega^*_T(X^T)_{\mathbb{Q}}$ is injective and its image is the intersection of the images of

$$i_{T'}^*: \Omega^*_T(X^{T'})_{\mathbb{Q}} \to \Omega^*_T(X^T)_{\mathbb{Q}}$$

where T' runs over all subtori of codimension one in T.

Proposition 3 (Krishna)

Let $X \in T - \mathbf{Sm}_k$ be projective with finitely many fixed points $x_1, ..., x_s$ and finitely many invariant curves. Then the image of

$$i^*: \Omega^*_T(X)_{\mathbb{Q}} \to \Omega^*_T(X^T)_{\mathbb{Q}}$$

is the set of $(f_1, ..., f_s) \in \Omega^*_T(k)^s_{\mathbb{Q}}$ s.t. $f_i \equiv f_j \mod c_1^T(L_{\chi})$ when x_i and x_j are connected by an invariant irreducible curve where T acts through the weight χ .

Goal

We want to describe to image of the pullback map

 $i^*: \Omega^*_T(X)_{\mathbb{Q}} \to \Omega^*_T(X^T)_{\mathbb{Q}}$

for any projective, smooth and (horo-)spherical G-variety X using the previous localisation theorems also for **infinitely many** T-invariant curves.

Fact

Any (horo-)spherical G-variety has finitely many T-fixed points.

Main Theorem

For any projective, smooth and (horo-)spherical *G*-variety *X*, the pullback map $i^* : \Omega^*_T(X)_{\mathbb{Q}} \to \Omega^*_T(X^T)_{\mathbb{Q}}$ is injective and its image consists of all families $(f_x)_{x \in X^T}$ s.t.

- $f_x \equiv f_y \mod c_1^T(L_\chi)$ whenever x and y are connected by a T-invariant curve with weight χ .
- (*f_x* − *f_y*) + $\rho_{1/2}c_1^T(L_\alpha)(f_z f_x) \equiv 0 \mod c_1^T(L_\alpha)^2$ whenever α is a positive root and *x*, *y* and *z* lie in a connected component of $X^{\text{Ker}(\alpha)^0}$ isomorphic to a projective plane \mathbb{P}^2 .
- $f_x f_y + f_z f_w \equiv 0 \mod c_1^T (L_\alpha)^2$ whenever α is a positive root and x, y, z and w lie in a connected component of $X^{\text{Ker}(\alpha)^0}$ isomorphic to \mathbb{F}_0 .
- $(f_y f_x)\rho_{n/2}c_1^T(L_\alpha) + \rho_{-n/2}c_1^T(L_\alpha)(f_z f_w) \equiv 0 \mod c_1^T(L_\alpha)^2$ whenever α is a positive root and x, y, z and w lie in a connected component of $X^{\text{Ker}(\alpha)^0}$ isomorphic to \mathbb{F}_n for $n \geq 1$.

Thank you for your attention! Questions?