Feuille de TD n° 2: Primitives et intégrales (CORRIGÉ)

Version provisoire à vérifier

— Calculs d'intégrales

Exercice 1.

Calculer les intégrales suivantes. $I_1 = \int_1^2 \left(x^2 + \frac{3}{x^2}\right) dx$

Primitives:
$$\int \left(x^2 + \frac{3}{x^2}\right) dx = \int (x^2 + 3x^{-2}) dx = \frac{x^3}{3} + 3\frac{x^{-1}}{-1} + C = \frac{1}{3}x^3 - \frac{3}{x} + C \quad (C \in \mathbb{R})$$

Intervalles de définition : $]-\infty,0[$ plus $]0,+\infty[$ (ce n'est pas \mathbb{R}^*

$$I_1 = \int_1^2 \left(x^2 + \frac{3}{x^2} \right) dx = \left[\frac{1}{3} x^3 - \frac{3}{x} \right]_1^2 = \left(\frac{8}{3} - \frac{3}{2} \right) - \left(\frac{1}{3} - 3 \right) = \frac{23}{6}$$

$$I_2 = \int_1^2 (2 - 4e^{3x}) \, \mathrm{d}x$$

Primitives:
$$\int (2 - 4e^{3x}) dx = 2x - 4\frac{e^{3x}}{3} + C = 2x - \frac{4}{3}e^{3x} + C \quad (C \in \mathbb{R})$$

Intervalles de définition :] $-\infty$, $+\infty$ [= \mathbb{R}

$$I_2 = \int_1^2 (2 - 4e^{3x}) dx = \left[2x - \frac{4}{3}e^{3x}\right]_1^2 = \left(4 - \frac{4}{3}e^6\right) - \left(2 - \frac{4}{3}e^3\right) = -\frac{4}{3}e^6 + \frac{4}{3}e^3 + 2e^3$$

$$I_3 = \int_0^1 \frac{t+1}{t^2 + 2t + 5} \, \mathrm{d}t$$

Primitives : Puisque $(t^2 + 2t + 5)' = 2t + 2$, on a

$$\int \frac{t+1}{t^2+2t+5} \, \mathrm{d}t = \tfrac{1}{2} \int \frac{(t^2+2t+5)'}{t^2+2t+5} \, \mathrm{d}t = \tfrac{1}{2} \ln|t^2+2t+5| + C = \tfrac{1}{2} \ln(t^2+2t+5) + C \quad (C \in \mathbb{R}) \text{ (le discriminant de } t^2+2t+5 \text{ est } \Delta = -16 < 0 \text{ donc } t^2+2t+5 > 0 \ \forall \ t \in \mathbb{R}). \text{ Intervalles de définition : }]-\infty, +\infty[= \mathbb{R}.$$

$$t^2 + 2t + 5$$
 est $\Delta = -16 < 0$ donc $t^2 + 2t + 5 > 0 \ \forall \ t \in \mathbb{R}$). Intervalles de définition : $]-\infty, +\infty[=\mathbb{R}]$.

$$I_3 = \int_0^1 \frac{t+1}{t^2+2t+5} dt = \frac{1}{2} \left[\ln(t^2+2t+5) \right]_0^1 = \frac{1}{2} (\ln 8 - \ln 5) = \ln \sqrt{\frac{8}{5}} = \frac{3}{2} \ln 2 - \frac{1}{2} \ln 5$$

$$I_4 = \int_1^2 \frac{e^{1/u}}{u^2} du$$

Primitives :
$$\int \frac{e^{1/u}}{u^2} du = -\int e^{1/u} (1/u)' du = -e^{1/u} + C \quad (C \in \mathbb{R})$$

de définition : $]-\infty, 0[$ plus $]0, +\infty[$ (ce n'est pas \mathbb{R}^*).

$$I_4 = \int_1^2 \frac{e^{1/u}}{u^2} du = -\left[e^{1/u}\right]_1^2 = -(e^{1/2} - e^1) = e - \sqrt{e}$$

$$I_5 = \int_0^1 (2x+3)\sqrt{x^2+3x+4} \, \mathrm{d}x$$

Primitives:
$$\int (2x+3)\sqrt{x^2+3x+4} \, dx = \int (x^2+3x+4)^{1/2}(x^2+3x+4)' \, dx = \frac{(x^2+3x+4)^{3/2}}{3/2} + C$$
$$= \frac{2}{3}(x^2+3x+4)^{3/2} + C \quad (C \in \mathbb{R})$$

Le discriminant de
$$x^2 + 3x + 4$$
 est $\Delta = -7 < 0$ donc $x^2 + 3x + 4 > 0 \ \forall \ x \in \mathbb{R}$. Intervalles de définition : $]-\infty, +\infty[=\mathbb{R}]$.

$$I_5 = \int_0^1 (2x+3)\sqrt{x^2+3x+4} \, \mathrm{d}x = \frac{2}{3} \left[(x^2+3x+4)^{3/2} \right]_0^1 = \frac{2}{3} (8^{3/2}-4^{3/2}) = \frac{32}{3} \sqrt{2} - \frac{16}{3}$$

$$I_6 = \int_0^1 \frac{\mathrm{d}s}{1+s^2}$$

Primitives:
$$\int \frac{1}{1+s^2} ds = \arctan s + C \quad (C \in \mathbb{R})$$

Intervalles de définition :
$$]-\infty, +\infty[=\mathbb{R} \ (\text{car } 1+s^2 \geqslant 1 > 0 \ \forall \ s \in \mathbb{R}).$$

$$I_6 = \int_0^1 \frac{\mathrm{d}s}{1+s^2} = [\arctan s]_0^1 = \arctan 1 - \arctan 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

— Calculs de primitives

Exercice 2.

Pour chaque intervalle I et chaque fonction f, calculer toutes les primitives de f sur I (si possible) 1 .

2.1
$$I = \mathbb{R}, \quad f(x) = xe^{x^2}$$

$$\int f(x) dx = \frac{1}{2} \int e^{x^2} (x^2)' dx = \frac{1}{2} e^{x^2} + C \quad (C \in \mathbb{R})$$

Intervalles de définition : $]-\infty, +\infty[=\mathbb{R}]$

2.2
$$I =]-\infty, -1[, \quad f(x) = \frac{x^2}{1+x^3}$$

$$\int f(x) dx = \frac{1}{3} \int \frac{(1+x^3)'}{1+x^3} dx = \frac{1}{3} \ln|1+x^3| + C \quad (C \in \mathbb{R})$$

On a $x^3 + 1 = (x - 1)(x^2 - x + 1)$. Le discriminant de $x^2 - x + 1$ est < 0 donc $x^2 - x + 1 > 0 \ \forall \ x \in \mathbb{R}$.

Les intervalles de définition sont $]-\infty, -1[$ plus $]-1, +\infty[$ (ce n'est pas $\mathbb{R} \setminus \{-1\})$.

Sur $]-\infty, -1[$, toutes les primitives sont $\int f(x) dx = \frac{1}{3} \ln(-1 - x^3) + C$ $(C \in \mathbb{R})$.

Sur $]-1, +\infty[$, toutes les primitives sont $\int f(x) dx = \frac{1}{3} \ln(1+x^3) + C$ $(C \in \mathbb{R})$.

2.3
$$I =]0, +\infty[, f(u) = \frac{\ln u}{u}]$$

$$\int f(u) \, \mathrm{d}u = \int (\ln u)^1 (\ln u)' \, \mathrm{d}u = \frac{(\ln u)^2}{2} + C = \frac{1}{2} \ln^2 u + C \quad (C \in \mathbb{R})$$

Intervalles de définition : $]0, +\infty[=\mathbb{R} \text{ (car il faut } u>0 \text{ pour que } \ln u \text{ soit défini)}.$

2.4
$$I = \mathbb{R}, \quad f(t) = \frac{t}{\sqrt[3]{1+t^2}}$$

$$\int f(t) dt = \frac{1}{2} \int (1+t^2)^{-1/3} (1+t^2)' dt = \frac{1}{2} \frac{(1+t^2)^{2/3}}{2/3} + C = \frac{3}{4} (1+t^2)^{2/3} + C \quad (C \in \mathbb{R})$$

On a que $\sqrt[3]{\alpha}$ est défini $\forall \alpha \in \mathbb{R}$, et $\sqrt[3]{1+t^2} \neq 0 \ \forall \ t \in \mathbb{R}$.

Intervalles de définition : $]-\infty,+\infty[\,=\mathbb{R}$

2.5
$$I =]0, +\infty[, f(x) = \frac{1}{1}$$

2.5
$$I =]0, +\infty[$$
, $f(x) = \frac{1}{x \ln x}$

$$\int f(x) dx = \int \frac{1/x}{\ln x} dx = \int \frac{(\ln x)'}{\ln x} dx = \ln|\ln x| + C \quad (C \in \mathbb{R})$$

Il faut x > 0 (pour que $\ln x$ soit défini) et $\ln x \neq 0$ (pour le quotient).

Les intervalles de définition sont]0,1[plus $]1,+\infty[$ (l'énoncé est erroné).

Sur]0,1[, toutes les primitives sont $\int f(x) dx = \ln(-\ln x) + C$ ($C \in \mathbb{R}$).

Sur $]1, +\infty[$, toutes les primitives sont $\int f(x) dx = \ln(\ln x) + C$ $(C \in \mathbb{R})$.

2.6
$$I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad f(w) = \tan w$$

$$\int f(w) dw = -\int \frac{(\cos w)'}{\cos w} dw = -\ln|\cos w| + C \quad (C \in \mathbb{R})$$

Il faut $\cos w \neq 0$, donc les intervalles de définition sont tous ceux ne contenant pas un nombre de $\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$. Ce sont donc $\left]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right[$ pour $k\in\mathbb{Z}$.

Par exemple, sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$, toutes les primitives sont $\int f(w) dw = -\ln(\cos w) + C$ $(C \in \mathbb{R})$.

Et sur $]\frac{\pi}{2}, \frac{3\pi}{2}[$, toutes les primitives sont $\int f(w) dw = -\ln(-\cos w) + C$ $(C \in \mathbb{R})$.

^{1.} L'un des intervalles est erroné

— Intégration par parties

Exercice 3.

À l'aide d'intégrations par parties, calculer les intégrales suivantes.

$$I_1 = \int_1^e \ln x \, \mathrm{d}x$$

On dérive $u(x) = \ln x$, on primitive v'(x) = 1. Alors $u'(x) = \frac{1}{x}$ et v(x) = x (une primitive quelconque suffit) et

$$\int \ln x \, dx = (\ln x)(x) - \int (\frac{1}{x})(x) \, dx = x \ln x - x + C = x(\ln x - 1) + C \ (C \in \mathbb{R}).$$

Intervalles de définition : $]0, +\infty[$.

Rappel : Pour pouvoir appliquer la formule de l'intégration par parties, il faut que u et v soient de classe \mathcal{C}^1 sur l'intervalle en question.

Ici $u(x) = \ln x$ et v(x) = x sont de classe \mathcal{C}^1 sur $]0, +\infty[$ qui contient [1, e].

Donc $I_1 = [x(\ln x - 1)]_1^e = e(\ln e - 1) - 1(\ln 1 - 1) = 1.$

$$I_2 = \int_2^3 \frac{y}{\sqrt{y-1}} \, \mathrm{d}y$$

On dérive u(y) = y, on primitive $v'(y) = (y-1)^{-1/2}$. Alors u'(y) = 1 et $v(y) = \frac{(y-1)^{1/2}}{1/2} = 2\sqrt{y-1}$ donc

$$\int \frac{y}{\sqrt{y-1}} \, \mathrm{d}y = (y)(2\sqrt{y-1}) - \int (1)(2\sqrt{y-1}) \, \mathrm{d}y$$

$$= 2y\sqrt{y-1} - 2\int (y-1)^{1/2}(y-1)' \, \mathrm{d}y$$

$$= 2y\sqrt{y-1} - 2\frac{(y-1)^{3/2}}{3/2} + C$$

$$= 2y\sqrt{y-1} - \frac{4}{3}(y-1)^{3/2} + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition :]1, $+\infty$ [, car $u, v \in \mathcal{C}^1(]1, +\infty$ [).

Donc
$$I_2 = \left[2y\sqrt{y-1} - \frac{4}{3}(y-1)^{3/2}\right]_2^3 = \left(6\sqrt{2} - \frac{4}{3} \times 2^{3/2}\right) - \left(4\sqrt{1} - \frac{4}{3} \times 1^{3/2}\right) = \frac{10}{3}\sqrt{2} - \frac{8}{3}.$$

$$I_3 = \int_{e}^{2e} z^2 \ln z \, \mathrm{d}z$$

On dérive $u(z) = \ln z$, on primitive $v'(z) = z^2$. Alors $u'(z) = \frac{1}{z}$ et $v(z) = \frac{z^3}{3}$ donc

$$\int z^2 \ln z \, dz = (\ln z)(\frac{z^3}{3}) - \int (\frac{1}{z})(\frac{z^3}{3}) \, dx$$

$$= \frac{1}{3}z^3 \ln z - \frac{1}{3} \int z^2 \, dz$$

$$= \frac{1}{3}z^3 \ln z - \frac{1}{3}\frac{z^3}{3} + C = \frac{1}{9}z^3(3\ln z - 1) + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition : $]0, +\infty[$, car $u, v \in C^1(]0, +\infty[)$.

Donc
$$I_3 = \frac{1}{9} \left[z^3 (3 \ln z - 1) \right]_e^{2e} = \frac{1}{9} \left((2e)^3 (3 \ln(2e) - 1) - e^3 (3 \ln(e) - 1) \right) = \frac{2}{9} (12 \ln 2 + 7) e^3.$$

$$I_4 = \int_{-1}^{0} (-2a+1) e^{-a} da$$

On dérive u(a) = -2a + 1, on primitive $v'(a) = e^{-a}$. Alors u'(a) = -2 et $v(a) = -e^{-a}$ donc

$$\int (-2a+1) e^{-a} da = (-2a+1)(-e^{-a}) - \int (-2)(-e^{-a}) da$$

$$= (2a-1) e^{-a} - 2 \int e^{-a} da$$

$$= (2a-1) e^{-a} + 2 e^{-a} + C$$

$$= (2a+1) e^{-a} + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty, +\infty[=\mathbb{R}, \operatorname{car} u, v \in \mathcal{C}^1(\mathbb{R}).$

Donc
$$I_4 = [(2a+1)e^{-a}]_{-1}^0 = 1e^0 - (-1)e^1 = e+1.$$

$$I_5 = \int_1^e \ln^2 b \, \mathrm{d}b$$

On dérive $u(b)=(\ln b)^2$, on primitive v'(b)=1. Alors $u'(v)=2(\ln b)\frac{1}{b}=\frac{2\ln b}{b}$ et v(b)=b donc

$$\int \ln^2 b \, \mathrm{d}b = (\ln^2 b)(b) - \int (\frac{2 \ln b}{b})(b) \, \mathrm{d}b$$
$$= b \ln^2 b - 2 \int \ln b \, \mathrm{d}b.$$

On a déjà calculé $\int \ln b \, \mathrm{d}b = b \ln b - b + C$ (par parties aussi), donc

$$\int \ln^2 b \, db = b \ln^2 b - 2(b \ln b - b) + C$$

$$= b (\ln^2 b - 2 \ln b + 2) + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition : $]0, +\infty[$, car $u, v \in C^1(]0, +\infty[)$.

Donc $I_5 = [b(\ln^2 b - 2\ln b + 2)]_1^e = e \times (\ln^2 e - 2\ln e + 2) - 1 \times (\ln^2 1 - 2\ln 1 + 2) = e - 2.$

$$I_6 = \int_0^1 \arctan c \, \mathrm{d}c$$

On dérive $u(c) = \arctan c$, on primitive v'(c) = 1. Alors $u'(v) = \frac{1}{1+c^2}$ et v(c) = c donc

$$\begin{split} \int \arctan c \, \mathrm{d}c &= (\arctan c)(c) - \int (\frac{1}{1+c^2})(c) \, \mathrm{d}c \\ &= c \arctan c - \frac{1}{2} \int \frac{(1+c^2)'}{1+c^2}, \, \mathrm{d}c \\ &= c \arctan c - \frac{1}{2} \ln|1+c^2| + K \\ &= c \arctan c - \frac{1}{2} \ln(1+c^2) + K \qquad (K \in \mathbb{R}). \end{split}$$

 $car 1 + c^2 \geqslant 1 > 0 \ \forall \ c \in \mathbb{R}.$

Intervalles de définition :] $-\infty$, $+\infty$ [= \mathbb{R} , car $u, v \in \mathcal{C}^1(\mathbb{R})$.

Donc $I_6 = \left[c \arctan c - \frac{1}{2} \ln(1+c^2)\right]_0^1 = \left(1 \arctan 1 - \frac{1}{2} \ln(2)\right) - \left(0 \arctan 0 - \frac{1}{2} \ln(1)\right) = \left(1 \times \frac{\pi}{4} - \frac{1}{2} \ln 2\right) - \left(0 \times 0 - 0\right)$ $= \frac{\pi}{4} - \frac{\ln 2}{2}.$

$$I_7 = \int_0^{\pi/2} e^s \cos s \, \mathrm{d}s$$

Soient

$$I_{\cos} = \int e^{s} \cos s \, ds$$
$$I_{\sin} = \int e^{s} \sin s \, ds.$$

Dans I_{\cos} , on dérive $u(s) = e^s$, on primitive $v'(s) = \cos s$. Alors $u'(s) = e^s$ et $v(s) = \sin s$ donc

$$I_{\cos} = (e^s)(\sin s) - \int (e^s)(\sin s) ds$$
$$= e^s \sin s - I_{\sin} + C_1.$$

Dans I_{\sin} , on dérive $u(s) = e^s$, on primitive $v'(s) = \sin s$. Alors $u'(s) = e^s$ et $v(s) = -\cos s$ donc

$$I_{\sin} = (e^s)(-\cos s) - \int (e^s)(-\cos s) ds$$
$$= -e^s \cos s + I_{\cos} + C_2.$$

Par conséquent,

$$I_{\cos} + I_{\sin} = e^{s} \sin s + C_{1}$$
$$I_{\cos} - I_{\sin} = e^{s} \cos s - C_{2}$$

ce qui donne (en additionnant/soustrayant les 2 équations)

$$\int e^s \cos s \, ds = \frac{1}{2} e^s (\sin s + \cos s) + C$$
$$\int e^s \sin s \, ds = \frac{1}{2} e^s (\sin s - \cos s) + C$$

 $(C \in \mathbb{R}).$

Intervalles de définition : $]-\infty, +\infty[=\mathbb{R}, \text{ car toutes les fonctions considérées sont de clase } \mathcal{C}^1 \text{ sur } \mathbb{R}.$

Donc
$$I_7 = \frac{1}{2} \left[e^s (\sin s + \cos s) \right]_0^{\pi/2} = \frac{1}{2} \left(\left(e^{\pi/2} (\sin \frac{\pi}{2} + \cos \frac{\pi}{2}) \right) - \left(e^0 (\sin 0 + \cos 0) \right) \right) = \frac{1}{2} \left(\left(e^{\pi/2} (1+0) \right) - \left(1 \times (0+1) \right) \right) = \frac{1}{2} \left(e^{\pi/2} - 1 \right).$$

$$I_8 = \int_0^1 \ln(1+t^2) \, \mathrm{d}t$$

On dérive $u(t) = \ln(1+t^2)$, on primitive v'(t) = 1. Alors $u'(t) = \frac{2t}{1+t^2}$ et v(t) = t donc

$$\int \ln(1+t^2) dt = (\ln(1+t^2))(t) - \int (\frac{2t}{1+t^2})(t) dt$$

$$= t \ln(1+t^2) - 2 \int \frac{t^2}{1+t^2} dt$$

$$= t \ln(1+t^2) - 2 \int \frac{t^2+1-1}{1+t^2} dt$$

$$= t \ln(1+t^2) - 2 \int \left(1 - \frac{1}{1+t^2}\right) dt$$

$$= t \ln(1+t^2) - 2(t - \arctan t) + C$$

$$= t \ln(1+t^2) - 2t + 2 \arctan t + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty, +\infty[=\mathbb{R}, \text{ car } 1+t^2\geqslant 1>0 \ \forall \ t\in\mathbb{R} \text{ donc } u,v\in\mathcal{C}^1(\mathbb{R}).$

Donc $I_8 = \left[t \ln(1+t^2) - 2t + 2 \arctan t\right]_0^1 = \left(1 \times \ln(2) - 2 + 2 \arctan 1\right) - \left(0 \times \ln(1) - 0 + 2 \arctan 0\right)$ = $\left(\ln 2 - 2 + 2\frac{\pi}{4}\right) - \left(0 - 0 + 0\right) = \ln 2 - 2 + \frac{\pi}{2}$.

$$I_9 = \int_1^e (u^2 + u + 2) \ln u \, du$$

On dérive $U(u) = \ln u$, on primitive $V'(u) = u^2 + u + 2$. Alors $U'(u) = \frac{1}{u}$ et $V(u) = \frac{u^3}{3} + \frac{u^2}{2} + 2u$ donc

$$\begin{split} \int (u^2 + u + 2) \ln u \, \mathrm{d}u &= (\ln u) (\frac{u^3}{3} + \frac{u^2}{2} + 2u) - \int (\frac{1}{u}) (\frac{u^3}{3} + \frac{u^2}{2} + 2u) \, \mathrm{d}u \\ &= (\frac{u^3}{3} + \frac{u^2}{2} + 2u) \ln u - \int (\frac{1}{3}u^2 + \frac{1}{2}u + 2) \, \mathrm{d}u \\ &= (\frac{u^3}{3} + \frac{u^2}{2} + 2u) \ln u - (\frac{1}{3}\frac{u^3}{3} + \frac{1}{2}\frac{u^2}{2} + 2u) + C \\ &= \left(\frac{u^3}{3} + \frac{u^2}{2} + 2u\right) \ln u - \frac{u^3}{9} - \frac{u^2}{4} - 2u + C \qquad (C \in \mathbb{R}). \end{split}$$

Intervalles de définition : $]0, +\infty[$, car $U, V \in \mathcal{C}^1(]0, +\infty[)$.

Donc
$$I_9 = \left[\left(\frac{u^3}{3} + \frac{u^2}{2} + 2u \right) \ln u - \frac{u^3}{9} - \frac{u^2}{4} - 2u \right]_1^e = \frac{2}{9} e^3 + \frac{1}{4} e^2 + \frac{85}{36}$$

— Changement de variable

Exercice 4.

4.1 À l'aide d'un changement de variable, calculer les intégrales suivantes.

$$I_1 = \int_1^3 \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x^3}}$$

Tout d'abord, cette intégrale a un sens car la fonction $f(x) = \frac{1}{\sqrt{x} + \sqrt{x^3}}$ est continue sur $]0, +\infty[$ qui contient $[x_1, x_2] =$ [1, 3] (remarquer qu'il faut $x \ge 0$ pour les racines et qu'alors il faut $x \ne 0$ pour le quotient).

On veut faire $x = \phi(t) = t^2$ afin d'éliminer les racines carrées. Alors dx = 2t dt; si $x = x_1 = 1 = \phi(t_1) = t_1^2$ on peut prendre $t_1 = 1$; si $x = x_2 = 3 = \phi(t_2) = t_2^2$ on peut prendre $t_2 = \sqrt{3}$.

Rappels : On désigne par $|\alpha,\beta|$ l'intervalle $[\alpha,\beta]$ si $\alpha\leqslant\beta$ ou l'intervalle $[\beta,\alpha]$ si $\alpha\geqslant\beta$.

Pour pouvoir appliquer la formule du changement de variables $\int_{x=\phi(a)}^{x=\phi(b)} f(x) dx = \int_{t=a}^{t=b} f(\phi(t)) \phi'(t) dt$

(correspondant à faire $x = \phi(t)$) il faut que ϕ soit de classe \mathcal{C}^1 sur |a,b| et il faut aussi que f soit continue sur $\phi(|a,b|) = \{\phi(t) \mid t \in |a,b|\}$. Si ϕ est monotone (soit croissante soit décroissante) sur |a,b|, alors $\phi(|a,b|) = |\phi(a),\phi(b)|$, mais en général ce sera faux (voir exemple ci-après).

Ici $|t_1, t_2| = [1, \sqrt{3}]$ et $\phi \in \mathcal{C}^1([1, \sqrt{3}])$. D'autre part, $\phi(|t_1, t_2|) = \phi([1, \sqrt{3}]) = [\phi(1), \phi(\sqrt{3})] = [1, 3]$ (car ϕ est croissante

$$sur [1, \sqrt{3}] \text{ et } f \text{ est continue sur } [1, 3] \text{ (en fait, } \phi \in \mathcal{C}^{\infty}(\mathbb{R}) \text{ et } f \in \mathcal{C}^{\infty}(]0, +\infty[)).$$

$$Donc I_1 = \int_{x=1}^{x=3} \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x^3}} = \int_{x=x_1}^{x=x_2} \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x^3}} = \int_{x=\phi(t_1)}^{x=\phi(t_2)} \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x^3}} = \int_{t=t_1}^{t=t_2} \frac{2t \, \mathrm{d}t}{\sqrt{t^2} + \sqrt{(t^2)^3}}.$$

Attention à ne pas oublier de **remplacer** dx = 2t dt. Or $\sqrt{t^2} = |t| = t \operatorname{car} t \ge 0$.

Donc
$$I_1 = \int_{t=1}^{t=\sqrt{3}} \frac{2t \, dt}{t+t^3} = 2 \int_{t=1}^{t=\sqrt{3}} \frac{1}{1+t^2} \, dt = 2 \left[\arctan t\right]_{t=1}^{t=\sqrt{3}} = 2 \left(\arctan \sqrt{3} - \arctan 1\right) = 2\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\pi}{6}.$$

(Toutes les primitives de f(x) sont $\int \frac{\mathrm{d}x}{\sqrt{x}+\sqrt{x^3}} = 2\arctan\sqrt{x} + C$ $(C \in \mathbb{R})$, définies sur $]0,+\infty[.)$

Si l'on prend $t_1 = -1$ (possible en principe car $\phi(t_1) = x_1$), alors $\phi(|t_1, t_2|) = \phi([-1, \sqrt{3}]) = [0, 3]$. Mais f n'est pas continue sur [0,3] (n'est même pas définie en 0), donc on ne peut pas appliquer la formule avec ce choix.

$$I_2 = \int_1^{e^2} \frac{\ln u}{u + u \ln^2 u} \, \mathrm{d}u$$

Tout d'abord, cette intégrale a un sens car la fonction $f(u) = \frac{\ln u}{u + u \ln^2 u}$ est continue sur $]0, +\infty[$ qui contient $[u_1, u_2] = \frac{\ln u}{u + u \ln^2 u}$ $[1, e^2]$ (remarquer qu'il faut u > 0 et qu'alors $\ln^2 u \ge 0$ donc $u + u \ln^2 u = u(1 + \ln^2 u) > 0$).

On veut faire $u = \phi(t) = e^t$ afin d'éliminer les logarithmes. Alors $du = e^t dt$; si $u = u_1 = 1 = e^{t_1}$ on peut prendre $t_1 = \ln 10$; si $u = u_2 = e^2 = e^{t_2}$ on peut prendre $t_2 = \ln(e^2) = 2$.

On a $|t_1,t_2|=[0,2]$ et $\phi\in\mathcal{C}^1([0,2])$. Puis $\phi(|t_1,t_2|)=\phi([0,2])=[\phi(0),\phi(2)]=[1,\mathrm{e}^2]$ (car ϕ est croissante sur [0,2]) et f est bien continue sur $[1,e^2]$ (en fait, $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$ et $f \in \mathcal{C}^{\infty}(]0,+\infty[)$)

Donc
$$I_2 = \int_{u=1}^{u=e^2} \frac{\ln u}{u + u \ln^2 u} du = \int_{u=u_1}^{u=u_2} \frac{\ln u}{u(1 + \ln^2 u)} du = \int_{u=\phi(t_1)}^{u=\phi(t_2)} \frac{\ln u}{u(1 + \ln^2 u)} du = \int_{t=t_1}^{t=t_2} \frac{\ln e^t}{e^t (1 + \ln^2 e^t)} e^t dt.$$

Attention à ne pas oublier de **remplacer** $du = e^t dt$. Or $\ln e^t = t \ \forall \ t \in \mathbb{R}$. Donc

$$I_2 = \int_{t=0}^{t=2} \frac{t}{e^t (1+t^2)} e^t dt = \int_{t=0}^{t=2} \frac{t}{1+t^2} dt = \frac{1}{2} \int_{t=0}^{t=2} \frac{(1+t^2)'}{1+t^2} dt = \frac{1}{2} \left[\ln(1+t^2) \right]_{t=0}^{t=2} = \frac{1}{2} (\ln 5 - \ln 1) = \frac{\ln 5}{2} = \ln \sqrt{5}.$$

(Toutes les primitives de f(u) sont $\int \frac{\ln u}{u + u \ln^2 u} du = \frac{1}{2} \ln(1 + \ln^2 u) + C$ $(C \in \mathbb{R})$, définies sur $]0, +\infty[.)$

$$I_3 = \int_0^1 \frac{e^{2x}}{e^x + 1} dx$$

Tout d'abord, cette intégrale a un sens car la fonction $f(x) = \frac{e^{2x}}{e^x + 1}$ est continue sur $]-\infty, +\infty[$ qui contient $[x_1, x_2] = \frac{e^{2x}}{e^x + 1}$ [0,1] (remarquer que $e^x > 0 \ \forall \ x \in \mathbb{R}$ et qu'alors $e^x + 1 > 1 > 0$).

On veut faire $x = \phi(t) = \ln t$ afin d'éliminer les exponentielles. Alors $dx = \frac{1}{t} dt$; si $x = x_1 = 0 = \phi(t_1) = \ln t_1$ on peut prendre $t_1=\mathrm{e}^0=1$; si $x=x_2=1=\phi(t_2)=\ln t_2$ on peut prendre $t_2=\mathrm{e}^1=\mathrm{e}.$

On a $|t_1, t_2| = [1, e]$ et $\phi \in \mathcal{C}^1([1, e])$. Puis $\phi(|t_1, t_2|) = \phi([1, e]) = [\phi(1), \phi(e)] = [0, 1]$ (car ϕ est croissante sur [1, e]) et f est bien continue sur [0, 1] (en fait, $\phi \in \mathcal{C}^{\infty}([0, +\infty[)])$).

Donc
$$I_3 = \int_{x=0}^{x=1} \frac{e^{2x}}{e^x + 1} dx = \int_{x=x_1}^{x=x_2} \frac{e^{2x}}{e^x + 1} dx = \int_{x=\phi(t_1)}^{x=\phi(t_2)} \frac{e^{2x}}{e^x + 1} dx = \int_{t=t_1}^{t=t_2} \frac{e^{2\ln t}}{e^{\ln t} + 1} \frac{1}{t} dt.$$

Attention à ne pas oublier de **remplacer** $dx = \frac{1}{t} dt$. Or $e^{2 \ln t} = (e^{\ln t})^2$ et $e^{\ln t} = t \ \forall \ t > 0$.

Donc
$$I_3 = \int_{t=1}^{t=e} \frac{t^2}{t+1} \frac{1}{t} dt = \int_{t=1}^{t=e} \frac{t}{t+1} dt = \int_{t=1}^{t=e} \frac{t+1-1}{t+1} dt = \int_{t=1}^{t=e} \left(1 - \frac{1}{t+1}\right) dt = [t - \ln(t+1)]_{t=1}^{t=e}$$

= $(e - \ln(e+1)) - (1 - \ln 2) = e - \ln(e+1) - 1 + \ln 2$.

(Toutes les primitives de f(x) sont $\int \frac{e^{2x}}{e^x + 1} dx = e^x - \ln(e^x + 1) + C$ $(C \in \mathbb{R})$, définies sur $]-\infty, +\infty[=\mathbb{R}]$

$$I_4 = \int_0^{\pi/4} \frac{\mathrm{d}x}{\cos^4 x}$$

Cette intégrale a un sens car la fonction $f(x) = \frac{1}{\cos^4 x}$ est continue sur $]-\frac{\pi}{2}, \frac{\pi}{2}[$ qui contient $[x_1, x_2] = [0, \frac{\pi}{4}].$ On applique les règles de Bioche : Soit $\omega(x) = f(x) \, \mathrm{d}x = \frac{\mathrm{d}x}{\cos^4 x}.$ Alors :

$$\omega(-x) = \frac{\mathrm{d}(-x)}{\cos^4(-x)} = -\frac{\mathrm{d}x}{\cos^4 x} \neq \omega(x)$$

$$\omega(\pi - x) = \frac{\mathrm{d}(\pi - x)}{\cos^4(\pi - x)} = -\frac{\mathrm{d}x}{\cos^4 x} \neq \omega(x)$$

$$\omega(\pi + x) = \frac{\mathrm{d}(\pi + x)}{\cos^4(\pi + x)} = \frac{\mathrm{d}x}{\cos^4 x} = \omega(x)$$

donc Bioche préconise de faire $t = \tan x$. Alors $x = \phi(t) = \arctan t$ et $dx = \frac{1}{1+t^2} dt$; si $x = x_1 = 0 = \phi(t_1) = \arctan t_1$ on peut prendre $t_1 = \tan 0 = 0$; si $x = x_2 = \frac{\pi}{4} = \phi(t_2) = \arctan t_2$ on peut prendre $t_2 = \tan \frac{\pi}{4} = 1$.

On a $|t_1, t_2| = [0, 1]$ et $\phi \in \mathcal{C}^1([0, 1])$. Puis $\phi(|t_1, t_2|) = \phi([0, 1]) = [\phi(0), \phi(1)] = [0, \frac{\pi}{4}]$ (car ϕ est croissante sur [0, 1]) et f est bien continue sur $[0, \frac{\pi}{4}]$ (en fait, $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$ et f est de classe \mathcal{C}^{∞} sur tout intervalle ne contenant pas un nombre de $\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}.$)

Par ailleurs, on sait que $\frac{1}{\cos^2 x} = 1 + \tan^2 x$

Donc
$$I_4 = \int_{x=0}^{x=\pi/4} \frac{1}{\cos^4 x} dx = \int_{x=0}^{x=\pi/4} \left(\frac{1}{\cos^2 x}\right)^2 dx = \int_{x=0}^{x=\pi/4} (1 + \tan^2 x)^2 dx = \int_{x=x_1}^{x=x_2} (1 + \tan^2 x)^2 dx$$

$$= \int_{x=\phi(t_1)}^{x=\phi(t_2)} (1 + \tan^2 x)^2 dx = \int_{t=t_1}^{t=t_2} (1 + t^2)^2 \frac{1}{1 + t^2} dt = \int_{t=0}^{t=1} (1 + t^2) dt = \left[t + \frac{t^3}{3}\right]_{t=0}^{t=1} = (1 + \frac{1^3}{3}) - (0 + \frac{0^3}{3}) = \frac{4}{3}.$$

(Toutes les primitives de f(x) sont $\int \frac{\mathrm{d}x}{\cos^4 x} = t + \frac{t^3}{3} + C = \tan x + \frac{1}{3} \tan^3 x + C$ ($C \in \mathbb{R}$), définies sur n'importe quel intervalle ne contenant pas un nombre de $\left\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\right\}$.)

4.2 À l'aide d'un changement de variable, calculer les primitives suivantes sur un intervalle à préciser. $\int \frac{\sin x \cos x}{1-\cos x} dx$

Tout d'abord, la fonction $f(x) = \frac{\sin x \cos x}{1-\cos x}$ est continue sur tout intervalle ne contenant pas un nombre de $\{2k\pi \mid k \in \mathbb{Z}\}$. Elle admet donc des primitives sur chacun des intervalles $]2k\pi, 2(k+1)\pi[$ pour $k \in \mathbb{Z}$.

On applique les règles de Bioche : Soit $\omega(x) = f(x) dx = \frac{\sin x \cos x}{1 - \cos x} dx$. Alors :

$$\omega(-x) = \frac{\sin(-x)\cos(-x)}{1 - \cos(-x)} d(-x) = \frac{\sin x \cos x}{1 - \cos x} dx = \omega(x)$$

$$\omega(\pi - x) = \frac{\sin(\pi - x)\cos(\pi - x)}{1 - \cos(\pi - x)} d(\pi - x) = \frac{\sin x \cos x}{1 + \cos x} dx \neq \omega(x)$$

$$\omega(\pi + x) = \frac{\sin(\pi + x)\cos(\pi + x)}{1 - \cos(\pi + x)} d(\pi + x) = \frac{\sin x \cos x}{1 + \cos x} dx \neq \omega(x)$$

donc Bioche préconise de faire $t = \cos x$. Alors $dt = -\sin x dx$ (on calcule dt en fonction de dx plutôt que le contraire).

$$\begin{aligned} & \text{Donc} \int \frac{\sin x \cos x}{1 - \cos x} \, \mathrm{d}x = - \int \frac{\cos x}{1 - \cos x} (-\sin x \, \mathrm{d}x) = - \int \frac{t}{1 - t} \, \mathrm{d}t = \int \frac{t}{t - 1} \, \mathrm{d}t = \int \frac{t - 1 + 1}{t - 1} \, \mathrm{d}t \\ & = \int \left(1 + \frac{1}{t - 1} \right) \, \mathrm{d}t = t + \ln|t - 1| + C = \cos x + \ln|\cos x - 1| + C = \cos x + \ln(1 - \cos x) + C \, \left(C \in \mathbb{R} \right), \end{aligned}$$

 $\operatorname{car} -1 \leqslant \cos x \leqslant 1 \implies -2 \leqslant \cos x - 1 \leqslant 0 \operatorname{donc} |\cos x - 1| = 1 - \cos x.$

Pour vérifier, on dérive : $\left(\cos x + \ln(1-\cos x) + C\right)' = -\sin x + \frac{(1-\cos x)'}{1-\cos x} = -\sin x + \frac{\sin x}{1-\cos x} = \sin x \frac{\cos x}{1-\cos x} = f(x)$. Intervalles de définition : chacun des intervalles $|2k\pi, 2(k+1)\pi|$ pour $k \in \mathbb{Z}$.

(Remarquer qu'on ne s'est pas inquiété de $x = \phi(t) = \arccos t$. En effet, on a trouvé une fonction dérivable dont la dérivée est f(x), ce qui est le but de la primitivation.)

$$\int \frac{\mathrm{d}x}{\cos x}$$

Tout d'abord, la fonction $f(x) = \frac{1}{\cos x}$ est continue sur tout intervalle ne contenant pas un nombre de $\{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}.$ Elle admet donc des primitives sur chacun des intervalles $]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$ pour $k\in\mathbb{Z}$.

On applique les règles de Bioche : Soit $\omega(x) = f(x) dx = \frac{1}{\cos x} dx$. Alors :

$$\omega(-x) = \frac{1}{\cos(-x)} d(-x) = -\frac{1}{\cos x} dx \neq \omega(x)$$

$$\omega(\pi - x) = \frac{1}{\cos(\pi - x)} d(\pi - x) = \frac{1}{\cos x} dx = \omega(x)$$

$$\omega(\pi + x) = \frac{1}{\cos(\pi + x)} d(\pi + x) = -\frac{1}{\cos x} dx \neq \omega(x)$$

donc Bioche préconise de faire $t = \sin x$. Alors $dt = \cos x dx$ (on calcule dt en fonction de dx plutôt que le contraire).

Donc
$$\int \frac{1}{\cos x} dx = \int \frac{1}{\cos^2 x} \cos x dx = \int \frac{1}{1 - \sin^2 x} (\cos x dx) = \int \frac{1}{1 - t^2} dt = -\int \frac{1}{(t - 1)(t + 1)} dt$$

= $-\int \left(\frac{1/2}{t - 1} + \frac{-1/2}{t + 1}\right) dt = \frac{1}{2} \int \left(-\frac{1}{t - 1} + \frac{1}{t + 1}\right) dt = \frac{1}{2} (-\ln|t - 1| + \ln|t + 1|) + C$

 $= \frac{1}{2}(-\ln|\sin x - 1| + \ln|\sin x + 1|) + C = \frac{1}{2}(-\ln(1 - \sin x) + \ln(1 + \sin x)) + C = \frac{1}{2}\ln(1 + \sin x) - \frac{1}{2}\ln(1 - \sin x) + C$ $(C \in \mathbb{R})$, car $-1 \leqslant \sin x \leqslant 1$ donne $-2 \leqslant \sin x - 1 \leqslant 0$ (donc $|\sin x - 1| = 1 - \sin x$) et donne aussi $0 \leqslant \sin x + 1 \leqslant 2$ $(\operatorname{donc}|\sin x + 1| = 1 + \sin x).$

Pour vérifier, on dérive :
$$\frac{1}{2} \left(\ln(1 + \sin x) - \ln(1 - \sin x) + C \right)' = \frac{1}{2} \left(\frac{(1 + \sin x)'}{1 + \sin x} - \frac{(1 - \sin x)'}{1 - \sin x} \right) = \frac{1}{2} \left(\frac{\cos x}{1 + \sin x} - \frac{-\cos x}{1 - \sin x} \right) = \frac{1}{2} (\cos x) \left(\frac{1}{1 + \sin x} + \frac{1}{1 - \sin x} \right) = \frac{1}{2} (\cos x) \left(\frac{(1 - \sin x) + (1 + \sin x)}{1 - \sin^2 x} \right) = \frac{1}{2} (\cos x) \left(\frac{2}{\cos^2 x} \right) = \frac{1}{\cos x} = f(x).$$
 Intervalles de définition : chacun des intervalles $\left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[\text{pour } k \in \mathbb{Z}.$

(Remarquer qu'on ne s'est pas inquiété de $x = \phi(t) = \arcsin t$. En effet, on a trouvé une fonction dérivable dont la dérivée est f(x), ce qui est le but de la primitivation.)

$$\int \sqrt{\mathrm{e}^y - 1} \, \mathrm{d}y$$
 (indication: $u = \sqrt{\mathrm{e}^y - 1}$)

Tout d'abord, la fonction $f(y) = \sqrt{e^y - 1}$ est définie et continue sur $[0, +\infty[$ (car il faut $e^y - 1 \ge 0)$). Elle admet donc des primitives sur $[0, +\infty[$.

On nous dit de faire $u = \sqrt{\mathrm{e}^y - 1}$. Alors $y = \ln(u^2 + 1)$ et $\mathrm{d}y = \frac{2u}{u^2 + 1}\,\mathrm{d}u$ (on pourrait aussi calculer $\mathrm{d}u = \frac{\mathrm{e}^y}{2\sqrt{\mathrm{e}^y - 1}}\,\mathrm{d}y$ mais cela semble plus compliqué)

Donc
$$\int \sqrt{e^y - 1} \, dy = \int u \frac{2u}{u^2 + 1} \, du = 2 \int \frac{u^2 + 1 - 1}{u^2 + 1} \, du = 2 \int \left(1 - \frac{1}{u^2 + 1}\right) \, du = 2(u - \arctan u) + C$$

= $2u - 2\arctan u + C = 2\sqrt{e^y - 1} - 2\arctan\sqrt{e^y - 1} + C \ (C \in \mathbb{R}).$

Pour vérifier, on dérive :
$$2\left(\sqrt{e^y - 1} - \arctan\sqrt{e^y - 1}\right)' = 2\left(\frac{(e^y - 1)'}{2\sqrt{e^y - 1}} - \frac{(\sqrt{e^y - 1})'}{1 + (\sqrt{e^y - 1})^2}\right) = 2\left(\frac{e^y}{2\sqrt{e^y - 1}} - \frac{\frac{e^y}{2\sqrt{e^y - 1}}}{e^y}\right) = 2\frac{1}{2\sqrt{e^y - 1}}(e^y - 1) = \sqrt{e^y - 1} = f(x).$$

Intervalles de définition : $]0, +\infty[$.

(Remarquer qu'on ne s'est pas inquiété de $y = \phi(u) = \ln(u^2 + 1)$. En effet, on a trouvé une fonction dérivable dont la dérivée est f(y), ce qui est le but de la primitivation.)

Que se passe-t-il en y=0? Chacune des fonctions $2\sqrt{e^y-1}$ et $2\arctan\sqrt{e^y-1}$ est définie pour $y\geqslant 0$ mais n'est dérivable que pour y>0. Cependant, on peut vérifier que la fonction $2\sqrt{e^y-1}-2\arctan\sqrt{e^y-1}$ est définie pour $y \ge 0$, continue à droite en y = 0 et dérivable à droite en y = 0. Donc l'intervalle de définition est en fait $[0, +\infty[$.

Décomposition de fractions rationnelles en éléments simples

Exercice 5.

Décomposer chacune des fractions rationnelles suivantes en éléments simples dans $\mathbb R$ pour en déduire une primitive (préciser les intervalles de définition).

$$q_1(x) = \frac{1}{x^2 + x - 1}$$

Le degré du numérateur est deg(1) = 0 qui n'est pas supérieur ou égal au degré du dénominateur $deg(x^2 + x - 1) = 2$, donc pas de division.

On factorise le dénominateur. Pour cela, on résout $x^2 + x - 1 = 0$. On a $\Delta = 5 > 0$ donc 2 racines réelles distinctes $\alpha = \frac{-1-\sqrt{5}}{2}$ et $\beta = \frac{-1+\sqrt{5}}{2}$ avec $\alpha < \beta$ ($-\alpha$ est le nombre d'or; on a $\beta = -\frac{1}{\alpha} = -1 - \alpha$). On rappelle que si $ax^2 + bx + c = 0$ possède 2 racines réelles distinctes x_1 et x_2 , alors on a la factorisation $ax^2 + bx + c = a(x - x_1)(x - x_2)$. Donc ici $x^2 + x - 1 = 1(x - \alpha)(x - \beta)$.

Alors on sait que $\frac{1}{x^2+x-1} \equiv \frac{A}{x-\alpha} + \frac{B}{x-\beta}$ avec $A,B \in \mathbb{R}$ à trouver (le signe " \equiv " indique que c'est une identité et

non une équation). Dénominateur commun : $\frac{1}{x^2+x-1} \equiv \frac{A(x-\beta)+B(x-\alpha)}{(x-\alpha)(x-\beta)} \equiv \frac{A(x-\beta)+B(x-\alpha)}{x^2+x-1}$, donc $1 \equiv A(x-\beta)+B(x-\alpha)$.

En faisant $x = \alpha$, on a $1 = A(\alpha - \beta) + B(0)$ donc $A = -\sqrt{5}/5$.

En faisant $x = \beta$, on a $1 = A(0) + B(\beta - \alpha)$ donc $B = \sqrt{5}/5$.

Ainsi $\frac{1}{x^2+x-1} = \frac{-\sqrt{5}/5}{x-\alpha} + \frac{\sqrt{5}/5}{x-\beta}$, donc la décomposition en éléments simples dans \mathbb{R} de $q_1(x)$ est $q_1(x) = \frac{-\sqrt{5}/5}{x-\alpha} + \frac{\sqrt{5}/5}{x-\beta}$

Primitives :
$$\int q_1(x) dx = \frac{\sqrt{5}}{5} \int \left(-\frac{1}{x-\alpha} + \frac{1}{x-\beta} \right) dx = \frac{\sqrt{5}}{5} \left(-\ln|x-\alpha| + \ln|x-\beta| \right) + C$$

$$= \frac{\sqrt{5}}{5} \ln \left| x + \frac{1 - \sqrt{5}}{2} \right| - \frac{\sqrt{5}}{5} \ln \left| x + \frac{1 + \sqrt{5}}{2} \right| + C \ (C \in \mathbb{R}).$$

Intervalles de définition :] $-\infty$, α [plus] α , β [plus] β , $+\infty$ [(car $\alpha < \beta$), c'est-à-dire,] $-\infty$, $\frac{-1-\sqrt{5}}{2}$ [plus] $\frac{-1-\sqrt{5}}{2}$, $\frac{-1+\sqrt{5}}{2}$ [plus] $\frac{-1+\sqrt{5}}{2}$, $+\infty$ [.

$$q_2(x) = \frac{x^2}{(x-2)(x-3)}$$

Le degré du numérateur est $deg(x^2) = 2$ qui est supérieur ou égal au degré du dénominateur deg((x-2)(x-3)) = 2, donc on commence par faire la division euclidienne de x^2 par $(x-2)(x-3)=x^2-5x+6$. On trouve $x^2=(x^2-5x+6)Q+R$

on commence par faire la division euclidienne de
$$x^2$$
 par $(x-2)(x-3) = x^2 - 5x + 6$. On trouve $x^2 = (x^2 - 5x + 6)Q$ avec $Q = 1$ et $R = 5x - 6$. Donc $\frac{x^2}{x^2 - 5x + 6} = \frac{(x^2 - 5x + 6)Q + R}{x^2 - 5x + 6} = Q + \frac{R}{x^2 - 5x + 6} = 1 + \frac{5x + 6}{x^2 - 5x + 6}$. On laisse de côté $Q = 1$, on décompose $\frac{5x - 6}{x^2 - 5x + 6} = \frac{5x - 6}{(x - 2)(x - 3)} \equiv \frac{A}{x - 2} + \frac{B}{x - 3}$ avec $A, B \in \mathbb{R}$ à trouver. Dénominateur commun : $\frac{5x - 6}{x^2 - 5x + 6} \equiv \frac{A(x - 3) + B(x - 2)}{(x - 2)(x - 3)} \equiv \frac{A(x - 3) + B(x - 2)}{x^2 - 5x + 6}$, donc $5x - 6 \equiv A(x - 3) + B(x - 2)$. En faisant $x = 2$ on a $4 = A(-1) + B(0)$ donc $A = -4$

En faisant x = 2, on a 4 = A(-1) + B(0) donc A = -4.

En faisant x = 3, on a 9 = A(0) + B(1) donc B = 9.

Ainsi $\frac{5x-6}{x^2-5x+6} = \frac{-4}{x-2} + \frac{9}{x-3}$ donc la décomposition en éléments simples dans \mathbb{R} de $q_2(x)$ est $q_2(x) = 1 + \frac{-4}{x-2} + \frac{9}{x-3}$. Attention à ne pas oublier de **rajouter** Q = 1.

Primitives:
$$\int q_2(x) dx = \int \left(1 - 4\frac{1}{x-2} + 9\frac{1}{x-3}\right) dx = x - 4\ln|x-2| + 9\ln|x-3| + C \ (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty, 2[$ plus]2, 3[plus $]3, +\infty[$.

$$q_3(t) = \frac{2t - 1}{t(t - 1)^2}$$

Le degré du numérateur est deg(2t-1) = 1 qui n'est pas supérieur ou égal au degré du dénominateur $deg(t(t-1)^2) = 3$, donc pas de division.

Le dénominateur est déjà factorisé, donc la décomposition sera $\frac{2t-1}{t(t-1)^2} \equiv \frac{A}{t} + \frac{B_1}{t-1} + \frac{B_2}{(t-1)^2}$ avec $A, B_1, B_2 \in \mathbb{R}$

Dénominateur commun : $\frac{2t-1}{t(t-1)^2} \equiv \frac{A(t-1)^2 + B_1 t(t-1) + B_2 t}{t(t-1)^2}$, donc $2t-1 \equiv A(t-1)^2 + B_1 t(t-1) + B_2 t$.

En faisant t = 0, on a $-1 = A(1) + B_1(0) + B_2(0)$ donc A = -1.

En faisant t = 1, on a $1 = A(0) + B_1(0) + B_2(1)$ donc $B_2 = 1$.

Pour trouver B_1 :

- Première méthode : On donne une autre valeur à t. Par exemple, en faisant t = -1, on a $-3 = A(4) + B_1(2) + B_2(-1) = -4 + 2B_1 - 1$ donc $B_1 = 1$.
- Deuxième méthode : On dérive l'identité et l'on y remplace t par la racine multiple correspondante. Ici $(2t-1)' \equiv (A(t-1)^2 + B_1t(t-1) + B_2t)'$ donne $2 \equiv 2A(t-1) + B_1(2t-1) + B_2$, et en faisant t = 1, on a $2 = 2A(0) + B_1(1) + B_2 = B_1 + 1 \text{ donc } B_1 = 1.$
- Troisième méthode : On considère les coefficients de la plus grande puissance de la variable. Ici c'est t^2 , et l'on a 0 $t^2 \equiv At^2 + B_1t^2$ donc $0 = A + B_1$ et $B_1 = -A = 1$.

Ainsi $\frac{2t-1}{t(t-1)^2} = \frac{-1}{t} + \frac{1}{t-1} + \frac{1}{(t-1)^2}$ donc la décomposition en éléments simples dans \mathbb{R} de $q_3(x)$ est $q_3(x) = \frac{-1}{t} + \frac{1}{t-1} + \frac{1}{(t-1)^2}$

Primitives:
$$\int q_3(t) dt = \int \left(-\frac{1}{t} + \frac{1}{t-1} + \frac{1}{(t-1)^2} \right) dt = -\ln|t| + \ln|t-1| + \int (t-1)^{-2} (t-1)' dt$$
$$= -\ln|t| + \ln|t-1| + \frac{(t-1)^{-1}}{-1} + C = -\ln|t| + \ln|t-1| - \frac{1}{t-1} + C (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty,0[$ plus]0,1[plus $]1,+\infty[$.

$$q_4(r) = \frac{r^7 + 1}{r^2 - 1}$$

Le degré du numérateur est $deg(r^7+1)=7$ qui est supérieur ou égal au degré du dénominateur $deg(r^2-1)=2$, donc on commence par faire la division euclidienne de $r^7 + 1$ par $r^2 - 1$. On trouve $r^7 + 1 = (r^2 - 1)Q + R$ avec $Q = r^5 + r^3 + r^3 + r^4$ et R = r + 1. Donc $\frac{r^7 + 1}{r^2 - 1} = \frac{(r^2 - 1)Q + R}{r^2 - 1} = Q + \frac{R}{r^2 - 1} = r^5 + r^3 + r + \frac{r + 1}{r^2 - 1}$. On laisse de côté $Q = r^5 + r^3 + r$, on décompose $\frac{r+1}{r^2-1}$. Pour cela, on factorise le dénominateur : $r^2-1=(r-1)(r+1)$. Alors $\frac{r+1}{r^2-1}=\frac{r+1}{(r-1)(r+1)}=\frac{1}{r-1}$ et c'est fini.

Ainsi, la décomposition en éléments simples dans \mathbb{R} de $q_4(x)$ est $q_4(x) = r^5 + r^3 + r + \frac{1}{r-1}$.

Attention à ne pas oublier de **rajouter** $Q = r^5 + r^3 + r$

Primitives:
$$\int q_4(r) dr = \int \left(r^5 + r^3 + r + \frac{1}{r-1}\right) dr = \frac{r^6}{6} + \frac{r^4}{4} + \frac{r^2}{2} + \ln|r-1| + C \ (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty, 1[$ plus $]1, +\infty[$. (En fait, $q_4(-1)$ n'est pas défini en principe, mais c'est évitable car $q_4(r) = \frac{(r^6 - r^5 + r^4 - r^3 + r^2 - r + 1)(r + 1)}{(r - 1)(r + 1)} = \frac{r^6 - r^5 + r^4 - r^3 + r^2 - r + 1}{r - 1}$ et l'on fait $q_4(-1) = -7/2$.) $q_5(x) = \frac{5x^2 - 2x + 3}{(x^2 + 1)(x - 1)}$

$$q_5(x) = \frac{5x^2 - 2x + 3}{(x^2 + 1)(x - 1)}$$

Le degré du numérateur est $deg(5x^2 - 2x + 3) = 2$ qui n'est pas supérieur ou égal au degré du dénominateur $deg((x^2+1)(x-1)) = 3$, donc pas de division.

On factorise le dénominateur. Le discriminant de $x^2 + 1$ est $x^2 + 1$ est irréductible sur $x^2 + 1$ est irréductible su est donc déjà factorisé sur \mathbb{R} . La décomposition sera $\frac{5x^2-2x+3}{(x-1)(x^2+1)}\equiv \frac{A}{x-1}+\frac{Mx+N}{x^2+1}$ avec $A,M,N\in\mathbb{R}$ à trouver.

Dénominateur commun : $\frac{5x^2-2x+3}{(x-1)(x^2+1)} \equiv \frac{A(x^2+1)+(Mx+N)(x-1)}{(x-1)(x^2+1)}, \text{ donc } 5x^2-2x+3 \equiv A(x^2+1)+(Mx+N)(x-1).$

En faisant x = 1, on a 6 = A(2) + (M + N)(0) donc A = 3.

En faisant x = 0, on a 3 = A(1) + N(-1) = 3 - N donc N = 0.

Pour trouver M:

- Première méthode : On donne une autre valeur à x.
 - Par exemple, en faisant x = -1, on a 10 = A(2) + (-M + N)(-2) = 6 + 2M 0 donc M = 2.
- Deuxième méthode : On considère les coefficients de la plus grande puissance de la variable. Ici c'est x^2 , et l'on a $5x^2 \equiv Ax^2 + Mx^2$ donc 5 = A + M et M = 5 - A = 2.

Ainsi $\frac{5x^2-2x+3}{(x-1)(x^2+1)} \equiv \frac{3}{x-1} + \frac{2x+0}{x^2+1}$ donc la décomposition en éléments simples dans $\mathbb R$ de $q_5(x)$ est $q_5(x) = \frac{3}{x-1} + \frac{2x}{x^2+1}$.

$$q_5(x) = \frac{3}{x-1} + \frac{2x}{x^2+1}$$

Primitives: $\int q_5(x) dx = \int \left(3\frac{1}{x-1} + \frac{2x}{x^2+1}\right) dx = 3\ln|x-1| + \ln|x^2+1| + C = 3\ln|x-1| + \ln(x^2+1) + C \ (C \in \mathbb{R}),$ $\operatorname{car} x^2 + 1 \geqslant 1 > 0 \ \forall \ x \in \mathbb{R}.$

Intervalles de définition : $]-\infty,1[$ plus $]1,+\infty[$.

$$q_6(z) = \frac{2z+1}{(z-2)^2(z-1)}$$

Le degré du numérateur est deg(2z+1)=1 qui n'est pas supérieur ou égal au degré du dénominateur $deg((z-2)^2(z-1)) = 3$, donc pas de division.

Le dénominateur $(z-2)^2\,(z-1)$ est déjà factorisé sur $\mathbb{R}.$

La décomposition sera $\frac{2z+1}{(z-2)^2(z-1)} \equiv \frac{A_1}{z-2} + \frac{A_2}{(z-2)^2} + \frac{B}{z-1}$ avec $A_1, A_2, B \in \mathbb{R}$ à trouver.

Dénominateur commun : $\frac{2z+1}{(z-2)^2(z-1)} \equiv \frac{A_1(z-2)(z-1)+A_2(z-1)+B(z-2)^2}{(z-2)^2(z-1)}$,

donc $2z + 1 \equiv A_1(z - 2)(z - 1) + A_2(z - 1) + B(z - 2)^2$

En faisant z = 2, on a $5 = A_1(0) + A_2(1) + B(0)$ donc $A_2 = 5$.

En faisant z = 1, on a $3 = A_1(0) + A_2(0) + B(1)$ donc B = 3.

Pour trouver A_1 :

- Première méthode : On donne une autre valeur à z.
 - Par exemple, en faisant z = 0, on a $1 = A_1(2) + A_2(-1) + B(4) = 2A_1 5 + 12$ donc $A_1 = -3$.
- Deuxième méthode : On dérive l'identité et l'on y remplace z par la racine multiple correspondante. Ici $(2z+1)' \equiv (A_1(z-2)(z-1) + A_2(z-1) + B(z-2)^2)'$ donne $2 \equiv A_1(2z-3) + A_2(1) + B_2(2(z-2))$, et en faisant z = 2, on a $2 = A_1(1) + A_2(1) + B(0) = A_1 + 5$ donc $A_1 = -3$.
- Troisième méthode : On considère les coefficients de la plus grande puissance de la variable. Ici c'est z^2 , et l'on a $0z^2 \equiv A_1z^2 + Bz^2$ donc $0 = A_1 + B = A_1 + 3$ et $A_1 = -3$.

Ainsi $\frac{2z+1}{(z-2)^2(z-1)} \equiv \frac{-3}{z-2} + \frac{5}{(z-2)^2} + \frac{3}{z-1}$ donc la décomposition en éléments simples dans \mathbb{R} de $q_6(x)$ est $q_6(z) = \frac{-3}{z-2} + \frac{5}{(z-2)^2} + \frac{3}{z-1}$

Primitives:
$$\int q_6(z) dz = \int \left(-3\frac{1}{z-2} + 5(z-2)^{-2}(z-2)' + 3\frac{1}{z-1}\right) dx$$

$$= -3\ln|z-2| + 5\frac{(z-2)^{-1}}{-1} + 3\ln|z-1| + C = -3\ln|z-2| - \frac{5}{z-2} + 3\ln|z-1| + C \ (C \in \mathbb{R}).$$

Intervalles de définition :] $-\infty$, 1[plus]1, 2[plus]2, $+\infty$ [.

$$q_7(s) = \frac{1}{s^2 + 2s + 3}$$

Le degré du numérateur est deg(1) = 0 qui n'est pas supérieur ou égal au degré du dénominateur $deg(s^2 + 2s + 3) = 2$, donc pas de division.

On factorise le dénominateur s^2+2s+3 . Le discriminant est <0 donc s^2+2s+3 est irréductible sur \mathbb{R} . La décomposition sera $\frac{1}{s^2+2s+3} \equiv \frac{Ms+N}{s^2+2s+3}$ avec $M,N \in \mathbb{R}$ à trouver. Ici il n'y a rien à faire : M=0 et N=1.

Ainsi, la décomposition en éléments simples dans \mathbb{R} de $q_7(s)$ est $q_7(s) = \frac{1}{s^2 + 2s + 3}$

Primitives: On a $s^2 + 2s + 3 = as^2 + bs + c$ avec a = 1, b = 2, c = 3. Donc le discriminant est $\Delta = -8$. Avec le changement de variable $s = \frac{t\sqrt{-\Delta} - b}{2a} = \frac{t\sqrt{8} - 2}{2} = t\sqrt{2} - 1$ on aura $ds = \sqrt{2} dt$ et $t = \frac{s+1}{\sqrt{2}}$, donc

$$\int q_7(s) \, ds = \int \frac{1}{s^2 + 2s + 3} \, ds = \frac{2}{\sqrt{8}} \int \frac{1}{t^2 + 1} \, dt = \frac{\sqrt{2}}{2} \arctan t + C = \frac{\sqrt{2}}{2} \arctan \left(\frac{s + 1}{\sqrt{2}}\right) + C \, (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty, +\infty[$ = \mathbb{R}

$$q_8(x) = \frac{x^2 + 1}{x(x - 1)(x^2 - 2x + 4)}$$

Le degré du numérateur est $deg(x^2 + 1) = 2$ qui n'est pas supérieur ou égal au degré du dénominateur $deg(x(x-1)(x^2-2x+4))=4$, donc pas de division.

On factorise le dénominateur $x(x-1)(x^2-2x+4)$. Le discriminant de x^2-2x+4 est <0 donc x^2-2x+4 est irréductible sur \mathbb{R} . Le dénominateur $x(x-1)(x^2-2x+4)$ est déjà factorisé sur \mathbb{R} .

La décomposition sera $\frac{x^2+1}{x\,(x-1)(x^2-2x+4)}\equiv \frac{A}{x}+\frac{B}{x-1}+\frac{Mx+N}{x^2-2x+4} \text{ avec } A,B,M,N\in\mathbb{R} \text{ à trouver.}$ Dénominateur commun : $\frac{x^2+1}{x\,(x-1)(x^2-2x+4)}\equiv \frac{A(x-1)(x^2-2x+4)+Bx(x^2-2x+4)+(Mx+N)x(x-1)}{x\,(x-1)(x^2-2x+4)},$ donc $x^2+1\equiv A(x-1)(x^2-2x+4)+Bx(x^2-2x+4)+(Mx+N)x(x-1).$

En faisant x = 0, on a 1 = A(-4) + B(0) + N(0) donc A = -1/4

En faisant x = 1, on a 2 = A(0) + B(3) + (M + N)(0) donc B = 2/3.

Pour trouver M: On considère les coefficients de la plus grande puissance de la variable. Ici c'est x^3 , et l'on a $0x^3 \equiv Ax^3 + Bx^3 + Mx^3$ donc $0 = A + B + M = -\frac{1}{4} + \frac{2}{3} + M$ et M = -5/12. Pour trouver N: On donne une autre valeur à x. Par exemple, en faisant x = -1, on a

$$2 = A(-14) + B(7) + (-M+N)(2) = -\frac{1}{4}(-14) + \frac{2}{3}(7) + (\frac{5}{12} + N)(2) = -\frac{1}{3} + 2N \text{ donc } N = 7/6$$

 $2 = A(-14) + B(7) + (-M+N)(2) = -\frac{1}{4}(-14) + \frac{2}{3}(7) + (\frac{5}{12}+N)(2) = -\frac{1}{3} + 2N \text{ donc } N = 7/6.$ Ainsi $\frac{x^2 + 1}{x(x-1)(x^2 - 2x + 4)} \equiv \frac{-1/4}{x} + \frac{2/3}{x-1} + \frac{(-5/12)x + (7/6)}{x^2 - 2x + 4} \text{ donc la décomposition en éléments simples dans } \mathbb{R}$

$$q_8(x) = \frac{-1/4}{x} + \frac{2/3}{x-1} + \frac{-\frac{5}{12}x + \frac{7}{6}}{x^2 - 2x + 4}$$

Primitives:
$$\int q_8(x) \, dx = \int \left(-\frac{1}{4} \frac{1}{x} + \frac{2}{3} \frac{1}{x-1} - \frac{5}{12} \frac{x - \frac{14}{5}}{x^2 - 2x + 4} \right) \, dx = -\frac{1}{4} \ln|x| + \frac{2}{3} \ln|x - 1| - \frac{5}{12} \int \frac{x - \frac{14}{5}}{x^2 - 2x + 4} \, dx.$$

Dans $\int \frac{x - \frac{14}{5}}{x^2 - 2x + 4} dx$ on cherche d'abord un logarithme puis un arc tangente.

Pour le logarithme : On veut avoir au numérateur $(x^2 - 2x + 4)' = 2x - 2$, donc $\int \frac{x - \frac{14}{5}}{x^2 - 2x + 4} dx = \frac{1}{2} \int \frac{2x - \frac{28}{5}}{x^2 - 2x + 4} dx$ $= \frac{1}{2} \int \frac{2x - 2 + 2 - \frac{28}{5}}{x^2 - 2x + 4} \, dx = \frac{1}{2} \int \left(\frac{2x - 2}{x^2 - 2x + 4} + \frac{2 - \frac{28}{5}}{x^2 - 2x + 4} \right) \, dx = \frac{1}{2} \int \frac{(x^2 - 2x + 4)'}{x^2 - 2x + 4} \, dx - \frac{9}{5} \int \frac{1}{x^2 - 2x + 4} \, dx$ $= \frac{1}{2}\ln(x^2 - 2x + 4) - \frac{9}{5}\int \frac{1}{x^2 - 2x + 4} dx.$

Pour l'arc tangente : On a $x^2 - 2x + 4 = ax^2 + bx + c$ avec a = 1, b = -2, c = 4, le discriminant est $\Delta = -12$. Avec le changement de variable $x = \frac{t\sqrt{-\Delta} - b}{2a} = \frac{t\sqrt{12} + 2}{2} = t\sqrt{3} + 1$ on aura $dx = \sqrt{3} dt$ et $t = \frac{x - 1}{\sqrt{3}}$, donc

$$\int \frac{1}{x^2-2x+4} \, \mathrm{d}x = \frac{2}{\sqrt{12}} \int \frac{1}{t^2+1} \, \mathrm{d}t = \frac{\sqrt{3}}{3} \arctan t + C = \frac{\sqrt{3}}{3} \arctan \left(\frac{x-1}{\sqrt{3}}\right) + C \ (C \in \mathbb{R}).$$

$$\int q_8(x) \, \mathrm{d}x = \int \left(-\frac{1}{4} \frac{1}{x} + \frac{2}{3} \frac{1}{x - 1} - \frac{5}{12} \frac{x - \frac{14}{5}}{x^2 - 2x + 4} \right) \, \mathrm{d}x$$

$$= -\frac{1}{4} \ln|x| + \frac{2}{3} \ln|x - 1| - \frac{5}{12} \left(\frac{1}{2} \int \frac{2x - 2}{x^2 - 2x + 4} \, \mathrm{d}x - \frac{9}{5} \int \frac{1}{x^2 - 2x + 4} \, \mathrm{d}x \right)$$

$$= -\frac{1}{4} \ln|x| + \frac{2}{3} \ln|x - 1| - \frac{5}{12} \left(\frac{1}{2} \ln(x^2 - 2x + 4) - \frac{9}{5} \int \frac{1}{x^2 - 2x + 4} \, \mathrm{d}x \right)$$

$$= -\frac{1}{4} \ln|x| + \frac{2}{3} \ln|x - 1| - \frac{5}{24} \ln(x^2 - 2x + 4) + \frac{3}{4} \int \frac{1}{x^2 - 2x + 4} \, \mathrm{d}x$$

$$= -\frac{1}{4} \ln|x| + \frac{2}{3} \ln|x - 1| - \frac{5}{24} \ln(x^2 - 2x + 4) + \frac{3}{4} \frac{\sqrt{3}}{3} \arctan\left(\frac{x - 1}{\sqrt{3}}\right) + C$$

$$= -\frac{1}{4} \ln|x| + \frac{2}{3} \ln|x - 1| - \frac{5}{24} \ln(x^2 - 2x + 4) + \frac{\sqrt{3}}{4} \arctan\left(\frac{x - 1}{\sqrt{3}}\right) + C \qquad (C \in \mathbb{R})$$

Intervalles de définition : $]-\infty,0[$ plus]0,1[plus $]1,+\infty[$.

— Sans indication de méthode

Exercice 6.

Calculer les primitives (on précisera leurs intervalles de définition) et intégrales suivantes, en réfléchissant préalablement aux outils les plus adaptés pour chaque calcul.

$$\mathbf{6.1} \quad \int_{1}^{e} \frac{1 + \ln t}{t} \, \mathrm{d}t$$

La fonction $f(t) = \frac{1+\ln t}{t}$ est continue sur $]0, +\infty[$ qui contient [1, e], donc on peut l'y intégrer.

Primitives:
$$\int \frac{1+\ln t}{t} dt = \int (1+\ln t) \frac{1}{t} dt = \int (1+\ln t)^1 (1+\ln t)' dt = \frac{(1+\ln t)^2}{2} + C \ (C \in \mathbb{R}), \text{ definies sur }]0, +\infty[.$$
Donc
$$\int_1^e \frac{1+\ln t}{t} dt = \frac{1}{2} \left[(1+\ln t)^2 \right]_1^e = \frac{1}{2} \left((1+\ln e)^2 - (1+\ln 1)^2 \right) = \frac{3}{2}.$$
6.2
$$\int_0^1 \sqrt{1-x^2} dx$$

La fonction $f(x) = \sqrt{1-x^2}$ est continue sur [-1,1] qui contient $[x_1,x_2] = [0,1]$, donc on peut l'y intégrer. Primitives :

Puisque $\sqrt{1-\sin^2 t} = \sqrt{\cos^2 t} = |\cos t|$, on pense au changement de variable $x = \phi(t) = \sin t$. Alors $dx = \cos t \, dt$; si $x = x_1 = 0 = \phi(t_1) = \sin t_1$ on peut prendre $t_1 = 0$; si $x = x_2 = 1 = \phi(t_2) = \sin t_2$ on peut prendre $t_2 = \pi/2$. On a $|t_1, t_2| = [0, \frac{\pi}{2}]$ et $\phi \in \mathcal{C}^1([0, \frac{\pi}{2}])$. Puis $\phi(|t_1, t_2|) = \phi([0, \frac{\pi}{2}]) = [\phi(0), \phi(\frac{\pi}{2})] = [0, 1]$ (car ϕ est croissante sur $[0, \frac{\pi}{2}]$) et f est bien continue sur [0, 1] (en fait, $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$ et $f \in \mathcal{C}^0([-1, 1])$; f n'est pas dérivable en -1 et 1, mais cela n'a aucune importance). Donc

$$\begin{split} \int_{x=0}^{x=1} \sqrt{1-x^2} \, \mathrm{d}x &= \int_{x=x_1}^{x=x_2} \sqrt{1-x^2} \, \mathrm{d}x \\ &= \int_{x=\phi(t_1)}^{x=\phi(t_2)} \sqrt{1-x^2} \, \mathrm{d}x \\ &= \int_{t=t_1}^{t=t_2} \sqrt{1-\sin^2 t} \cos t \, \mathrm{d}t \qquad \text{(ne pas oublier de remplacer } \mathrm{d}x = \cos t \, \mathrm{d}t \text{)} \\ &= \int_{t=0}^{t=\pi/2} |\cos t| \cos t \, \mathrm{d}t \\ &= \int_{t=0}^{t=\pi/2} \cos^2 t \, \mathrm{d}t \qquad \text{(car } \cos t \geqslant 0 \text{ pour } t \in [0, \frac{\pi}{2}] \text{)} \\ &= \int_{t=0}^{t=\pi/2} \frac{1+\cos 2t}{2} \, \mathrm{d}t \qquad \text{(on linéarise } \cos^2 t \text{)} \\ &= \int_{t=0}^{t=\pi/2} \left(\frac{1}{2} + \frac{1}{4}(\cos 2t)(2t)'\right) \, \mathrm{d}t \\ &= \left[\frac{1}{2}t + \frac{1}{4}\sin 2t\right]_{t=0}^{t=\pi/2} \\ &= \left(\frac{1}{2}\frac{\pi}{2} + \frac{1}{4}\sin \pi\right) - \left(\frac{1}{2}0 + \frac{1}{4}\sin 0\right) \\ &= \left(\frac{\pi}{4} + \frac{1}{4}0\right) - \left(0 + \frac{1}{4}0\right) \\ &= \frac{\pi}{t}. \end{split}$$

(Toutes les primitives sont $\int \sqrt{1-x^2} \, \mathrm{d}x = \frac{1}{2}t + \frac{1}{4}\sin 2t + C = \frac{1}{2}t + \frac{1}{4}2\sin t\cos t + C = \frac{1}{2}t + \frac{1}{2}(\sin t)\sqrt{1-\sin^2 t} + C$ $= \frac{1}{2}\arcsin x + \frac{1}{2}x\sqrt{1-x^2} + C \ (C \in \mathbb{R}) \text{ avec l'intervalle de définition } [-1,1].)$

6.3
$$\int_0^1 \frac{\arctan v}{(v+1)^2} \, dv$$

La fonction $f(v) = \frac{\arctan v}{(v+1)^2}$ est continue sur $\mathbb{R} \setminus \{-1\}$ qui contient [0,1], donc on peut l'y intégrer.

Primitives : On pense à se débarrasser de l'arc tangente, pour cela on fait une intégration par parties. On dérive $U(v) = \arctan v$, on primitive $V'(v) = \frac{1}{(v+1)^2} = (v+1)^{-2}(v+1)'$. Alors $U'(v) = \frac{1}{1+v^2}$ et $V(y) = \frac{(v+1)^{-1}}{-1} = -\frac{1}{v+1}$ donc

$$\int \arctan v \frac{1}{(v+1)^2} dv = (\arctan v)(-\frac{1}{v+1}) - \int (\frac{1}{1+v^2})(-\frac{1}{v+1}) dv$$
$$= -\frac{\arctan v}{v+1} + \int \frac{1}{(v^2+1)(v+1)} dv.$$

La décomposition en éléments simples de la fraction à primitiver est $\frac{1}{(v^2+1)(v+1)} = \frac{Mv+N}{v^2+1} + \frac{A}{v+1}$ (car v^2+1 est irréductible sur \mathbb{R}), donc $1 \equiv (Mv+N)(v+1) + A(v^2+1)$. En faisant v=-1 et v=0 et en regardant les coefficients de v^2 on trouve $A=1/2,\ N=1/2,\ M=-1/2$. Alors $\frac{1}{(v^2+1)(v+1)} = \frac{(-1/2)v+(1/2)}{v^2+1} + \frac{1/2}{v+1}$. Donc

$$\int \frac{1}{(v^2+1)(v+1)} \, \mathrm{d}v = \frac{1}{2} \int \frac{1}{v+1} - \frac{1}{2} \int \frac{v-1}{v^2+1} \, \mathrm{d}v$$

$$= \frac{1}{2} \ln|v+1| - \frac{1}{4} \int \frac{2v-2}{v^2+1} \, \mathrm{d}v \qquad \text{(on cherche à avoir } (v^2+1)' = 2v \text{ au dénominateur)}$$

$$= \frac{1}{2} \ln|v+1| - \frac{1}{4} \int \frac{2v}{v^2+1} \, \mathrm{d}v + \frac{1}{2} \int \frac{1}{v^2+1} \, \mathrm{d}v$$

$$= \frac{1}{2} \ln|v+1| - \frac{1}{4} \ln(v^2+1) + \frac{1}{2} \arctan v + C \qquad (C \in \mathbb{R}).$$

et finalement

$$\int \frac{\arctan v}{(v+1)^2} dv = -\frac{\arctan v}{v+1} + \int \frac{1}{(v^2+1)(v+1)} dv$$
$$= -\frac{\arctan v}{v+1} + \frac{1}{2} \ln|v+1| - \frac{1}{4} \ln(v^2+1) + \frac{1}{2} \arctan v + C \qquad (C \in \mathbb{R})$$

Intervalles de définition : $]-\infty, -1[$ plus $]-1, +\infty[$ car U et V sont de classe \mathcal{C}^1 sur ces 2 intervalles. Alors

$$\begin{split} \int_0^1 \frac{\arctan v}{(v+1)^2} \, \mathrm{d}v &= \left[-\frac{\arctan v}{v+1} + \frac{1}{2} \ln|v+1| - \frac{1}{4} \ln(v^2+1) + \frac{1}{2} \arctan v \right]_0^1 \\ &= \left(-\frac{\arctan 1}{2} + \frac{1}{2} \ln|2| - \frac{1}{4} \ln 2 + \frac{1}{2} \arctan 1 \right) - \left(-\frac{\arctan 0}{1} + \frac{1}{2} \ln|1| - \frac{1}{4} \ln 1 + \frac{1}{2} \arctan 0 \right) \\ &= \left(-\frac{\pi/4}{2} + \frac{1}{2} \ln 2 - \frac{1}{4} \ln 2 + \frac{1}{2} \frac{\pi}{4} \right) - \left(-\frac{0}{1} + \frac{1}{2} 0 - \frac{1}{4} 0 + \frac{1}{2} 0 \right) \\ &= \frac{\ln 2}{4}. \end{split}$$

6.4
$$\int_0^{\pi/4} \frac{\mathrm{d}\theta}{1 + \sin\theta \cos\theta}$$

On a $1 + \sin \theta \cos \theta = 0 \iff 2 \sin \theta \cos \theta = -2 \iff \sin 2\theta = -2$ ce qui est impossible, donc la fonction $f(\theta) = \frac{1}{1 + \sin \theta \cos \theta}$ est continue sur \mathbb{R} qui contient $[\theta_1, \theta_2] = [0, \frac{\pi}{4}]$, donc on peut l'y intégrer.

Primitives : On applique les règles de Bioche. Soit $\omega(\theta) = f(\theta) d\theta = \frac{1}{1+\sin\theta\cos\theta} d\theta$. Alors :

$$\omega(-\theta) = \frac{1}{1 + \sin(-\theta)\cos(-\theta)} d(-\theta) = \frac{-1}{1 - \sin\theta\cos\theta} d\theta \neq \omega(\theta)$$

$$\omega(\pi - \theta) = \frac{1}{1 + \sin(\pi - \theta)\cos(\pi - \theta)} d(\pi - \theta) = \frac{-1}{1 - \sin\theta\cos\theta} d\theta \neq \omega(\theta)$$

$$\omega(\pi + \theta) = \frac{1}{1 + \sin(\pi + \theta)\cos(\pi + \theta)} d(\pi + \theta) = \frac{1}{1 + \sin\theta\cos\theta} d\theta = \omega(\theta)$$

donc Bioche préconise de faire $t = \tan \theta$. Alors $\theta = \phi(t) = \arctan t$ et $d\theta = \frac{1}{1+t^2} dt$; si $\theta = \theta_1 = 0 = \phi(t_1) = \arctan t_1$ on peut prendre $t_1 = \tan 0 = 0$; si $\theta = \theta_2 = \frac{\pi}{4} = \phi(t_2) = \arctan t_2$ on peut prendre $t_2 = \tan \frac{\pi}{4} = 1$.

On a $|t_1, t_2| = [0, 1]$ et $\phi \in \mathcal{C}^1([0, 1])$. Puis $\phi(|t_1, t_2|) = \phi([0, 1]) = [\phi(0), \phi(1)] = [0, \frac{\pi}{4}]$ (car ϕ est croissante sur [0, 1]) et f est bien continue sur $[0, \frac{\pi}{4}]$. Donc on peut appliquer la formule de changement de variable.

On doit écrire $\frac{1}{1+\sin\theta\cos\theta}$ en fonction de $\tan\theta$. Pour cela on utilise $\frac{\sin\theta}{\cos\theta}=\tan\theta$ et $\cos^2\theta=\frac{1}{1+\tan^2\theta}$, ce qui donne

$$\frac{1}{1+\sin\theta\cos\theta} = \frac{1}{1+\frac{\sin\theta}{\cos\theta}\cos^2\theta} = \frac{1}{1+(\tan\theta)\frac{1}{1+\tan^2\theta}}, \text{ d'où}$$

$$\int_0^{\pi/4} \frac{1}{1+\sin\theta\cos\theta} \,d\theta = \int_{\theta=\theta_1}^{\theta=\theta_2} \frac{1}{1+\sin\theta\cos\theta} \,d\theta$$

$$= \int_{\theta=\phi(t_1)}^{\theta=\phi(t_2)} \frac{1}{1+\sin\theta\cos\theta} \,d\theta$$

$$= \int_{\theta=\phi(t_1)}^{\theta=\phi(t_2)} \frac{1}{1+(\tan\theta)\frac{1}{1+\tan^2\theta}} \,d\theta$$

$$= \int_{t=t_1}^{t=t_2} \frac{1}{1+t\frac{1}{1+t^2}} \times \frac{dt}{1+t^2} \qquad \text{(ne pas oublier de remplacer } d\theta = \frac{dt}{1+t^2}$$

$$= \int_{t=0}^{t=1} \frac{1}{t^2+t+1} \,dt.$$

Le discriminant de t^2+t+1 est $\Delta=-3<0$, donc il est irréductible sur $\mathbb R$. La décomposition en éléments simples dans $\mathbb R$ est donc $\frac{1}{t^2+t+1}=\frac{0t+1}{t^2+t+1}$. Normalement cela devrait donner un logarithme plus un arc tangente. Mais comme le coefficient de t au numérateur est nul, il n'y a pas de logarithme. Pour l'arc tangente : On a $t^2+t+1=at^2+bt+c$ avec a=b=c=1, le discriminant est $\Delta=-3$. Avec le changement de variable $t=\frac{u\sqrt{-\Delta}-b}{2a}=\frac{u\sqrt{3}-1}{2}$ on aura $dt=\frac{\sqrt{3}}{2}$ du et $u=\frac{2t+1}{2}$, donc

$$\begin{split} &\int \frac{1}{t^2+t+1} \, \mathrm{d}t = \frac{2}{\sqrt{3}} \int \frac{1}{u^2+1} \, \mathrm{d}u = \frac{2\sqrt{3}}{3} \arctan u + C = \frac{2\sqrt{3}}{3} \arctan \left(\frac{2t+1}{\sqrt{3}}\right) + C \ (C \in \mathbb{R}). \\ &\operatorname{Alors} \int_0^{\pi/4} \frac{\mathrm{d}\theta}{1+\sin\theta\cos\theta} = \int_0^1 \frac{1}{t^2+t+1} \, \mathrm{d}t = \frac{2\sqrt{3}}{3} \left[\arctan\left(\frac{2t+1}{\sqrt{3}}\right)\right]_0^1 = \frac{2\sqrt{3}}{3} \left(\arctan\sqrt{3} - \arctan\frac{\sqrt{3}}{3}\right) \\ &= \frac{2\sqrt{3}}{3} \left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \frac{\pi\sqrt{3}}{9}. \end{split}$$

Remarque : Un changement de variable **affine** $x = \phi(t) = \alpha t + \beta$ avec $\alpha \neq 0$ est valable partout, car ici $\phi \in \mathcal{C}^1(\mathbb{R})$. Cependant, on ne peut pas dire que les primitives de $f(\theta)$ sont

$$\int \frac{1}{1+\sin\theta\cos\theta} d\theta = \frac{2\sqrt{3}}{3}\arctan\left(\frac{2t+1}{\sqrt{3}}\right) + C = \frac{2\sqrt{3}}{3}\arctan\left(\frac{2\tan\theta+1}{\sqrt{3}}\right) + C \ (C \in \mathbb{R}) \ d\text{\'efinies sur } \mathbb{R}.$$

En effet, la fonction $F(\theta) = \frac{2\sqrt{3}}{3} \arctan\left(\frac{2\tan\theta+1}{\sqrt{3}}\right)$ n'est pas continue en $\theta = \frac{\pi}{2} + k\pi$ pour $k \in \mathbb{Z}$. Le problème vient du fait que si $\theta = \pm \frac{\pi}{2}$ alors il n'existe pas de t tel que $\theta = \phi(t) = \arctan t$ (car l'image de ϕ est $]-\frac{\pi}{2},\frac{\pi}{2}[$). Cela n'empêche pas f d'avoir une primitive sur \mathbb{R} tout entier, seulement elle est compliquée à écrire. Tout ce qu'on peut dire est que les primitives de $f(\theta)$ sont $F(\theta) + C$ ($C \in \mathbb{R}$) sur l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$. (On peut prolonger facilement F à $[-\frac{\pi}{2},\frac{\pi}{2}]$, puis il faudrait la translater aux intervalles $[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi]$ de façon à ce qu'elle reste continue, mais cela dépasse le cadre de ce module.)

$$6.5 \quad \int_1^e \frac{\mathrm{d}\theta}{\theta\sqrt{\ln\theta + 1}}$$

Il faut $\ln \theta + 1 \ge 0$ pour la racine carrée, donc $\theta \ge 1/e$. Puis il faut $\theta \ne 0$ et $\sqrt{\ln \theta + 1} \ne 0$ pour le quotient, ce qui donne $\theta > 1/e$. La fonction $f(\theta) = \frac{1}{\theta \sqrt{\ln \theta + 1}}$ est bien continue sur $]\frac{1}{e}, +\infty[$ qui contient $[\theta_1, \theta_2] = [1, e]$, donc on peut l'y intégrer.

— **Première méthode**: On remarque que
$$(\ln \theta + 1)' = \frac{1}{\theta}$$
, et alors $\int_{1}^{e} \frac{d\theta}{\theta \sqrt{\ln \theta + 1}} = \int_{1}^{e} (\ln \theta + 1)^{-1/2} (\ln \theta + 1)' d\theta$
= $\left[\frac{(\ln \theta + 1)^{1/2}}{1/2} \right]_{1}^{e} = \left[2\sqrt{\ln \theta + 1} \right]_{1}^{e} = 2(\sqrt{\ln e + 1} - \sqrt{\ln 1 + 1}) = 2\sqrt{2} - 2.$

— **Deuxième méthode**: Afin d'essayer de se débarrasser de la racine carrée, on fait le changement de variable $\ln \theta + 1 = t^2$, c'est-à-dire, $\theta = \phi(t) = \exp(t^2 - 1)$, donc $d\theta = 2t \exp(t^2 - 1) dt$; si $\theta = \theta_1 = 1 = \phi(t_1) = \exp(t^2 - 1)$ on peut prendre $t_1 = 1$; si $\theta = \theta_2 = e = \phi(t_2) = \exp(t^2 - 1)$ on peut prendre $t_2 = \sqrt{2}$.

On a $|t_1, t_2| = [1, \sqrt{2}]$ et $\phi \in \mathcal{C}^1([1, \sqrt{2}])$. Puis $\phi(|t_1, t_2|) = \phi([1, \sqrt{2}]) = [\phi(1), \phi(\sqrt{2})] = [1, e]$ (car ϕ est croissante sur $[1, \sqrt{2}]$) et f est bien continue sur [1, e]. Donc on peut appliquer la formule de changement de variable :

$$\int_{\theta=1}^{\theta=e} \frac{1}{\theta \sqrt{\ln \theta + 1}} d\theta = \int_{\theta=\theta_1}^{\theta=\theta_2} \frac{1}{\theta \sqrt{\ln \theta + 1}} d\theta$$

$$= \int_{\theta=\phi(t_1)}^{\theta=\phi(t_2)} \frac{1}{\theta \sqrt{\ln \theta + 1}} d\theta$$

$$= \int_{t=t_1}^{t=t_2} \frac{1}{\exp(t^2 - 1)\sqrt{\ln \exp(t^2 - 1) + 1}} 2t \exp(t^2 - 1) dt$$

$$= \int_{t=1}^{t=\sqrt{2}} \frac{2t}{\sqrt{t^2}} dt$$

$$= \int_{t=1}^{t=\sqrt{2}} 2 dt \qquad (\operatorname{car} \sqrt{t^2} = |t| = t \operatorname{car} t \ge 0)$$

$$= [2t]_{t=1}^{t=\sqrt{2}}$$

$$= 2\sqrt{2} - 2$$

6.6
$$\int \frac{x+1}{x^2 - x + 1} \, \mathrm{d}x$$

Il s'agit de primitiver une fraction rationnelle en x, on va donc la décomposer en éléments simples.

Le degré du numérateur est deg(x+1) = 1 qui n'est pas supérieur ou égal au degré du dénominateur $deg(x^2 - x + 1) = 2$, donc pas de division.

On factorise le dénominateur. Le discriminant de x^2-x+1 est $\Delta=-3<0$, donc x^2-x+1 est irréductible sur $\mathbb R$. La décomposition en éléments simples sera $\frac{x+1}{x^2-x+1}\equiv \frac{Mx+N}{x^2-x+1}$ avec M=N=1. Donc rien à faire.

Dans $\int \frac{x+1}{x^2-x+1} dx$ on cherche d'abord un logarithme puis un arc tangente.

Pour le logarithme : On veut avoir au numérateur $(x^2 - x + 1)' = 2x - 1$, donc

$$\int \frac{x+1}{x^2 - x + 1} \, \mathrm{d}x = \frac{1}{2} \int \frac{2x+2}{x^2 - x + 1} \, \mathrm{d}x$$

$$= \frac{1}{2} \int \frac{2x+2-1+1}{x^2 - x + 1} \, \mathrm{d}x$$

$$= \frac{1}{2} \int \left(\frac{2x-1}{x^2 - x + 1} + \frac{3}{x^2 - x + 1}\right) \, \mathrm{d}x$$

$$= \frac{1}{2} \int \frac{(x^2 - x + 1)'}{x^2 - x + 1} \, \mathrm{d}x + \frac{3}{2} \int \frac{1}{x^2 - x + 1} \, \mathrm{d}x$$

$$= \frac{1}{2} \ln(x^2 - x + 1) + \frac{3}{2} \int \frac{1}{x^2 - x + 1} \, \mathrm{d}x.$$

Pour l'arc tangente : On a $x^2 - x + 1 = ax^2 + bx + c$ avec a = 1, b = -1, c = 1, le discriminant est $\Delta = -3$. Avec le changement de variable $x = \frac{t\sqrt{-\Delta} - b}{2a} = \frac{t\sqrt{3} + 1}{2}$ on aura $dx = \frac{\sqrt{3}}{2}dt$ et $t = \frac{2x - 1}{\sqrt{3}} = \frac{\sqrt{3}}{3}(2x - 1)$, donc $\int \frac{1}{x^2 - x + 1} \, \mathrm{d}x = \frac{2}{\sqrt{3}} \int \frac{1}{t^2 + 1} \, \mathrm{d}t = \frac{2\sqrt{3}}{3} \arctan t + C = \frac{2\sqrt{3}}{3} \arctan \left(\frac{\sqrt{3}}{3}(2x - 1)\right) + C \ (C \in \mathbb{R}).$

$$\int \frac{x+1}{x^2 - x + 1} \, \mathrm{d}x = \frac{1}{2} \ln(x^2 - x + 1) + \frac{3}{2} \frac{2\sqrt{3}}{3} \arctan\left(\frac{\sqrt{3}}{3}(2x - 1)\right) + C$$
$$= \frac{1}{2} \ln(x^2 - x + 1) + \sqrt{3} \arctan\left(\frac{\sqrt{3}}{3}(2x - 1)\right) + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty, +\infty[$ = \mathbb{R} .

6.7
$$\int_0^{1/2} \arcsin x \, \mathrm{d}x$$

La fonction $f(x) = \arcsin x$ est continue sur [-1,1] qui contient $[0,\frac{1}{2}]$, donc on peut l'y intégrer. On fait une intégration par parties. On dérive $u(x) = \arcsin x$, on primitive v'(x) = 1. Alors $u'(x) = \frac{1}{\sqrt{1-x^2}}$ et v(x) = x et

$$\int \arcsin x \, dx = (\arcsin x)(x) - \int (\frac{1}{\sqrt{1-x^2}})(x) \, dx$$

$$= x \arcsin x + \frac{1}{2} \int (1-x^2)^{-1/2} (1-x^2)' \, dx$$

$$= x \arcsin x + \frac{1}{2} \frac{(1-x^2)^{1/2}}{1/2} + C$$

$$= x \arcsin x + \sqrt{1-x^2} + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition : [-1, 1].

Alors
$$\int_0^{1/2} \arcsin x \, dx = \left[x \arcsin x + \sqrt{1 - x^2} \right]_0^{1/2} = \left(\frac{1}{2} \arcsin \frac{1}{2} + \sqrt{\frac{3}{4}} \right) - \left(0 \arcsin 0 + \sqrt{1} \right) = \left(\frac{1}{2} \frac{\pi}{6} + \frac{\sqrt{3}}{2} \right) - \left(0 + 1 \right)$$

$$= \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1.$$
6.8 $\int \frac{dz}{1 + z^3}$

Il s'agit de primitiver une fraction rationnelle en z, on va donc la décomposer en éléments simples.

Le degré du numérateur est deg(1) = 0 qui n'est pas supérieur ou égal au degré du dénominateur $deg(1 + z^3) = 3$, donc pas de division.

On factorise le dénominateur. Pour cela, on résout $z^3+1=0$; c'est $z^3=-1$, dont une solution évidente est z=-1. On divise z^3+1 par z-(-1)=z+1, on trouve z^2-z+1 . Le discriminant de z^2-z+1 est $\Delta=-3<0$, donc z^2-z+1 est irréductible sur $\mathbb R$. La factorisation du dénominateur sur $\mathbb R$ est donc $z^3+1=(z+1)(z^2-z+1)$.

La décomposition en éléments simples sera $\frac{1}{1+z^3} = \frac{1}{(z+1)(z^2-z+1)} \equiv \frac{A}{z+1} + \frac{Mz+N}{z^2-z+1}$ avec $A,M,N \in \mathbb{R}$ à

trouver.

Dénominateur commun : $\frac{1}{(z+1)(z^2-z+1)} \equiv \frac{A(z^2-z+1)+(Mz+N)(z+1)}{(z+1)(z^2-z+1)}$, donc $1 \equiv A(z^2-z+1)+(Mz+N)(z+1)$.

En faisant z = -1, on a 1 = A(3) + (-M + N)(0) donc A = 1/3.

En faisant z = 0, on a $1 = A(1) + N(1) = \frac{1}{3} + N$ donc N = 2/3.

Pour trouver M:

- Première méthode : On donne une autre valeur à z. Par exemple, en faisant z=1, on a $1=A(1)+(M+N)(2)=\frac{1}{3}+2M+\frac{4}{3}$ donc M=-1/3.
- Deuxième méthode : Les coefficients de la plus grande puissance de la variable, ici z^2 , donnent 0 $z^2 \equiv Az^2 + Mz^2$ donc 0 = A + M et M = -1/3.

La décomposition en éléments simples dans $\mathbb R$ est donc $\frac{1}{1+z^3} = \frac{1/3}{z+1} + \frac{(-1/3)z + (2/3)}{z^2 - z + 1}$

Primitives

$$\int \frac{1}{1+z^3} dz = \int \left(\frac{1}{3} \frac{1}{z+1} - \frac{1}{3} \frac{z-2}{z^2-z+1}\right) dz$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{3} \int \frac{z-2}{z^2-z+1} dz \qquad \text{(pour le log, on veut avoir } (z^2-z+1)' = 2z-1 \text{ au numérateur)}$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{6} \int \frac{2z-4}{z^2-z+1} dz$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{6} \int \frac{2z-4-1+1}{z^2-z+1} dz$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{6} \int \left(\frac{2z-1}{z^2-z+1} + \frac{-3}{z^2-z+1}\right) dz$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{6} \int \frac{(z^2-z+1)'}{z^2-z+1} dz + \frac{1}{2} \int \frac{dz}{z^2-z+1}$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{6} \ln(z^2-z+1) + \frac{1}{2} \int \frac{dz}{z^2-z+1}.$$

Pour l'arc tangente : On a $z^2-z+1=az^2+bz+c$ avec $a=1,\ b=-1,\ c=1,$ le discriminant est $\Delta=-3.$ Avec le changement de variable $z=\frac{t\sqrt{-\Delta}-b}{2a}=\frac{t\sqrt{3}+1}{2}$ on aura $\mathrm{d}z=\frac{\sqrt{3}}{2}\,\mathrm{d}t$ et $t=\frac{2z-1}{\sqrt{3}}=\frac{\sqrt{3}}{3}(2z-1),$ donc $\int \frac{1}{z^2-z+1}\,\mathrm{d}z=\frac{2}{\sqrt{3}}\int \frac{1}{t^2+1}\,\mathrm{d}t=\frac{2\sqrt{3}}{3}\arctan t+C=\frac{2\sqrt{3}}{3}\arctan \left(\frac{\sqrt{3}}{3}(2z-1)\right)+C\ (C\in\mathbb{R}).$ Finalement

$$\int \frac{1}{1+z^3} dz = \frac{1}{3} \ln|z+1| - \frac{1}{6} \ln(z^2 - z + 1) + \frac{1}{2} \int \frac{dz}{z^2 - z + 1}$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{6} \ln(z^2 - z + 1) + \frac{1}{2} \frac{2\sqrt{3}}{3} \arctan\left(\frac{\sqrt{3}}{3}(2z - 1)\right) + C$$

$$= \frac{1}{3} \ln|z+1| - \frac{1}{6} \ln(z^2 - z + 1) + \frac{\sqrt{3}}{3} \arctan\left(\frac{\sqrt{3}}{3}(2z - 1)\right) + C \qquad (C \in \mathbb{R}).$$

Intervalles de définition : $]-\infty, -1[$ plus $]-1, +\infty[$.

Exercice 7.

Calculer les intégrales suivantes.

$$J_1 = \int_0^{\frac{\pi}{2}} \sin^3 t \cos^4 t \, \mathrm{d}t$$

La fonction $f(t) = \sin^3 t \cos^4 t$ est continue sur \mathbb{R} , donc elle admet des primitives sur \mathbb{R} .

Primitives : On applique les règles de Bioche. Soit $\omega(t) = f(t) dt = \sin^3 t \cos^4 t dt$. Alors :

$$\omega(-t) = \sin^{3}(-t)\cos^{4}(-t) d(-t) = \sin^{3}t \cos^{4}t dt = \omega(t)$$

$$\omega(\pi - t) = \sin^{3}(\pi - t)\cos^{4}(\pi - t) d(\pi - t) = -\sin^{3}t \cos^{4}t dt \neq \omega(t)$$

$$\omega(\pi + t) = \sin^{3}(\pi + t)\cos^{4}(\pi + t) d(\pi + t) = -\sin^{3}t \cos^{4}t dt \neq \omega(t)$$

donc Bioche préconise de faire $u = \cos t$. Alors $t = \phi(u) = \arccos u$ et $du = -\sin t \, dt$ (c'est mieux que de calculer $dt = (\arccos u)' \, du$); si $t = t_1 = 0 = \phi(u_1) = \arccos u_1$ on peut prendre $u_1 = \cos 0 = 1$; si $t = t_2 = \frac{\pi}{2} = \phi(u_2) = \arccos u_2$ on peut prendre $u_2 = \cos \frac{\pi}{2} = 0$.

On a $|u_1, u_2| = [0, 1]$ mais $\phi \notin \mathcal{C}^1([0, 1])$ (en fait, $\arccos \in \mathcal{C}^0([-1, 1])$ et $\arccos \in \mathcal{C}^\infty(]-1, 1[)$, mais elle n'est pas dérivable en ± 1).

On va donc primitiver formellement et vérifier ce qu'on trouvera.

On doit prendre un sin t pour avoir sin t dt = -du. Puis on écrit sin $t = 1 - \cos^2 t$ pour n'avoir que des $\cos t$:

$$\int \sin^3 t \cos^4 t \, dt = \int \sin^2 t \cos^4 t \sin t \, dt$$

$$= \int (1 - \cos^2 t) \cos^4 t \sin t \, dt$$

$$= \int (1 - u^2) u^4 (-du)$$

$$= \int (-u^4 + u^6) \, du$$

$$= \frac{u^7}{7} - \frac{u^5}{5} + C$$

$$= \frac{1}{7} \cos^7 t - \frac{1}{5} \cos^5 t + C \qquad (C \in \mathbb{R}).$$

On a que $F(t) = \frac{1}{7}\cos^7 t - \frac{1}{5}\cos^5 t$ est dérivable sur \mathbb{R} , de dérivée

 $F'(t) = \cos^6 t \, (-\sin t) - \cos^4 t \, (-\sin t) = \sin t \, \cos^4 t \, (1 - \cos^2 t) = \sin t \, \cos^4 t \, \sin^2 t = f(t).$

Donc toutes les primitives de f(t) sont bien F(t) + C $(C \in \mathbb{R})$.

Alors
$$J_1 = \int_0^{\frac{\pi}{2}} \sin^3 t \cos^4 t \, dt = \left[\frac{1}{7} \cos^7 t - \frac{1}{5} \cos^5 t \right]_0^{\frac{\pi}{2}} = \left(\frac{1}{7} \cos^7 \frac{\pi}{2} - \frac{1}{5} \cos^5 \frac{\pi}{2} \right) - \left(\frac{1}{7} \cos^7 0 - \frac{1}{5} \cos^5 0 \right)$$
$$= \left(\frac{1}{7} (0)^7 - \frac{1}{5} (0)^5 \right) - \left(\frac{1}{7} (1)^7 - \frac{1}{5} (1)^5 \right) = \frac{2}{35}.$$

$$J_2 = \int_0^{\pi} \sin u \cos^2 u \, \mathrm{d}u$$

La fonction $f(u) = \sin u \cos^2 u$ est continue sur \mathbb{R} , donc elle admet des primitives sur \mathbb{R} . Ainsi, on peut l'intégrer sur $[0, \pi]$.

Primitives : On applique les règles de Bioche. Soit $\omega(u) = f(u) du = \sin u \cos^2 u du$. Alors :

$$\omega(-u) = \sin(-u)\cos^2(-u) d(-u) = \sin u \cos^2 u du = \omega(u)$$

$$\omega(\pi - u) = \sin(\pi - u)\cos^2(\pi - u) d(\pi - u) = -\sin u \cos^2 u du \neq \omega(u)$$

$$\omega(\pi + u) = \sin(\pi + u)\cos^2(\pi + u) d(\pi + u) = -\sin u \cos^2 u du \neq \omega(u)$$

donc Bioche préconise de faire $t = \cos u$. Alors $u = \phi(t) = \arccos t$ et $\mathrm{d}t = -\sin u\,\mathrm{d}u$; si $u = u_1 = 0 = \phi(t_1) = \arccos t_1$ on peut prendre $t_1 = \cos 0 = 1$; si $u = u_2 = \pi = \phi(t_2) = \arccos t_2$ on peut prendre $t_2 = \cos \pi = -1$.

On a $|t_1, t_2| = [-1, 1]$ mais $\phi \notin \mathcal{C}^1([-1, 1])$ (en fait, $\arccos \in \mathcal{C}^0([-1, 1])$ et $\arccos \in \mathcal{C}^\infty([-1, 1])$, mais elle n'est pas dérivable en ± 1).

On va donc primitiver formellement et vérifier ce qu'on trouvera.

On prend $\sin u$ pour avoir $\sin u \, du = - \, dt$.

$$\int \sin u \cos^2 u \, du = -\int \cos^2 u (-\sin u \, du)$$
$$= -\int t^2 \, dt$$
$$= -\frac{t^3}{3} + C$$
$$= -\frac{1}{3} \cos^3 u + C \qquad (C \in \mathbb{R}).$$

On a que $F(u) = -\frac{1}{3}\cos^3 u$ est dérivable sur \mathbb{R} , de dérivée $F'(u) = -\cos^2 u$ $(-\sin u) = f(u)$. Donc toutes les primitives de f(u) sont bien F(u) + C $(C \in \mathbb{R})$.

Alors
$$J_2 = \int_0^{\pi} \sin u \cos^2 u \, du = -\frac{1}{3} \left[\cos^3 u \right]_0^{\pi} = -\frac{1}{3} \left(\cos^3 \pi - \cos^3 0 \right) = -\frac{1}{3} \left((-1)^3 - (1)^3 \right) = \frac{2}{3}$$
.

Remarque: En fait, on peut primitiver directement:

$$\int \sin u \cos^2 u \, du = -\int (\cos u)^2 (\cos u)' \, du = -\frac{(\cos u)^3}{3} + C \ (C \in \mathbb{R}).$$

$$J_3 = \int_0^{\pi/4} \sin^2 w \, \cos^3 w \, \mathrm{d}w$$

La fonction $f(w) = \sin^2 w \cos^3 w$ est continue sur \mathbb{R} , donc elle admet des primitives sur \mathbb{R} . Ainsi, on peut l'intégrer sur $[w_1, w_2] = [0, \frac{\pi}{4}]$.

Primitives : On applique les règles de Bioche. Soit $\omega(w)=f(w)\,\mathrm{d} w=\sin^2 w\,\cos^3 w\,\mathrm{d} w$. Alors :

$$\omega(-w) = \sin^2(-w)\cos^3(-w) d(-w) = -\sin^2 w \cos^3 w dw \neq \omega(w)$$

$$\omega(\pi - w) = \sin(\pi - w)\cos^2(\pi - w) d(\pi - w) = \sin^2 w \cos^3 w dw = \omega(w)$$

$$\omega(\pi + w) = \sin(\pi + w)\cos^2(\pi + w) d(\pi + w) = -\sin^2 w \cos^3 w dw \neq \omega(w)$$

donc Bioche préconise de faire $t = \sin w$. Alors $w = \phi(t) = \arcsin t$ et $dt = \cos w \, dw$; si $w = w_1 = 0 = \phi(t_1) = \arcsin t_1$ on peut prendre $t_1 = \sin 0 = 0$; si $w = w_2 = \frac{\pi}{4} = \phi(t_2) = \arcsin t_2$ on peut prendre $t_2 = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.

On a $|t_1, t_2| = [0, \frac{\sqrt{2}}{2}]$ et $\phi \in \mathcal{C}^1([0, \frac{\sqrt{2}}{2}])$ (en fait, $\arcsin \in \mathcal{C}^0([-1, 1])$ et $\arcsin \in \mathcal{C}^\infty(]-1, 1[)$, mais elle n'est pas dérivable en ± 1).

Puis $\phi(|t_1, t_2|) = \phi([0, \frac{\sqrt{2}}{2}]) = [\phi(0), \phi(\frac{\sqrt{2}}{2})] = [0, \frac{\pi}{4}]$ (car ϕ est croissante sur $[0, \frac{\sqrt{2}}{2}]$) et f est bien continue sur $[0, \frac{\pi}{4}]$. Donc on peut appliquer la formule de changement de variable.

On doit prendre un $\cos w$ pour avoir $\cos w$ d $w=\mathrm{d}t$. Puis on écrit $\cos^2 w=1-\sin^2 w$ pour n'avoir que des $\sin w$:

$$\int_0^{\pi/4} \sin^2 w \, \cos^3 w \, dw = \int_{w=w_1}^{w_2=\pi/4} \sin^2 w \, \cos^2 w \cos w \, dw$$

$$= \int_{w=\phi(t_1)}^{w=\phi(t_2)} \sin^2 w \, (1 - \sin^2 w) (\cos w \, dw)$$

$$= \int_{t=t_1}^{t=t_2} t^2 (1 - t^2) \, dt$$

$$= \int_{t=0}^{t=\sqrt{2}/2} (t^2 - t^4) \, dt$$

$$= \left[\frac{t^3}{3} - \frac{t^5}{5} \right]_{t=0}^{t=\sqrt{2}/2}$$

$$= \left(\frac{1}{3} (\frac{\sqrt{2}}{2})^3 - \frac{1}{5} (\frac{\sqrt{2}}{2})^5 \right) - \left(\frac{1}{3} (0)^3 - \frac{1}{5} (0)^5 \right)$$

$$= \frac{\sqrt{2}}{12} - \frac{\sqrt{2}}{40}$$

Donc
$$J_3 = \frac{7\sqrt{2}}{120}$$
.

En primitivant formellement, on aura $\int \sin^2 w \cos^3 w \, dw = \int (t^2 - t^4) \, dt = \frac{t^3}{3} - \frac{t^5}{5} + C = \frac{1}{3} \sin^3 w - \frac{1}{5} \sin^5 w + C$ $(C \in \mathbb{R})$. On a que $F(w) = \frac{1}{3}\sin^3 w - \frac{1}{5}\sin^5 w$ est dérivable sur \mathbb{R} , de dérivée $F'(w) = \sin^2 w \cos w - \sin^4 w \cos w = 1$ $\sin^2 w (\cos w) (1 - \sin^2 w) = f(w)$. Donc toutes les primitives de f(w) sont F(w) + C $(C \in \mathbb{R})$.

$$J_4 = \int_0^{\pi} \sin^2 u \, \cos^2 u \, \mathrm{d}u$$

La fonction $f(u) = \sin^2 u \cos^2 u$ est continue sur \mathbb{R} , donc elle admet des primitives sur \mathbb{R} . Ainsi, on peut l'intégrer sur

Primitives : On applique les règles de Bioche. Soit $\omega(u)=f(u)\,\mathrm{d} u=\sin^2 u\,\cos^2 u\,\mathrm{d} u$. Alors :

$$\omega(-u) = \sin^2(-u)\cos^2(-u) d(-u) = -\sin^2 u \cos^2 u du \neq \omega(u)$$

$$\omega(\pi - u) = \sin^2(\pi - u)\cos^2(\pi - u) d(\pi - u) = -\sin^2 u \cos^2 u du \neq \omega(u)$$

$$\omega(\pi + u) = \sin(\pi + u)\cos^2(\pi + u) d(\pi + u) = \sin^2 u \cos^2 u du = \omega(u)$$

donc Bioche préconise de faire $t = \tan u$. Alors $u = \phi(t) = \arctan t$ et $du = \frac{1}{1+t^2} dt$; si $u = u_1 = 0 = \phi(t_1) = \arctan t_1$ on peut prendre $t_1 = \tan 0 = 0$; si $u = u_2 = \pi = \phi(t_2) = \arctan t_2$ alors t_2 n'existe pas, car arctan: $\mathbb{R} \longrightarrow]-\frac{\pi}{2},\frac{\pi}{2}[$. On ne peut donc pas appliquer la formule de changement de variable (en tout cas, pas telle quelle).

Si l'on essaye de primitiver formellement, on aura (en écrivant $\sin^2 u$ et $\cos^2 u$ en fonction de $\tan u$)

$$\int \sin^2 u \, \cos^2 u \, \mathrm{d}u = \int \frac{\tan^2 u}{1 + \tan^2 u} \times \frac{1}{1 + \tan^2 u} \, \mathrm{d}u = \int \frac{t^2}{1 + t^2} \times \frac{1}{1 + t^2} \times \frac{1}{1 + t^2} \, \mathrm{d}t = \int \frac{t^2}{(1 + t^2)^3} \, \mathrm{d}t$$
 qui est la primitive d'une fraction rationnelle en t , donc faisable en principe, mais qui est trop compliquée.

La décomposition en éléments simples est $\frac{t^2}{(1+t^2)^3} = \frac{0t+0}{1+t^2} + \frac{0t+1}{(1+t^2)^2} + \frac{0t-1}{(1+t^2)^3}$, puis avec le changement de variable t=0

$$\tan v \text{ on aura } \int \left(\frac{1}{(1+t^2)^2} - \frac{1}{(1+t^2)^3}\right) dt = \int (\cos^2 v - \cos^4 v) dv = \int (\sin v \cos v)^2 dv = \frac{1}{4} \int \sin^2 2v dv = \frac{1}{4} \int \frac{1-\cos 4v}{2} dv = \frac{1}{4} \int \sin^2 2v dv = \frac{1}{4} \int \sin^2 v dv = \frac{1}{4} \int \sin^2 2v dv =$$

 $\frac{1}{8}v - \frac{1}{32}\sin 4v + C$ puis il faudrait revenir à t puis à u puis vérifier qu'on a bien une primitive de f(u) ...

$$f(u) = \sin^2 u \cos^2 u = \frac{1 - \cos 2u}{2} \times \frac{1 + \cos 2u}{2} = \frac{1}{4}(1 - \cos^2 2u)$$
 qu'on linéarise encore, puisque $\cos^2 2u = \frac{1 + \cos 4u}{2}$

On va donc suivre le conseil de **linéariser** la fonction
$$f(u)$$
:
$$f(u) = \sin^2 u \cos^2 u = \frac{1 - \cos 2u}{2} \times \frac{1 + \cos 2u}{2} = \frac{1}{4}(1 - \cos^2 2u) \text{ qu'on linéarise encore, puisque } \cos^2 2u = \frac{1 + \cos 4u}{2}.$$

$$\operatorname{donc} f(u) = \frac{1}{4}(1 - \cos^2 2u) = \frac{1}{4}\left(1 - \frac{1 + \cos 4u}{2}\right) = \frac{1}{4}(\frac{1}{2} - \frac{1}{2}\cos 4u) = \frac{1}{8} - \frac{1}{8}\cos 4u \text{ (tout ce qu'on a fait c'est appliquer } \frac{1}{4}(1 - \cos^2 2u) = \frac$$

des identités trigonométrique pour écrire \boldsymbol{f} autrement). Alors

$$\int f(u) du = \frac{1}{8} \int (1 - \cos 4u) du = \frac{1}{8} \int \left(1 - \frac{1}{4} (\cos 4u)(4u)'\right) du = \frac{1}{8} (u - \frac{1}{4} \sin 4u) + C = \frac{1}{8} u - \frac{1}{32} \sin 4u + C \ (C \in \mathbb{R}).$$
 Intervalles de définition : $]-\infty, +\infty[= \mathbb{R}.$

Alors
$$J_4 = \int_0^{\pi} \sin^2 u \cos^2 u \, du = \left[\frac{1}{8}u - \frac{1}{32}\sin 4u\right]_0^{\pi} = \left(\frac{1}{8}\pi - \frac{1}{32}\sin 4\pi\right) - \left(\frac{1}{8}0 - \frac{1}{32}\sin 0\right) = \left(\frac{1}{8}\pi - \frac{1}{32}0\right) - \left(\frac{1}{8}0 - \frac{1}{32}0\right) = \frac{\pi}{8}$$