Licence de mathématique Université Paris-Saclay

Groupes et géométrie

N. Perrin

Université de Versailles Saint-Quentin-en-Yvelines Année 2019-2020

Table des matières

I.	. Groupes	3
1.	. Morphismes de groupes, sous-groupes	4
	1.1. La notion de groupe	 4
	1.2. Morphisme de groupes	 6
	1.3. Sous-groupes	 7
	1.4. Ordre d'un élément	 10
	1.5. Noyau et image	 11
	1.6. produit	12
	1.7. Conjugaison et centre	13
	1.8. Les groupes \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, les groupes monogènes et cycliques	14
2.	2. Quotient par un sous-groupe, groupe quotient	17
	2.1. Relations d'équivalence	 17
	2.2. Classes à droite et à gauche	19

Première partie . Groupes

Morphismes de groupes, sous-groupes

Dans ce premier chapitre, nous faisons des rappels sur les groupes, leurs sous-groupes et les morphismes de groupes.

1.1. La notion de groupe

Définition 1.1.1 (i) Un **groupe** est la donnée d'une paire (G, \star) où G est un ensemble et $\star: G \times G \to G$ est une **loi de composition** telle que les trois propriétés suivantes sont satisfaites :

(Unité) il existe un élément $e \in G$ tel que $e \star g = g \star e = g$ pour tout $g \in G$; (Inverse) pour tout $g \in G$, il existe $h \in G$ tel que $g \star h = h \star g = e$; (Associativité) pour tout $(g, h, k) \in G^3$, on a $(g \star h) \star k = g \star (h \star k)$.

- (ii) Si de plus on a $g \star h = h \star g$ pour tout $(g, h) \in G^2$, on dire que le groupe G es **commutatif** ou encore **abelien**.
- (iii) Le cardinal |G| (fini ou infini) d'un groupe G est appelé **ordre du groupe**.

Remarque 1.1.2 Un groupe n'est jamais vide

Lemme 1.1.3 Soit G un groupe.

- (i) L'élément unité e du groupe tel que $e \star g = g \star e = g$ pour tout $g \in G$ est unique.
- (ii) Pour tout $q \in G$, l'élémnt $h \in G$ tel que $q \star h = h \star q = e$ est unique.

Preuve. 1. Soient e et e' des éléments unités. Alors on a $e' = e \star e' = e$.

2. Soient h et h' deux éléments tel que $g \star h = h \star g = e$ et $g \star h' = h' \star g = e$. Alors on a $h' = h' \star e = h' \star (g \star h) = (h' \star g) \star h = e \star h = h$.

Définition 1.1.4 Soit G un groupe et $g \in G$. L'unique élémnt $h \in G$ tel que $q \star h = h \star q = e$ est appelé **inverse** de q dans G.

Notation 1.1.5 On utilisera essentiellement deux notations pour la loi de composition d'un groupe :

- (i) la **notation multiplicative** dans laquelle le produit $g \star h$ est noté gh et l'unité e est notée 1. L'inverse de g est alors noté g^{-1} . C'est la notation que nous utiliserons par défaut. En particulier dans cette notation, on ne suppose pas le groupe commutatif, donc a priori, on a $gh \neq hg$.
- (ii) la notation additive ne sera utilisée que si le groupe G est commutatif. Le produit $g \star h$ est noté g + h et l'unité e est notée 0. L'inverse de g est alors noté -g. Dans cette notation, on a toujours g + h = h + g donc le groupe est commutatif.

Lemme 1.1.6 Soit G un groupe.

- (i) Pour $g \in G$, on a $(g^{-1})^{-1} = g$.
- (ii) Pour $g, h \in G$, on a $(gh)^{-1} = h^{-1}g^{-1}$.
- (iii) Si $(g_i)_{i\in[1,n]}$ sont des éléments de G, on a $(g_1\cdots g_n)^{-1}=g_n^{-1}\cdots g_1^{-1}$.

Preuve. 1. En effet, on a $gg^{-1} = g^{-1}g = 1$ donc $(g^{-1})^{-1} = g$.

- 2. On calcule $(gh)(h^{-1}g^{-1}) = g(hh^{-1})g^{-1}) = gg^{-1}) = 1$ et $(h^{-1}g^{-1})(gh) = h^{-1})hg^{-1}g)h = h^{-1})h = 1$.
- 3. Par récurrence en utilisant 1.

Corollaire 1.1.7 L'application $f: G \to G$, $g \mapsto g^{-1}$ est bijective.

Preuve. Il suffit de montrer que f est son propre inverse. Mais pour tout $g \in G$, on a $(f \circ f)(g) = f(f(g)) = f(g^{-1}) = (g^{-1})^{-1} = g$.

Exemple 1.1.8 (i) Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis de la loi + sont des groupes commutatifs.

- (ii) Les ensembles \mathbb{Q}^* , \mathbb{R}^* et \mathbb{C}^* munis de la loi \times sont des groupes commutatifs.
- (iii) L'ensemble $GL_n(\mathbb{R})$ des matrices réelles inversibles de taille n est un groupe pour la multiplication des matrices. Il est non commutatif si et seulement si $n \geq 2$.
- (iv) L'ensemble GL(V) des endomorphismes bijectifs d'un \mathbb{R} —espace vectoriel V est un groupe pour la composition. Il est non commutatif si et seulement si $\dim V > 2$.
- (v) L'ensemble \mathfrak{S}_n des permutations de l'ensemble [1, n] est un groupe pour la composition. Son ordre est n!. Il est non commutatif si et seulement si $n \geq 3$.
- (vi) L'ensemble des rotations planes de centre O forme un groupe pour la composition. Il est commutatif.
- (vii) Soit E un ensemble. L'ensemble $\mathfrak{S}(E)$ des bijections de E dans E est un groupe pour la composition.

Notation 1.1.9 Soit G un groupe et $g \in G$.

(i) En notation multiplicative, on définit g^m pour $m \in \mathbb{Z}$ de la manière suivante :

$$g^m = \begin{cases} g \cdot g \cdots g & \text{produit de } m \text{ fois } g & \text{si } m \ge 1 \\ 1 & \text{produit vide} & \text{si } m = 0 \\ g^{-1} \cdot g^{-1} \cdots g^{-1} & \text{produit de } |m| = -m \text{ fois } g^{-1} & \text{si } m \le -1. \end{cases}$$

(ii) En notation additive, on définit mg pour $m \in \mathbb{Z}$ de la manière suivante :

$$mg = \begin{cases} g + g + \dots + g & \text{somme de } m \text{ fois } g & \text{si } m \ge 1 \\ 0 & \text{somme vide} & \text{si } m = 0 \\ (-g) + (-g) + \dots (-g) & \text{somme de } |m| = -m \text{ fois } -g & \text{si } m \le -1. \end{cases}$$

1.2. Morphisme de groupes

Définition 1.2.1 Soient G et G' deux groupes.

- (i) Un **morphisme de groupes** de G dans G' est une application $\varphi: G \to G'$ telle que $\varphi(gh) = \varphi(g)\varphi(h)$ pour tout $(g,h) \in G^2$. L'ensemble des morphisme de groupes de G dans G' est note Hom(G,G').
- (ii) Un morphisme de groupe $\varphi: G \to G'$ est appelé **isomorphisme de groupes** si φ est bijective. L'ensemble des morphisme de groupes de G dans G' est note Isom(G, G').
- (iii) Lorsque G' est égal à G, un morphisme de groupe est appelé **endomorphisme de groupes**. L'ensemble des endomorphismes de groupes de G dans lui-même est note $\operatorname{End}(G)$.
- (iv) Lorsque G' est égal à G, un isomorphisme de groupe est appelé **automorphisme de groupes**. L'ensemble des automorphismes de groupes de G dans lui-même est note Aut(G).

Remarque 1.2.2 On utilise parfois homomorphisme de groupes à la place de morphisme de groupes.

Lemme 1.2.3 Soit $\varphi: G \to G'$ un isomorphisme de groupes et soit $\varphi^{-1}: G' \to G$ l'inverse de φ . Alors φ^{-1} est un morphisme de groupes.

Preuve. Soient $x, y \in G'$, on veut montrer que $\varphi^{-1}(xy) = \varphi^{-1}(x)\varphi^{-1}(y)$.

Posons $g = \varphi^{-1}(x)$ et $h = \varphi^{-1}(y)$. Comme φ est un morphisme de groupes, on a $\varphi(gh) = \varphi(g)\varphi(h) = xy$. En particulier $\varphi^{-1}(xy) = gh = \varphi^{-1}(x)\varphi^{-1}(y)$.

Proposition 1.2.4 Soit $\varphi:G\to G'$ un morphisme de groupes. Alors on a les égalités suivantes :

- (i) $\varphi(1) = 1$;
- (ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$, pour tout $g \in G$;

(iii) $\varphi(g^m) = \varphi(g)^m$, pour tout $g \in G$ et tout $m \in \mathbb{Z}$.

Preuve. 1. On a $\varphi(1) = \varphi(1 \cdot 1) = \varphi(1)\varphi(1)$ et en multipliant (à gauche ou à droite) par $\varphi(1)^{-1}$, on a $\varphi(1) = 1$.

- 2. On a $\varphi(g^{-1})\varphi(g)=\varphi(g^{-1}g)=\varphi(1)=1=\varphi(gg^{-1})=\varphi(g)\varphi(g^{-1}).$ On a donc $\varphi(g^{-1})=\varphi(g)^{-1}.$
- 3. Pour m=0 c'est le 1. Pour $m\geq 1$, on procède par récurrence sur m. Pour $m\leq -1$, on procède par récurrence sur |m|=-m en utilisant le 2.
- **Exemple 1.2.5** (i) L'application $\log : (\mathbb{R}_+^*, \times) \to (\mathbb{R}, +)$ est un isomorphisme de groupes.
 - (ii) L'application $\exp: (\mathbb{R}, +) \to (\mathbb{R}_+^*, \times)$ est l'isomorphisme de groupe réciproque de log.
- (iii) L'application det : $GL_n(\mathbb{R}) \to \mathbb{R}$ est un morhisme de groupes surjectif (et non injectif si et seulement si $n \geq 2$.
- (iv) L'application $\varphi: (\mathbb{R}, +) \to (\mathbb{C}^*, \times)$ définie par $\varphi(x) = e^{2i\pi x}$ est un morphisme de groupes non injectif et non surjectif.
- (v) L'application $\varphi: (\mathbb{C}^*, \times) \to (\mathbb{C}^*, \times)$ déinie par $\varphi(z) = z^n$ est un morphisme surjectif mais non injectif de groupes.

Proposition 1.2.6 Soit $\varphi: G \to G'$ et $\psi: G' \to G''$ deux morphismes de groupes. Alors $\psi \circ \varphi: G \to G''$ est un morphisme de groupes.

Preuve. On a
$$(\psi \circ \varphi)(gh) = \psi(\varphi(gh)) = \psi(\varphi(g)\varphi(h)) = \psi(\varphi(g))\psi(\varphi(h)) = (\psi \circ \varphi)(g)(\psi \circ \varphi)(h)$$

Corollaire 1.2.7 Soit G un groupe, alors $(\operatorname{Aut}(G), \circ)$ est un groupe (c'est un sous-groupe de $\mathfrak{S}(G), \circ)$).

Preuve. L'identité est un automorphisme de groupes. On vient de voir que la composée de deux automorphismes de groupes est encore un automorphisme de groupes. Enfin, on a vu que l'inverse d'un automorphisme de groupes est un automorphisme de groupes.

1.3. Sous-groupes

Définition 1.3.1 Soit G un groupe. Un sous-ensemble $H \subset G$ est appelé sous-groupe de G s'il vérifie les trois conditions suivantes :

- (i) $1 \in H$;
- (ii) si $g \in H$, alors $g^{-1} \in H$;

(iii) si $g, h \in H$, alors $gh \in H$.

Remarque 1.3.2 (i) On vérifie aisément que si $H \subset G$ est un sous-groupe, alors H muni du produit de G est un groupe.

(ii) Si on oublie la condition (ii) ci-dessus, alors H n'est pas nécessairement un sous-groupe (par exemple $H = \mathbb{N} \subset G = \mathbb{Z}$).

Notation 1.3.3 Soit G un groupe.

- (i) Les sous-ensembles $\{1\}$ et G forment toujours des sous-groupes de G. On les appele sous-groupes triviaux de G.
- (ii) Un sous-groupe $H \subset G$ tel que $H \neq G$ est appelé sous-groupe propre de G.

Proposition 1.3.4 Soit G un groupe de $H \subset G$ un sous-ensemble de G. Alors H est un sous-groupe de H si et seulement si les deux conditions suivantes sont satisfaites :

- (i) H est non vide;
- (ii) si $g, h \in H$, alors $gh^{-1} \in H$.

Preuve. Commençons par supposer que H est un sous-groupe. Alors $1 \in H$ et H est non vide. De plus, si $q, h \in H$, alors $h^{-1} \in H$ et donc $qh^{-1} \in H$.

Réciproquement, si H satisfait les deux conditions ci-dessus, montrons que c'est un sous-groupe. Montrons que $1 \in H$. Soit $g_0 \in H$ un élément quelconque (c'est possible car H est non vide). Alors on a $1 = g_0 g_0^{-1} \in H$ par (ii) appliqué à $(g, h) = (g_0, g_0)$. Soit $h \in H$, montrons que $h^{-1} \in H$. Comme $1 \in H$, on peut appliquer (ii) à (g, h) = (1, h) et on a $h^{-1} = 1h^{-1} \in H$. Finalement, si $g, h \in H$, montrons que $gh \in H$. Par ce qui précède, on sait que $h^{-1} \in H$ donc en appliquant (ii) à $(g, h) = (g, h^{-1})$, on a $gh = g(h^{-1})^{-1} \in H$.

Exemple 1.3.5 (i) Les sous-ensembles \mathbb{Z} , \mathbb{Q} et \mathbb{R} sont des sous-groupes de $(\mathbb{C}, +)$.

- (ii) Les sous-ensembles \mathbb{Q}^* et \mathbb{R}^* sont des sous-groupes de (\mathbb{C}^*, \times) .
- (iii) Le sous-ensemble $\{1, -1\}$ de (\mathbb{Q}^*, \times) est un sous-groupe.
- (iv) Le sous-ensemble $O_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid A^{-1} = A^t\}$ où A^t designe la transposé de A est un sous-groupe de $GL_n(\mathbb{R})$.
- (v) Le sous-ensemble $\mathrm{Aff}_+(\mathbb{R}^2)$ défini par

$$\operatorname{Aff}_{+}(\mathbb{R}^{2}) = \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \in \operatorname{GL}_{2}(\mathbb{R}) \mid a^{2} + b^{2} \neq 0 \right\}$$

est un sous-groupe de $GL_2(\mathbb{R})$.

(vi) Le sous-ensemble $Isom_+(\mathbb{R}^2)$ défini par

$$\operatorname{Isom}_{+}(\mathbb{R}^{2}) = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \operatorname{GL}_{2}(\mathbb{R}) \mid a^{2} + b^{2} = 1 \right\}$$

est un sous-groupe de $\mathrm{Aff}_+(\mathbb{R}^2)$ et de $\mathrm{GL}_2(\mathbb{R})$.

Lemme 1.3.6 Soit G un groupe.

- (i) Si H et K sont des sous-groupes de G, alors $H \cap K$ est un sous-groupe de G.
- (ii) Plus généralement, si $(H_{\lambda})_{\lambda \in \Lambda}$ est une famille de sous-groupes de G, alors l'intersection $\cap_{\lambda \in \Lambda} H_{\lambda}$ est un sous-groupe de G.

Preuve. La première assertion est une conséquence de la seconde. Nous montrons la seconde. Notons $K = \bigcap_{\lambda \in A} H_{\lambda}$. Il suffit de montrer que K est non-vide et que pour tout $g, h \in K$, on a $gh^{-1} \in K$. Comme H_{λ} est un sous-groupe, on a $1 \in H_{\lambda}$ pour tout λ et donc $1 \in K$ et K est non-vide. Soient maintenant g et K deux élément de K. Alors $g, h \in H_{\lambda}$ pour tout λ et donc $gh^{-1} \in H_{\lambda}$ pour tout λ et donc $gh^{-1} \in K$.

Corollaire 1.3.7 Soit $E \subset G$ un sous-ensemble quelconque, alors il existe un plus petit sous-groupe K de G contenant E.

Preuve. Il suffit de prendre pour K l'intersection de tous les sous-groupes de G contenant E.

Définition 1.3.8 Soit G un groupe et $E \subset G$ un sous-ensemble de G.

- Le plus petit sous-groupe de G contenant E est appelé sous-groupe de G engendré par E et est noté $\langle E \rangle$.
- Si $E = \{g\}$ n'a qu'un seul élément, on note $\langle g \rangle = \langle E \rangle = \langle \{g\} \rangle$.

Remarque 1.3.9 En général, si H et K sont des sous-groupes de G, la réunion $H \cup K$ n'est pas un sous-groupe de G. Ainsi par exemple, \mathbb{R} et $i\mathbb{R}$ sont des sous-groupes de $(\mathbb{C}, +)$ mais $R \cup i\mathbb{R}$ n'est pas un sous-groupe de \mathbb{C} . On a

$$\langle \mathbb{R}, i\mathbb{R} \rangle = \mathbb{C}$$

c'est-à-dire que le sous-groupe engendré par $\mathbb R$ et $i\mathbb R$ est $\mathbb C$ tout entier.

Proposition 1.3.10 Soit G un groupe et $g \in G$. Alors on a $\langle g \rangle = \{g^m \in G \mid m \in \mathbb{Z}\}.$

Preuve. Notons $H = \{g^m \in G \mid m \in \mathbb{Z}\}$. Montrons l'inclusion $H \subset \langle g \rangle$. Soit donc $m \in \mathbb{Z}$, il suffit de montrer que $g^m \in \langle g \rangle$. Si m = 0, alors $g^m = 1 \in \langle g \rangle$ car $\langle g \rangle$ est un sous-groupe de G. Si $m \geq 1$, alors comme $g \in \langle g \rangle$ et que $\langle g \rangle$ est un groupe donc stable par multiplication, on obtient par récurrence sur m que $g^m \in \langle g \rangle$. Si $m \leq -1$, on commence par remarque que $g^{-1} \in \langle g \rangle$ et on procède comme précedemment.

Réciproquement, montrons que $\langle g \rangle \subset H$. Comme $\langle g \rangle$ est le plus petit sous-groupe contenant g et que $g \in H$, il suffit de montrer que H est un sous-groupe de G. Comme $g \in H$, on a bien que H est non vide. Si $h, h' \in H$, alors $h = g^m$ et $h' = g^{m'}$ avec $m, m' \in \mathbb{Z}$. On a alors $h(h')^{-1} = g^m g^{-m'} = g^{m-m'} \in H$ donc H est un sous-groupe.

1.4. Ordre d'un élément

Définition 1.4.1 Soit G un groupe et soit $g \in G$. Le cardinal de $\langle g \rangle$ est appelé **ordre de** g dans G et est noté $\operatorname{ord}_G(g)$ ou $\operatorname{ord}(g)$ s'il n'y a pas de confusion possible sur le groupe G.

Remarque 1.4.2 Soit G un groupe et soit $g \in G$.

- (i) L'ordre de g peut être infini.
- (ii) On a $\operatorname{ord}(g) = 1$ si et seulement si g = 1 (en effet, on a alors que $\langle g \rangle$ est un groupe a un seul élément donc $\langle g \rangle = \{1\}$ mais comme $g \in \langle g \rangle$, on a bien g = 1).

Proposition 1.4.3 Soit G un groupe et soit $g \in G$ d'ordre fini.

- (i) On a ord $(g) = \min\{n \in \mathbb{N}^* \mid g^n = 1\}.$
- (ii) Si n est un entier tel que $g^n = 1$, alors ord(g) divise n.
- (iii) On a un ismorphisme $\langle g \rangle \simeq \mathbb{Z}/\mathrm{ord}(g)\mathbb{Z}$ donné par $g^m \mapsto [m]$ et de réciproque $[m] \mapsto g^m$.

Preuve. 1. Comme ord(g) est fini, l'application $\mathbb{Z} \to \langle g \rangle$, $m \mapsto g^m$ ne peut être injective. Il existe donc des entiers m et n distincts tels que $g^m = g^n$. On peut supposer par exemple que m < n. On a alors $g^{n-m} = 1$. L'ensemble $\{n \in \mathbb{N}^* \mid g^n = 1\}$ est donc non vide. Notons $n_0 = \min\{n \in \mathbb{N}^* \mid g^n = 1\}$ et montrons que $\langle g \rangle = \{g^r \mid r \in [0, n_0 - 1]\}$. On aura alors $\operatorname{ord}(g) = |\langle g \rangle| = n_0$.

On a l'inclusion $\{g^r \mid r \in [0, n_0 - 1]\} \subset \langle g \rangle = \{g^m \mid m \in \mathbb{Z}\}$ donc il suffit de montrer l'autre inclusion. Soit $m \in \mathbb{Z}$. On fait la division euclidienne de m par n_0 et on a $m = qn_0 + r$ avec $r \in [0, n_0 - 1]$. On a alors $g^m = g^{qn_0+r} = (g^{n_0})^q g^r = 1^q g^r = g^r \in H$ ce qui montre le résultat.

- 2. Soit n tel que $g^n = 1$. Montrons que $n_0 = \operatorname{ord}(g)$ divise n. On fait la division euclidienne de n par n_0 et on a $n = qn_0 + r$ avec $r \in [0, n_0 1]$. Par ailleurs, on a $1 = g^n = g^{qn_0+r} = (g_0^n)^q g^r = 1^q g^r = g^r$. Donc $g^r = 1$ avec $r \in [0, n_0 1]$. Par minimalité de n_0 , on obtient r = 0 et $\operatorname{ord}(g) = n_0$ divise n.
- 3. On commence par vérifier que les deux applications sont bien définies. Commençons par $\varphi : \langle g \rangle \to \mathbb{Z}/\operatorname{ord}(g)\mathbb{Z}$ avec $\varphi(g^m) = [m]$. Il faut vérifier que si m et n sont tels que $g^m = g^n$, alors $[m] = \varphi(g^m) = \varphi(g^n) = [n]$. Mais on a $g^{m-n} = 1$ et $\operatorname{ord}(g)$ divise m-n donc [m] = [n].

Vérifions que $\psi: \mathbb{Z}/\operatorname{ord}(g)\mathbb{Z} \to \langle g \rangle$ avec $\psi([m]) = g^m$ est bien définie. Il faut vérifier que si [m] = [n], alors $g^m = g^n$. Mais si [m] = [n], alors $\operatorname{ord}(g)$ divise m - n donc $m - n = \operatorname{dord}(g)$ pour un $d \in \mathbb{Z}$. On a alors $g^{m-n} = g^{\operatorname{dord}(g)} = (g^{\operatorname{ord}(g)})^d = 1^d = 1$. Donc $g^m = g^n$.

Les deux applications φ et ψ sont donc bien définies et inverses l'une de l'autre. Il reste à montrer que φ (ou ψ) est un morphisme de groupes. On a $\varphi(g^m \cdot g^n) = \varphi(g^{m+n}) = [m+n] = [m] + [n] = \varphi(g^m) + \varphi(g^n)$.

Exemple 1.4.4 Un groupe infini peut avoir des éléments d'ordre fini. Ainsi par exemple $-1 \in \mathbb{R}^*$ est d'ordre 2.

Proposition 1.4.5 Si G est un groupe et $g \in G$ est d'ordre infini, alors $\langle g \rangle$ est isomorphe à \mathbb{Z} via $g^m \leftrightarrow m$.

En particulier, il n'existe pas d'entier n non nul tel que $g^n = 1$.

Preuve. Commençons par montrer qu'il n'existe pas d'entier non nul n tel que $g^n=1$. En remplaçant g par g^{-1} , on peut supposer n>0. Montrons que si un tel n existe alors, pour tout $m\in\mathbb{Z}$, on a $g^m=g^r$ avec $r\in[0,n-1]$. Ceci étant impossible (car alors $\langle g\rangle$ est fini de cardinal au plus n), on aura terminé. On fait la division euclidienne de m par n. On a m=qn+r avec $r\in[0,n-1]$. On a donc $g^m=g^{qn+r}=(g^n)^qg^r=1^qg^r=g^r$ ce qu'on voulait démontrer.

Considérons maintenant l'application $\psi : \mathbb{Z} \to \langle g \rangle$ définie par $\psi(m) = g^m$. C'est une application surjective. Montrons qu'elle est injective. Si $\psi(m) = \psi(n)$ avec $m \neq n$, alors $g^m = g^n$ et donc $g^{m-n} = 1$ ce qui est impossible par ce qu'on vient de montrer.

Il reste à vérifier que ψ est un morphisme de groupes. On a $\psi(m+n)=g^{m+n}=g^mg^n=\psi(m)\psi(n)$.

1.5. Noyau et image

Proposition 1.5.1 Soit $\varphi: G \to G'$ un morphisme de groupes et soient $H \subset G$ et $H' \subset G'$ des sous-groupes. On a

- (i) l'image $\varphi(H)$ de H est un sous-groupe de G';
- (ii) l'image réciproque $\varphi^{-1}(H')$ de H' est un sous-groupe de G.

Preuve. 1. On a $1 \in H$ donc $1 = \varphi(1) \in \varphi(H)$. De plus, si $g, h \in H$, alors on a $gh^{-1} \in H$. On a donc $\varphi(g)\varphi(h)^{-1} = \varphi(gh^{-1}) \in \varphi(H)$.

2. On a $\varphi(1) = 1 \in H'$ donc $1 \in \varphi^{-1}(H')$. De plus, si $g, h \in \varphi^{-1}(H')$, alors $\varphi(g), \varphi(h) \in H'$ donc $\varphi(g)\varphi(h)^{-1} \in H'$. On a donc $\varphi(gh^{-1}) = \varphi(g)\varphi(h)^{-1} \in H'$ et $gh^{-1} \in \varphi^{-1}(H')$.

Définition 1.5.2 Soit $\varphi: G \to G'$ un morphisme de groupe, les sous-groupes $\varphi(G) \subset G'$ et $\varphi^{-1}(1) \subset G$ son appelés **image** et **noyau**. On les note $\operatorname{Im}(\varphi)$ et $\operatorname{Ker}(\varphi)$.

- **Exemple 1.5.3** (i) On a $SL_n(\mathbb{R}) = Ker(\det : GL_n(\mathbb{R}) \to \mathbb{R}^*)$. Ainsi $SL_n(\mathbb{R})$ est un sous-grope de $GL_n(\mathbb{R})$. L'image de det est \mathbb{R}^* (det est surjectif).
 - (ii) L'application $|\cdot|: \mathbb{C}^* \to \mathbb{R}^*$, $z \mapsto |z|$ est un morphisme de groupe. Son noyau $\operatorname{Ker}(|\cdot|) = \mathbb{S}^1 = \mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$ est un sous-groupe de \mathbb{C}^* . Son image $\operatorname{Im}(|\cdot|) = \mathbb{R}_+^*$ est un sous-groupe de \mathbb{R}^* .

- (iii) Si n est un entier plus grand que 1, l'application $p_n : \mathbb{C}^* \to \mathbb{C}^*$, $z \mapsto z^n$ est un morphisme de groupes. Son noyau $\operatorname{Ker}(p_n) = \mu_n = \{z \in \mathbb{C}^* \mid z^n = 1\}$ est le sous-groupe des **racines** n-ièmes de l'unité de \mathbb{C}^* . Son image est $\operatorname{Im}(p_n) = \mathbb{C}^*$.
- (iv) La signature $\varepsilon : \mathfrak{S}_n \to \{\pm 1\}$ est un morphisme de groupe surjectif. Son noyau est le sous-groupe alterné $\operatorname{Ker}(\varepsilon) = \mathfrak{A}_n$.

Proposition 1.5.4 Soit $\varphi: G \to G'$ un morphisme de groupes. Alors φ est injectif si et seulement si $Ker(\varphi) = \{1\}.$

Preuve. Si φ est injectif et si $g \in \text{Ker}(\varphi)$, alors $\varphi(g) = 1 = \varphi(1)$ donc g = 1. Réciproquement, supposons que l'on ait l'égalité $\text{Ker}(\varphi) = \{1\}$. Soient $g, h \in G$ tels que $\varphi(g) = \varphi(h)$. Alors $1 = \varphi(g)\varphi(h)^{-1} = \varphi(gh^{-1})$ donc $gh^{-1} \in \text{Ker}(\varphi)$ et $gh^{-1} = 1$. On obtient g = h.

1.6. produit

Proposition 1.6.1 Soit $(G_i)_{i \in [1,n]}$ une famille de groupes. Alors le produit $G_1 \times \cdots \times G_n$ muni de la loi $(g_1, \cdots, g_n)(h_1, \cdots, h_n) = (g_1h_1, \cdots, g_nh_n)$ est un groupe.

Preuve. On a $(1, \dots, 1)(g_1, \dots, g_n) = (g_1, \dots, g_n)(1, \dots, 1) = (g_1, \dots, g_n)$ donc $(1, \dots, 1)$ est l'unité.

On a
$$(g_1, \dots, g_n)((g_1^{-1}, \dots, g_n^{-1}) = (g_1^{-1}, \dots, g_n^{-1})(g_1, \dots, g_n) = (1, \dots, 1)$$
 donc $(g_1^{-1}, \dots, g_n^{-1})$ est l'inverse de (g_1, \dots, g_n)

Enfin, on a les égalités

$$[(g_1, \dots, g_n)(h_1, \dots, h_n)](k_1, \dots, k_n) = (g_1h_1, \dots, g_nh_n)(k_1, \dots, k_n)$$

$$= (g_1h_1k_1, \dots, g_nh_nk_n)$$

$$= (g_1, \dots, g_n)(h_1k_1, \dots, h_nk_n)$$

$$= (g_1, \dots, g_n)[(h_1, \dots, h_n)(k_1, \dots, k_n)],$$

la loi est donc associative.

Définition 1.6.2 Soit $(G_i)_{i \in [1,n]}$ une famille de groupes. La loi de groupe définie sur le produit $G_1 \times \cdots \times G_n$ par $(g_1, \cdots, g_n)(h_1, \cdots, h_n) = (g_1h_1, \cdots, g_nh_n)$ est appelée **loi de groupe produit** et la structure de groupe ainsi définie s'appelle **groupe produit**.

Proposition 1.6.3 Soit $(G_i)_{i \in [1,n]}$ une famille de groupes, on muni le produit $G_1 \times \cdots \times G_n$ de la loi de groupe produit. Alors la projection $p_i : G_1 \times \cdots \times G_n \to G_i$, $(g_1, \dots, g_n) \mapsto g_i$ est un morphisme de groupes.

Preuve. On a

$$p_i((g_1, \dots, g_n)(h_1, \dots, h_n)) = p_i(g_1h_1, \dots, g_nh_n)$$

= g_ih_i
= $p_i(g_1, \dots, g_n)p_i(h_1, \dots, h_n),$

ce qui montre le résultat.

Proposition 1.6.4 (Propriété universelle du produit) Soit $(G_i)_{i \in [1,n]}$ une famille de groupes, on muni le produit $G_1 \times \cdots \times G_n$ de la loi de groupe produit.

Si G est un groupe tel qu'il existe des morphismes de groupes $f_i: G \to G_i$ pour tout $i \in [1, n]$, alors il existe un unique morphisme de groupe $fG \to G_1 \times \cdots \times G_n$ tel que $f_i = p_i \circ f$ pour tout $i \in [1, n]$.

Preuve. Si f existe, alors la condition $f_i = p_i \circ f$ pour tout $i \in [1, n]$ impose que l'on a $f(g) = (f_1(g), \dots, f_n(g))$ donc f est unique. Montrons que c'est un morphisme de groupes. On a

$$f(gh) = (f_1(gh), \dots, f_n(gh))$$

$$= (f_1(g)f_1(h), \dots, f_n(g)f_n(h))$$

$$= (f_1(g), \dots, f_n(g))(f_1(h), \dots, f_n(h))$$

$$= f(g)f(h),$$

ce qui termine la preuve.

1.7. Conjugaison et centre

Définition 1.7.1 Soit G un groupe.

- (i) Soit $g \in G$. On définit l'application $\operatorname{Int}_g : G \to G$ par $\operatorname{Int}_g(h) = ghg^{-1}$. Cette application est appelée **conjugaison par l'élément** g
- (ii) On définit le **centre** de G par

$$Z(G) = \{g \in G \mid hg = gh \text{ pour tout } h \in G \}.$$

Proposition 1.7.2 Soit G un groupe.

- (i) L'application $\operatorname{Int}_q: G \to G$ est un automorphisme du groupe G.
- (ii) L'application $\operatorname{Int}: G \to \operatorname{Aut}(G), g \mapsto \operatorname{Int}_g$ est un morphisme de groupe.
- (iii) Le noyau de Int est Z(G).

Preuve. 1. et 2. On a $\operatorname{Int}_g(hk) = ghkg^{-1} = ghg^{-1}gkg^{-1} = \operatorname{Int}_g(h)\operatorname{Int}_g(k)$ donc Int_g est un morphisme de groupes. Montrons que $\operatorname{Int}_g \circ \operatorname{Int}_h = \operatorname{Int}_{gh}$ c'est-à-dire que Int est un morphisme de groupes. On a

$$\operatorname{Int}_q \circ \operatorname{Int}_h(k) = \operatorname{Int}_q(hkh^{-1}) = ghkh^{-1}g^{-1} = (gh)k(gh)^{-1} = \operatorname{Int}_{qh}(k).$$

En particulier, on a $\operatorname{Int}_g \circ \operatorname{Int}_{g^{-1}} = \operatorname{Int}_{g^{-1}} \circ \operatorname{Int}_g = \operatorname{Int}_1 = \operatorname{Id}_G$ donc Int_g est bijective.

3. Le noyau de Int est l'ensemble des éléments g tels que $\operatorname{Int}_g = \operatorname{Id}_G$ c'est-à-dire l'ensemble des éléments $g \in G$ tels que $ghg^{-1} = h$ pour tout $h \in G$ soit gh = hg pour tout $h \in H$. C'est bien le centre de G.

1.8. Les groupes \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, les groupes monogènes et cycliques

On considèrera que les groupes $(\mathbb{Z}, +)$ et $(\mathbb{Z}/n\mathbb{Z}, +)$ sont connus.

Proposition 1.8.1 Les sous-groupes de \mathbb{Z} sont les sous-ensembles $d\mathbb{Z}$ pour $d \in \mathbb{Z}$.

Preuve. On vérifie aisément que $d\mathbb{Z}$ est bien un sous-groupe de \mathbb{Z} . Réciproquement, soit H un sous-groupe de \mathbb{Z} . Si $H=\{0\}$, alors $H=0\mathbb{Z}$. Sinon, il existe un élément $n\in H$ non nul. Si n<0, l'élément -n est encore dans H donc on peut supposer que H contient au moins un élément strictement positif. Soit alors $d=\min\{m\in H\mid m>0\}$. On montre que $H=d\mathbb{Z}$. Comme $d\in H$ et que H est un groupe, on a $d\mathbb{Z}\subset H$. Soit maintenant $m\in H$. On fait la division euclidienne de m par d. On a m=dq+r avec $r\in [0,d-1]$. Mais $d,m\in H$ donc $r=m-qd\in H$. Par minimalité de d, on doit avoir r=0 donc d divise m et $m\in d\mathbb{Z}$.

La preuve à peu près évidente de la proposition suivante est laissée au lecteur.

Proposition 1.8.2 Le groupe \mathbb{Z} est engendré par l'élément $1 : \mathbb{Z} = \langle 1 \rangle$. Le groupe $d\mathbb{Z}$ est engendré par l'élément $d : d\mathbb{Z} = \langle d \rangle$.

Corollaire 1.8.3 Les groupes \mathbb{Z} et $d\mathbb{Z}$ sont monogènes non cycliques.

Lemme 1.8.4 L'application $\pi_n : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, m \mapsto [m]$, où [m] désigne la classe de m modulo n, est un morphisme de groupes surjectif.

Preuve. Le fait que π_n est surjectif provient du fait tous les éléments de $\mathbb{Z}/n\mathbb{Z}$ représentent les classes modulo n des éléments de \mathbb{Z} . Le fait que π_n est un morphisme de groupe provient de la définition de l'addition dans $\mathbb{Z}/n\mathbb{Z}$: $\pi_n(x+y) = [x+y] = [x] + [y] = \pi_n(x) + \pi_n(y)$.

Notons $d\mathbb{Z}/n\mathbb{Z}$ le sous ensemble de $\mathbb{Z}/n\mathbb{Z}$ obtenu comme image par π_n de $d\mathbb{Z}$:

$$d\mathbb{Z}/n\mathbb{Z} = \pi_n(d\mathbb{Z}) = \left\{ [m] \in \mathbb{Z}/n\mathbb{Z} \mid m \in d\mathbb{Z} \right\} = \left\{ [m] \in \mathbb{Z}/n\mathbb{Z} \mid d \text{ divise } m \right\}.$$

Proposition 1.8.5 Soit n un entier non nul.

- (i) Les sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ sont les $d\mathbb{Z}/n\mathbb{Z}$ pour d un diviseur de n.
- (ii) Si d divise n, le sous-groupe $d\mathbb{Z}/n\mathbb{Z}$ est d'ordre $\frac{n}{d}$ et est engendré par [d].

Preuve. 1. Comme $d\mathbb{Z}$ est un sous-groupe de \mathbb{Z} , son image est un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$. Soit maintenant $H \subset \mathbb{Z}/n\mathbb{Z}$ un sous-groupe. Alors $\pi_n^{-1}(H)$ est un sous-groupe de \mathbb{Z} donc $\pi_n^{-1}(H) = d\mathbb{Z}$ pour un certain entier d. De plus, $n\mathbb{Z} = \pi_n^{-1}(\{0\}) \subset \pi_n^{-1}(H) = d\mathbb{Z}$ donc $n \in d\mathbb{Z}$ donc d divise n. Comme pi_n est surjectif, on obtient que $H = \pi_n(\pi_n^{-1}(H)) = \pi_n(d\mathbb{Z}) = d\mathbb{Z}/n\mathbb{Z}$ avec d un diviseur de n.

2. Soit $H = \pi_n(d\mathbb{Z}) = d\mathbb{Z}/n\mathbb{Z}$ avec d un diviseur de n. Comme $d\mathbb{Z}$ est engendré par d, son image $\pi_n(d\mathbb{Z})$ est engendré par $\pi_n(d) = [d]$ donc H est engendré par [d]. Écrivons n = kd. On a

$$\langle [d] \rangle = \{ m[d] \mid m \in \mathbb{Z} \} = \{ [0], [d], [2d], \cdots, [(k-1)d] \}$$

donc $d\mathbb{Z}/n\mathbb{Z}$ est d'ordre $k = \frac{n}{d}$.

Une autre formulation de la proposition précédente est la suivante.

Corollaire 1.8.6 Pour chaque diviseur d de n, il existe un unique sous-groupe d'ordre d de $\mathbb{Z}/n\mathbb{Z}$: le sous-groupe $\langle \left[\frac{n}{d}\right] \rangle$ engendré par $\left[\frac{n}{d}\right]$

Proposition 1.8.7 Soit $[m] \in \mathbb{Z}/n\mathbb{Z}$.

- (i) Alors $\operatorname{ord}(m) = \frac{n}{\operatorname{pgcd}(m,n)}$.
- (ii) En particulier, on a les équivalences

$$m$$
 est premier avec $n \Leftrightarrow [m]$ est un générateur de $\mathbb{Z}/n\mathbb{Z}$
 $\Leftrightarrow \langle [m] \rangle = \mathbb{Z}/n\mathbb{Z}.$

Preuve. 1. Posons $d = \operatorname{pgcd}(m, n)$. Il existe des entiers a et b tels que m = ad et n = bd avec $\operatorname{pgcd}(a, b) = 1$.

Rappelons que ord $(m) = \min\{k \in \mathbb{N}^* \mid k[m] = [0]\}$. On a donc ord $(m) = \min\{k \in \mathbb{N}^* \mid km \text{ est divisible par } n\}$. Montrons que ce minimum doit être $\frac{n}{\operatorname{pgcd}(m,n)} = \frac{n}{d} = b$.

Soit k tel que k[m] = [0]. Alors il existe un entier r tel que km = rn. On obtient kad = rbd et donc ka = rb. On obtient que b divise ka et comme a et b sont premiers entre eux, on a que b divise k.

Réciproquement, montrons que b[m] = [0]. On a $b[m] = \left[\frac{mn}{d}\right]$ et comme $m/d = a \in \mathbb{Z}$, on obtient $b[m] = \left[\frac{mn}{d}\right] = [an] = [0]$. Ainsi $b = \min\{k \in \mathbb{N}^* \mid k[m] = [0]\} = \operatorname{ord}([m])$.

2. Découle directement de 1.

Exemple 1.8.8 Dans $\mathbb{Z}/6\mathbb{Z}$ les ordres des éléments sont les suivants

Définition 1.8.9 Soit G un groupe.

- (i) Le groupe G est dit **monogène** s'il existe un élément $g \in G$ tel que $G = \langle g \rangle$.
- (ii) Le groupe G est dit **cyclique** s'il est monogène et fini.

Proposition 1.8.10 Soit G un groupe monogène.

- (i) Si G est infini, alors $G \simeq \mathbb{Z}$.
- (ii) Si G est cyclique d'ordre n, alors $G \simeq \mathbb{Z}/n\mathbb{Z}$.

Preuve. Soit g un générateur du groupe c'est-à-dire un élément $g \in G$ tel que $G = \langle g \rangle$. Considérons l'application $\varphi : \mathbb{Z} \to G, \ m \mapsto g^m$.

- 1. Si $G = \langle g \rangle$ est infini, alors on a vu que φ est un ismorphisme.
- 2. Si $G = \langle g \rangle$ est fini d'ordre n, alors on a vu que $G = \langle g \rangle \simeq \mathbb{Z}/\mathrm{ord}(g)\mathbb{Z} = \mathbb{Z}/n\mathbb{Z}$.

2. Quotient par un sous-groupe, groupe quotient

2.1. Relations d'équivalence

Nous rappelons la notion de relation d'équivalence et la partition qui est découle.

Définition 2.1.1 Soit E un ensemble.

- (i) Une **relation** est une sous-partie R du produit $E \times E$ c'est-à-dire : $R \subset E \times E$.
- (ii) Si $(x,y) \in R$, on dit que x est en relation avec y, on le note xRy.
- (iii) Une relation est dite **réflexive** si tout lément est en relation avec lui-même, c'est-à-dire si xRx est vrai pour tout $x \in E$.
- (iv) Une relation est dite **symétrique** si on a l'implication $(xRy \Rightarrow yRx)$ pour toute paire $(x,y) \in E^2$.
- (v) Une relation est dite **antisymétrique** si on a $(xRy \text{ et } yRx \Rightarrow x = y)$ pour toute paire $(x, y) \in E^2$.
- (vi) Une relation est dite **transitive** si on a l'implication $(xRy \text{ et } yRz \Rightarrow xRz)$ pour tout triplet $(x, y, z) \in E^3$.
- (vii) Une relation est appelée **relation d'équivalence** si elle est reflexive, symétrique et transitive.
- (viii) Une relation est appelée **relation d'ordre** si elle est reflexive, antisymétrique et transitive.

Exemple 2.1.2 Soit E un ensemble.

- (i) La relation d'égalité est une relation d'équivalence.
- (ii) Si $E = \mathbb{Z}$ et $n \in \mathbb{Z}$ est un entier, la relation de congruence modulo $n : (\equiv \pmod{n})$ est une relation d'équivalence.
- (iii) Si $E = \mathbb{Z}$, alors la relation \leq est une relation d'ordre sur E. De même, la relation \geq est une relation d'ordre sur E.

Définition 2.1.3 Soit E un ensemble, soit $x \in E$ et soit R une relation d'équivalence sur E. La classe d'équivalence de x pour la relation R, notée $[x]_R$ ou [x] lorsque la relation R est claire est définie par

$$[x]_R = \{ y \in E \mid xRy \}.$$

L'ensemble des classes d'équivalence pour la relation R est noté E/R.

Lemme 2.1.4 Soit E un ensemble, soit R une relation d'équivalence sur E et soient $x, y \in E$. Alors les classes déquivalence [x] et [y] de x et y pour la relation R sont soit égales : [x] = [y], soit disjointes : $[x] \cap [y] = \emptyset$.

Preuve. Soient x et y des élements de E. Nous devons montrer que l'alternative suivante est vraie : soit on a [x] = [y], soit on a $[x] \cap [y] = \emptyset$. Supposons que $[x] \cap [y] \neq \emptyset$. Alors il existe $z \in [x] \cap [y]$. On a donc xRz et yRz. Par symétrie, on a xRz et zRy et par transitivité on obtient xRy (et yRx par symétrie).

Soit maintenant $t \in [x]$. Alors on a xRt et yRx. On a donc (transitivité) yRt et $t \in [y]$. On a donc $[x] \subset [y]$. On procède pour obtenir $[y] \subset [x]$ et donc [x] = [y].

Définition 2.1.5 Soit E un ensemble et $(E_i)_{i\in I}$ une famille de sous-ensembles de E. On dit que cette famille forme une **partition** de E si les propriétés suivantes sont satisfaites :

- (i) on a $E_i \cap E_j = \emptyset$ pour $i \neq j$;
- (ii) on a $E = \bigcup_{i \in I} E_i$.

Proposition 2.1.6 Soit E un ensemble et R une relation d'équivalence sur E. Alors les classes déquivalence pour la relation R forment une partition de E.

Preuve. Le lemme précédent montre que la première condition pour avoir une partition est satisfaite. Montrons maintenant que les classes d'équivalence recouvrent E.

Soit E/R l'ensemble des classes d'équivalence. On a clairement l'inclusion $\bigcup_{[x]\in E/R}[x] \subset E$. Réciproquement, soit $x \in E$, alors par réflexivité, on a xRx et donc $x \in [x]$ d'où l'inclusion $E \subset \bigcup_{[x]\in E/R}[x]$.

Exemple 2.1.7 Si $E = \mathbb{Z}$ et R est la relation de congruence modulo un entier n. Alors les classes d'équivalence pour la relation R sont les ensembles

$$[m] = \{ m + kn \in \mathbb{Z} \mid k \in \mathbb{Z} \}.$$

L'ensemble des classes d'équivalences est $\mathbb{Z}/n\mathbb{Z}$.

Définition 2.1.8 Soit E un ensemble et R une relation d'équivalence sur E. L'application $\pi_R: E \to E/R$ définie par $\pi_R(x) = [x]_R$ est appelée **projection canonique**.

Exemple 2.1.9 Si $E = \mathbb{Z}$ et R est la relation de congruence modulo un entier n. Alors la projection canonique est l'application $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, m \mapsto [m]$.

2.2. Classes à droite et à gauche

Définition 2.2.1 Soit G un groupe et H un sous-groupe. On définit la relation de congruence (à droite) modulo H par $x \sim y \Leftrightarrow y^{-1}x \in H$.

Lemme 2.2.2 Soit G un groupe et H un sous-groupe.

- (i) La relation de congruence (à droite) modulo H est une relation d'équivalence.
- (ii) La classe d'équivalence de g est $gH = \{gh \in G \mid h \in H\}$.
- (iii) On a $x \sim y \Leftrightarrow x \in yH$.

Preuve. 1. On a $x^{-1}x = e \in H$ donc $x \sim x$ et la relation est reflexive. Si $x \sim y$ alors $y^{-1}x \in H$ et donc son inverse est dans H aussi : $x^{-1}y = (y^{-1}x)^{-1} \in H$ donc $y \sim x$, la relation est symétrique. Enfin, si $x \sim y$ et $y \sim z$, alors $y^{-1}x \in H$ et $z^{-1}y \in H$ donc le produit est dans $H: z^{-1}x = z^{-1}yy^{-1}x \in H$ donc $x \sim z$, la relation est transitive.

2. Soit [g] la classe d'équivalence de g. Soit $g' \in [g]$, alors $(g')^{-1}g \in H$ donc il existe $h \in H$ tel que $(g')^{-1}g = h$ et g'h = g donc $g' = gh^{-1} \in gH$. Réciproquement, si $g' \in gH$, alors il existe $h \in H$ tel que g' = gh et donc $(g')^{-1}g = h^{-1} \in H$ donc $g \sim g'$ et $g' \in [g]$.

Définition 2.2.3 Soit G un groupe et H un sous-groupe.

- (i) Les classes d'équivalence pour la relation de congruence (à droite) modulo H sont appelées classes à gauche suivant H.
- (ii) L'ensemble des classes à gauche est noté G/H.
- (iii) La projection canonique est notée π_H ou $\pi: G \to G/H$.

Remarque 2.2.4 Soit G un groupe et H un sous-groupe. On peut définir la relation de congruence (à gauche) modulo H par $g \approx h \Leftrightarrow gh^{-1} \in H$. On a alors :

- (i) La relation \approx est une relation d'équivalence.
- (ii) Les classes d'équivalence de la relation \approx sont appelées les classes à droite et sont de la forme $Hg = \{hg \in G \mid h \in H\}$.
- (iii) L'ensemble des classes d'équivalence est noté $H\backslash G$.
- (iv) La projection canonique est $\pi: G \to G \backslash H$.

Lemme 2.2.5 Soit G un groupe et H un sous-groupe.

- (i) Alors toutes les classes d'équivalence $qH \in G/H$ sont en bijection avec H.
- (ii) En particulier, si H est fini, on a |gH| = |H|.

Preuve. 2. Découle de 1. Pour 1., on a la bijection $H \to gH$, $h \mapsto gh$ de bijection réciproque $x \mapsto g^{-1}x$.

Corollaire 2.2.6 (Théorème de Lagrange) Soit G un groupe fini et H un sous-groupe.

- (i) On a l'égalité $[G] = |H| \cdot |G/H|$.
- (ii) En particulier, l'ordre de H divise celui de G.

Preuve. 2. Découle de 1. Pour 1., on rappelle que l'on a une partition

$$G = \coprod_{gH \in G/H} gH.$$

Mais pour tout g, on a |gH| = |H| donc on obtient

$$|G| = \sum_{gH \in G/H} |gH| = \sum_{gH \in G/H} |H| = |H| \sum_{gH \in G/H} 1 = |H| \cdot |G/H|$$

ce qui démontre le résultat.