MA202N – Contenu du cours

1	Forr	ormules de Taylor et développements limités				
	1	Préliminaires				
		1.1	But	3		
		1.2	Notations $o(x)$	3		
	2	Dévelo	oppements limités et formules de Taylor	4		
		2.1	Généralités	4		
		2.2	Formule de Taylor avec reste intégral	5		

1

Formules de Taylor et développements limités

Plan du chapitre

· · · · · · · · · · · · · · · · · · ·							
1	Prélim	inaires					
	1.1	But					
	1.2	Notations $o(x)$					
2	Dévelo	ppements limités et formules de Taylor					
	2.1	Généralités					
		2.1.1 Unicité, parité					
	2.2	Formule de Taylor avec reste intégral					

1 – Préliminaires

1.1 But

L'intérêt des formules de Taylor (parfois abrégées FT) et des développements limités (DL) est multiple. Le principe consiste à approcher des fonctions "compliquées" par des polynômes, en écrivant

$$f(x) = P(x) + \text{erreur.}$$

Cela permet par exemple de :

- simplifier certains calculs
- trouver des limites, lever des formes indéterminées
- connaitre le comportement local de certaines fonctions
- etc.

1.2 Notations o(x)

Définition. Soient a un réel, f et g deux fonctions définies sur un intervalle ouvert I contenant a. On considèrera aussi le cas où l'on se trouve en $+\infty$ ou $-\infty$, et dans ce cas on demande que I ait pour borne $\pm\infty$. On dit que la fonction f est négligeable devant la fonction g en x_0 (avec x_0 valant a ou $+\infty$ ou $-\infty$) s'il existe :

- un voisinage V de x_0 (si $x_0 = a$ on aura V du type $V =]a \eta; a + \eta[$ avec $\eta > 0$, si $x_0 = -\infty$ on aura $V =]-\infty; M[$ avec $M \in \mathbb{R}$ et si $x_0 = +\infty$ on aura $V =]M; +\infty[$ avec $M \in \mathbb{R}$)
- une fonction ε définie sur V et telle que :
 - $-\lim_{x\to x_0}\varepsilon(x)=0$
 - $f(x) = \varepsilon(x)g(x), \forall x \in V$

On note alors f(x) = o(g(x)), qui se lit "f(x) est un petit o de g(x)" (au voisinage de x_0).

Remarque. Avec les mêmes notations, on suppose que la fonction g ne s'annule pas pour $x \neq x_0$. Alors f est négligeable devant g au voisinage de x_0 si et seulement si le quotient f/g tend vers 0:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

Exemple. $-\ln(x) = o(\frac{1}{x})$ au voisinage de 0

- $-x^2 = o(e^x)$ au voisinage $de + \infty$
- $-\sqrt{x} = o(1)$ au voisinage de 0.

2 - Développements limités et formules de Taylor

2.1 Généralités

Définition. Soient I un intervalle ouvert, a un point de I et n un entier. On dit que f admet un développement limité d'ordre n en a lorsqu'il existe un polynôme P_n de degré au plus n tel que le reste $f(x) - P_n(x)$ soit négligeable devant $(x - a)^n$.

$$R_n(x) = f(x) - P_n(x) = o((x-a)^n)$$
.

Le polynome P_n s'écrit par exemple :

$$P_n(x) = b_0 + b_1(x - a) + b_2(x - a)^2 + \dots + b_n(x - a)^n$$

où les b_i sont des coefficients réels. On écrira ainsi :

$$f(x) = b_0 + b_1(x - a) + b_2(x - a)^2 + \dots + b_n(x - a)^n + o((x - a)^n)$$

Remarque. On peut noter que l'équation de la tangente en a, bien connue depuis le lycée, est justement le développement limité à l'ordre 1. Dans ce cas on a même une expression plus précise des coefficients b_0 et b_1 :

$$f(x) = f(a) + f'(a)(x - a) + o(x - a)$$

On verra que les formules de Taylor et les développements limités permettent de généraliser cette formule aux ordres supérieurs.

Nous nous ramènerons toujours à des développements limités au voisinage de 0, grâce à l'observation suivante.

Proposition. Soit I un intervalle ouvert de \mathbb{R} , a un point de I et n un entier. Soit f une fonction définie sur I. Soit g la fonction qui à h associe g(h) = f(a+h). La fonction f admet un développement limité d'ordre n en a, si et seulement si g admet un développement limité d'ordre n en 0.

$$f(x) = P_n(x) + o((x-a)^n) \iff g(h) = f(a+h) = P_n(a+h) + o(h^n)$$
.

Remarque. Si l'on souhaite faire un développement limité au voisinage de l'infini (appelé parfois développement asymptotique), on cherchera à écrire f sous la forme

$$f(x) = b_0 + \frac{b_1}{x} + \frac{b_2}{x^2} + \ldots + \frac{b_n}{x^n} + o\left(\frac{1}{x^n}\right)$$

On se ramènera là aussi en zéro en posant $h = \frac{1}{x}$.

2.1.1 Unicité, parité

Un développement limité, s'il existe, est unique au sens suivant.

Proposition. Soient I un intervalle ouvert contenant 0, et n un entier. Soit f une fonction définie sur I. Supposons qu'il existe deux polynômes P_n et Q_n de degré au plus n tels que au voisinage de 0:

$$f(x) = P_n(x) + o(x^n)$$
 et $f(x) = Q_n(x) + o(x^n)$.

Alors $P_n = Q_n$.

Proposition. Grâce aux formules de Taylor qui suivent, on démontre que si f est de classe C^n (n fois dérivable, et dérivée n-ème continue) au voisinage de x_0 , alors f admet un développement limité (DL) à l'ordre n.

Grâce à l'unicité du DL, on peut montrer le résultat suivant :

Proposition. Soit f une fonction admettant un DL en zéro. On a les résultats suivants :

— Si f est paire, alors son développement limité ne comporte que les termes de degré pair :

$$f(x) = b_0 + b_2 x^2 + b_4 x^4 \dots + b_{2n} x^{2n} + o(x^{2n})$$

— Si f est impaire, alors son développement limité ne comporte que les termes de degré impair :

$$f(x) = b_1 x + b_3 x^3 + b_5 x^5 \dots + b_{2n+1} x^{2n+1} + o(x^{2n+1})$$

Démonstration. La preuve est laissée en exercice. Elle repose sur les définitions de la parité (f(-x) = f(x)) et de l'imparité (f(-x) = -f(x)), combinées avec l'unicité du développement limité.

2.2 Formule de Taylor avec reste intégral

Théorème. Soit n un entier et f une fonction de classe C^{n+1} sur un intervalle I et a, x deux réels de I, alors :

$$f(x) = f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n + \int_a^x \frac{(x - t)^n}{n!} f^{(n+1)}(t) dt.$$

Démonstration. Par récurrence.

Pour n = 0, la formule est le théorème fondamental de l'Analyse :

$$f(x) = f(a) + \int_a^x f'(t) dt.$$

Supposons la formule vraie au rang n-1, avec $n \ge 1$. Pour la prouver au rang n, posons :

$$I_n = \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt ,$$

et intégrons par parties en posant

$$u'(t) = \frac{(x-t)^{n-1}}{(n-1)!}, \quad u(x) = -\frac{(x-t)^n}{n!}$$

$$v(t) = f^{(n)}(t), \quad v'(t) = f^{(n+1)}(t)$$

ce qui donne

$$I_n = \left[-\frac{(x-t)^n}{n!} f^{(n)}(t) \right]_a^x - \int_a^x -\frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
$$I_n = -\frac{(x-a)^n}{n!} f^{(n)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

 $ce\ qui\ permet\ d'obtenir\ la\ formule\ au\ rang\ n\ et\ qui\ conclut\ la\ preuve.$