Feuille 2, Algèbre commutative

N. Perrin

À rendre le 05.02.2018 Correction le 06.02.2018

Exercice 1 (20 Points) Soit $x \in A$ nilpotent et $y \in A$ inversible. Montrer que x + y est inversible.

Exercice 2 (20 + 2 \times 10 = 40 Points) Soit A un anneau, on considère A[X] l'anneau des polynomes à coefficients dans A. Soit

$$P = a_0 + a_1 X + \dots + a_n X^n \in A[X].$$

Montrer que

- 1. P est inversible $\Leftrightarrow a_0$ est inversible et a_i est nilpotent pour i > 0.
- 2. P est nilpotent $\Leftrightarrow a_i$ est nilpotent pour tout $i \geq 0$.
- 3. P est diviseur de zéro \Leftrightarrow il existe $b \in A$, $b \neq 0$ avec bP = 0.

Exercice 3 ($2 \times 10 = 20$ Points) Soit A un anneau.

- 1. Montrer que $\mathfrak{n}(A) = \{x \in A \mid x \text{ nilpotent}\}$ est un idéal et que le quotient $A/\mathfrak{n}(A)$ n'a pas d'élément nilpotent.
 - 2. Montrer l'équivalence :
- (a) A a un unique idéal premier.
- (b) un élément $x \in A$ est soit inversible soit nilpotent.
- (c) $A/\mathfrak{n}(A)$ est un corps.

Exercice 4 ($2 \times 10 = 20$ Points) Soit A un anneau et soit

 $\Sigma = \{ \mathfrak{a} \subset A \mid \mathfrak{a} \text{ est un idéal dont tous les éléments sont des diviseurs de zéro} \}.$

- 1. Montrer que Σ a un élément maximal.
- 2. Montrer que les éléments maximaux de Σ sont des idéaux premiers et que l'ensemble $\{x\in A\mid x$ diviseur de zéro $\}$ est une union d'idéaux premiers..