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Introduction

Let F be a nonarchimedean locally compact field with residue characteristic denoted p, let G be
a connected reductive group defined over F and let R be an algebraically closed field. We write
G for the group of F -points of G and RR(G) for the category of all smooth representations of
G on R-vector spaces. From a representation theoretic point of view, it is natural to study the
structure of this category. In the 1980’s, Bernstein [2] proved the following result when R is the
field C of complex numbers.

Theorem. The category RC(G) decomposes into a product of indecomposable summands, called
blocks.

The purpose of these notes is to prove this theorem in the case where G is GLn for n ≥ 1.
We will define the notion of inertial class for the group GLn(F ) and attach to each irreducible
smooth representation of GLn(F ) an inertial class. To each inertial class Ω we then attach a full
subcategory of RC(GLn(F )), denoted RC(Ω), made of the representations of GLn(F ) all of whose
irreducible subquotients have inertial class Ω. We then prove that RC(GLn(F )) decomposes into
the product of all the RC(Ω)’s (see Theorem 3.7). We do not prove that these subcategories are
indecomposable, nor investigate their precise structure. The main references are [3, 19, 20].

In the last section, we say a few words about the case where R is an algebraic closure Fl of
a finite field of characteristic a prime number l.

We thank the referee for his/her remarks, which helped us to improve the clarity of these
notes.

Preliminaries

All representations of topological groups that we will consider in these notes will be supposed to
be smooth representations on R-vector spaces. Moreover, apart from Section 4, R will be the field
of complex numbers. For definitions and basic facts about the theory of smooth representations
of locally profinite groups, we will refer to Blondel’s notes in the present volume.



1 Compact representations

For a locally profinite group with centre Z, Blondel has introduced the notion of Z-compact
representation, that is a smooth representation all of whose coefficients are compactly supported
modulo Z. In order to avoid the centre Z, which will be a source of trouble for our purpose, we
will consider compact representations (see Definition 1.1 below) on groups with compact centre.
Of course, GLn(F ) has centre isomorphic to F×, which is not compact. We will see in Section
2 how to deal with this.

1.1 The decomposition theorem

From now on, and until the end of Section 1, H will denote a locally profinite, unimodular group
with compact centre. We assume that, for any compact open subgroup K of H, the set H/K is
countable. Then Schur’s lemma holds (Blondel, Lemma 3.22).

We choose once and for all a Haar measure dh on H and write H(H) for the Hecke algebra
of H with respect to this Haar measure (Blondel, §2.3).

We remind the reader that a coefficient of a smooth representation (π, V ) of H is a function
from H to C of the form:

cv,ξ : h 7→ ξ(π(h)v)

for some v ∈ V and ξ ∈ Ṽ , where Ṽ denotes the space of smooth linear forms on V . This defines
a map, denoted c, from V ⊗ Ṽ to the space of smooth complex functions on H.

Definition 1.1. A compact representation of H is a smooth representation of H all of whose
coefficients are compactly supported.

The space generated by all the coefficients of a smooth representation (π, V ) is denoted by
C(π). Thus (π, V ) is compact if and only if C(π) is a subspace of H(H).

We have the following important property (Blondel, Corollary 3.26).

Proposition 1.2. Any irreducible smooth compact representation of H is admissible.

Compact representations are of interest to us because of the following theorem.

Theorem 1.3. Let (τ,W ) be an irreducible compact representation of H. Given any smooth
representation (π, V ) of H, there is a unique pair (V τ , Vτ ) of subspaces of V such that:

1. V τ and Vτ are stable by H, and V = V τ ⊕ Vτ ;

2. V τ is a direct sum of copies of (τ,W );

3. no irreducible subquotient of Vτ is isomorphic to (τ,W ).

Our first goal is to prove this theorem.
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1.2 Formal degree of an irreducible compact representation

The Hecke algebra H(H) is equipped with an action of H ×H by:

(h, h′) · f : x 7→ f(h−1xh′), f ∈ H(H), h, h′, x ∈ H. (1)

This makes H(H) into a smooth representation of H×H. Given (π, V ) a smooth representation
of H, we can do the same for the endomorphism algebra EndC(V ) by setting:

(h, h′) · φ : v 7→ π(h)φ(π(h′−1)v), φ ∈ EndC(V ), h, h′ ∈ H, v ∈ V,

but EndC(V ) as a representation of H ×H is not smooth in general. When (π, V ) is irreducible
and admissible, one can compute the smooth part EndC(V )∞ of EndC(V ).

Lemma 1.4. Let (π, V ) be an admissible irreducible smooth representation of H. The linear
map:

α : V ⊗ Ṽ → EndC(V )∞ ⊆ EndC(V )

defined by:
α(w ⊗ ξ) : v 7→ ξ(v)w, w, v ∈ V, ξ ∈ Ṽ ,

is an isomorphism of representations of H ×H.

Proof. The map α is clearly injective and H×H-equivariant. We are going to prove surjectivity
by “approximations”. This means that we will prove that, for any compact open subgroup K
of H, the map:

αK : (V ⊗ Ṽ )K×K → EndC(V )K×K

obtained by restricting α is surjective. Since (π, V ) is smooth, and since EndC(V )∞ is the union
of all EndC(V )K×K when K varies, the lemma will follow.

Since (π, V ) is admissible, the space V K is finite-dimentional. The space V K ⊗ Ṽ K embeds
naturally in (V ⊗ Ṽ )K×K , and the canonical pairing V K ⊗ Ṽ K → R identifies Ṽ K with the dual
of V K . We thus have:

dim(V ⊗ Ṽ )K×K ≥ dim(V K ⊗ Ṽ K) = (dimV K)2.

Given φ ∈ EndC(V ), we have φ ∈ EndC(V )K×K if and only if:

φ(π(k)w) = π(k′)φ(w), k, k′ ∈ K, w ∈ V.

As K is compact, V decomposes into the direct sum V K ⊕ V (K) of K-stable subspaces, where
V (K) is the subspace generated by the vectors of the form π(k)w − w for k ∈ K and w ∈ V
(Blondel, §2.7). Thus any φ ∈ EndC(V )K×K induces an endomorphism φK of V K , and the map
φ 7→ φK is injective because the restriction of φ to V (K) is zero. Thus we have:

dim EndC(V )K×K ≤ dim EndC(V K) = (dimV K)2

which ends the proof of the lemma.
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Now let (τ,W ) be a compact irreducible representation. By Proposition 1.2, it is admissible,
thus Lemma 1.4 applies. Given f ∈ H(H), write τ(f) for the endomorphism of W defined by:

τ(f)(w) =
∫
H

f(h)τ(h)w dh, w ∈W,

where dh is the Haar measure on H that we have chosen when we defined H(H). Let us consider
the H ×H-equivariant linear map:

H(H) → EndC(W )∞

f 7→ τ(f)

which we still denote τ . The map c from W ⊗ W̃ to H(H) associated with the representation
(τ,W ) is not H ×H-equivariant. We introduce a map c′ from W ⊗ W̃ to H(H) defined by:

c′w,ξ : h 7→ cw,ξ(h−1), w ∈W, ξ ∈ W̃ , h ∈ H.

Then c′ is H ×H-equivariant and we have the following diagram:

W ⊗ W̃
c′ //

α
&&NNNNNNNNNNN
H(H)

τ

��
EndC(W )∞

where all the maps are H ×H-equivariant, thus γ = τ ◦ c′ ◦ α−1 is an H ×H-endomorphism of
EndC(W )∞. As EndC(W )∞ is an irreducible representation of H ×H, Schur’s lemma implies
that γ is a scalar, denoted d(τ) and called the formal degree of (τ,W ).

Remark 1.5. 1. The scalar d(τ) depends on the choice of the Haar measure chosen on H,
but it is of no importance for our purpose.

2. When H has finite order and the measure gives measure 1 to H, any irreducible represen-
tation (τ,W ) is compact and d(τ) = dimC(W )−1.

The only thing we will need to know about the formal degree is the following property.

Proposition 1.6. We have d(τ) 6= 0.

Proof. For this, we will need the following lemma. For a proof, see for instance [19] or [3].

Lemma 1.7. Let f ∈ H(H) be nonzero. There is an irreducible representation (π, V ) of H such
that π(f) 6= 0.

We apply this lemma as follows. Let f ∈ C(τ) ⊆ H(H) be nonzero. The lemma gives us an
irreducible representation (π, V ) of H such that π(f) 6= 0. We are going to prove that this π is
isomorphic to τ . Indeed, fix a vector v ∈ V and define the map:

λ : W ⊗ W̃ → V
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given by λ(w⊗ ξ) = π(c′w,ξ)(v) for all w ∈W , ξ ∈ W̃ . We make H act on the W -factor (that is,
W̃ is just a multiplicity space and W ⊗ W̃ is a direct sum of copies of W ). As V is irreducible
and λ is linear and H-equivariant, λ is either zero or surjective. If λ is zero for all v ∈ V , then
the restriction of π to C(τ) is zero. In particular, we have π(f) = 0: contradiction. Thus there
is a v ∈ V such that λ is surjective. As W ⊗ W̃ is a direct sum of copies of W , so is V , thus V
and W are isomorphic.

We thus have τ(f) 6= 0. But f ∈ C(τ) has the form f = c′ ◦α−1(φ) for some φ ∈ EndC(W )∞.
Thus:

0 6= τ(f) = d(τ) · φ.

This ends the proof of Proposition 1.6.

1.3 Proof of Theorem 1.3

Given a smooth representation (π, V ) of H, we have to attach two subspaces V τ and Vτ to it,
satisfying the properties of Theorem 1.3.

When H is compact, (π, V ) is semisimple. Thus the space V τ is the τ -isotypic component of
V and Vτ is the unique complement of V τ in V . Moreover, there is an idempotent eτ ∈ H(H)
such that π(eτ )V = V τ and π(1− eτ )V = Vτ .

When H is not compact, such an idempotent eτ does not always exists in the Hecke algebra
H(H). We proceed by approximations: given K a compact open subgroup of H, we will define
an idempotent eτK ∈ H(H) with good properties, and then define V τ and Vτ by passing to the
limit K → {1}.

Given K a compact open subgroup of H, write 1K for the characteristic function of K on H
and meas(K) for the measure of K given by the Haar measure on H that has been chosen.

Proposition 1.8. Let K be a compact open subgroup of H, and write:

eK =
1K

meas(K)
∈ H(H)

for the idempotent associated with it. There is a unique eτK ∈ H(H) such that, for any irreducible
smooth representation (σ,E) of H, one has:

σ(eτK) =
{
τ(eK) if σ and τ are isomorphic,

0 otherwise.

Proof. Unicity follows from Lemma 1.7. For the existence, set:

eτK =
1

d(τ)
· c′ ◦ α−1 ◦ τ(eK), (2)

which is well defined by Proposition 1.6. By definition of the formal degree, it satisfies τ(eτK) =
τ(eK). Moreover, the proof of Proposition 1.6 shows that the image of C(τ) by σ is zero for all
σ nonisomorphic to τ , thus σ(eτK) = 0.

Proposition 1.9. Write ∗ for the convolution product in H(H). We have the following prop-
erties.
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1. Assume K ⊇ K ′ are compact open subgroups of H. Then:

eτK′ ∗ eτK = eK ∗ eτK′ = eτK′ ∗ eK = eτK .

2. For all h ∈ H, one has (h, h) · eτK = eτhKh−1 (see (1) for the notation).

Proof. We prove that eτK′ ∗ eτK = eτK . By Lemma 1.7, it suffices to prove σ(eτK′ ∗ eτK) = σ(eτK)
for all irreducible representation (σ,E) of H. We have:

σ(eτK′ ∗ eτK) = σ(eτK′)σ(eτK).

If σ is not isomorphic to τ , this is zero as well as σ(eτK). If σ is isomorphic to τ , we get:

σ(eτK′ ∗ eτK) = τ(eK′)τ(eK) = τ(eK) = σ(eτK).

The other equalities follow by using a similar proof.

In particular, Property 1 implies that eτK is an idempotent in H(H). Define:

V τ =
∑
K

Im π(eτK), Vτ =
⋂
K

Ker π(eτK),

where the sum and the intersection are taken over all compact open subgroups K of H. We now
prove Theorem 1.3. We first check that the subspaces V τ and Vτ are H-stable. Given v ∈ Vτ ,
one has π(eτK)v = 0 for all compact open subgroups K of H. For g ∈ H, one has:

π(eτK)π(g)v = π(g)π(eτg−1Kg)v = 0.

Given v ∈ V τ , there is a compact open subgroup K of H and w ∈ V such that v = π(eτK)w.
Thus:

π(g)v = π(eτgKg−1)π(g)w ∈ Im π(eτgKg−1) ⊆ V τ .

We now check that V decomposes into the direct sum of V τ and Vτ . Given v ∈ V τ ∩ Vτ , we
have v = π(eτK)w for some K and w ∈ V . Then:

0 = π(eτK)v = π(eτK)π(eτK)w = π(eτK)w = v.

Now let v ∈ V . As V is smooth, there is a compact open subgroup K of H such that v ∈ V K =
π(eK)V , that is π(eK)v = v. Now set v1 = π(eτK)v ∈ V τ and v0 = v − v1. It remains to prove
that v0 lies in Vτ . Given K ′ ⊆ K, one has:

π(eτK′)v0 = π(eτK′)v − π(eτK′)π(eτK)v = π(eτK′ ∗ eK)v − π(eτK′ ∗ eτK)v

which is zero by Proposition 1.9. We now check that V τ is a direct sum of copies of W . We first
remind the reader that the map:

c : W ⊗ W̃ → H(H)

is injective, since it is nonzero and W ⊗ W̃ is irreducible as a representation of H × H. As a
representation of H on the first factor, it is a direct sum of copies of W . The image Im(c) = C(τ)
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is thus a direct sum of copies of W . Now for any compact open subgroup K, one has eτK ∈ C(τ),
thus H(H)eτK , which is the sub-H(H)-module of C(τ) generated by eτK , is a subrepresentation of
C(τ), and thus is a direct sum of copies of W . For any v ∈ V , the subrepresentation π(H(H)eτK)v
of V is a quotient of H(H)eτK , thus is a direct sum of copies of W . When K and v vary, the
sum of all π(H(H)eτK)v is V τ , which therefore is a direct sum of copies of W .

Assume that there are H-stable subspaces V1 ⊆ V2 ⊆ Vτ such that V2/V1 is isomorphic to
W as a representation of H. For any compact open subgroup K, one has a sequence:

0→ π(eτK)V1 → π(eτK)V2 → π(eτK)(V2/V1)→ 0

of C-vector spaces, which is exact because π(eτK) is an idempotent. Now remark that:

π(eτK)(V2/V1) ' τ(eτK)W = WK .

But π(eτK)V1 = π(eτK)V2 = {0} and WK 6= {0} for K small enough: contradiction.
We now finish the proof of Theorem 1.3 by proving uniqueness of the decomposition. Write

V = X ⊕ Y where X and Y are H-stable subspaces of V , no irreducible subquotient of Y is
isomorphic to W and X is a direct sum of copies of W . For all compact open subgroups K in
H, we have π(eτK)(Y ) = 0 and π(eτK)(X) = XK . Therefore, Y ⊆ Vτ and X ⊆ V τ . From the
first inclusion, we get X ' V/Y = V τ ⊕ (Vτ/Y ), thus Y = Vτ . Then it follows that X = V τ .

1.4 The compact part of a smooth representation of H

If (τi,Wi), i = 1, . . . , r are nonisomorphic irreducible compact representations of H, then any
smooth representation (π, V ) of H decomposes into:

V = V τ1 ⊕ V τ2 ⊕ · · · ⊕ V τr ⊕ Vτ1,τ2,...,τr

where V τi is a direct sum of copies of Wi and where Vτ1,τ2,...,τr is the intersection of all the Vτi ’s,
i = 1, . . . , r, and therefore has no irreducible subquotient isomorphic to any (τi,Wi).

One must be careful when dealing with infinitely many nonisomorphic irreducible compact
representations of H. Let Cpt(H) be the set of all isomorphism classes of irreducible compact
representations of H and set:

Vc =
⊕

(τ,W )∈Cpt(H)

V τ , Vnc =
⋂

(τ,W )∈Cpt(H)

Vτ .

Therefore Vc and Vnc are subrepresentations of V . Note that no irreducible subquotient of Vnc

is compact. One has a map:
Vc ⊕ Vnc → V

which is injective, but may not be surjective. Let us introduce the following condition on the
group H:

(∗) for any compact open subgroup K of H, there are finitely many irreducible compact rep-
resentations (τ,W ) of H such that WK 6= {0}.

We now have the following theorem.
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Theorem 1.10. The decomposition V = Vc⊕Vnc holds for any smooth representation (π, V ) of
H if and only if H satisfies (∗).

Proof. Assume that H satisfies (∗). Let v ∈ V and let K be a compact open subgroup of H
such that v ∈ V K . Then there are finitely many (τ,W ) in Cpt(H) such that WK is nonzero,
that is, such that (V τ )K is nonzero. Therefore the sum:

vc =
∑

(τ,W )∈Cpt(H)

π(eτK)v

is well defined and belongs to Vc. This defines a map:

θ : V → Vc

which is zero on Vnc and restricts to the identity map on Vc. Thus θ is a projection onto Vc,
with kernel containing Vnc. Now write vnc = v − vc. We want vnc ∈ Vnc, that is:

π(eτK)vnc = 0

for all compact open subgroups K ⊆ H and (τ,W ) ∈ Cpt(H). Write:

π(eτK)vnc = π(eτK)v − π(eτK)

(∑
τ ′

π(eτ
′
K)v

)
= π(eτK)v − π(eτK)π(eτK)v

which is 0 because π(eτK)π(eτ
′
K) = 0 if τ, τ ′ are non-isomorphic. Therefore V decomposes into

the direct sum Vc ⊕ Vnc. For the converse, see for instance [19].

2 The cuspidal part of a smooth representation

Let G be the group GLn(F ), n ≥ 1. Write valF for the valuation on F . The group:

H = {g ∈ G | valF (det(g)) = 0}

satisfies the conditions of Paragraph 1.1, it is normal in G and the quotient G/H is isomorphic
to Z (Blondel, §4.5). Thus Theorem 1.3 holds for smooth representations of H.

The following exercise shows that Theorem 1.3 does not hold when H is replaced by G.

Exercise 2.1. Assume n = 1. Make G = F× act on C[Z], the group algebra of Z, by:

g · f : x 7→ f(x+ valF (g)), g ∈ G, f ∈ C[Z], x ∈ Z.

Show that this smooth representation of G does not decompose into a direct sum of characters.
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2.1 From compact to cuspidal representations

In this paragraph we investigate the relationship between irreducible compact representations of
H and irreducible cuspidal representations of G. In Blondel’s course (Theorem 4.38), you have
seen two equivalent definitions of cuspidal. We will need both of them but, for the moment, an
irreducible cuspidal representation of G will be for us an irreducible representation of G whose
restriction to H is compact.

Let (ρ, V ) be an irreducible cuspidal representation of G. Its restriction to H has an irre-
ducible subquotient (τ,W ) which is compact. By Theorem 1.3, the space W is a direct summand
of V .

Lemma 2.2. Let (ρ, V ) be an irreducible cuspidal representation of G and (τ,W ) be a compact
irreducible subquotient of the restriction of ρ to H. Write N for the normalizer of τ in G. There
is a representation (τ̂ ,W ) of N which extends τ and such that ρ is isomorphic to indGN (τ̂), where
indGN denotes compact induction from N to G (Blondel, §1.4).

Proof. First note that N has finite index in G because it contains both H and the centre Z, and
HZ has finite index n in G. Thus the set of isomorphism classes of the τ g, g ∈ G is finite. Note
that all the τ g are irreducible compact representations of H.

Write ρ|G′ for the restriction of ρ to a subgroup G′ of G. We have an injective map i from τ
to ρ|H . Write τZ for the unique representation of HZ extending τ and having the same central
character as ρ (see Blondel, §3.2 for the definition of the central character). Thus i can be
extended to an injective map:

τZ → ρ|HZ .
Of course the normalizer of τZ in G is equal to N . As G/HZ is finite cyclic, there is a u ∈ N
such that the group N is generated by HZ and u. By definition, there is a A ∈ AutC(W ) such
that:

τZ(uxu−1) = A ◦ τ(x) ◦A−1

for all x ∈ HZ. By Schur’s lemma, such an A is unique up to a nonzero scalar. Let m be the
index of HZ in N , that is, the order of the image of u in N/HZ. Then:

τZ(umxu−m) = Am ◦ τ(h) ◦A−m = τZ(um) ◦ τ(h) ◦ τZ(um)−1

and it follows from Schur’s Lemma again that Am and τZ(um) are equal up to a nonzero scalar.
By replacing A by λA for a suitable choice of λ ∈ C×, one may, and will, assume that Am =
τZ(um). Define a map t : uZ ×HZ → AutC(W ) by:

t(uk, x) = AkτZ(x), k ∈ Z, x ∈ HZ.

Then t factors through a map τ̂A : N → AutC(W ) which is a representation of N extending τ .
Now we have:

indNHZ(τZ) ' τ̂A ⊗ C[N/HZ].

As N/HZ is cyclic, C[N/HZ] decomposes into the direct sum of all characters of N trivial on
HZ. Thus there is some character χ : N → C× trivial on HZ such that there is an injective
map from τ̂Aχ to ρ|N . Write τ̂ = τ̂Aχ. By Frobenius reciprocity (Blondel, §1.4), we get a map:

indGN (τ̂)→ ρ
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which is surjective since ρ is irreducible. It remains to prove that indGN (τ̂) is irreducible. Let Y
be a nonzero G-stable subspace. Then the restriction Y |N contains some G-conjugate of τ̂ . As
it is stable by G, it also contains τ̂ . Thus Y = indGN (τ̂) because indGN (τ̂)|N is the direct sum of
all the G-conjugates of τ̂ .

Definition 2.3. 1. A character χ of G is said to be unramified if it is trivial on H.

2. Two irreducible cuspidal representations ρ, ρ′ of G are said to be inertially equivalent if
there is an unramified character χ of G such that ρ′ is isomorphic to ρχ.

Corollary 2.4. Let ρ, ρ′ be irreducible cuspidal representations of G. The three following con-
ditions are equivalent:

1. ρ and ρ′ are inertially equivalent.

2. ρ|H and ρ′|H are isomorphic.

3. ρ|H and ρ′|H have an irreducible factor in common.

Proof. We clearly have 1 ⇒ 2 ⇒ 3. Now assume that ρ|H and ρ′|H have an irreducible factor
(τ,W ) in common. Thus by Lemma 2.2 we have:

ρ ' indGN (τ̂), ρ′ ' indGN (τ̂ ′),

where N is the normalizer of τ in G and τ̂ and τ̂ ′ are suitable representations of N extending
τ . By the proof of Lemma 2.2 (Schur’s lemma) we know that τ̂ ′ = τ̂χN for some character χN
of N trivial on H. This gives us an unramified character χ of G such that ρ′ ' ρχ.

In conclusion, the restriction to H of an irreducible cuspidal representation of G is a finite
direct sum of G-conjugates of an irreducible compact representation of H, and this induces a
bijection between:

1. inertial classes of irreducible cuspidal representations of G;

2. G-conjugacy classes of irreducible compact representations of H.

2.2 The group H satisfies the finiteness condition (∗)

We now prove that H satisfies the finiteness condition (∗) introduced in Paragraph 1.4. Accord-
ing to Section 2.1, the property (∗) for H is equivalent to the finiteness, for any K, of the number
of inertial classes of irreducible cuspidal representations of G having nonzero K-fixed vectors.
This can be done via the Uniform Admissibility Theorem, asserting that, given any compact
open subgroup K of G, there is a constant c(G,K) such that, for any irreducible representation
(π, V ) of G, one has:

dim(V K) ≤ c(G,K).

This can be proven by a careful study of the Hecke algebra H(G,K) and the use of the Cartan
decomposition (Blondel, Proposition 4.36). Moreover, the Uniform Admissibility Theorem holds
for any p-adic reductive group. For a proof, see for instance [3, 19].
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In our case, that is for G = GLn(F ), there is another way to prove this, by using the explicit
description of irreducible cuspidal representations of G by compact induction (see Bushnell’s
notes in the present volume). More precisely, there is a family of pairs (J, λ) with J a compact
open subgroup of G and λ an irreducible representation of J with the following conditions:

1. for any irreducible cuspidal representation ρ of G, there is (J, λ) such that λ is a subrep-
resentation of ρ|J , and such a (J, λ) is unique up to G-conjugacy;

2. two irreducible cuspidal representations of G have a pair (J, λ) in common if and only if
they are inertially equivalent.

Thus we have a bijection between:

1. inertial classes of irreducible cuspidal representations of G;

2. G-conjugacy classes of irreducible compact representations of H;

3. G-conjugacy classes of pairs (J, λ).

Thus (∗) is equivalent to the finiteness, for any K, of the number of G-conjugacy classes of pairs
(J, λ) with nonzero J ∩K-fixed vectors. This follows from the construction of the pairs (J, λ)
in [6] and from the finiteness theorems of [9].

2.3 The cuspidal part of a smooth representation

According to Theorem 1.10, for any smooth representation (π, V ) of H, there is a decomposition
V = Vc ⊕ Vnc. Now let (π, V ) be a smooth representation of G. By restricting to H, we get:

V |H = Vc ⊕ Vnc,

with Vc the direct sum of the V τ for all τ in Cpt(H). The subspaces Vc and Vnc are G-stable
because an irreducible representation of H is compact if and only if all its G-conjugates are.

Definition 2.5. Let Vcusp and Vind be the representations of G on Vc and Vnc respectively.

The irreducible subquotients of Vcusp are cuspidal, and none of Vind is. Write:

Vcusp|H =
⊕

(τ,W )∈Cpt(H)

V τ .

Write [τ ] for the G-conjugacy class of τ (which is finite) and set:

V [τ ] =
⊕
τ ′∈[τ ]

V τ ′ .

Then V [τ ] is G-stable and Vcusp is the direct sum of the V [τ ]’s. Thus we are reduced to describe
V [τ ]. As we will see, it is not semisimple in general.

Proposition 2.6. Let ρ, ρ′ be two irreducible subquotients of V [τ ]. Then they are cuspidal and
inertially equivalent.
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Proof. As V [τ ]|H is a direct sum of copies of G-conjugates of τ , the representations ρ|H and
ρ′|H have a factor in common. The proposition then follows from Corollary 2.4.

In conclusion, we have the following theorem.

Theorem 2.7. 1. Any smooth representation (π, V ) of G decomposes into:

V = Vcusp ⊕ Vind

where all irreducible subquotients of Vcusp are cuspidal and none of Vind is.

2. For Ω an inertial class of irreducible cuspidal representations of G, let V (Ω) be the maximal
subrepresentation of V whose all irreducible subquotients are in Ω. Then:

Vcusp =
⊕

Ω

V (Ω)

where Ω ranges over all inertial class of irreducible cuspidal representations of G.

3 The noncuspidal part of a smooth representation

First we need to generalize the notion of inertial class.

3.1 The cuspidal support of an irreducible representation

Let (π, V ) be a smooth irreducible representation of G. There are (Blondel, Proposition 4.35)
a parabolic pair (P,L) of G and an irreducible cuspidal representation (σ,W ) of L such that π
embeds into the induced representation iGL,P (σ). (See Blondel, §4.1 for the notation iGL,P , r

G
L,P .)

Remark 3.1. Remind that “cuspidal” means “Z-compact” or equivalently “with no nonzero
proper Jacquet module” (Blondel, Theorem 4.38).

The pair (L, σ) associated with (π, V ) has some uniqueness property.

Lemma 3.2. Let (P,L), (Q,M) be two parabolic pairs in G and let (σ,W ) be a cuspidal repre-
sentation of L. Write π for the representation rGM,Q(iGL,P (σ)) of M .

1. If M does not contain any G-conjugate of L, then π is zero.

2. If M is not G-conjugate to L, then π has no irreducible cuspidal subquotient.

3. If M,L are G-conjugate, then any irreducible subquotient of π is G-conjugate to a subquo-
tient of σ.

Proof. For a proof, see [4, Corollary 2.13] or [19, VI.5.3].

Corollary 3.3. 1. The pair (L, σ) associated with (π, V ) is unique up to G-conjugacy. Its
G-conjugacy class is called the cuspidal support of (π, V ).
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2. All the irreducible subquotients of iGL,P (σ) have the same cuspidal support, that is the G-
conjugacy class of (L, σ).

Proof. By adjointness, the Jacquet module rGL,P (π) has an irreducible quotient isomorphic to σ.
Assume that we have an embedding of π in iGL′,P ′(σ

′) for another triple (P ′, L′, σ′). If we apply
the exact functor rGL,P , we get an injective map:

rGL,P (π)→ rGL,P (iGL′,P ′(σ
′)).

As σ is an irreducible quotient of the left hand side, Lemma 3.2 implies that L and L′ are
G-conjugate, and even that (L, σ) and (L′, σ′) are G-conjugate. This proves 1.

Now let π′ be an irreducible subquotient of iGL,P (σ). Fix a triple (P ′, L′, σ′) associated with
π′ such that there is an embedding of π′ in iGL′,P ′(σ

′). Thus rGL′,P ′(π
′) has an irreducible quotient

isomorphic to σ′. By exactness of rGL′,P ′ , we deduce that rGL′,P ′(i
G
L,P (σ)) has an irreducible

subquotient isomorphic to σ′. Then Lemma 3.2 implies that (L, σ) and (L′, σ′) are G-conjugate.
This proves 2.

Remark 3.4. If C is replaced by an algebraically closed field R of characteristic not p, then
parts 2 of Lemma 3.2 and of Corollary 3.3 do not hold in general (see Example 4.3).

3.2 The decomposition theorem

We introduce the following definition.

Definition 3.5. 1. A cuspidal pair of G is a pair (L, σ) made of a Levi subgroup L of G and
an irreducible cuspidal representation σ of L.

2. Two cuspidal pairs (L, σ) and (L′, σ′) of G are inertially equivalent in G if there is an
unramified character χ of L (i.e. trivial on L ∩ H) such that (L, σχ) and (L′, σ′) are
G-conjugate.

Let O(G) denote the set of all inertial classes of G, that is, of all inertial equivalence classes
of cuspidal pairs of G. Given a smooth representation (π, V ) of G and Ω ∈ O(G), write V (Ω) for
the maximal subrepresentation of V all of whose irreducible subquotients have cuspidal support
in Ω.

Definition 3.6. We say the representation (π, V ) is split if V decomposes into the direct sum
of all the V (Ω), Ω ∈ O(G).

Our goal is to prove the following theorem.

Theorem 3.7. 1. All smooth representations of G are split.

2. For any Ω 6= Ω′ in O(G), we have HomG(V (Ω), V (Ω′)) = {0}.

Remark 3.8. Note that Part 2 of the theorem follows from the definition of V (Ω). Indeed, if
there is a nonzero map f : V (Ω) → V (Ω′), its image contains an irreducible subquotient whose
cuspidal support is in Ω and Ω′, which contradicts the fact that Ω 6= Ω′.
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In order to prove this theorem, we introduce the two following functors. Write A for the set of
all finite families (n1, . . . , nr) of positive integers with sum n. A parabolic subgroup of G is said
to be standard if it contains the minimal parabolic subgroup made of upper triangular matrices;
a Levi subgroup of G is said to be standard if it contains the minimal Levi subgroup made of
diagonal matrices (Blondel, §4.2). Standard parabolic and Levi subgroups of G are parametrized
by the elements of A. Given α ∈ A, we write rα and iα for the functors of parabolic restriction
and induction corresponding to the standard parabolic pair (Pα, Lα) of G attached to α.

Given a smooth representation (π, V ) of G, set:

R(V ) = (rα(V )cusp)α∈A.

Given a family ((Lα, σα))α∈A, where σα is a smooth cuspidal representation of Lα, set:

I((Lα, σα)α∈A) =
⊕
α∈A

iα(σα).

These functors fulfill the following properties.

Lemma 3.9. 1. R is left adjoint to I.

2. I and R are exact.

3. For any smooth representation (π, V ) of G, one has R(V ) = 0 if and only if V = 0 and
the canonical map V → IR(V ) is injective.

Proof. Properties 1 and 2 are clear, since rα is left adjoint to iα and iα, rα are both exact. Given
a nonzero representation (π, V ) of G, there is α ∈ A such that rα(V ) is nonzero and cuspidal,
thus R(V ) is nonzero. Now write ηV for the canonical map V → IR(V ) and let V ′ be its kernel.
One has the following commutative diagram:

V ′
i //

ηV ′
��

V

ηV

��
IR(V ′)

IR(i)
// IR(V )

where i is the natural inclusion map of V ′ in V . Here IR(i) is injective thanks to Property 2
above. As ηV ◦ i = 0, we get IR(i) ◦ ηV ′ = 0, which implies V ′ = 0.

Lemma 3.10. For any smooth representation (π, V ) of G, the representation IR(V ) is split.

Proof. It is enough to prove that iα(σ) is split for some α ∈ A and some cuspidal representation
(σ,W ) of Lα. According to Theorem 2.7 and to the fact that iα commutes with infinite direct
sums, it is enough to prove this when W = W (Ω) for Ω the inertial class of a cuspidal irreducible
representation of Lα. Write ΩG for the inertial class of G induced by Ω. We are going to prove
that all irreductible subquotients of iα(σ) have their cuspidal support in ΩG, which will prove
the lemma.

Let ρ be an irreductible subquotient of iα(σ). By Lemma 3.2, all the irreducible subquotients
of rα(ρ) are isomorphic to a G-conjugate of a subquotient of σ, that is, are in Ω. This implies
that ρ has cuspidal support in ΩG.
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Lemma 3.11. Let (π, V ) be a smooth representation of G and let W be a subrepresentation of
V . Assume that V is split. Then W is split.

Proof. Write V as the direct sum of all the V (Ω)’s for Ω ∈ O(G). It is enough to prove that:

W =
⊕

Ω∈O(G)

(W ∩ V (Ω))

since one clearly has W ∩ V (Ω) = W (Ω). Write Y for the quotient of W by the right hand side
and assume it is nonzero. Pick an irreducible subquotient of Y and write Ω for the inertial class
of its cuspidal support. This subquotient is an irreducible subquotient of W/W ∩ V (Ω), thus of
(W +V (Ω))/V (Ω), thus of V/V (Ω). Thus it appears in the direct sum of the V (Ω′) for Ω′ 6= Ω:
contradiction.

3.3 Further questions

We have defined a partition:
IrrC(G) =

∐
Ω∈O(G)

Ω

of the set IrrC(G) of all isomorphism classes of irreducible representations of G. This reflects a
decomposition:

RC(G) =
∏

Ω∈O(G)

RC(Ω) (3)

of the category of all smooth complex representations of G, where RC(Ω) denotes the full sub-
category made of representations V such that V = V (Ω). Several questions arise.

Q1 Are the subcategories RC(Ω) indecomposable? That is, is the decomposition (3) the finest
possible decomposition of the category RC(G)?

Q2 How to describe the category RC(Ω) for Ω ∈ O(G)?

Q3 What if GLn(F ) is replaced by an arbitrary p-adic reductive group?

Q4 What if C is replaced by any algebraically closed field R of positive characteristic?

We start by Question 3: as has been said in the Introduction, the theorem stated there holds
for any p-adic reductive group (see [3]).

The answer to Question 1 is yes (for any p-adic reductive group G). This is not easy to
prove. For this, given Ω ∈ O(G), one constructs a representation ΠΩ of RC(Ω) which is projec-
tive and finitely generated, and such that all irreducible representations with cuspidal support
in Ω are isomorphic to a quotient of ΠΩ. In that case it follows that RC(Ω) is equivalent to
the category of modules over EndG(ΠΩ). This requires the following deep result, known as the
second adjointness property. For a proof, see [5].

Theorem 3.12. Let (P,L) be a parabolic pair in G. Write P for the parabolic subgroup of G
opposite to P with respect to L. Then iGL,P has a right adjoint, which is rG

L,P
.
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Question 2 has been partly answered above: RC(Ω) is equivalent to the category of modules
over the algebra EndG(ΠΩ). It is natural to demand a more precise description of this algebra.
This is a difficult question, and such a description is known only for some classical groups (see
for instance [16]). Bushnell and Kutzko have developed another approach to this question: the
theory of types. The strategy is the following:

1. for each inertial class Ω ∈ O(G), construct a type (JΩ, λΩ), that is a pair made of a
compact open subgroup JΩ of G and an irreducible representation λΩ of JΩ such that, for
all irreducible representations (π, V ) of G, the restriction of π to JΩ contains λΩ if and
only if π has cuspidal support in Ω;

2. if (JΩ, λΩ) is a type for Ω, then RC(Ω) is equivalent to the category of modules over the
intertwining algebra HC(Ω) = EndG(indGJΩ

(λΩ)). Therefore it remains to give a description
of this algebra by generators and relations.

For G = GLn(F ), this programme has been carried out by Bushnell and Kutzko [6, 10].
The HC(Ω)’s are tensor products of Hecke-Iwahori algebras of type A. For G = SLn(F ), see
[7, 8, 14]. For inner forms of GLn(F ), see P. Broussous, M. Grabitz, V. Sécherre, S. Stevens and
E. Zink. For classical groups, see L. Blasco, C. Blondel and S. Stevens.

Example 3.13. Assume that G = GL2(F ). Write OF for the ring of integers of F and PF for
its maximal ideal. Write qF for the cardinality of the residue field of OF .

1. Assume Ω is the inertial class of an irreducible cuspidal representation ρ of G. See Bush-
nell’s course for the construction of a type (JΩ, λΩ). Then the algebra HC(Ω) is isomorphic
to the algebra C[T, T−1] of Laurent polynomials in one variable T .

2. Assume Ω is the inertial class of (L, χ1 ⊗ χ2), where L is the Levi subgroup made of
diagonal matrices and where χ1, χ2 are characters of F×.

(a) Assume χ1χ
−1
2 is unramified on F×, that is trivial on O×F , the group of units in F×.

Then one may assume χ1 and χ2 to be trivial. In this case, the subgroup:

I =
(
O×F OF
PF O×F

)
and its trivial character provide a type for Ω. Then HC(Ω) is the Iwahori-Hecke
algebra of type A1 and parameter qF . It has generators S, T with relations:
• (S + 1)(S − qF ) = 0;
• T 2 is invertible and commutes with S.

(b) Assume χ1χ
−1
2 is ramified. Then there is a type (JΩ, λΩ) for Ω with the following

properties:
• JΩ is a compact open subgroup of I such that:

JΩ = (JΩ ∩N) · (JΩ ∩ L) · (JΩ ∩N−),
JΩ ∩ L = O×F ×O

×
F ,

where N and N− denote the subgroups of upper and lower triangular unipotent
matrices of G, respectively;
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• λΩ is trivial on JΩ ∩N and JΩ ∩N−, and one has:

λΩ

((
x 0
0 y

))
= χ1(x)χ2(y)

for x, y ∈ O×F .

The algebra HC(Ω) is isomorphic to C[X,X−1, Y, Y −1], where X,Y are two variables.

Finally, for an answer to Question 4, see the next section.

4 Modular smooth representations of GLn(F )

From now on, G denotes any p-adic reductive group, and we replace C by the field Fl with l prime.
We are interested in the smooth l-modular representations of G, that is smooth representations
of G on Fl-vector spaces. There is an enormous difference between the case where l 6= p and the
case where l = p.

4.1 The l 6= p case

In this case, G has a compact open subgroup K such that the index of any open subgroup of
K is invertible in Fl. Thus there is a Haar measure on G. The theory of l-modular smooth
representations of p-adic reductive groups with l 6= p has been developed by M.-F. Vignéras [21].
Thanks to the fact that p is invertible in Fl, the following important properties remain valid for
(smooth) l-modular representations.

1. Any irreducible l-modular representation of G has a central character and is admissible.

2. Any irreducible l-modular representation of G has a unique cuspidal support, where cus-
pidal means Z-compact.

3. The parabolic functors are exact and preserve admissibility and finite length.

4. An irreducible representation of G is cuspidal if and only if all its proper Jacquet modules
are zero.

But there are also two major phenomenons, which make the theory of smooth l-modular repre-
sentations of G more difficult than the complex theory:

1. Representations of compact open subgroups of G may not be semi-simple.

2. A cuspidal irreducible representation of G may appear as a subquotient of a proper para-
bolically induced representation.

This leads to the definition of a supercuspidal representation.

Definition 4.1. An irreducible representation of G is called supercuspidal if it does not appear
as a subquotient of any representation of the form iGL,P (σ), where P is a proper parabolic subgroup
of G and σ is an irreducible smooth representation of L.
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Remark 4.2. If we do not require σ to be irreducible in Definition 4.1, we obtain a definition
of “supercuspidal” which is a priori stronger. These two definition are expected to be equivalent.
This is know for G = GLn(F ) (see Dat [12, Corollaire B.1.3]).

Any supercuspidal irreducible representation is cuspidal. But it may happen that a cuspidal
irreducible representation is not supercuspidal.

Example 4.3. Assume that G = GL2(F ) and that the cardinality of the residue field of F
has order 2 in F×l . Write P for the group of upper triangular matrices of G and L for the
subgroup of diagonal matrices. Then the induced representation iGL,P (1) of the trivial character
of L is indecomposable and has length 3. Its unique irreducible subrepresentation is the trivial
character of G, and its unique irreducible quotient is the unramified character of order 2 of G.
The remaining irreducible subquotient is cuspidal, but not supercuspidal.

It is thus not possible to define the cuspidal part of a smooth l-modular representation of G.
The notion of cuspidal representation has to be replaced by that of supercuspidal representation.
It is thus natural to ask whether or not there is such a thing as the “supercuspidal support” of an
irreducible l-modular representation of G. Given a smooth irreducible representation (π, V ) of
a p-adic reductive group G, there is a parabolic pair (P,L) of G and a supercuspidal irreducible
representation ρ of L such that π is a subquotient of iGL,P (ρ). It is conjectured in [22] that the
G-conjugacy class of the pair (L, ρ) is unique (and thus called the supercuspidal support of π).
This conjecture is known to be true only for very few groups:

1. for GLn(F ) (see Vignéras [22]).

2. for inner forms of GLn(F ) (see Mı́nguez-Sécherre [17]).

Both cases require a substantial use of the l-modular theory of Bushnell-Kutzko’s types. For
other classical groups, one does not know whether the conjecture is true. Even for finite reductive
classical groups, the conjecture is not known to be true, except for GLn.

Finally I will say a word about the decomposition of RFl
(G). Vignéras [21] has proved that

there is a decomposition of RFl
(G) into a product of subcategories RFl

(G)r indexed by rational
numbers r ≥ 0. These subcategories are made of those smooth representations of level r, and
they are not indecomposable.

Even for G = GLn(F ) and its inner forms, one does not know whether the category RFl
(G)

decomposes into a product of indecomposable summands. The answer is expected to be yes, and
these summands are expected to be made of those smooth representations whose all irreducible
subquotients have a given inertial class of supercuspidal support. For G = GLn(F ) and its inner
forms, this question is studied in a work in progress by S. Stevens and V. Sécherre.

4.2 The l = p case

In this case, there is no Haar measure on G, thus there is no Hecke algebra H(G). But there is
the following spectacular result.

Proposition 4.4. Let (π, V ) be a smooth representation of G on an Fp-vector space V . Assume
V is nonzero. Then for all pro-p-subgroups K of G, one has V K 6= {0}.
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We now restrict ourselves to the group G = GLn(F ). Thanks to Proposition 4.4, the pro-
p-Iwahori subgroup I1, made of all matrices in GLn(OF ) whose reduction modulo PF is upper
triangular unipotent, plays an important role, and one can define the relative Hecke algebra
H = H(G, I1), made of all Fp-valued functions on G that are I1-biinvariant and compactly
supported. The functor:

V 7→ V I1 (4)

from RFp
(G) to the category of right H-modules gives a relationship between p-modular repre-

sentations of G andH-modules, but it is not exact in general. If (π, V ) is a smooth representation
of G generated by its I1-invariant vectors, and if V I1 is a simple H-module, then (π, V ) is ir-
reducible. But there are known examples of irreducible (π, V ) such that V I1 is nonzero and
nonsimple.

It is still possible to define parabolic functors iGL,P and rGL,P . The induction functors are
exact, but not the Jacquet functors (which are badly behaved and not much used); one can
define “ordinary part” functors which occasionally play the role of Jacquet functors (see [13]).

It is not known whether or not any irreducible p-modular representation has a central char-
acter or is admissible (except for n = 2 and F = Qp, see [1]).

Finally, I will end this course by the following theorem.

Theorem 4.5 ([18, 15]). Let G = GL2(Qp). The functor (4) induces an equivalence between:

1. the category of (smooth, p-modular) representations of G that are generated by their I1-
invariant vectors;

2. the category of right H-modules.

Remark 4.6. The group considered in [18] is not GL2(Qp), but its quotient by pZ.
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