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Lie algebras






Chapter 1

Algebras

In this chapter we recall very basic facts on general algebra. We state the results without proofs (with
the exception of basic properties of derivations) the proof are identical to the similar statement for
commutative algebras.

1.1 Basics

Definition 1.1.1 An algebra A over k is a vector space over k together with a bilinear map AxA — A
denoted (x,y) — xy. In symbols we have:

o 2(y+2)=ay+zz and (v +y)z = xz +yz for all (z,y,2) € A3,
o (az)(by) = (ab)(xy) for all (a,b) € K? and (x,y) € A?.

Remark 1.1.2 Remark that we assume neither the commutativity of the product nor its associativity.
Remark also that A has, a priori, no unit.

Proposition & Definition 1.1.3 Let A be an algebra, the vector space A together with the multi-
plication defined by (x,y) — yx is again an algebra called the opposite algebra and denoted A°P.

Proposition & Definition 1.1.4 A subvector space B of A which is stable for the multiplication has
a natural structure of algebra inherited from the algebra stucture of A. Such a subvector space B is
called a subalgebra of A.

Definition 1.1.5 A subvector space I of an algebra A is called an left ideal (resp. right ideal ) if
xy €1 forallx € A andy €I (resp. for allx € I andy € A).
A left and right ideal is called a two-sided ideal.

Proposition 1.1.6 For I a two-sided ideal of an algebra A, the quotient has a natural structure of
algebra defined by T -y = Ty where T is the class of an element x of A in the quotient A/I.

Definition 1.1.7 For I a two-sided ideal of an algebra A, the algebra A/I is called the quotient
algebra of A by 1.

Definition 1.1.8 Let f be a linear map between two algebras A and B. The map f is called a
morphism of algebra if we have the equality f(zy) = f(z)f(y) for all (z,y) € A2

Example 1.1.9 The morphism A — A/I from an algebra A to the quotient algebra is a morphism
of algebras.
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1.2 Derivations
As derivations are less classical objects, we shall give proofs of their basic properties.

Definition 1.2.1 An endomorphism D of an algebra A is called a derivation of A if the equality
D(xy) = xD(y) + D(x)y holds for all (z,y) € A2

Proposition 1.2.2 The kernel of a derivation of A is a subalgebra of A.

Proof. Let x and y be in the kernel, we need to prove that zy is again in the kernel. This follows from
the definition of a derivation. O

Proposition 1.2.3 Let Dy and D3 be two derivation of an algebra A, then the commutator Dy, Dy] =
DDy — Dy D1 is again a derivation of A.

Proof. Let us compute [Dy, Ds|(xy) using the fact that Dy and Dy are derivations:

[D1, Do](zy) = Di(xD2(y) 4+ Do(x)y) — Da2(xD1(y) + Di(x)y)
= xD1Ds(y) + Di(x)D2(y) + D1D2(x)y + Do(x)D1(y))
—(xD2D1(y) + Da(x)D1(y) + DoD1(2)y + D1(x)D2(y))
= [D1, DaJ(z)y + x[D1, D2(y)

and the result follows. O

1.3 Product of algebras

Proposition & Definition 1.3.1 Let A and B be two algebras over k and consider the map Ax B —
A x B defined by ((x,y), (2',y")) — (x2’,yy’). This defines a structure of algebra over k on A x B
called the product algebra of A and B.

Proposition 1.3.2 The algebras A and B are supplementary two-sided ideals in A x B.

Proposition 1.3.3 Let C' be an algebra such that A and B are supplementary two sided ideals in C,
then C is isomorphic to the product algebra A x B.

1.4 Restriction and extension of the scalars

Let kg be a subfield of k and k1 be an extension of k. By restriction of the scalar, we may consider
any algebra A over k as an algebra over k.

Proposition & Definition 1.4.1 Let A be an algebra over k, the vector A seen as a vector space over
ko and with its multiplication over k is an algebra over kg called the algebra obtained by restriction
of the scalars from k to kg.

Proposition & Definition 1.4.2 Let A be an algebra over k, the algebra structure over k1 on ARk
defined by (x ® a)(y ® b) = xy ® ab is called the algebra obtained by extension of the scalar from & to
ki.
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1.5 Exercices

Exercice 1.5.1 Prove the assertions in Propositions & Definition 1.1.3, 1.1.4, 1.3.1, 1.4.1, 1.4.2 in
Propositions 1.1.6, 1.3.2, 1.3.3 and in Example 1.1.9.

Exercice 1.5.2 Prove that all the Definitions and statements in this chapter are valid if we only
assume that k is a commutative ring with unit and if we replace vector spaces over k by modules
over k. Prove that the notion of restriction of scalars and extension of scalar makes sense for any ring
morphisms ky — k and k£ — k1 where kg and k; are commutative rings with unit.

Exercice 1.5.3 Let A be an algebra (non associative a priori) and let D be a derivation in A. Prove
that the kernel ker D is a subalgebra of A. Prove that the subset

B={x¢€A/3keZsy, DFx)=0}

is a subalgebra of A.
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Chapter 2

Lie algebras

2.1 Definition

Definition 2.1.1 An algebra A is called a Lie algebra (and its product will be denoted (z,y) — [z,y]
and called the Lie bracket) if the following properties hold:

o [z,2] =0 forall z € A,
o [z,[y,2]] + [, [z, 2]] + [z, [2,9]] = 0, for all (z,y,2) € A3.
The last identity is called the Jacobi identity.

Remark 2.1.2 The first identity implies that the product, the Lie bracket, is antisymmetric: for all
(z,y) € A%, we have [y, z] = —[z,1].

Proposition 2.1.3 Any subalgebra of a Lie algebra, any quotient algebra of a Lie algebra, any product
algebra of Lie algebras are again Lie algebras.

Proposition 2.1.4 The opposite algebra A°P of a Lie algebra A is again a Lie algebra and the mor-
phism A°P? — A defined by x — —x is an isomorphism.

Example 2.1.5 Let A be an associative algebra, then the bracket [z,y] = zy — yx defines a Lie
algebra structure on A.

Example 2.1.6 Let V be a k vector space of finite dimension, then End(V'), the vector space of
endomorphisms of V' has a structure of associative algebra and therefore a structure of Lie algebra
denoted gl(V).

Example 2.1.7 The subspace sl(V') of trace free endomorphisms in gl(V') is a Lie subalgebra.

Example 2.1.8 Let (e;);c[1,, be a basis of V and define the complete flags Vo = (Vi)ic1,n) and
Ve = (V)iepn of V by Vi = (e1,--- ,e;) and V' = (en, -+ ,enq1-4) for all i € [1,n].

The subspace t(V,) of endomorphisms stabilising all the subspaces of the flag V4 is a Lie subalgebra
of gl(V) and its intersection st(V4) is a subalgebra of s((V).

The subspace n(V,) of endomorphisms f such that f(V;) C Vi_; for all i € [1,n] with Vi = {0} is
a Lie subalgebra of st(V4).

The subspace diag(Ve, Vy) = t(Va) N (V7)) is a Lie subalgebra of gl(V') and its intersection with
sI(V), denoted by sdiag(Vs, VY), is a Lie subalgebra of s[(V).

We have gl(V) = n(V]) @ diag(Ve, VY) @ n(Vs,) and sl(V) = n(V]) & sviag(Ve, V) & n(Vs,).

13
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Example 2.1.9 Let G be a Lie group i.e. a variety G which is a group and such that the multiplication
and the inverse map are morphisms of varieties. The space DiffOpp(G) of differential operators on
G form an associative algebra and we may therefore define a Lie algebra structure on DiffOpp(G).
Define Lie(G) to be the vector subspace of Diffopp(G) of left G-invariant vector fields. They form a
Lie subalgebra of OppDiff(G). By invariance, the Lie algebra Lie(G) is identified with the tangent
space to G at eg the identity element of G.

For any morphism f : G — G’ of Lie groups, the differential d..f of f at eg is a Lie algebra
morphism Lie(G) — Lie(G).

For V a finite dimensional vector space, the Lie algebra Lie(GL(V')) of the linear group GL(V') is
identified with gl(V'). The Lie algebra of the subgroup SL(V') of GL(V) is the subalgebra s((V).

2.2 Adjoint representation

Definition 2.2.1 Let g be a Lie algebra and let x € g, the linear map g — g defined by y — [z,y] is
called the adjoint application of x and denoted adgx or ad x.

Proposition 2.2.2 Let g be a Lie algebra and x € g, then the morphism g — gl(g) defined by x — adx
is a Lie algebra morphisms which factors through det(g) the Lie algebra of derivations of g.
Furthermore, for D € der(g), we have [D,ad x] = ad (Dx)

Proof. The Jacobi identity, [z, [y, 2] + [y, [z, 2]] + [2, [z, y]] = 0, gives for all (z,y, z) € g*:

adz(ady(z)) —ady(ad z(z)) — ad [z, y](z) =0

proving that the morphisms x — ad x is a Lie algebra morphism. The Jacobi formula also reads
ad z([y, z]) = [y,ad z(z)] + [ad z(y), z] proving the fact that ad x is a derivation.
For D a derivation of g, we have

[D,ad z|(y) = D(ad z(y)) — adx(Dy) = D[z, y| — [z, Dy] = [Dz,y| = ad (Dz)(y)

where we used the derivation identity D[z,y] = [z, Dy| + [Dz, y]. 0

Definition 2.2.3 The Lie algebra morphism g — gl(g) defined by x — ad x is called the adjoint
representation. It will be denoted by ad . The derivations in the image of ad in der(g) are called inner
derivations.

Example 2.2.4 Let G be a Lie group and let G act on itself by conjugation. Any g € G defined a
group morphism Intg : G — G by Intg(¢') = gg'g~'. The differential of this group morphism at eg
defines a Lie algebra morphism d.,Intg : Lie(G) — Lie(G). The map Ad : G — GL(Lie(G)) defined
by g — d..(Intg) is a morphism of Lie group and its differential d.,Ad : Lie(G) — gl(Lie(G)) is the
adjoint representation ad of Lie(G).

2.3 Ideals

Ideals of Lie algebras are defined as ideals of the underlying algebra.

Remark 2.3.1 The antisymmetry of the Lie bracket implies that any left or right ideal is a two-sided
ideal. We shall only say ideal of a Lie algebra. An ideal of a Lie algebra is a subspace stable under
the inner derivations.



2.4. ABELIAN LIE AGEBRAS 15

Definition 2.3.2 An subspace of a Lie algebra g stable under any derivation of g is called a charac-
teristic ideal.

Example 2.3.3 Let G be a Lie group and H a Lie subgroup which is normal. Then the Lie algebra
rmLie(H) of H is an ideal of Lie(G) the Lie algebra of G.

Proposition 2.3.4 Let g be a Lie algebra, let a be an ideal (resp. a characteristic ideal) of g and let
b be a characteristic ideal of a. Then b is an ideal (resp. a characteristic ideal) of g.

Proof. Let D be an inner derivation (resp. a general derivation) of g. Because, a is an ideal (resp. a
characteristic ideal) of g, the derivation D stabilises a and induces therefore a derivation of a. As b is
a characteristic ideal of a is it stabilised by D. U

Definition 2.3.5 Let a and b two subvector space of a Lie algebra g, then we denote by [a,b] the
subspace generated by the elements [x,y] for x € a and y € b.
Remark that we have [a,b] = [b, a.

Proposition 2.3.6 If a and b are ideals (resp. characteristic ideals) of a Lie algebra g, then [a,b], is
an ideal (resp. a charateristic ideal) of g.

Proof. Let D be an inner derivation (resp. a general derivation) of g and let x € a and y € b, we have
Dixz,y] = [z, Dy] + [Dx,y| € [a,b] and the result follows. O

Example 2.3.7 The Lie algebra g is a characteristic ideal of g. As a consequence of the previous
proposition [g, g] is again a characteristic ideal of g.

2.4 Abelian Lie agebras

Definition 2.4.1 Two elements x and y of a Lie algebra commute if [x,y] = 0.
A Lie algebra g is said to be abelian or commutative if any two of its element commute.

Example 2.4.2 Let A be an associative algebra with Lie algebra structure [z,y] = xy — yz. Then A
is abelian as a Lie algebra if and only if A is commutative.

Example 2.4.3 The Lie algebras diag(Vs, V]) and sdiag(Vs,V/) are abelian.

Example 2.4.4 Let G be a Lie group, if G is abelian, then Lie(G) is an abelian Lie algebra.

2.5 Derived, central ascending and central descending series

Definition 2.5.1 Let g be a Lie algebra, the derived ideal of g is the characteristic ideal [g,g]. We
denote it by Dg.

Lemma 2.5.2 Any subspace of g containing Dg is an ideal of g.

Proof. Indeed, the image of any inner derivation is contained in Dg = [g, g]. O

Definition 2.5.3 We call derived serie the sequence (Dig)izo of characteristic ideals with Dg = g
and D*lg = D(Dig) = [Dig, Dig] for i > 0.
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Definition 2.5.4 We call central descending serie the sequence (Gig)izo of characteristic ideals with
g = g and Cilg = [g,C%g] fori > 0.

Remark 2.5.5 We have the inclusions D’g C C'g for all i > 0.

Proposition 2.5.6 Let f : g — ¢ be a Lie algebra morphisms, then we have f(D'g) = D'f(g) and
f(Clg) = Cf(g). In particular for f surjective, we have f(D'g) = Dig’ and f(C'g) = Cly'.

Proof. For two subspaces a and b of g, we have the equality f([a, b]) = [f(a), f(b)]. The result follows
by induction. O

Definition 2.5.7 Let P be a subset of a Lie algebra g. We call centraliser of P the set of elements
in g commuting with any element of P. We denote this set by 34(P) or 3(P).
When P is a unique vector x in g we denote 3(P) by 3(x).

Lemma 2.5.8 For any subset P of g, the centraliser 3(P) is a Lie subalgebra of g.

Proof. Indeed, the space 3(P) is the intersection of the kernels of the maps ad x for z € P. O

Proposition 2.5.9 Let g be a Lie algebra and a be an ideal (resp. a characteristic ideal) of g, then
3(a) is an ideal (res. a characteristic ideal) of g.

Proof. Let D be an inner derivation (resp. a general derivation), let z € 3(a) and let y € a. We have
[Dzx,y] = Dlx,y] — [z, Dy|]. But y and Dy are in a therefore x commutes with y and Dy and the result
follows. O

Definition 2.5.10 The characteristic ideal 3(g) is the center of the Lie algebra g.
Proposition 2.5.11 The center is the kernel of the adjoint representation.

Proof. The adjoint representation is defined by ad : g — gl(g) with ad x(y) = [z, y]. In particular, an
element = € g is in 3(g) if and only if ad z vanishes. O

Lemma 2.5.12 Let a be a characteristic ideal of g and b an ideal containing a. If b/a is a charac-
teristic ideal of g/a, then b is a characteristic ideal of g.

Proof. Let D be a derivation of g, then it induces a derivation D of g/a by setting D(%) = D(x) where
we denote by T the class of x € g in g/a. Now for z € b, we have D(z) = D(T) € b/a because b/a is
a characteristic ideal and therefore D(x) € b. O

Definition 2.5.13 We call central ascending serie the sequence (C;g)i>0 of characteristic ideals with
Co =0 and G419 is the inverse image under the canonical projection g — g/C;g of the center of g/C;g
fori>0.
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2.6 Extensions

Definition 2.6.1 Let a and b be two Lie algebras, an extension of b by a is a Lie algebra g together
with an exact sequence of Lie algebra

0—-a—>g—0b—0
i.e. an exact sequence where the morphisms are Lie algebra morphisms.

Remark 2.6.2 By abuse of notation, we shall identify a with its image in g and consider a as an
ideal of g. The Lie algebra b is identified to g/a.
We shall also say that g is an extension of b by a.

Definition 2.6.3 Two extentions

0 a—sg-—L-bp 0 and 0 a—=g 2 -p 0

are equivalent if there exists a morphism f : g — g such that the diagram

a—>g—>b

a—>g —>[J

commutes.

Proposition 2.6.4 The relation “the extention is equivalent to” is an equivalence relation on the set
of extension of b by a:

Proof. We easily see that this relation is reflexive and transitive. To see that it is symmetric, we only
need to check that if f: g — g’ defines an equivalence between two extensions, then f is bijective.
Indeed, by the commutativity of the right hand square, the subspace ker f is mapped to 0 in b and
is therefore contained in a. By the commutativity of the left hand square, this kernel is 0.
Again by the commutativity of the right hand square, the image of f dominantes b and by the
commutativity of the left hand square it contains a. U

Proposition 2.6.5 Let 0 a—" g P ob 0 be an extension of b by a. There exists a
subalgebra ¢ of g supplementary to a if and only if p has a section s : b — g (i.e. a Lie algebra
morphisms such that po s = Idy).

Proof. 1f ¢ exists, then the restriction p|. of the projection p to ¢ maps ¢ isomorphically to b. We may
define s as the composition of the inverse of p|, with the inclusion of ¢ in g.
Conversely, if s exists, its image is a Lie subalgebra of g supplementary to a (if s(z) = i(y), then

z = p(s(x)) = p(i(z)) = 0). U

Definition 2.6.6 Let 0 a——>g "o 0 be an extension of b by a. We shall say that
the extension is not essential (resp. trivial) if there exists a Lie subalgebra (resp. an ideal) ¢ of g
supplementary to a.

If a is contained in the center of g, we call the extension central.
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Lemma 2.6.7 The extension 0 a—" g P.b 0 is trivial if and only if g is isomorphic
to the product Lie algebra a x b.

Proof. Apply Propositions 1.3.2 and 1.3.3. O

Lemma 2.6.8 A non essential and central extension s trivial.

Proof. Denote by g the Lie algebra obtained by extension and by a the kernel of the extension. Let ¢
be a Lie subalgebra supplementary to a. We have [c, g] = [c,a] + [c, ] = [¢,¢] C ¢ because a is in the
center of g. Therefore ¢ is an ideal. U

2.7 Semidirect products

We construct in this subsection all the non essential extension of b by a. Let us fix some notation.
The extension will be of the form

0—=a—tsg—Lsp—>0

and because the extension is non essential, we may fix a Lie subalgebra of g which is supplementary
to a. We shall identify this subalgebra with b and therefore consider g as the vector space a x b.
To determine the Lie algebra structure on g, we only need to determine its Lie bracket. It is of the
following form:

[(a,b),(d',b)] =la+b,d +7]
[a,0') + [b,¥] + [a, ') + b,
= [a,d'] + ad b(a’) — ad ¥ (a) + [b,V'].

We may consider ad b and ad b as derivations of a (because a is an ideal), we therefore have a Lie
algebra morphism b — detr(a) given by b +— adb.
Conversely, given a Lie algebra morphism f : b — der(a), we may define a Lie bracket on a x b by

[(a7 b)? (a/7 b/)] - [a7 a/] + f(b)(a/) - f(b/)(a) + [b7 b/]'
Lemma 2.7.1 This defines a Lie bracket.

Proof. 1t is clearly bilinear and alternate. The Jacobi identify follows from the fact that f is a Lie
algebra morphism into the derivations on a. O

Proposition 2.7.2 Let f : b — 0etv(a) be a Lie algebra morphism, then the Lie algebra g = a X b
defined by the above Lie bracket is an non essential extension of b by a. Any non essential extension
1s of that form.

Proof. We need to prove that a is an ideal for this Lie bracket. But we may compute the Lie bracket
[(a,0),(a’,b)] = [a,d']+ f(0)(a") — f(b')(a)+[0,V'] = [a,d'] — f(b')(a) € a because f(V) is a derivation
of a.

This fact that any non essential extension is of that form follows from the observation that,
for a non essential extension, the map b — der(«) is a Lie algebra morphism and the coincidence

adb(a’) = f(b)(d). 0

Definition 2.7.3 For f : b — det(a) a Lie algebra morphism, the Lie algebra structure defined above
on a x b using f is called a semidirect product of a and b.
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2.8 Exercices

Exercice 2.8.1 Prove the statements in Proposition 2.1.3, 2.1.4 and in Example 2.1.5, 2.1.6, 2.1.7,
2.1.8, 2.4.3.

Describe in terms of matrices in the base (ei)ie[l,n] the Lie subalgebras of gl(V') described in
Example 2.1.8.

Exercice 2.8.2 Prove that all the Definitions and statements in this chapter are valid if we assume
that k is a commutative ring with unit and if we replace vector spaces over k by modules over k.

Exercice 2.8.3 Give a complete classification (i.e. a complete list) of Lie algebras of dimension 1, 2
and 3. Describe then as subalgebras of gl(k").

Exercice 2.8.4 Prove that a Lie algebra g is associative if and only if Dg C 3(g).

Exercice 2.8.5 Let V' be a vector space and W a codimension 1 subvector space. Prove that gl(1V)
can be realised as a Lie subalgebra of s((V).

Exercice 2.8.6 For V a vector space of finite dimension over k, prove that 3(gl(V)) = kIdy .

Exercice 2.8.7 Let g be a Lie algebra of dimension n over k and assume that 3(g), the center of g,
is of codimension 1. Prove that g is abelian.

Exercice 2.8.8 (1) For V a vector space of dimension 2, prove that the derived serie, the central
descending serie and the central ascending serie of gl(V') are described by

e DOgI(V) = gl(V) and Digl(V) = sl(V) for i > 1.

o Cl(V) = gl(V) and Cigl(V) = sl(V) for i > 1.

o Cogl(V) =0, Cigl(V) = kIdy for i > 1.

(11) Prove that the same results hold for any finite dimensional vector space V.

Exercice 2.8.9 Let g be a Lie algebra over k and let K be a field containing k.

(1) Prove that g ®; K is a Lie algebra for the Lie bracket [z ® a,y ® b] = [z, y] ® ab.

(1) Prove that if a is a Lie subalgebra (resp. an ideal) of g, then a ®; K is a Lie subalgebra (resp.
an ideal) of g ®j K.

(1) Prove that we have the equalities

o [a®; K,b® K] =[a,b] @ K;
e Di(g®, K) = Dig®y K and
e Cl(gor K) =Clga, K

where a and b are ideals in g.

Exercice 2.8.10 Assume that char(k) # 2. Let g be a Lie algebra over k and define on the vector
space & = g x g the bracket

[(z,2"), (y, )] = ([z, 9] + [, 4], [z, 4] + [, y]).

(1) Prove that this defines a Lie bracket on &.

(1) Prove that the morphisms x %(x, x) and x — %(x, —x) are isomorphisms between g and two
ideals a and b in & with ® = a x b (as a vector space and therefore as a Lie algebra).

(m) Assume that £ = R the field of real numbers and prove that (g ®r C) ®g C is isomorphic to
(g ®rC) x (g &R C).
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Exercice 2.8.11 Let V' be a finite dimensional vector space of dimension n. Recall that sl((V') and
3(gl(V)) are ideals in gl(V'). We therefore have extensions

0—=sl(V)—=gl(V)—=b—0and 0— 3(gl(V)) = gl(V) = b — 0.
(V) = gl(V) 3(gl(V)) — gl(V)

(1) Prove that for chark prime with n the previous extensions are trivial.

(1) If chark divides n, prove that the first extension is non essential and compute for a section of
b in g the Lie algebra morphism b — der(sl(V')). Prove that the second extension is central but non
essential.

Exercice 2.8.12 Finish the computation of the Jacobi formula in the proof of Lemma 2.7.1.
Exercice 2.8.13 Let g be a Lie algebra and a a subspace of g. Define

ng(a) ={zr g/ [zr,y] €aVyca}

Prove that ng(a) is a Lie subalgebra of g. The algebra ng(a) is called the normaliser of a in g.
Prove the following equalities

o ng)(t(Ve)) = t(Ve),
o 1y (diag(Ve)) = diag(Vs)

o ngr)(n(Ve)) = (V)

Exercice 2.8.14 Which of the following Lie algebras over R are isomorphic?
(1) R? with the cross product as Lie bracket;
(1) The upper triangular 2 x 2 matrices;
(m) The strict upper triangular 3 x 3 matrices;
(1v) The antisymmetric 3 x 3 matrices.
(v) The traceless 2 x 2 matrices.
Exercice 2.8.15 Prove that R? @g C where R? has the cross product as Lie bracket and the Lie
algebra of traceless 2 x 2 matrices are isomorphic.



Chapter 3

Envelopping algebra I

In this chapter we shall present the definition and first properties of the universal envelopping algebra.
We shall present the Poincaré-Birkhoff-Witt (PBW) theorem in Chapter 15. Here the associative
algebras are supposed to have a unit element.

3.1 Definition

The principle of the envelopping algebra is to replace the Lie algebra by an associative algebra but of
infinite dimension.

Definition 3.1.1 Let g be a Lie algebra and A be an associative algebra with unit, a linear map
f:9— A is called an a-map if we have f([z,y]) = f(x)f(y) — f(y)f(x) for all (z,y) € g°.

The envolopping algebra of g is an associative algebra U(g) with an a-map from g to U(g) such
that any a-map from g to an associative algebra factor through U(g). Let us first construct the
envelopping algebra U (g).

Definition 3.1.2 Let g be a Lie algebra and denote by T(g) its tensor algebra'. Denote by J the two-
sided ideal of T((g) generated by the tensors x@y—yRx—[z,y] for (z,y) € g. The universal envelopping
algebra of g, denoted by U(g), is the quotient T'(g)/J. The composition g — T'(g) — T'(g)/J is denoted
by fo: 9 — U(g) and is called the canonical map from g to U(g).

If we denote by T’} the two-sided ideal of T'(g) formed by the tensor without degree 0 term and by
To = k1 the degree 0 part in T'(g), then we have a direct sum T'(g) = To & T’

Because J C T4, the image of Ty in U(g) is non zero. We denote it by Uy and if Uy is the image
of T’y in U(g), which is a two-sided ideal in U(g), we have U(g) = Uy @ U;. In particular U(g) is a
non trivial associative algebra with unit.

Remark 3.1.3 Because T} is generated by the image of g in T'(g), the two-sided ideal U} is generated
by the image of g in U(g). Therefore U(g) is generated by fy(g) and the unit 1.

Lemma 3.1.4 The map fy: g — U(g) is an a-map.

Proof. For any x and y in g, the elements x ® y —y ® z and [z, y] are equal in T'(g) modulo J, therefore
fo@) fo(y) — fo(y) fo(@) = fo([z,y]) and the result follows. 0

'The tensor algebra is the direct sum T'(g) = @ g&"
n>0

21
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Proposition 3.1.5 Universal property of the envelopping algebra.
Let A be an associative algebra and g : ¢ — A an a-map, then there exists a unique morphism
gu : U(g) = A such that g = gy o fq.

Proof. The unicity comes from the fact that f; and 1 generate U(g). For the existence, let g7 : T'(g) —
A be the unique morphisme such that gr|; = g. Because g is an a-map, we have for any x and y in g:

grz @y —y @ —lz,y]) = g(x)g(y) — 9(y)g(z) — g([z,y]) = 0.
Therefore J C ker gr and gr factors through the quotient T'(g)/J = U(g). This defined g. O
Remark 3.1.6 Let g and g’ be two Lie algebras and w : g — ¢’ a Lie algebra morphism. Then the

composition fy o : g — U(g’) is an a-map. Therefore we have a morphism ¢ : U(g) — U(g’) such
that the diagram:

e~ —

commutes. If we have another Lie algebra morphism ¢’ : g/ — g”, then ¢/ o o = ¢/ 0 3.

3.2 Envelopping algebra of a product

Let a and b be two Lie algebras and set g = a x b. The injections 2 : a — g and y : b — g induce
canonical morphisms 7: U(a) — U(g) and 7: U(b) — U(g).

Lemma 3.2.1 The images of 1 and 7 commute in U(g). The application 7® 7 : U(a) @ U(b) — U(g)
is therefore an algebra morphism.

Proof. We have in U(g) the relation (z) ® 5(y) — (y) ® o(x) — [¢(z), 7(y)] = 0. But in g we have the
relation [¢1(x), 7(y)] = 0, therefore o(z) @ j(y) = 3(y) @ 1(z).
Now we compute
TRty zet) =1®(rz@yt)

And the result follows. O

Proposition 3.2.2 The morphism 1® 7: U(a) @ U(b) — U(g) is an isomorphism.

Proof. Consider the map g : g — U(a) @ U(b) defined by g(x,y) = fa(z) @ 1 +1® fu(y) for x € a and
y € b. We have the equalities:

9(x,y)9(z,t) — g9(z,t)g(z,y) — 9([(z,y), (2, 1)]) = (fa(@) @1+ 1@ fo(y))(fa(2) @1 +1® fy(t))
—(fa(2) @1+ 1@ fo(1))(falz) © 1+ 1® fo(y))
—(fa([z, Z])®1+1®fb([y t]))
= ( () fa(2) = fa(2) fa (w)) ([z,2])) ®

e A o~ Aot
= 0.
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Thus ¢ is an a-map and induces a morphism gy : U(g) — U(a) ® U(b) with g = gy o fg. We compute

fa(@) @1+ 1® fo(y))
(¥))

guoi®jog(x,y) =guor®

7
= gu (i f, (x))+ I fely
= gu(fo(e(x) + f3(5(v))
= gu(fe(u(z) + 3(y))

= g(z,y).

And because the image of ¢ contains fy(a) ® 1 and 1 ® f;(b), it generates U(a) ® U(b) as an algebra.
This implies that gy 07 ® 7= ldy(q)gu®)- We also compute

T®@Jogu o fylz,y) =12 ]7(9(w,v))
=10 )(fa(z) ®1+1® fo(y))
=(fa(2)) +3(fo(v))
= fo(1(z) +2(y))
= fg($ay)'

And because the image of f; generates U(g) as an algebra, this implies that 7® jo gy = Idyq). O

3.3 Envelopping algebra of the opposite Lie algebra

Let g be a Lie algebra and g°P its opposite Lie algebra. Recall that the Lie bracket in g°P is defined
by [z,ylop = [y, z]. Let us denote by U(g)°P the associative algebra opposite to U(g). Its product is
defined by z -op y = yx where yz is the product in U(g). As vector spaces g and g°" are isomorphic
as well as U(g) and U(g)°?. We therefore have a linear map f : g°® — U(g)°? which is equal to f; on
vector spaces.

Lemma 3.3.1 The map f:g°® — U(g)°? is an a-map.

Proof. We have f(2) op £ (4) = [ (9) -op J(2) = (2. 5)op) = fa(y) fol@) = fa(@) faly) — fa(ly2]) and the

result follows because f; is an a-map. O

Proposition 3.3.2 The induced map fy: U(g°P?) — U(g)°P is an isomorphism.

Proof. Indeed, the previous lemma shows that there is an algebra morphism U((g°P)°P) — U(g°P)°P
But (g°P)°P = g as a Lie algebras therefore we have an algebra morphism U(g) — U(g°?)°P. The
same vector space morphism induces an algebra morphism gy : U(g)°? — (U(g°P)°P)°? = U(g°P). By
definition, we have fyr o g o fgor = fgor and gy o fr o fgor = fy and as the images of fyer and of fj
generate U(g°P) and U(g), the result follows. O

Recall that the map op : g — g°P defined by z — —x is an isomorphism of Lie algebras. It induces
an isomorphism op;; : U(g) — U(g°?) = U(g)°? or an antiautomorphism of U. We have the following
multiplicative formula for (z;);c[ ) elements in g:

opy (fy(z1) -+ fy(zn)) = opy(fe(wn)) - opy(fe(z1))
= falop(zn)) - fa(op(z1))
= fo(=an) -+ fo(=21)
= (=1)"fa(@n) -~ fa(z1).
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3.4 Exercices

Exercice 3.4.1 Prove the assertions in Remark 3.1.6.



Chapter 4

Representations

In this chapter we give the very first definition and properties of representations of a Lie algebra. We
shall study in more details the representations of semisimple Lie algebras later on in the text.

4.1 Definition

Definition 4.1.1 Let g be a Lie algebra and V' be a vector space. A representation of g in V is a Lie
algebra morphism g — gl(V).

Definition 4.1.2 A injective representation g — gl(V') is called faithful. The dimension of V is
called the dimension of the representation.

Example 4.1.3 The adjoint representation g — gl(g) is a representation.

Example 4.1.4 Let G be a Lie group and G — GL(V) be a representation of G, the differential of
this map at identity is a representation of Lie(G) in V.

Remark 4.1.5 A representation of g is a linear map p : g — gl(V') such that for z and y in g and for
v in V, we have p([z,y])(v) = p(x)p(y)(v) = p(y)p(z)(v).

In particular this map is an a-map and induces an algebra morphism py : U(g) — gl(V') such
that p = py o fg. This means that V' is a U(g)-module with the action given by = - v = py(x)(v) for
x€U(g) andv e V.

Conversely, if V' is an U(g)-module whose multiplication is determined by an algebra morphism
pu : U(g) — gl(V), then by composition with f; we obtain a representation of g in V.

There is therefore a one to one correspondence between representations of the Lie algebra g and
the U(g)-modules.

We transpose the usual notions like, isomorphism , direct sums from U(g)-modules to representa-
tions of g. Let us state more precisely some of these definitions.

Definition 4.1.6 (1) A representation of g in V is called simple if V' is a simple U(g)-module i.e. if
the is mo non trivial submodule.

(1) A representation V is called reducible if there is a decomposition V- = Vi & Vy where V; are
subrepresentations of V' for i € {1,2}. If the representation is not reducible then we call it irreducible.

(11) A representation of g in V is called semisimple or completely reducible if V' is a semisimple
U(g)-module i.e. if it is isomorphic to a direct sum of simple modules.

(w) A representation g in W is a subrepresentation of V' if W is an U(g)-submodule of V. A
representation g in W is a quotient representation of V' if W is an U(g) quotient module of V.

25
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Definition 4.1.7 For V a representation of the Lie algebra g and for x in g, we shall denote by xy
the endomorphism of V induced by x.

Lemma 4.1.8 Let V be a representation of g and v € V', then the subset g, = {z € g / xy -v =0}
of g is a Lie subalgebra of g.

Proof. 1t is a subspace and for z and y in g,, we have [z,y]y v =2y - (yy - v) —yy - (xy -v) =0. O

4.2 Tensor product of representations

Taking tensor products is a natural operation on representations. Indeed, let g; and go be two Lie
algebras and let V; for i € {1,2} be a representation of g;. By the last remark, the vector space V; for
each i € {1,2} is an U(g;)-module and therefore V; ® V5 is an U(g;) ® U(g2)-module. But we have
seen in Proposition 3.2.2 that U(gy X g2) = U(g1) @ U(g2) therefore V1 ® V5 is a g1 X go-representation
whose action is given by:

(z1,22)v - (11 @ v2) = (for (1) @1+ 1® fgp(22)) - v1 @ 02
= (z1)v - v1 ®v2 +v1 @ (22)v - V2.

Definition 4.2.1 If g = g1 = go, and composing with the inclusion g — g X g of Lie algebras given
by x — (x,z) we obtain, for Vi and Va two representations of g a representation of g in Vi ® Va called
the tensor product representation. The action is given by

ry - (V1 ®v2) = 2y - V1 @ U2 + V1 @ TY - Va.
By induction we get

Proposition 4.2.2 Let (Vi)cni,n be representations of the Lie algebra g, then the tensor product
V = ®7,V; is a representation of g with action given by the following formula:

n
xv(vl®®vn):2fvl®®x%vl®®vn
i=1

4.3 Representations in the space of morphisms

As in the previous section, let gy and go be two Lie algebras and let V; for i € {1,2} be a representation
of g;. The vector space V; for each i € {1,2} is an U(g;)-module and therefore Hom(V1, V3) is an
U(g1)°? ® U(g2)-module. But we have seen in Proposition 3.3.2 that U(g1)°® = U(g}") therefore
Hom(V1,V,) is a g(fp X go-representation whose action is given, for ¢ € Hom(Vy, Vo) and v; € Vi, by:

((x1,32)v - @) (v1) = ((fgor(21) ® 1 +1® fgo(22)) - &) (v1)
O((z1)vy - v1) + (22)vy - G(v1)
((z2)vy 0 ¢ + o (1)vy)(v1)-

Definition 4.3.1 If g = g1 = g2, and composing with the inclusion g — g°P X g of Lie algebras given
by x — (—x,x) we obtain, for Vi and Vy two representations of g a representation of g in Hom(Vi, V3).
The action is given by

Ty P =T, 00— pory.
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Combining with Proposition 4.2.2 we get the

Proposition 4.3.2 Let (V;)ic1,n+1) be representations of the Lie algebra g, then the space of multi-
linear maps Hom(®_,V;, V1) is a representation of g with action given by the following formula:

n
@y - Q)01 @ Dup) == p1 @@y, v; @ D) + (Tvy,) - HV1 @ -+ D).
i=1
Definition 4.3.3 Let V be a representation of g, then V¥ = Hom(V, k) is called the dual representa-
tion of V.

Let V be a representation of g and consider the representation of g in B = Hom(V ®V, k) the space
of bilinear forms. Let b € Hom(V ® V, k), then, by Lemma 4.1.8, the set g = {x € g / zp-b =0} is
a Lie subalgebra of g. The condition xp - b = 0 translates here in

b(zy - v,0") + b(v,zy - v') =0 for all v and v'.
Example 4.3.4 Let V = k", g = gl(V) acting on V by the identity map g = gl(V) — gl(V). We
identify g with the vector space of n x n-matrices. Choose b((2;)ic[1,n]> (¥i)ic[in]) = i1 Ti¥i the
standard symmetric bilinear form, then we have
gy ={A €gl(V) / Ais antisymmetric} is a Lie algebra.

When k£ = R, then this is the Lie algebra of the orthogonal group O(n,R).

Example 4.3.5 Let V = k2" g = gl(V) acting on V by the identity map g = gl(V) — gl(V). We
identify g with the vector space of 2n x 2n-matrices. Choose the following standard antisymmetric
bilinear form b((x;)icp1,20]), (Vi)ic[1,2n]) = Doie1 Til2nt1—i — 21 T2nt1-i¥; , then we have

o = {( é g ) € gl(V) with A, B, C and D n x n-matrices / D = —'A, B =" B and C =' C}

is a Lie algebra. When k = R, then this is the Lie algebra of the symplectic group Sp(n,R).

4.4 Invariants

Definition 4.4.1 Let V be a representation of g, an element v € V is called invariant if g, = g i.e.
xzy v =0 for all x € g. The set of invariants of g in V 1is denoted by V9.

Example 4.4.2 Let G be a Lie group and V be a representation of G i.e. we have a Lie group
morphism G — GL(V'). Then the differential at the identity defines a representation Lie(G) — gl(V)
and if v € V is G-invariant, then v is an invariant for Lie(G). Indeed, we have for ¢ small and any
x € Lie(G) the equality v = (1 + ex) - v = v + €(xy - v) and the result follows.

Example 4.4.3 Let V and W be representations of g and let ¢ € Hom(V, W). Then ¢ is invariant if
and only if zy 0 ¢ = ¢ o Ty or equivalentely the morphism ¢ is a Lie algebra morphism. In symbols:

Hom(V, W)® = Homy(V, W).
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Example 4.4.4 Let V be a representation of g. There is always an invariant in Hom(V, V'), namely
Idy (by the previous example). In particular, because VV ® V is isomorphic to Hom(V,V) has a
representation of g (Exercice!) is has an invariant element say c§;. If (vi)ig[1,n) 18 @ basis of V and if
(v))iep,n) is the dual basis in V'V, then

n

Q@ _ %

cy = g v, ® ;.
i=1

Remark that the element 6{8; does not depend on the choice of the basis.
Example 4.4.5 Let V be a representation of g and let b € Hom(V x V, k) a bilinear form. Then b
is an element in Hom(V ® V, k) = Hom(V, V). Then b is invariant if and only if the corresponding
map b:V — VV is a morphism of representations. In symbols:

Hom(V x V, k)% = Homy(V, V).
In particular, if V is finite dimensional and b is non degenerate and invariant, then b : V. — VYV

is an isomorphism of representations. We therefore have an invariant ¢y € V ® V corresponding to
o eVVeV. If (vi)ie[1,n) 18 a basis of V and if (v])sc[1,5) is the dual basis for b defined by b(v;, v}) = d; 5,

then
n
cy = Z vg ® ;.
i=1

Remark that the element ¢y does not depend on the choice of the basis.

Proposition 4.4.6 Let g be a Lie algebra and a an ideal in g. Let V' be a representation of g and
consider it as a representation of a. Then V' is a representation of g.

Proof. The subset V® is a subspace of V. Furthermore, for x € g, ¥y € a and v € V* we have

yv - (zv -v) = [y, 2]y -v+2v - (yv - v) = 0 because a is an ideal in g. O

4.5 Invariant bilinear forms

Consider the special representation V' = Hom(g X g, k) induced by the adjoint representation and the
trivial representation.

Definition 4.5.1 A bilinear form b on g is called invariant if it is invariant as an element of the
representation V.

Remark 4.5.2 A bilibear form b is invariant if and only if b(zy -y, 2) + b(y, x4 - 2) = 0 d.e. iff

b([z, 9], 2) + b(z, [y, 2]) = 0

for all z, y and z in g.

Definition 4.5.3 A bilinear form b on g is called fully invariant if for any derivation D in det(g),
we have b(Dz,y) + b(x, Dy) = 0 for all x and y in g.
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Proposition 4.5.4 Let g be a Lie algebra and a an ideal of g. Let b be an invariant symmetric bilinear
form on g.

(1) The orthogonal b of a for b is an ideal of g.

(n) If a is a characteristic ideal and b is fully invariant, then b is also a characteristic ideal.

(1) If b is non degenerate, then aNb is commutative.

Proof. For (1) and (1), let D be an inner (resp. any derivation of g). Let x be in b and y € a. We
have b(Dz,y) = —b(xz, Dy) = 0 and the result follows.

(12) Let x and y in aN'b. We have b([z,y],z) = b(x, [y, 2]) = 0 because x € a and [y,z]| € b are
orthogonal for b. This is true for any z thus [z, y] = 0 because b is non degenerate. U

Definition 4.5.5 Let V be a finite dimensional representation of g. The bilinear form associated to
the representation V' is the symmetric bilinear form defined by
(z,y) = Tr(zyyy).

If V is the adjoint representation, the the associated bilinear form is called the Killing form. We
denote it by kg.

Proposition 4.5.6 Let V be a finite dimensional representation of g, then the associated bilinear
form is invariant.

Proof. Let x, y and z in g. We compute

Tr([z,ylvev) = Tr(zvyvey) — Tr(yvavey) = Tr(zvyvey) — Tr(zvzvyy) = Tr(zyv [y, 2]v)

and the result follows. O

Proposition 4.5.7 Let g be a finite dimensional Lie algebra and b an ideal of g, then if Ky is the
Killing form of g and ky the Killing form of b we have Ky = Kgly-

Proof. Let x and y be elements in h, we want to compute the trace of ad xrady as an endomorphism of
h and of g. Let call u the corresponding endomorphism of g. As b is an ideal, the image of u is h and
u induces an endomorphism uyy of h and ug of g /b. This last endomorphism vasnishes and therefore
Tru = Truy. O

Proposition 4.5.8 Let g be a finite dimensional Lie algebra, then the Killing form kgy is fully invari-
ant.

Proof. Let D be a derivation of g and x and y elements of g. We start with the following

Lemma 4.5.9 Let D be a derivation of g, then there exists a Lie algebra g’ = g @ kxo such that for
x € g, we have Dx = [xg, x| and such that g is an ideal in g’

Proof. Indeed, the derivation D gives a map kxo — detr(g) defined by Axg — AD. As we have already
seen, we may then define g’ the semidirect product of kxg and g which is an extention of kzg by g
therefore g is an ideal in g’. The Lie bracket [z, x] is by definition Dzx. O

By the previous proposition and the above lemma, we have, kq(Dx,y) = kg (Dx,y) = £y ([zo, 2], y)
but the Killing form kg being invariant, we have kg ([xo,2],y) = —rg (x, [T0,y]) = —kKq(z, Dy) and
the result follows. U
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4.6 Casimir element

In this section we construct a very useful element in the envelopping algebra U(g). Let us first
remark that the envelopping algebra U(g) is a representation of the Lie algebra g. Indeed, the adjoint
representation gives a representation of g in itself and by looking at the tensor product and direct sum
representation, we get that T'(g), the tensor algebra, is a representation of g, the action being given
by

n

Trg  (T1® - Qzp) =Y (310 @ [,3:] @ @ mp).
i=1

Lemma 4.6.1 The ideal J generated by the elements of the form x @y —y ®@ x — [x,y] is a subrepre-
sentation of T'(g).

Proof. Let x, y and z in g, we need to prove that ) maps y®z — 2@y — [y, z] to an element of J.
We compute

Trg) (YR z—20y—[y,2)= [1,yY@z+y® [z, 2] —[1,2] @y — 2 ® [2,y] — [z, [y, 2]]
[T,y @2z +y@[2, 2] = [2,2] @y — 2 @ [2,y] — [2, [2,9] = [y, [z, 2]]
= (z,yl®@z—-2[z,y] - [[z,9], 2])

+( X [1‘,2] - [1‘,2] ®y_ [ya [.%',Z]])

and the terms in the last sum are in J, the result follows. U

Corollary 4.6.2 The above action of g on T(g) induces an action on U(g) which is therefore a
representation of g.

Proposition 4.6.3 Let g be a Lie algebra, let b be an ideal of finite dimension n and let b be an
invariant bilinear form on g whose restriction to §) is non degenerate. Let (hi)l-e[l’n} and (hg)ie[l,n] be
basis of b such that b(h;, h;) = 0,5, then the element in U(g) defined by

c= Y hih’
> il
i=1

is invariant, lies in the center of U(g) and is independent of the choice of the basis.

Proof. We have already seen in Example 4.4.5 that the element
n

o= hi®@hiehah
i=1

does not depend on the basis and is invariant. The above element c¢ is the image of ¢, in U(g) and
therefore is invariant and does not depend on the choice of the base. The element c lies in the center
by the next result. O

Lemma 4.6.4 Let ¢ be an invariant element in U(g), then c lies in the center of U(g).
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Proof. First assume that c is the image of a pure tensor i.e. ¢ = z1---x, € T(g) with the z; in g.
Then we have

n
Tr) ¢ =D i T[T, x] ap
n n
n n
pr— Zi:lxllllxl—lx‘rllllxn_Zi:2 xlnnnxi_lxxi...xn
=Xx Ty — T Tyl

Therefore if ¢ is invariant we have zc¢ = cx for all € g. By linearity, the same is true a general
invariant element c¢. Now the result follows because g generates U(g). O

Definition 4.6.5 Let g be a Lie algebra and b an ideal of g. Let V be a finite dimensional repre-
sentation of g such that the bilinear form b?/ on b associated to V is non degenerate. The element

c?/ € Z(U(g)) is called the Casimir element of g associated to ) and V.

Proposition 4.6.6 Let g be a Lie algebra and b an ideal of g of dimension n. Let V be a finite
dimensional representation of g such that the bilinear form b?, on b associated to V is non degenerate.
Let ¢ = c?/ be the Casimir element of g associated to by and V.

(1) We have Tr(c) = n.

(n) If V is simple and n prime to chark, then c is an automorphism of V.

Proof. (1) By definition, for basis (h;)ic[1,,) and (h});c[1,,) be basis of b such that b?/(hi, ;) = d; 5, we
have the equality ¢ = > | h;h}. We get

Tr(e) = 3 Te((ha)y (W)v) = S 60 (his L) = m.
=1 =1

(1) If n and chark are coprime, then Tr(c) does not vanish and c is not the zero map. But ¢ is in
the center of U(g) and therefore commutes with any zy for € g. In particular, ker ¢ is a g-invariant
subspace of V. The representation V being simple, we have ker ¢ = V' or ker ¢ = 0. The first equality
would imply ¢ = 0, therefore c is injective and an automorphism. O
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4.7 Exercices

Exercice 4.7.1 Let V be a representation of a Lie algebra g. Prove that the subspaces of symmetric
and antisymmetric tensors S™V and A"V and subrepresentations of the tensor product representation

"(g).

Exercice 4.7.2 Let g; be a Lie algebra and V; be a representation for ¢ € {1,2}. Verify, without using
envelopping algebras, that the map g; x ga — gl(Vi ® V3) given by (z1,22)v(v1 @ v2) = (z1)v(v1) ®
vy + v1 ® (x2)v (v2) defines a Lie algebra representation of g1 x go in Vi ® V.

Exercice 4.7.3 Prove that zyv = —txy.
Exercice 4.7.4 Prove that V is simple if and only if V'V is simple.

Exercice 4.7.5 Let g; be a Lie algebra and V; be a representation for ¢ € {1,2}. Prove that the
natural isomorphisms

V)Y ® Vo ~ Hom(Vy, Vo) and Hom(Vy, Vy) ~ (Vi ® Vi)Y
defined by ¢ @vg — (v1 — ¢(v1)v2) and ¢ — ((v1 ®v2) — ¢(v1)(ve)) are isomorphisms of Lie algebras.
Exercice 4.7.6 For V of dimension 2, prove that sl(V) is a simple Lie algebra.

Exercice 4.7.7 Let g be a Lie algebra over £ = C and let gg be the Lie algebra over R obtained by
considering g as an R-vector space (we have dimg g9 = 2dimc g) i.e. by restriction of the scalars.
Prove the equality

Kgo = 2%(’%9)7

where R(z) is the real part of z € C.

Exercice 4.7.8 Let g be a Lie algebra, then the multilinear form
(Dﬂi)@'epm — Tr(adzy o+ oxy)
is invariant.

Exercice 4.7.9 Let g be a Lie algebra, let V' and W be two representations of g and let f: V — W
be a morphisms of representations, prove the inclusion f(V?%) C W?9.

If furthermore, V' and W are semisimple representations, prove the equality f(V?) = W9 (Hint:
prove first that the subspace V9 is a subrepresentation and has a unique supplementary representation
generated by the xy - v for z € gand v € V).

Exercice 4.7.10 (1) Let g = sl(V) with V a vector space of dimension 2. Compute the Casimir
element associated to the adjoint representation in terms of the canonical base

0 1 0 0 1 0
X_<0 0>,y_<1 0>andH_<0 _1>.

(1) Let g = sl(V) with V' a vector space of dimension 3. Compute the Casimir element associated
to the representation sl(V) — gl(V).
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Exercice 4.7.11 Let V be a finite dimensional vector space and let V4 be a complete flag. Let
g = t(V4) and consider the representation g — gl(V') given by the inclusion.

(1) Prove that the only subrepresentations of V' are the vector spaces Vj of the flag V.

(1) Prove that the Vj, are irreducible but not simple (except for V7).

Exercice 4.7.12 Let g be a Lie algebra over C.

(1) Let V' be of dimension one and ¢ : g — gl(V') be a representation. Prove that ¢(Dg) = 0.

(1) Prove that any representation V' of g/Dg induces a representation of g in V' on which Dg acts
trivially.

(m) Prove that if g # Dg, then g has infinitely many one dimensional non isomorphic representa-
tions while if g = Dg, then the only one dimensional representation of g is the trivial one.

Hint: any linear map g/Dg — gl(V) with dim V' =1 is a representation.
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Chapter 5

Nilpotent Lie algebras

5.1 Definition

Definition 5.1.1 A Lie algebra is called nilpotent if there exists a decreasing finite sequence (Qi)ie[&k}
of ideals such that go = g, g = 0 and [g, 9i] C giy1 for all i € [0,k —1].

Proposition 5.1.2 Let g be a Lie algebra, the following conditions are equivalent:
(1) the Lie algebra g is nilpotent;
(1) we have Ckg =0 for k large enough;

(11) we have Crg = g for k large enough;

w) there exists an integer k such that adx1 o---oadxy = 0 for any sequence (x;);cr1 1 of elements
€[L,k]
m g

(v) there exists a decreasing sequence of ideals (i)icjo,n) with go = @, g9n = 0 and such that [g, g;] C
gir1 and dimg;/gi1 = 1 for all i € [0,n — 1].

Proof. We start with the equivalence of the first three conditions. If (22) or (1) holds, then the
sequence ((‘Big)ie[l,k] or (Ck—i8)ic1,k) satisfy the conditions of the definition and g is nilpotent.

' Conversely, if the exists a sequence of ideals (gi)z‘e[o, k] as in the definition, we prove by induction that
C'g C g; and C;g D gg_;. Thisis true for i = 0. Assume that C'g C g; and C;g D gr_;, then we have the
inclusions €"*'g = [g, C'g] C [g, s C gi+1 and [g/C;, (gk—(i+1) + €ig)/Cig] C (gr—i +Cig)/Cig = 0. The
last inclusion implies that (g (i11)+ €;g)/C;g is in the center of g/C;g and therefore gj,_ ;1) C Cit19.
We get C*g =0 and Crg = g.

Now (1) and () are equivalent. Indeed, the ideal €¥g is composed of the linear combinations of
elements of the form [z1, [xo, [+ [zg,y] - ]]] = adzy o+ - ocad zk(y) with z; € g for all i and y € g.

Finally (1) and (v) are equivalent. Indeed the last condition imply the first. Conversely, assume that
(9i)ie[o,x) 1s a sequence of ideals as in the definition of a nilpotent Lie algebra. Then let us complete the
sequence (g;)ic[o,k] to a sequence (g;)ic[o,n] With n = dim g, dim g; = n—1, giy1 C g; and g;—dimgj = gj.
We only need to prove that [g,g;] C g, ;. But, for i € [0,n], we define iy = max{j / g; C g;}. We
have g;, 11 C g;,, C @] C gi,. Therefore [g, ;] C [g,8i,] C gi,+1 C ;- O

Corollary 5.1.3 The center of a non trivial nilpotent Lie algebra is non trivial.

Proof. Indeed, we must have C;g # 0 otherwise there is no k with Crg = g. O
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Corollary 5.1.4 The Killing form kg vanishes for g nilpotent.

Proof. For any (z,y) € g2, the element ad z o ad y is nilpotent thus k4(z,y) = Tr(adz o ady) = 0. O

Proposition 5.1.5 Any subalgebra, any quotient algebra, any central extemsion a Lie subalgebra is
again a Lie subalgebra. A finite product of nilpotent Lie algebras is again a nilpotent Lie algebra.

Proof. Let g be a nilpotent Lie algebra.

Let b be a subalgebra of g, then €*h C CFg and the result follows for b.

Let a be an ideal in g and let 7 : g — g/a be the projection. We proved in Proposition 2.5.6 that
7(C*g) = €¥(g/a) and the result follows for g/a.

Let 0 = a — g 5 g — 0 be a central extension, then p(€Fg’) = CFg. Therefore if C*g = 0, then
Ckg' C a and CFTlg’ = 0 because a C 3(g’).

The last assertion follows from the condition (2v) in the previous proposition. O

5.2 Engel’s Theorem

Theorem 5.2.1 Let V be a vector space and g be a finite dimensional Lie subalgebra of gl(V'), such
that for all = is nilpotent for all x € g, then there is a v € V with x(v) =0 for all x € g.

Proof. We proceed by induction on n = dimg. For n = 0, this is clear. We shall need a

Lemma 5.2.2 Let V be a vector space and x € gl(V') nilpotent, then element f of gl(gl(V')) defined
by y — [x,y] is nilpotent.

Proof. Indeed, we can compute that f™(y) is a linear combinaison of terms of the form z’yxz™~% and
the result follows. 0

Now let b be a strict subalgebra of g. We define a map o : h — gl(g/h) sending = € h to the map
o(x) defined by § — [z,y] where 7 is the class of y € g in the quotient g/h. By the previous lemma,
the map z +— [x,y] is nilpotent so o(z) is nilpotent. Therefore o(h) satisfies the conditions of the
Theorem and dimo(h) < n. By induction, there exists ¥ a non trivial vector in g/h with o(z)(y) =0
for all x € h. Therefore, there is a y not in h with [z,y] € b for all z € h. This imples that b is an
ideal in the subalgebra h @ ky of g.

By induction starting with h = 0, we get a codimension 1 ideal h in g. The result is true for b
therefore, the subspace W of all v € V' such that xz(v) = 0 for all € b is non trivial. Let y € g with
y &€ b, then y stabilises W. Indeed, for v € W, we have z(y(v)) = y(z(v)) + [z,y](v) = 0 because [z, y]
and z are in h. Now y is nilpotent on W therefore there exists v non trivial in W with y(v) = 0. The
vector v does the job. O

Corollary 5.2.3 A Lie algebra g is nilpotent if and only if ad x is nilpotent for all x € g.

Proof. By Proposition 5.1.2, if g is nilpotent then ad z is nilpotent for all € g. Conversely, if ad =
is nilpotent for all z, then the image of the adjoint representation in gl(g) satisfies the conditions of
Engel’s Theorem. Therefore, there is a non trivial « € g such that [z,y] = adz(y) = 0 for all y € g.
Therefore the center of g is non trivial. Now the Lie algebra g/3(g) satisfies the same hypothesis and
we conclude by induction that Crg = g for k large enough. O
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Corollary 5.2.4 Let g be a Lie algebra and a an ideal of g. Assume that g/a is nilpotent and that
for all x € g, the restriction ad x|y is nilpotent, then g is nilpotent.

Proof. Let x € g, we prove that ad z is nilpotent. Indeed, it is nilpotent on a and on g/a (there are k
and k’ such that ad *2(g) C a and ad ¥ z(a) = 0 therefore ad ¥ z(g) = 0). O

Corollary 5.2.5 Let V be a vector space and g a Lie subalgebra of gl(V') such that all the elements
x € g are nilpotent endomorphisms of V', then g is nilpotent.

Proof. Indeed by Lemma 5.2.2, for any « € g, the element ad z is nilpotent. We conclude by applying
Corollary 5.2.3 O

Example 5.2.6 For V' a vector space and V, a complete flag, the Lie algebra n(V4) is nilpotent.

5.3 Maximal nilpotent ideal

Definition 5.3.1 An ideal a in g is called nilpotent if it is nilpotent as a Lie algebra.
Lemma 5.3.2 An ideal a of g is nilpotent if and only if for all x € a, we have that adgx is nilpotent.

Proof. The condition is sufficent (we only need that ad,z is nilpotent). Conversely, if a is nilpotent,
then ad,z is nilpotent and adgz(g) C a and the result follows. O

We shall need the following general result on representations.

Lemma 5.3.3 Let V be a finite dimensional representation of the Lie algebra g, then there exists an
increasing sequence 0 = Vo C Vi C --- C V,, =V of subrepresentations of V' such that V;/V;_1 is
simple for all i € [1,n].

Proof. By induction on the dimension of V', we only need to prove that there exists a subrepresentation
W of V such that V/W is simple. We also prove this by induction on dim V. Indeed, if V' is simple, we
are done. Otherwise, there exists a non trivial subrepresentation V’ of V and we apply our induction
hypothesis on V/V’. We get W/V’ a subrepresentation of V/V’ (image of the subspace W in V') such
that (V/V')/(W/V') is simple. But W is a subrepresentation of V and V/W ~ (V/V')/(W/V') is
simple. O

Lemma 5.3.4 Let V be a simple representation of g and a an ideal such that for all x € a, the element
xy is nilpotent. Then for all x € a, we have xy = 0.

Proof. By Proposition 4.4.6, the subspace V¢ = {v € V' / zy-v = 0 for all = € a} is a subrepresentation
of V. Furthermore, by Engel’s Theorem (Theorem 5.2.1), this space is non trivial. Because V' is simple
we have V = V4 O

Lemma 5.3.5 The sum of any two nilpotent ideals is again a nilpotent ideal.
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Proof. Let a and b be two nilpotent ideals and = € a and y € b. We need to prove that if adg(z + y)
is nilpotent. For this consider the sequence of subrepresentations go =0 C -+ C g, = g of the adjoint
representation given by Lemma 5.3.3. Because adgz and adgy are nilpotent, for any € a and y € b,
we have that g, /5. | and yg, 4, , are nilpotent for all i € [1,n]. By Lemma 5.3.4 and because g;/gi—1
is simple, we have the equalities that xg, /g, , = 0 and yg, /5, , = 0 for all z € a and y € b and for
all i € [1,n]. In particular (z +¥)g,/q,., = 0 for all z € a and y € b and for all i € [1,n]. We have
adg(z +y)(gs) C gi—1 for all i € [1,n] and adg(x + y) is nilpotent. O

Corollary 5.3.6 There exists a maximal nilpotent ideal ng in any finite dimensional Lie algebra g.

Remark 5.3.7 The quotient g/ng may have nilpotent ideals.
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5.4 Exercices

Exercice 5.4.1 Let g be a nilpotent Lie algebra and let p (resp. ¢) be the smallest integer such that
CPg =0 (resp. Cug = g). Prove that p = ¢ and that C;g D €’ 'g.

Exercice 5.4.2 Prove that a Lie algebra g is nilpotent if and only if all its two dimensional Lie
subalgebras are abelian.
Hint: reduce to the case where k is algebraically closed.

Exercice 5.4.3 Let g be the semidirect product of a one-dimensional Lie algebra b and an abelian
ideal a. Let = € b non trivial and v = adgz|q.

(1) Prove that g is nilpotent if and only if w is nilpotent.

(11) Prove that the Killing form kg vanishes if and only if Tr(u?) = 0.

(m) Give an example of a non nilpotent Lie algebra with vanishing Killing form.

(1v) Give an example of a nilpotent Lie algebra such that the inclusion C;g D CP~ig of the previous
exercice is strict.

Exercice 5.4.4 Assume chark = 2, prove that for V of dimension 2 over k the Lie algebra sl(V) is
nilpotent.

Exercice 5.4.5 Let g be a nilpotent Lie algebra, let 3 be its center and let a be a nonzero ideal of g.
Prove that 3N a # 0.

Exercice 5.4.6 Let g be a Lie algebra and a an ideal contained in 3(g). Prove that g is nilpotent if
and only if g/a is nilpotent.

Deduce that nilpotent Lie algebras are the Lie algebras obtained from abelian Lie algebras by
performing central extensions.

Exercice 5.4.7 Describe all nilpotent Lie algebras of dimension at most 3.

Exercice 5.4.8 Let g and g’ be two Lie algebras and ny and ny their maximal nilpotent ideals, prove
that ngyy = ng X ny.

Exercice 5.4.9 Give an example of a Lie algebra g where the quotient g/ny has nilpotent ideals.
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Chapter 6

Semisimple and nilpotent elements

In this chapter, all vector spaces are finite dimensional and we assume that k is a perfect field (for
example chark = 0).

6.1 Semisimple endomorphisms
Recall the basic definition.

Definition 6.1.1 We call semisimple any endomorphism which is diagonalisable in an extension of
the base field k. Equivalently, the minimal polynomial is separable.

Lemma 6.1.2 If x € End(V) is semismple and if x(W) C W for W a subspace of V', then z|w €
End(W) is semisimple.

Proof. Let P, be the minimal polynomial of x. We may compute P, (z|w)(w) = Py(z)(w) = 0
therefore P, kills 2| and the minimal polynomial P, of x|y divides P,. As P, is separable, so is
P O

x|w

lw

Lemma 6.1.3 Any two commuting semisimple endomorphisms x and y of V' can be simultaneously
diagonalised in an extension of k. In particular their sum is again diagonalisable in that extension, in
other words  + vy is semisimple.

Proof. We may assume that k is algebraically closed and that z and y are diagonalisable. Now let
V = @V, (x) be the eigenspaces decomposition for x where A is the eigenvalue. Then for v € V) (z),
we have z(y(v)) = y(x(v)) = y(A(v)) = Ay(v) therefore V)(x) is stabilised by y and by the previous
lemma yly, () is diagonalisable. The result follows. O

6.2 Semisimple and nilpotent decomposition

Theorem 6.2.1 Assume that k is perfect (for example chark = 0). Let V be a finite dimensional
vector space over k and let x € End(V).

(1) There exists a unique decomposition x = xs + x, n End(V') such that x5 is semisimple, ,, is
nilpotent and x5 and x,, commute.

(1) There exists polynomial P and Q in k[T| such that xs = P(x) and x, = Q(zx). In particular
xs and x, commute with any endomorphism commuting with x.

(w) If U C W CV are subspaces such that (W) C U, then x5 and x,, also map W in U.
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Proof. We start to prove the result when k contains all the roots of the characteristic polynomial y,

of . Let us write "

Xo(T) = [ (T = )™
i=1
where the )\; are pairwise distinct. The space Vi (x) = ker((x — A\;Idy)%) is invariant under = and
we have V = @V?Yi(x). Let P be a polynomial such that P = \; (mod (T — X\;)%) for all 4 and
P =0 (mod T). This is possible by the Chinese Remainder Theorem and because the (T"— \;)* are
coprime (if A; = 0 for some 4, then the last condition is satisfied).

Now put zs = P(z), then the restriction of x, to V*i(z) is simply the multiplication by a; therefore
x5 is semisimple on V. Now put Q(T") =T — P(T) and z,, = Q(z). But the only eigenvalues of x and
x, on VAi(x) is \; therefore z,, has only 0 as eigenvalue and z,, is nilpotent.

Let us prove that the decomposition is unique. Let x = s + n be another decomposition. Write
s — xs = xp — n. All these endomorphism commute, therefore s — x4 is semisimple and x, — n is
nilpotent. Thus both vanish.

We now need to prove the general case. To simplify notation, we will consider matrices instead of
endomorphisms therefore, we fix a basis for V' and denote by X the matrix of x in that basis.

Let K be the field of decomposition for y x the characteristic polynomial of X. We consider the
matrix X as a matrix with coefficients in K. By what we already proved, we know that there exists
polynomials P and @ in K[T] such that X = P(X)+Q(X) with P(X) semisimple and (X)) nilpotent.
We may replace P and @ by their rest in the Euclidian division by Px minimal polynomial of X.In
particular P and @) have degree smaller than the degree of Px.

Now let o be an automorphism of K leaving k fixed. For any matrix M = (m; ;) we may define
the matrix M7 = (o(m; ;)). We may also define, for R(T) = 3" a,T", the element R (T) = 3" o(a;)T".
We have

(P(X))" = P7(X), (Q(X))* = Q7(X") and X” = P(X) + Q°(X").

But X has coefficients in k therefore X? = X and we get X = P7(X) + Q7(X). But because
P(X) (resp. (QX)) is semisimple (resp. nilpotent), the same is true for (P(X))? (resp. (Q(X))?).
Indeed, it is clear for the nilpotent case. If (e;) is a basis of Vx and ()\;) are scalars in K such that
P(X)(e;) = Aiei, then we have (P(X))%(0(e;)) = o(P(X)(e;)) = o(Xiei) = a(Ni)o(e;) and (o(e;)) is
an eigenbasis for (P(X))?. By unicity, we have P?(X) = P(X) and Q7(X) = Q(X). By minimality
of the degree, we get P = P? and @@ = Q7. Now because the field is perfect, the extension K/k is a
Galois extension and P and @ have to be in k[T]].

This proves (1) and (u), for () we only need to remark that P and @ can be choosen without
constant terms. This was the case for k containing the roots of Px. In the general case, if X is
invertible then Px has non zero constant term therefore, because Px(X) = 0, we have that Id is a
polynomial in X without constant term and the result follows. If X is not invertible, then ker X is
non trivial and Q(X) stabilises ker(X). But Q(X) is nilpotent therefore there exists v € ker(X) such
that Q(X)(v) = 0. Write Q(T) = Y. a;T%, we have Q(X)(v) = >_ a; X*(v) = ag because v € ker X.
Therefore ag = 0 and the result follows. O

Definition 6.2.2 The elements xs (resp. ) is called the semisimple part of z € End(V) (resp.
nilpotent part The decomposition x = x5 + x, is called the Jordan-Chevalley decomposition.

Lemma 6.2.3 Let v € End(V) and denote by ad : End(V') — gl(End(V)) the adjoint representation
of End(V) defined by ad z(y) = xy — yz. Then we have the formulas:

ad (zs) = (adx)s and ad (z,,) = (ad z),.
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Proof. We have x = x4 + x, therefore ad z = ad x5 + ad x,,. Furthermore, because [zs,z,] = 0, we
get [ad zs,ad x,,] = 0. We are left to prove, by unicity that ad x4 is semisimple and ad x,, is nilpotent.
Lemma 5.2.2 gives that ad x,, is nilpotent.

To prove that ad x; is semisimple, we may assume that k is algebraically closed. Choose a basis
(e;) where z, is diagonalisable with xs(e;) = A;. Then if (F; ;) is the canonical basis for dim V' x dim V'
matrices, we have ad z5(E; ;) = (A — A\;j)E; j and ad 24 is also semisimple. O
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6.3 Exercice
Exercice 6.3.1 Take k = Fy(T) and consider the endomorphism of &% given by the matrix
0T
1 0 )°
Prove that the semisimple and nilpotent parts of that endomorphism are not in End(k?) but in
End(K?) with K = k[\/T].

Exercice 6.3.2 Prove that if z and y commute, then (z 4+ y)s = x5 + ys and (v + y), = zp, + Yy + n.
Prove that this is flase in general, look for example at the following matrices:

(Vo)=(10)+(00):
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Solvable Lie algebras

From now on we assume that chark = 0 and that the dimension of all Lie algebras is finite.

7.1 Definition

Definition 7.1.1 A Lie algebra is called solvable if we have D*g =0 for k large enough;

Proposition 7.1.2 Let g be a Lie algebra, the following conditions are equivalent:

(1) the Lie algebra g is solvable;

(n) there exists a decreasing finite sequence (g;)ic(ok] of ideals such that go =g, g1 = 0 and g;/gi11
is abelian for alli € [0,k — 1];

(u1) there exists a decreasing finite sequence (Qi)ie[o,k] of subalgebras with g; 11 ideal in g; such that
g0 =9, 9r =0 and g;/gi+1 is abelian for all i € [0,k — 1];

(w) there exists a decreasing sequence of subalgebras (gi)icjo,n] with g0 = @, g9n = 0 and such that
git1 s an codimension 1 ideal in g;.

Proof. We easily have that (2) implies (%) which implies (722) implying (wv). For the first implication,
put g; = D’g. For the last one, any complete flag in g containing the (8i)iejo,k) Will do.

For the fact that (2) implies (2), we use the next proposition: any extension of solvable Lie algebra is
again solvable and induction on the dimension. In dimensionl, the Lie algebra is abelian and therefore
solvable. We assume that g; is solvable but then g is the extension 0 — g; — g — g/g1 — 0 and
because g1 and g/g; (this last one is abelian) are solvable, so is g. O

Proposition 7.1.3 Any subalgebra and any quotient algebra of a solvable Lie algebra is solvable. Any
extension of solvable Lie algebras is solvable.

Proof. Let g be a solvable Lie algebra. Let h be a subalgebra of g, then D*h  D*g and the result
follows for h. Let a be an ideal in g and let 7 : g — g/a be the projection. We proved in Proposition
2.5.6 that 7(D*g) = D¥(g/a) and the result follows for g/a.

Let 0 > a— ¢ 2 g — 0 be an extension, then p(D¥g’) = D¥g. Therefore if D¥g = 0 and D'a = 0,
then DFg’ C a and DFHy’ = DY(D*g') c Dla = 0. 0

Corollary 7.1.4 A Lie algebra is solvable if and only if it can be obtained by successive extensions of
abelian Lie algebras.

Example 7.1.5 The Lie algebra t(V4) is solvable but not nilpotent.

45
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7.2 Radical

Lemma 7.2.1 Let g be a Lie algebra, then there exists a mazximal solvable ideal in g.

Proof. Indeed, let a and b be two solvable ideals, then a + b is again an ideal and we have (a+b)/b ~
a/(anb) therefore (a+b)/b is solvable as quotient of a. But b being solvable, then a+ b is an extension
of solvable Lie algebras and is therefore solvable. The sum of all solvable ideals is again a solvable
ideal and is maximal. 0

Definition 7.2.2 We denote by t(g) or simply v the mazximal solvable ideal of g and we call it the
radical ideal of g.

Proposition 7.2.3 The radical g is the smallest ideal such that g/t has trivial radical.

Proof. Let a be a solvable ideal in g, let 7 : g — g/a be the quotient map, then the map b — 7 1(b)
is a bijection between solvable ideals in g/a and solvable ideal in g containing a.

Indeed, if b is solvable, then its inverse image 7~!(b) in g is an extension of b by a and is therefore
a solvable ideal conversely, if ¢ is a solvable ideal in g containing a, then 7(¢) = ¢/a is again a solvable
ideal in g/a. O

7.3 Lie’s Theorem

In our first result we need to assume more on the field &, namely we need it to be algebraically closed
since we want to have eigenvalues.

Theorem 7.3.1 Assume that k is algebraically closed.
Let V' be a non trivial finite dimensional vector space and let g be a solvable Lie subalgebra of
gl(V'), then there exists a common eigenvector for all the elements in g.

Proof. We proceed by induction on dimg, the case dimg = 0 being trivial. We first choose a an
codimension 1 ideal. This is possible because Dg is a strict ideal in g and g/Dg is abelian. Therefore,
any codimension 1 subspace in g/Dg is an ideal in g/Dg and its inverse image in g is a codimension
1 ideal in g.

Then, the ideal a being solvable of dimension smaller, there is a common eigenvector v € V for all
elements in a. Therefore, for any = € a, we have z(v) = A(x)v. It is easy to check that X is a linear
form on a. Now consider the subspace

W={weV /z(w)=\z)w for all x € a}.

The subspace is non trivial.

Let us prove that g stabilises W i.e. y(W) C W for any y € g. Let w € W and = € a, we may
compute z(y(w)) = [z,y](w) + y(x(w)) = A[z,y])w + A(z)y(w). We therefore have to prove that
A([z,y]) = 0. For this we use the following

Lemma 7.3.2 Let U be the vector space spanned by (y*(w))i>0. Then for any t € a, we have
Tr(t|y) = A(t) - dim U.
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Proof. Let us prove by induction that, for any ¢ € a and for i > 0, there exists scalars a; j(t) € k such
that
ty' (w)) = MOy (w) + Y ai; () (w).
Jj<i
For i = 0 we have t(w) = A\(t)w, for i = 1, we have already seen the formula t(y(w)) = A\([t,y])w +
A(t)y(w). By induction, we have

ty T w) = [t yly' (W) +y(ty'(w))) A
Mt yDy' (w) + 225 aig (6 9Dy (w) + y(AOY (w) + 354 aii (Y (w))
Ay (w) + ([ YDy (w) + 325 @i ([t )y (w) + 3254 0 (037 (w)

giving the induction. The familly (y'(w));>o is a generating familly. We can extract a basis of it and
the matrix of ¢/ in that basis is upper triangular with A(¢) on the diagonal. The result follows. [

Now 0 = Tr([z,y]|v) = dim U - A([z,y]) and because chark = 0 and U is non trivial (the space U
contains w) we get A(z,y) = 0. Therefore W is stable under g.

Take z in g not in a, then z acts on W and because k is algebraically closed, it has an eigenvector
w € W. Now w is a common eigenvector for g. O

For the next result we also need k to be algebraically closed.

Corollary 7.3.3 Assume that k is algebraically closed.
Let V' be a finite dimensional vector space and let g be a solvable Lie subalgebra of gl(V'), then
there exists a flag Vo of V' such that g C (V).

Proof. We proceed by induction on the dimension of V, if dimV = 0, the result follows. By the
previous Theorem, there is an common eigenvector v. Therefore V/kv is again a representation of g.
The image of g in gl(V/kv) is solvable and by induction, there is a complete flag in V/kv stabilised
by g. Its inverse image in V is also stabilised and the result follows. O

In the last result of this subsection, we do not need k to be algebraically closed.
Corollary 7.3.4 A Lie algebra g is solvable if and only if Dg is nilpotent.

Proof. If Dg is nilpotent, then g is the extension of g/Dg, which is abelian therefore solvable, by Dg
which is nilpotent therefore solvable. The result follows.

Conversely, consider the adjoint representation, its image is g/3(g) and we have the equality
D(g/3(9)) = Dg/3(g). Therefore Dg is a central extension of Dg/3(g) by 3(g) and it is enough to
prove that Dg/3(g) is nilpotent. We may therefore assume that g is a subalgebra of gl(V') (with V =g
for example).

Take k an algebraic closure of k. For the Lie algebra g = g®y,k, the previous result gives g C t(V,)
for some complete flag Vo of V = V ®;, k. Therefore we have Dg C n(V,) which is nilpotent. Any
element in Dg is contained in Dy is therefore nilpotent i.e., by Corollary 5.2.5, the Lie algebra Dg is
nilpotent. O

7.4 Cartan’s criterion

We prove a characterisation with the Killing form of solvable Lie algebras.
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Lemma 7.4.1 Let V be a finite dimensional vector space and U and W two subspaces of gl(V').
Define the subset T' of gl(V') by

T={tegl(V)/[t,U Cc W}
Let x € T' such that for allt € T, we have Tr(xt) = 0, then x is nilpotent.

Proof. We may assume that k is algebraically closed. Let x = x5 + x,, be the Chevalley-Jordan
decomposition of x. We want to prove that all the eigenvalues ();) of x5 vanish. Let us denote by (e;)
the associated basis of eigenvectors.

Let M be the subvector space, over Q, of k generated by the \; and let f: Q(\;) — Q be a linear
form. We define ¢ in gl(V') by t(e;) = f(Xi)e;. For (E; ;) the canonical basis of gl(V') associated to
(e;), we have

(adzs)(Eij) = (A = Aj) Ei

(adt)(Eij) = (f (M) = F(N))Eiy = f(Ai = Aj) Eij.
Let P € Q(T) be a polynomial such that P(A\; — A;) = f(A\; — Aj) and P(0) = 0. We have the
equality adt(E; ;) = f(Ai — Aj)E;; = P(\i — \j)E; j = P(ad x5)(E; ;) therefore adt = P(ad z5) and
ad t(U) € W. We thus have t € T. We get 0 = Tr(a:t) = > Aif(N\i). Applying f which is Q-linear,
we get Y f(M\)? = 0 thus, because f()\;) € Q, we have f();) = 0 for all i and all linear form f. This
implies that A; = 0 for all <. U

Theorem 7.4.2 Let g be a Lie algebra and V be a finite dimensional representation of g and b the
associated bilinear form. Then the image of g in gl(V') is solvable if and only if Dg C g~ where L is
taken with respect to b.

Proof. We may of course replace g by its image and assume that the representation is injective.

Let k be an algebraic closure of k, let § = g ® k and V = V ®, k. By Corollary 7.3.3, there exists
a complete flag Vo of V such that g C t(V,) and we have Dg C n(V,). In particular for z € g and
y € Dg, the product zy lies in n(V,) and therefore Tr(xy) = 0 i.e. Dg C g*.

Conversely, assume that Dg C g-. Consider the set T defined as in the previous lemma with U = g
and W = Dg. Let t € T and = € Dg, we can write x = ) _.[y;, z;] with y; and z; in g. We compute

= 3" Doty z]) = 3 Tt len) = 0

because [t,y;] € Dg and by hypothesis Dg C g*. Thus x is nilpotent. By Corollary 5.2.5, the Lie
algebra Dy is nilpotent and by Corollary 7.3.4 the Lie algebra g is solvable. U

Corollary 7.4.3 Let g be a Lie algebra such that for the Killing form kg we have Dg C gt, then g is
solvable.

Proof. Consider the adjoint representation ad : g — gl(g). The Killing form is the associated bilinear
form and by the previous result we know that ad (g) is solvable. But the kernel of ad is 3(g), which
is abelian and thus solvable therefore g is solvable. O
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7.5 Exercices

Exercice 7.5.1 Prove the assertion in Example 7.1.5.
Exercice 7.5.2 Prove that if g and g’ are Lie algebras, then t(g x g’) = t(g) x t(g).

Exercice 7.5.3 Let g be a Lie algebra. Prove that t(g) is contained in any maximal solvable Lie
subalgebra of g.

Exercice 7.5.4 Consider the dimension 3 Lie algebra g defined over R in the basis (z,y,z) by the
relations [z,y] = z, [z,2] = —y and [y, 2] =0

(1) Prove that g is solvable.

(1) Prove that there is no decreasing sequence of ideals of dimensions 3, 2, 1, 0.

Exercice 7.5.5 Prove that in the only non commutative two dimensional Lie algebra g, there is a
decreasing sequence of ideals of dimensions 2, 1, 0. In particular g is solvable. Prove that it is not
nlpotent.

Exercice 7.5.6 Assume chark = 2
(1) Consider the p x p matrices

(0L g (00
“\1 0 ¥={o 1)

check that [x,y] = = and that the Lie subalgebra g of gl(k?) generated by z and y is solvable.

(1) Prove that x and y have no common eigenvector giving a counterexample to Lie’s Theorem in
positive cxharacteristic.

(1) Consider g’ = g @ k? and define on g’ a Lie bracket by [(f,v), (g,w)] = [f,g] + f(w) — g(v).
Prove that g’ is solvable.

(1v) Prove that D¢’ is kx @ k? and is not nilpotent.

Exercice 7.5.7 Assume chark = p and consider the p X p matrices

010 - - -0 oo - - : . 0
0010 - -0 010 : : 0

-0 2 0 . . 0

A andy=1| . . o °-. 0 . .
0 010 O - - 0 p=3 0 0

0 - 01 o - - - 0 p—2 0
10 0 o - - - . 0 p—-1

prove again that the Lie algebra generated by x and y gives a counter example to Lie’s Theorem.

Exercice 7.5.8 Let g be a Lie algebra and define D>®°g = N;D’g. Prove that g/D>g is solvable.
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Chapter 8

Semisimple Lie algebras

8.1 Definition

Definition 8.1.1 A Lie algebra g is called semisimple if the only commutative ideal of g is {0}.
Example 8.1.2 The 0-dimensional Lie algebra is semisimple.

Example 8.1.3 If g and g’ are semisimple, the g x g’ are also semisimple.

Fact 8.1.4 For g a semisimple Lie algebra, we have 3(g) = 0, therefore the adjoint representation
g — gl(g) is injective.

8.2 First caracterisation of semisimple Lie algebras

Theorem 8.2.1 Let g be a Lie algebra, the following are equivalent:
(1) the Lie algebra is semisimple;
(1) the radical t(g) vanishes;
(w1) the Killing form kg is non degenerate.

Proof. Assume that g is semisimple and let t be its radical. Assume that v # 0 and let r be the biggest
integer such that D"t # 0 (such an integer exists because t is solvable). Then D"t is abelian but D"t
being characteristic in the ideal v, it is an ideal of g, a contradiction.

Assume that t(g) = 0 and consider g the orthogonal of g for the Killing form. This is an ideal of
g by Proposition 4.5.4 (and even a characteristic ideal of g). Furthermore, the Killing form on g* is
the restriction of g and therefore vanishes. In particular, we have D(gh) C g+ = (g-)*. By Theorem
7.4.2, the Lie algebra gt is solvable and contained in t(g).

Finally, assume that the Killing form is non degenerate and let a be an abelian ideal in g. Let
x € g and y € a, we want to compute Tr(ad x o ad y). But ad x maps g to g and a to a while ad y
maps g to a and a to 0. Therefore ad z o ady maps g to a and (ad x o ad y)? maps g to 0. Therefore
kg(z,y) = 0 and a C g* and the result follows. O

Corollary 8.2.2 For g semisimple, we have Dg = g.

Proof. Let x € (Dg)* and let y and z in g. We have the equalities rq([z,y],2) = Kq(z,[y,2]) = 0
therefore [z, y] is orthogonal to g and because the Killing form is non degenerate [z, y] = 0. Therefore
x € 3(g) but 3(g) = 0 thus # = 0. Therefore (Dg)* =0 and Dg = g. O

o1
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Corollary 8.2.3 Let g — gl(V') be a representation with g semisimple, then it factors through s{(V').

Proof. Indeed, for x € g, by the previous Corollary we may write * = >, [y, 2;]. Therefore we have
Tr(zy) = Tr(X; i zilv) = Tr([(wi)v, (zi)v]) = 0 O

Proposition 8.2.4 Let g — gl(V') be a faithful representation with g semisimple. Then the quadratic
form b induced by this representation is non degenerate.

Proof. Let a = g be the orthogonal of g for b. It is an ideal in g. The representation induces a faithful
representation a — gl(V) such that the induced form vanishes. Therefore, we have a** = a O Da. By
Theorem 7.4.2, the Lie algebra a is solvable thus trivial because g is semisimple. O

Corollary 8.2.5 (1) Let g be a Lie algebra and a a semisimple Lie subalgebra of g. Then at the
orthogonal for the Killing form is a supplementary for a and we have [a,a] C a™.

w) If furthermore a is an ideal in then a* is also an ideal and g = a x a+. Furthermore
9, g

at = 34(a).

Proof. (1) Consider the representation a — gl(g) defined by x +— ady(z). This representation is
faithful: if x is in the kernel, then 0 = ad 4(z)(y) = [x,y] for all y € g in particular « € 3(a) = 0. By
the above Proposition, the associated bilinear form, which is kg|q is non degenerate and its kernel is
anat. It is trivial because Kgla is non degenerate.

For x in at and y and z in a we have Tr([z,y], z) = Tr(z, [y, z]) = 0 because [y, z] € a. The desired
inclusion follows.

(1) If a is an ideal then a' is also an ideal and we have for z and y in g unique writings = = x4 25
and y = y1 +y2 where x1 and y; are in a while x5 and y, are in at. We get [z,y] = [z1, y1] + [12, y2] +
[€1,9o] + [2,1]. But the last two terms are in a N a' therefore vanish thus g = a x at. Finally,
because at commutes with a and 3(a) = 0, the last statement follows. 0

Corollary 8.2.6 Any extension of a semisimple Lie algebra by a semisimple Lie algebra is trivial and
semisimple.

Proof. Indeed, let 0 = a — g — b — 0 be such an extension. By the previous result, we have g = ax b
which is semisimple. O

Corollary 8.2.7 Let g be a semisimple Lie algebra, then any derivation of g is an inner derivation.

Proof. Indeed, the Lie algebra ad g image of g under the adjoint representation is isomorphic to g and
therefore semisimple. But it is also an ideal in det(g) the Lie algebra of derivations of g and we have

aet(g) =adg x dver(g) (ad g)'

Let us compute 3p.(ad g) the centraliser of g in the Lie algebra of derivations. Let D € 3y (ad g). We
have [D,ad z] = 0 for all = € g, but [D,ad x| = ad D(x) therefore D = 0 and 3..(ad g) = 0. O
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8.3 Semisimplicity of representations

In this section, we prove the following result of H. Weyl

Theorem 8.3.1 Any finite dimensional representation of a semisimple Lie algebra is semisimple.
Proof. To prove this result we need several lemmas

Lemma 8.3.2 Let g be a semisimple Lie algebra, then the adjoint representation is semisimple.

Proof. Indeed, the a be a subrepresentation of g (i.e. a is an ideal of g). Then a' is again an ideal of
g and ana'’ is an abelian ideal therefore trivial. We have g = a x a* and the result follows. O

Lemma 8.3.3 Let g be a Lie algebra. The following are equivalent:

(1) All the finite dimensional representations of g are semisimple.

(1) Given a finite dimensional representation p : g — gl(V') and a subspace W of codimension 1
inV with p(x)(V) C W for all x € g, there exist a supplementary line L for W stable under g.

Proof. The first condition implies the second one. Conversely, assume that the second condition holds
and let o : g — gl(E) be a finite dimensional representation and F' a subrepresentation of F. Consider
the induced representation 7 : g — Hom(FE, F'). Recall that THom(E,F) @ =TFo¢ —doxp. Let V
resp. W be the subspace of maps ¢ € Hom(E, F') such that the restriction ¢|p is a scalar multiple of
Idp (respectively ¢|p = 0).

The spaces V and W are subrepresentations of Hom(F, F'). Indeed, if ¢|p = Aldp, then we have
(THom(E,F) ° O =zpod|lp—dlpoxp =xzpoldp — Aldp oxp = 0. Let us denote by p: g — gl(V)
the induced representation. Then we are in position to apply our hypothesis, therefore there exists
a line L = k¢ in V supplementary to W and stable under g i.e. there exists a ¢ € Hom(FE, F') with
¢|lp = Mdp with X\ # 0 and p(x)(¢) € LNW = 0. Therefore, we have for all z € g the equality
rxpo¢ = ¢oxg. Let G be the kernel of ¢, it is supplementary to F. Because of the last commutation
relation G is a subrepresentation of E. O

Lemma 8.3.4 Let g be a semisimple Lie algebra, let p: g — gl(V') be a finite dimensional represen-
tation and let W be subspace of codimension 1 in V with p(x)(V) C W for all x € g. Then there exist
a supplementary line L for W stable under g.

Proof. Let o : g — gl(W) be the restriction of p to W. If o = 0, then for all  and y in g, we have
p(x)p(y) = 0 therefore p([z,y]) = 0. We get p(g) = p(Dg) = 0 and the result is true. We may thus
assume o # 0.

Let us first assume that W is simple for the representation o. Let a be the kernel of ¢ which is
an ideal of g. By Lemma 8.3.2, there is an ideal h supplementary to a. The restriction of o to b is
faithful. By Proposition 8.2.4, the associated quadratic form b is non degenerate. We may therefore
define the Casimir element ¢ € U(g) associated to h and W (see Definition 4.6.5). By Proposition
4.6.6, the element cyy is an automorphism of W. But we have p(c)(V) C W therefore ker p(c) Is a line
L supplementary to W and because c¢ lies in the center of U(g), this line is g-invariant.

In general, we proceed by induction on the dimension of V. Let 7 : g — gl(U) be a minimal non
trivial g-stable subspace of W. Then U is simple. For the quotient representation V/U, we have by
induction hypothesis a g-stable line Z/U supplementary to W/U. Its inverse image Z is g-stable. The
trace WNZ of Win Z is U and we have 7(x)(Z) C U for all x € g. As U is simple the above argument
yields a g-stable line L supplementary to U in Z. The line L is supplementary to W in V. (]

The Theorem follows from the combinaison of Lemma 8.3.3 and Lemma 8.3.4. O
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Corollary 8.3.5 A Lie algebra g is semisimple if and only if all its finite dimensional representations
are semisimple.

Proof. The previous theorem implies that if g is semisimple, then any finite dimensional representa-
tion is semisimple. Conversely, suppose that g is not semisimple, we need to find a non semisimple
representtion of g. If the adjoint representation is not semisimple, we are done. Otherwise, let a be an
abelian ideal in g and b a supplementary ideal. Let € a non zero and h a supplementary for kz in
a. We have as Lie algebra the isomorphisms g >~ a x b ~ kx x §h x b. In particular, any representation
of kx induces a representation of g. But the representation of kx in k? given by

(01
=\ 0 0

is not semisimple and the same holds for g. g

8.4 Simple Lie algebras

We recall the definition of simple algebras, for Lie algebras, we want to avoid the 1-dimensional Lie
algebra to be simple therefore we slighly modify the definition.

Definition 8.4.1 An algebra A is called simple if there is no non trivial ideal (or equivalently A is
simple as left A-module).

Definition 8.4.2 An Lie algebra is called simple if it is not abelian and has no non trivial ideal.
Example 8.4.3 A simple Lie algebra is semisimple.
Proposition 8.4.4 A Lie algebra g is semisimple if and only if it is a product of simple Lie algebras.

Proof. A product of simple Lie lagebras is semisimple. Conversely, let g be a semisimple Lie algebra.
The adjoint representation is completely reducible therefore g is a direct sum of simple representations
g;. The g; are ideals of g and therefore g is the product of the g;.

Let us prove that the g; are simple. Let a be an ideal of g;, it is also an ideal of g because g is the
product of the g;. But g; is simple as a g-representation therefore a = 0 or a = g;. U

Corollary 8.4.5 A semisimple Lie algebra g is the product of its simple ideals (g;)ic[1,n). Any ideal
is the product of some of the g;.

Proof. By the last proposition, g is the product of simple Lie algebras g;. with g; a simple ideal of
g. Let us remark that 35(g;) = @®;j£9;. Indeed we easily have @;;g; C 34(gi). But conversely if
x = (21, - ,2n) € 3¢(9i), then [z;, g;] = 0 and therefore 2; = 0 as g; is simple.

Let a be an ideal of g, then as g; is simple, we have the alternative g; Caorana; =0. If g; Z a
then [a,g;] Cang; =0, thus a C 34(g;). Therefore the ideal a is the product of the g; contained in it.
The simple ideals are the g;. O

Definition 8.4.6 The simple ideals of a semisimple Lie algebra g are the simple components of g.
Corollary 8.4.7 Any ideal and any quotient of a semisimple Lie algebra is again semisimple.
Corollary 8.4.8 Let f: g — g’ be a surjective morphism of Lie algebras then f(t(g)) = t(g’).

Proof. The image f(t(g)) is a solvable ideal of g’ thus f(t(g)) C t(¢’). The Lie algebra g/t(g) is
semisimple and g’/t(g’) is a quotient therefore semisimple and we get the reverse inclusion. O
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8.5 Jordan-Chevalley decomposition

Proposition 8.5.1 Let V be a finite dimensional vector space and let g be a semisimple Lie subalgebra
of gi(V'). Then for any element x € g, its semisimple part xs and its nilpotent part x,, are in g.

Proof. Let us first remark that we can assume k to be algebraically closed. Indeed, the Jordan-
Chevalley decomposition of = € gl(V) is the restriction of the Jordan-Chevalley of z® 1 € gl(V ®; K).
Furthermore, the Killing form of g ®; K is given by kge, k(z @ A,y ® 1) = kg(z,y) ® Ap and therefore
Kgo, K is non-degenerate if and only if x4 is non-degenerate.

For any sub-g-representation W of V', let us denote by gy the Lie subalgebra of sl(1W) of elements
stabilising W. Because g is semisimple, we have g C sl(W) therefore g C gy .

Let x € g and let * = x5 + z,, be its Jordan-Chevalley decomposition with z; and z, in gl(V)
and let W be any sub-g-representation of V. We have zs(W) C W and z,(W) C W (see Theorem
6.2.1). Furthermore, as x,, is nilpotent, we have Tr((zy)|w) = 0 and we get Tr((zs)|w) = Tr(z|w) —
Tr((x,)|w) = 0. Therefore x4 and x,, are also in gy .

Let ngy(g) be the normaliser of g in gl(V') d.e. the ideal of all elements y € gl(V) such that
[y, z] € g for any x € g. Let us define the Lie algebra

0" =g (9) N[ \ow
w

where W runs in the set of subrepresentations of V. By the above arguments, we have g C g* and xz;
and z, are in g*. We therefore only need to prove that g = g*. The Lie algebra g is an ideal in g* and is
semisimple. By Corollary 8.2.5 we have g* = g x 34-(g). Let y € 34+(g) and let W be a minimal subset
of V stable under g. Let A\ be an eigenvalue for y in W. The eigenspace W) (y) = ker(y|w — Aldw)
is g-stable and non trivial. But W is simple thus Wy (y|lw) = W i.e. y|w = Mdw. But Tr(ylw) =0
therefore (recall that chark = 0), we have A = 0 thus y|w = 0. As V is semisimple, it is a direct sum
of simple subrepresentations thus y = 0 and the result follows. U

Corollary 8.5.2 Let V' be a finite dimensional vector space and g a semisimple Lie subalgebra of
gl(V). Then an element x € g is semisimple (resp. nilpotent) if and only if ad x is.

Proof. Let x = x5 4+ x, be the Jordan-Chevalley decomposition of x. Then ad z = ad x5 + ad z,, is
the Jordan-Chevalley decomposition of ad z by Lemma 6.2.3. If z is semisimple (resp. nilpotent),
then x,, = 0 (resp. x5 = 0) and we get that ad x,, = 0 (resp. ad x5y = 0) thus ad z is semisimple
(resp. nilpotent). Conversely, if ad x is semisimple (resp. nilpotent), then ad z,, = 0 (resp. ad x5 = 0)
and because g is semisimple, the adjoint representation is faithful therefore we get that z,, = 0 (resp.
xs = 0) thus = is semisimple (resp. nilpotent). O

Definition 8.5.3 Let g be a semisimple Lie algebra. An element x € g is called semisimple (resp.
nilpotent) if for any finite dimensional representation V' of g, the element xv is semisimple (resp.
nilpotent).

Proposition 8.5.4 Let f: g — g be a morphism between two semisimple Lie algebras, then if x € g
is semisimple (resp. nilpotent), then so is f(x).

If furthermore f is surjective, then any semisimple (resp. nilpotent) element in g’ is the image of
a semisimple (resp. nilpotent) element in g.



56 CHAPTER 8. SEMISIMPLE LIE ALGEBRAS

Proof. Let V be a representation of g’, then it is also a representation of g and f(x)y = xy. The first
part of the proposition follows.

If f is surjective, we have an exact sequence 0 — ker f — g — g’ — 0 and by Corollary 8.2.6, the
extension is trivial thus there exists f’: g — g a morphism such that f o f’ = Idy. Then for 2’ € ¢/,
we have 2/ = f(f'(2')) and f'(2') is semisimple (resp. nilpotent) when 2’ is. O

Theorem 8.5.5 Let g be a semisimple Lie algebra.

(1) An element x is semisimple (resp. nilpotent) if and only if there exists a faithful finite dimen-
sional representation p : g — gl(V') such that p(zx) is semisimple (resp. nilpotent).

(1) Any element x € g can be written as the sum x = x5 + x, where x5 € g is semisimple, z,, € g
is nilpotent and [xs, x,]) = 0.

Proof. (1) If  is semisimple (resp. nilpotent), the ad z is and as the adjoint representation is faithful,
the result follows.

Conversely, if there is a faithful representation p : g — gl(V') as above and assume that p(z) is
semisimple (resp. nilpotent). Remark that ad z is semisimple (resp. nilpotent) by Corollary 8.5.2.

Let 0 : g — gl(W) be any finite dimensional representation of g, let a be the kernel of ¢ and let
b be a supplementary ideal of a which is also semisimple. Denote by 7 : g — b be the projection, we
have adpm(z) = (ad z)|p therefore adym(z) is semisimple (resp. nilpotent). But the restriction of o to
b is faithful therefore by Corollary 8.5.2 the element o(m(z)) is semisimple (resp. nilpotent) and the
result follows because o(z) = o(7(x)).

(1) Take the Jordan-Chevalley decomposition in the adjoint representation. O

8.6 Examples of semisimple Lie algebras

We shall first state a very general result without proof and see how easy it becomes to prove that
classical Lie algebra are semisimple. We shall give a proof for s[(V') of the semisimplicity the other
cases can be done in the same way as Exercice.

Theorem* 8.6.1 Let g be a Lie algebra, the following are equivalent:
(») Dg is semisimple;
(1) g is a product of a semisimple and a commutative algebra;
(w1) g has a finite dimensional representation whose associated bilinear form is non degenerate;
(w) g has a faithful semisimple finite dimensional representation;
(v) v(g) is the center of g.

Definition 8.6.2 A Lie algebra satisfying one of the above properties is called reductive.
Corollary* 8.6.3 A reductive Lie algebra is semisimple if and only if its center is trivial.

Proposition 8.6.4 Let V' be a finite dimensional vector space, then gl(V') is reductive and s((V') is
semisimple.

Proof. The representation of gl(V') (resp. sl(V)) in V is simple therefore gl(V') and s[(V') are reductive.
Furthermore, because 3(s[(V')) is trivial the last assertion follows.

We now give a proof without using Theorem™ 8.6.1. Let (ei)ie[l,n] be a basis for V' and let us define
Ei,j S gI(V) by Ei,j(ek) = 04 k€i- We have Ei,j S 5[(V) for ¢ 7&] and H; = Em‘ — Ei+1,i+1 S EI(V)
for all i < n — 1. These elements are clearly linearly independent and generate a (n? — 1)-dimensional
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subspace in sl(V'). As sl(V') is defined by the unique equation Tr(z) = 0, it is of codimension 1 in
gl(V) and therefore the above elements form a basis for sl(V'). We shall call it the standard basis for
s[(V). To prove the result, we only need to prove that Kgl(v) 1s non-degenerate.

One way to conclude is by brute force computing the following

Kei(v)(Eij, Erg) = 2n- 04105 fori#j and k #1,

Kei(vy(Eij, He) =0 fori#j and k€ [1,n—1],
o B —6ij+1 — Oix1; fori# jin [1,n—1]

ra) (M Hy) - = 2n { 2 fori=j in [1,n —1].

On the subspace spanned by the E;; with i # j, the quadratic form is non degenerate and the dual
basis is Ej;. On the space spanned by the H; for ¢ € [1,n — 1], which is orthogonal to the previous
one, the Killing form has the following matrix

2 -1 0 0
-1 2
2n 0 0
.20 —1
0 0o -1 2

whose determinant is 2"n"*! (by induction, if A,, is the determinant of the matrix on the right, then
developping with respect to the first line yields the equation A, = 2A,,_1 — A,_2 and we get A, =n
and the result follows). Therefore the Killing form is non degenerate and s[(V') is semisimple.

Another way to proceed, which will be more useful for other classical Lie algebras is to consider
the action of the element E =Y. t;F; ; where ) . t; = 0. We have the formula [E, E; ;] = (t; —t;)E; ;.
Because the Killing form is invariant, we get

(t; — ti)ksivy(Bijs Erg) = kv ([Bigs Bl Erg) = kv (Eig, (B, Erl) = (te — t)ksiqvy (Bi g, Erp)
and we deduce that gy (Eij, Er) = 0 for (i,5) # (I,k). We are therefore reduced to prove that the

resctriction of the Killing form to h = @;H; is non degenerate and we proceed as above. O

Proposition 8.6.5 Let b be a symmetric (resp. antisymmetric) non degenerate bilinear form on a
finite dimensional vector space V, then the subspace

al,(V) = {z € gl(V) / b(x(v),v") + b(v,z(v")) =0 for all v and v' in V}

is a reductive subalgebra of gl(V') and even of s\(V'). It is semissimple except for dimV = 2 and b
symmetric.

Definition 8.6.6 When the non degenerate bilinear form b is symmetric, we write so(V,b) = gly (V)
and when b is antisymmetric, we write sp(V,b) = gl, (V).

Proof. The bilinear form b induces an isomorphism ¢ : V' — V'V defined by ¢(v)(v') = b(v,v’). For

any x € gl(V), let us define 2* € End(V) by 2* = ¢! o 'z o . This is the adjoint of x with respect
to b. By definition, we have the equality

b(z*(v),v) = by~ o "z 0 p(v)),v) = 'z 0 (') (v) = p(v')(z(v)) = b(v/,z(v))
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for all v and v’ in V. Because b is non degenerate, this condition determines z*. Remark that the
map z — x* is linear, is involutive: (z*)* = z and antimultiplicative: (xy)* = y*z*.

The condition x € gl (V) translates into b(—xz(v'),v) = b(v',x2(v) for all v and v' in V therefore x
is in glp(V) if and only if 2* = —z or z + 2* = 0. By the above properties of the adjoint, we get that
gl (V) is a Lie subalgebra of gl(V).

Lemma 8.6.7 We have Tr(z) = Tr(z*).

Proof. We put € = 1 if b is symmetric and e = —1 if b is antisymmetric. Let (e;) be a basis for
V and (e;') be the dual basis in V'V (by definition e)(e;) = J; ;). Recall that we have by definition
Tr(z*) =3, €/ (z*(e;)) (this is independent of the choice of the basis (e;)).
Let e} = p~1(eY), the family (e}) is again a basis of V and we have e} (v) = b(e},v). Let us prove
that (ep(e;)) is the dual basis of (¢}), in symbols (¢})¥ = ep(e;). Indeed, we have
/

ew(ei)(ej) = eb(e;, e}) = eQb(e;, e) = e}/(ei) = 0 ;-

Now we compute:

=€y ;b ) =€ b(ei,m(e;))
=Y oep(ed)(z(e) = D2i(ef) " (z(e)))
= Tr(z)

0

The lemma implies that = € sl{(V'). Indeed we have Tr(z) = Tr(z*) = —Tr(z).

Let us now prove that the bilinear form induced by the representation V is non degenerate. This
form is non degenerate on s[(V') by Proposition 8.2.4 and because sl(V') is semisimple. Let x € gl (V)
be in the kernel of that form i.e. Tr(zy) = 0 for all y € gl (V). Remark that for any y € sl(V') we may
construct elements in gl (V') by taking y — y*. Indeed, we have (y — y*)* = v* — (v*)* = —(y — y*).
For y € sl(V) we therefore have Tr(z(y — y*)) = 0 thus Tr(zy) = Tr(zy*). We get the equality

Tr(zy) = Tr(zy®) = Tr((zy*)") = Tr(yz™) = —Tr(yz) = —Tr(zy)

therefore Tr(zy) = 0 for all y € s[(V') and this form in s[(V') is non degenerate, we get © = 0. Therefore
V induces a non degenerate form and by Theorem™* 8.6.1 the Lie algebra gl (V') is reductive.

We are reduced to prove that the center is trivial. For this, we can assume that k is algebraically
closed (we have 3(g ®, K) = 3(g) @ K).

For b symmetric, we may assume that there is a basis (e;) such that b(e;,e;) = d; ;. In this basis
the matrices of elements in gl (V') are antisymmetric. Let A be an antisymmetric matrix commuting
with any other antisymmetric matrix. In particular A = (a;,,j,) commutes with F; ; — F;; leading to
the equations a;;, = 0 for ¢ # jo, a;,,; = 0 for i # jo. For dimV > 2, for ig and jp fixed, there exist
indices (4,7) with j = jo, ¢ # ip and i # j therefore A = 0.

For b antisymmetric, we may assume that dimV = 2n and that there is a basis (e;) such that
b(ei, eant1—5) = d;,5. In this basis the matrices of elements in gl, (V') are of the form

(¢ 5)

where D = —'A and B and C are symmetric. Assume that this element lies in the center of the Lie
algebra. Commuting with matrices of the form

( )0( —?X ) and ( 8 }(; > with Y symmetric
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gives AX = X A therefore A = Ald and CY =Y(C =0 and AY = DY. This implies that C = 0 and
A = 0. The same argument shows that B = 0 and the result follows. U



60 CHAPTER 8. SEMISIMPLE LIE ALGEBRAS

8.7 Exercices

Exercice 8.7.1 (1) Prove that there is no semisimple Lie algebras of dimension 1 or 2.
(1) For chark > 2, prove that s[(V') with dim V' = 2 is a semisimple Lie algebra of dimension 3.
() Without assumption on chark, consider a three dimensional vector space g with basis (z,y, z).
Define a product on g by [z,y] = z, [z, 2] = —y and [y, 2] = =.
Prove that this defines a semisimple and even a simple Lie algebra structure on g.

Exercice 8.7.2 Let chark be arbitrary. Prove that if x4 is non degenerate, then g is semisimple. For
which values of chark is s[(V') semisimple for V' a finite dimensional vector space over k.

Exercice 8.7.3 Let b be a non degenerate symmetric or antisymmetric bilinear form on a vector
space V. In this exercice, we prove without using Theorem* 8.6.1 that gl, (V') is semisimple (except
for dim V' = 2 and b symmetric).

(1) By considering the Killing form, prove that we may assume that k is algebraically closed.

(1) Symmetric case. Let n = dim V' and consider a basis (e;) of V' such that b(e;, e;) = & nt1—;-

(a) Prove that, with notation as in the proof of Proposition 8.6.4, the elements A;; = E;; —
Epii1—int1—; are in gl (V') and form a basis for 4, j < n/2 with (4, j) # (n/2,n/2).

(b) Consider the elements of the form F =3, t;F;; lying in gl,(V'). Using the fact that the Killing
form is invariant, prove that the restriction of the Killing form on the span of the A; ; for i # j
is non degenerate.

(c) Prove that the Killing form on the span of the A;; is non degenerate and conclude.

(1) Antisymmetric case. Let 2n = dimV and consider a basis (e;) of V' such that b(e;,e;) =
03 2n+1—j-

(a) Prove that, with notation as in the proof of Proposition 8.6.4, the elements A;; = E;; —
E2n+1—i,2n+1—j for 1,] € [1,77,], Bivj = Ei,j + En+1—i,3n+1—j for i € [1,%] and j € [n + 1,271] and
Cij = Ei;j+ Esnt1—int1—j for i € [n+1,2n] and j € [1,n]are in gl,(V') and form a basis.

(b) Consider the elements of the form F =3, t;F;; lying in gl,(V'). Using the fact that the Killing
form is invariant, prove that the restriction of the Killing form on the span of the A; ; for i # j
and B; ; and Cj ; is non degenerate.

(c) Prove that the Killing form on the span of the A;; is non degenerate and conclude.

Exercice 8.7.4 Let b be a non degenerate symmetric or antisymmetric bilinear form on a vector
space V', prove that the Lie algebras sl(V'), so(V,b) and sp(V,b) are simple.

Exercice 8.7.5 Let g be a Lie algebra and construct a sequence (a;) of ideals in g by setting ag = 0
and taking for a;;;/a; a maximal commutative ideal in g/a;.
Let p be the smallest integer such that a, = ap41 = ---, prove that we have t(g) = a,.

Exercice 8.7.6 Prove that the simple ideals of a semisimple Lie algebra are characteristic ideals.

Exercice 8.7.7 Let g be a Lie algebra. An ideal a is called minimal if a # 0 and for any ideal b of g
contained in a, we have b =0 or b = a.

(1) Prove that any simple ideal of g is minimal.

(1) Let a be a minimal ideal, we have the alternative
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e a C t(g) and then a is abelian or,

e ant(g) =0 and a is simple.

Exercice 8.7.8 Prove that a Lie algebra g is reductive if and only if 3(g) = ng (recall that ng is the
maximal nilpotent ideal). Hint: if the condition is satisfied, then prove that D(t(g)) C 3(g).

Exercice 8.7.9 Let g be a simple Lie algebra and b an invariant bilinear form.
(1) Prove that b is either trivial or non degenerate.
(1) Prove that if k is algebraically closed, then b is a scalar multiple of the Killing form.
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Chapter 9

Cartan subalgebras

9.1 definition

Definition 9.1.1 Let g be a Lie algebra. A subalgebra b of g is called a Cartan subalgebra if it
satisfies the following two conditions:

e 0 is nilpotent;

e ng(h) =b.

Example 9.1.2 Let V be a finite dimensional space and (e;) a basis. Define the complete flags V,
and V] associated to (e;) as in Example 2.1.8. Then diag(Vs, V/) is a Cartan subalgebra of sl(V).

9.2 Regular elements

Definition 9.2.1 Let g be a Lie algebra and x € g, we denote by P,(T') the characteristic polynomial
of adx. Let n be the dimension of g, we define the functions a;(x) by the following identity:

n
Pu(T) = ai(x)T".
=1
Definition 9.2.2 The rank of g is the smallest integer i such that a; is not identically zero. We
denote it by rk(g).

Remark 9.2.3 We have the inequalities 1 < rk(g) < dim g.
Indeed, the rank of g is at most n = dimg. This is the case if and only if g is nilpotent. For the
other inequality, we have that z is in the kernel of ad x therefore ag(xz) = 0 for all = € g.

Definition 9.2.4 An element x € g is called regular if ayg)(z) # 0.

Proposition 9.2.5 Let g be a Lie algebra, the set g, of regular elements is a connected, dense open
subset of g.

Proof. Let us denote with F' the closed subset of g defined by the vanishing of the function a,y(g).
We have g, = g\ F' therefore g, is open. Because ari(g) 1s a polynomial function in z (take basis and
check this) non vanishing on g (by definition of the rank), the closed subset F' has an empty interior,
therefore g, is dense. Furthermore, for  and y in g,., take L to be the line through x and y. Then L
meets F' in a finite number of points. Therefore as L is a 2-dimensional real vector space there is a
path connecting x and y in L not meeting F' N L therefore g, is connected.

65
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9.3 Cartan subalgebras associated with regular elements

Definition 9.3.1 Let x € g and \ € k, we denote by g) the caracteristic subspace of = associated to
A that is the subspace defined by

={yeg/ (adz — Ady)"(y) = 0 for some n}.
Lemma 9.3.2 Letn > 0. Let x,y,z € g and A\, u € k, we have the formula

(ke = (vt g 2] = 3 (1) [l = M) (o )" 5]
1=0
Proof. By induction on n. For n = 0 there is nothing to prove. Assume that the formula holds for n.
We compute

(ada — A+ p)ldg)" Hy, 2] = (adz — (A + p1)ldy) (Z <7Z> [(adz — AIdg)"y, (ad = — uIdg)"_iZ]>

1=0

= adx (Z (7;) [((ad 2 — AIdg)"y, (ad & — ,uIdg)niz]>

1=0
n

Ay (:‘) [(adz — Ady)'y, (ad & — puldg)™ ]
=0

— <n> [(adz — Md,)'y, (adz — ,uIdg)"_iz]

=0
n

= 3 (%) lfad ~ A1)+ o). (g™ )]

=0
n

+ (“) [(ad z — NIdg)'(z), (ad & — uldg)" T~ (y)]
0

=

= i ((Z " 1) + (’Z)) [(adz — Aldg)(2), (ad @ — uldg)" ' " (y)]

1=0

and the result follows by Pascal’s formula. O

Proposition 9.3.3 Let x € g, then we have
(1) g is the direct sum of the g},
(1) we have [gx,gm] cartt.
(w2) In particular g° is a Lie subalgebra of g.

Proof. (1) This is a classical statement of linear algebra.
(11) This is a direct consequence of the above Lemma.
() By (u), we have that g¥ is stable under the Lie bracket. O

Lemma 9.3.4 If v € g, we have dimg® > rk(g). If x is reqular, then dim g) = rk(g).

Proof. The characteristic polynomial P, of ad x on g is the product of the characteristic polynomial
P of the restrictions of ad x on g)‘ We have PY(T) = T9me: and for A # 0 we have P)0) # 0.
Therefore we have P,(T) = T9m&Q(T) with Q(0) # 0. In particular ay(z) = 0 for k¥ < dimg® and
Adim g0 (¥) # 0. This implies the inequality.

For the equality, recall that by definition, if z is regular, we have a,(5)(z) # 0 and az(x) = 0 for
all £ <rk(g). The result follows. O
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Theorem 9.3.5 Let x be a reqular element in the Lie algebra g, then g° is a Cartan subalgebra of g.
Its dimension is rk(g).

Proof. Let us first show that g° is nilpotent. We only need to prove that for any y € g2, the adjoint
endomorphism (ad y)|g is nilpotent. Let us denote by A, the restriction (ad y)|g and by By the
endomorphism of the quotient g/g% induced by ady. We consider the following sets:

U ={y€g)/Y,isnot nilpotent} V ={yegl/ Z,is invertible}.

These sets are open in g2 (given by the non vanishing of at least one coefficient of the characteristic
polynomial of Y} for the first one and by the non vanishing of the determinant for the second one).
Remark that V' is non empty since it contains x (indeed the eigenvalues of = on g/g are different
from 0 by definition).

We want to prove that U is empty. If not, then its complement (as well as the complement of
V are closed subsets defined by the vanishing of a non trivial polynomial. Therefore U (and V') are
dense open subsets and so is the intersection U N V. We may thus pick y € UNV. But we see that gg
is strictly contained in g0 giving dim gg < dim g?. But by the above Lemma we have dim g2 = rk(g)
a contradiction to the inequality in the Lemma.

Let us prove that g) is self normalised. Let z € n(g)), then ad z(g?) C gY. Thus we have
adz(z) = —ad z(x) € g2 and thus there exists an integer m such that (adz)™(adx(z)) = 0. Therefore
we have z € g0. U

9.4 Conjugacy of Cartan subalgebras

Definition 9.4.1 We denote by Aut(g) the subgroup of Lie algebra automorphisms in GL(g). In
symbols:

Aut(g) = {f € GL(g) / f([z,y]) = [f(2), f(y)] for all x and y in g}.

Proposition 9.4.2 Let x € g, then expad x is in Aut(g).

Proof. The element exp ad z is in GL(g), its inverse is exp(—ad z). Now we compute for y and z in g
and using Lemma 9.3.2:

+00 1
(expada)ly,2] =Y —(ada)"[y, ]

n=0

+00 n
=3 Y l(ad )i (), (ad )2
n=0 1=0

T n oo n
- Z Z Zl(nl_ i) (adz)'(y)(ad 2)"*(2) — Z Z m(ad )" (2)(ad ) (y)
n=0 1=0 n=0 7=0

= (expad z)(y)(expadx)(z) — (expad z)(z)(exp ad z)(y).

The result follows. (]

Definition 9.4.3 Let g be a Lie algebra, we call inner automorphism group and denote by G the
subgroup of Aut(g) generated by the elements expad x for x € g.

Theorem 9.4.4 The group G acts transitively on the set of Cartan subalgebras of g.
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Proof. Let b be a Cartan subalgebra of g. For x € h we denote by Y, (resp. Z,) the restriction of ad =
to b (resp. the morphism induced by ad x on g/b).

Lemma 9.4.5 The set V = {x € b / Z, is invertible} is open and non empty.

Proof. This set is open because given by the non vanishing of a determinant. Let us prove that it is
non empty. We consider g/h as a representation of h. The action of z € b is given by Z,. Because b
is nilpotent, it is solvable and therefore we may apply Lie’s Theorem to g/h. We get a complete flag
0="VyC--- CV, = g/bh stable under h. On the quotients V;11/V;, the Lie algebra h acts by scalar
multiplication i.e. there is a linear form «; : h — C such that Z,(v) € a;(z)v + V; for any v € Vj41.
In particular, for x € b, the eigenvalues of Z, on g/h are the (a;(x));c[1,,- To prove the result, we
only need to prove that none of the linear forms «; are trivial. Indeed, in that case the set V is the
complement of the union of the hyperplanes {x € b / o;(z) = 0} and therefore non empty.

Let us assume that one of the q; is trivial. Let k be the smallest interger such that ap = 0. We
have that Z, is invertible on Vj,_1 but not on Vj,. The kernel K of Z, on V}, is therefore one dimensional
and supplementary to Vi_;. It is also the nilspace for Z, i.e. the set of z such that Z*(z) = 0 for
some m. Let us prove that for y € h and z € K, we have Z,(z) = 0. Indeed, first remark that we have
by the Jacobi formula the equality Z,(Z,(z)) = (adz)(ady(z)) = (ady)(ad z(z)) + (ad (ad z(y)))(2) =
Zad o(y)(?)- By induction we may compute

Z;"(Zy(2)) = (ad 2)™(ad y(2)) = Z(ad 2)m () (2)-

But because b is nilpotent, we have (ad z)™(y) = 0 for some m. Therefore we have Z)"(Z,(z)) = 0
and Z,(z) € K. But Z, maps Vj, to Vj_; (because o, = 0) thus Z,(z) € KNV;_; =0.

Now let z € g such that its image Z in g/b lies in K. For any y € b, we have Z,(Z) = 0 therefore
ady(z) € b or equivalentely ad z(y) € h. We get that z € ng(h) but z € h. A contradiction with the
definition of Cartan subalgebras. O

Lemma 9.4.6 Let W = G -V be the union of all translates of V' by elements of G. The set W is
open in g.

Proof. Let x € V, we only need to prove that W contains a neighbourhood of x in g. For this we
consider the map u : G xV — g defined by u(g,y) = g-y and whose image is W. We want to compute
the image I of T(¢,)(G x V) by the differential d( ,yu. This image contains the image of h = T,V
under the differential of the inclusion h — g (this is the map u(e,-)). Furthermore, we have for y € g
the curve t — exp(tad y)(z) = = + t[y, x] + O(¢?). The image of the tangent vector of that curve is in
I. In particular [y, z] is in I. Therefore ad z(g) C I. But for x € V, we have Z, invertible therefore
the projection of ad z(g) to g/b is sujective and I = g.

By the Implicit function Theorem, the map p is locally submersive at (e,x) therefore its image
contains an neighbourhood of z. ([l

Lemma 9.4.7 There is a regular element x such that h = g2.

Proof. Recall that the set of regular elements is dense in g. Because W is open and non empty, there
exists y regular and in W. Let us write y = g -z for ¢ € G and z € V. The element z is regular.
Indeed, we have ady(z) = (adg-z)(z) = g- (adx(g~! - 2)) and ad y and ad = are conjugate. We thus
have a regular element x € . Because b is nilpotent, we have that Y, is nilpotent, therefore h C g2
but Z, is invertible therefore g0 = b. O
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We are left to prove that for any two regular elements = and y, the algebras g% and gg are conjugate
under G. Let us define the equivalence relation

R(z,y) holds < ¢° and gg are conjugate under G.
Lemma 9.4.8 The equivalence classes for R are open in g,.

Proof. Let x € g,, we need to prove that there exists a small neighbouhood U of x such that all
elements y € U are such that R(z,y) holds. Let h = g2 which is a Cartan subalgebra. We have that
V (as defined above) is open and non empty and that W is also open. We have z € VNg, C WNg,.
Thus there is a neighbourhood U of x contained in W N g,. Let y in U. It is regular and of the form
g -z with z € V. Therefore z is regular, z € g2 and Z,invertible. This implies (same proof as in the
last lemma that g% = g2 and therefore gg is conjugated to g% = g2. We have that R(x,y) holds. [

To finish the proof, recall that g, is connected so there is only one equivalence class for R. U

9.5 The semisimple case
For g a semisimple Lie algebra, the Cartan subalgebras take a simpler form.

Theorem 9.5.1 Let g be a semisimple Lie algebra and § a Cartan subalgebra of g. The following
propositions hold:

(1) The restriction of the Killing form kg to b is non degenerate;

(1) b is abelian;

(1) c4(h) = b;

(w) every element in b is semisimple.

Proof. (1) There is a regular element x € g such that h = g%. Let us consider the direct sum
decomposition g = @rg). For y € g2 and z € gh we may compute by induction on n + m with
(adz — AId)"(y) = 0 and (ad x — pId)™(z) = 0 that

Alig(y’ Z) = ’{g([xay]’z) = _Kg(y’ [:C,Z]) = —,UIig(y,Z)

thus kg4(y, 2z) = 0 unless A + p = 0. Therefore g% is orthogonal to all the g} for A # 0. Because Kg is
non degenerate, this implies that its resctriction to h = g2 is also non degenerate.

(1) Consider the representation ad : h — gl(g). It is injective as the restriction of the ad-
joint representation of g (which is semisimple). Its image ad (h) is solvable (as the quotient of a
solvable — even nilpotent— Lie algebra). Therefore by Cartan’s criterion (Theorem 7.4.2) we have
[ad (h), ad ()] C ad (h)* where the orthogonal is taken with respect to the Killing form rq. But gy
is non degenerate by () thus [ad (h),ad (h)] = 0 and ad (h) is abelian, the result follows because the
representation is faithful.

(111) We have ¢g(h) C ng(h) = b thus ¢g(h) C h. But as b is abelian, the inclusion h C ¢4(h) holds.

(w) Let x € b and write z = x5 + x, is Jordan-Chevalley decomposition. Recall that because g
is semisimple, this is well defined. Now because = € ¢4(h), the elements z, and z,, (as polynomials
with non constant terms in ) are also in ¢4(h) = bh. Now let y € b, we want to compute ry(zp,y) =
Tr(ady o ad ,,). But ad z;, is nilpotent and ad z,, commutes with ad y thus ad y o ad z,, is nilpotent.
We get ky(zp,y) = 0 for all y € h. Because xy is non degenerate we deduce that x, = 0. U

Corollary 9.5.2 Let g be semisimple, then a Cartan subalgebra is a maximal commutative algebra.
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Proof. This follows from (1) of the previous theorem. O

Corollary 9.5.3 FEvery reqular element in a semisimple Lie algebra is semisimple.

Proof. For x regular = € g2 and g? is a Cartan subalgebra. Therefore z is semisimple. O
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9.6 Exercices
Exercice 9.6.1 Prove the assertion in Example 9.1.2.

Exercice 9.6.2 Let g be 2-dimensional Lie algebra, give an example of a maximal abelian subalgebra
which is not a Cartan subalgebra.

Exercice 9.6.3 Let g be a semisimple Lie algebra. A subalgebra b in g s called toral if all its elements
are semisimple.

(1) Prove that there exists toral subalgebras in semisimple Lie algebras.

(1) Prove that a toral subalgebra b is abelian. Hint: for x € b, it suffices to prove that the
only eigenvalue of ad = is 0. Suppose this is not true and let y € h with ad x(y) = ay with a # 0.
Because ady is semisimple the element ad y(x) is decomposed as sum of eigenvectors with non trivial
eigenvalues for ad y but is also an eigenvector associated to 0 for ad y. This gives a contradiction.

() Prove that there is a direct sum decomposition g = @gg‘ where A € h¥ and

gy ={z €/ [y.a] = Ay for all y € b}.

(1v) Prove that ¢4(h) = gg and that the restriction of the Killing form on ¢4(h) is non degenerate.
(v) Prove that ¢4(h) contains the semisimple and nilpotent parts of its elements.

(v1) Prove that all semisimple elements of ¢4(h) lie in b.

(vi1) Prove that the restriction of the Killing form x4 to b is non degenerate.

(vin) Prove that ¢g(h) is nilpotent.

(1x) Prove that cq4(h) is abelian (Hint: use Cartan’s criterion for ad : ¢g(h) — gl(g))

(x) Deduce that ¢g(h) = b.

(x1) Prove that ng(h) = b.

(xu) Conclude that the Cartan subalgebras are the maximal toral subalgebras.

Exercice 9.6.4 Let V be a finite dimensional vector space and b a non degenerate symmetric (resp.
symplectic) form on V. Describe Cartan subalgebras for so(V,b) (resp. sp(V,b)).
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Chapter 10

The Lie algebra slo

10.1 Definition, standard basis and simplicity

Definition 10.1.1 The Lie algebra sl(k?) will be denoted by slo and identified with the Lie algebra
of 2 X 2 matrices. We define the following three elements X, Y and H in sly and call (X, H,Y) the
canonical basis for slo

0 1 1 0 0 0
e (00)e me (D) e (00,
Fact 10.1.2 The Lie algebra sly is of dimension 3 and (X, H,Y') is a k-vector space basis for sly. We
have the formulas [X,Y]| = H, [H,X] =2X and [H,Y] = -2Y.

Corollary 10.1.3 The Lie algebra sly is simple and in particular semisimple.

Proof. Indeed, let a be a non trivial ideal in sly and let aX + bH + ¢Y be a non zero element in a. If
a=c=0, we have H € a therefore 2X = [H, X] and 2Y = [H,Y] are in a. This implies that a = sl5.
We may therefore assume that a # 0 or ¢ # 0 and by symmetry, we may assume that a # 0. We then
have [Y,[Y,aX + bH + ¢Y]] = [Y,aH + 2bY| = aY’, therefore Y € a. Applying ad X we get that H is
in a and conclude as before. O

Corollary 10.1.4 The endomorphism ad H has three eigenvalues 2, 0, —2 in particular H is semisim-
ple. The Lie algebra b = kH is a Cartan subalgebra.

Proof. The first part is obvious from the above Fact. The Lie algebra b is abelian and therefore

nilpotent and if aX + bH + ¢Y is in ng, (), we have [H,aX +bH +cY] € h i.e. 2aX —2¢Y € b thus
a = ¢ = 0. Thus we have ng, (h) = b. O

Definition 10.1.5 We denote by n the subalgebra generated by X and by b the subalgebra generated
by X and H. We call b the canonical Borel subalgebra of sls.

Corollary 10.1.6 The subalgebra n is nilpotent and the subalgebra b is solvable.

Proof. The algebra n being 1-dimensional it is nilpotent and even abelian. We have Db = n which is
nilpotent therefore b is solvable. O a=b
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10.2 Representations, weights and primitive elements

Let V be a representation of sly. We denote by V* the eigenspace for H on V associated to the
eigenvalue .

Definition 10.2.1 An element X € k with V> non trivial is called a weight of V. An element in VA
is said to have weight \.

Proposition 10.2.2 (1) The sum >, V* is a direct sum.
(n) If v € V' has weight A, then X -v (resp. Y -v) has weight A+ 2 (resp. A —2).

Proof. (1) This is simply the fact that the eigenspaces for different eigenvalues are in direct sum.
(1) Let v such that H(v) = Av. We have H(X (v)) = [H, X](v) + X (H(v)) = 2X (v) + AX (v) and
H(Y(v)) =[H,Y](v) + Y(H(v)) = =2Y (v) + AY (v). O

Remark 10.2.3 If V is finite dimensional, because ad H is semisimple, the element H is semisimple
on V. In particular, V can be decomposed as V = @ V. This is not true for V infinite dimensional.
A

Definition 10.2.4 A non zero vector v in V is called primitive of weight X if v € V* and X (v) = 0.

Lemma 10.2.5 A non zero vector v € V is primitive if and only if it is stable under the canonical
Borel subalgebra b.

Proof. If v is primitive, the result is clear. Conversely, assume that b(v) C kv i.e. we have X (v) = av
and H(v) = bv. We only need to prove that a = 0. But we have the equalities of vectors in V
2av =2X(v) = [H,X](v) = HX(v) — XH(v) = aH(v) — bX(v) = abv —abv = 0. We get a =0. O

Proposition 10.2.6 Fvery non-zero finite dimensional representation of slo has a primitive element.

Proof. By Lie’s Theorem 7.3.1 and because b is solvable, there is, in the representation a common
eigenvector v to all elements in b. Therefore v is stabilised by b and is primitive by the previous
Lemma. U

10.3 The subrepresentation generated by a primitive element

Let us look at the action of the canonical basis of sl, on the vectors obtained from a promitive element.

Proposition 10.3.1 Let V be a representation of slo and let v be a primitive element of weight X\ in
V. Let v, = %Y"(v) and v_1 = 0, then, for all n > 0, we have the formulas:

H(v,) = (A —2n)v,

Y (0a) = (n+ 1)ontr

X)) =A=—n+1v,_1.
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Proof. The first formula is a consequence, by easy induction, of Proposition 10.2.2. The second
formula follows from the definition of v,, and v,;. We prove the last formula by induction on n. For
n = 0 the formula is true by definition of a primitive element. Assume that the formula holds for n.
We compute:
(n+ )X (01) = XY (1) = Y X(0) + [X, Y](vn)

=Y((A—n+1)v,_1)+ H(vy)

=(A—n+1nv, + (A —2n)v,

=n+1)A—n)v,

and the result follows by dividing by n + 1. O

With the notation as in the above proposition.

Corollary 10.3.2 We have the following alternative:
(1) the elements (vy)n>0 are linearly independent;
(1) X is an integer m > 0, the elements (vn)ne(o,m) are linearly independent and v, = 0 for n > m.

Proof. Remark that because the weights of v, is A — 2n, all the weights of the vectors (vy)n>0 are
distinct therefore these elements are linearly independent as soon as they do not vanish. Let m be
the greatest integer such that v, # 0 and v,,,+1 = 0. We clearly get by definition of v, that v, =0
for n > m. Furthermore by definition of m, we have v, # 0 for n € [0, m]. Therefore we have that
the elements (vy)ne[0,m] are linearly independent. But now we have 0 = X (vy41) = (A — m)vy, and
because v, # 0, we get A = m. O

With the notation as in the above proposition.

Corollary 10.3.3 If V is finite dimensional, then we are in the second case of the above corollary
and the subspace W generated by (vn)nejo,m) 5 stable under sly and is an irreducible representation.

Proof. We are in the second case otherwise we would have an infinite family of linearly independent
vectors. Furthermore for any n € [0,m], we have X (v,) = (A —n+ 1)v,—1 € W (because v_1 = 0),
H(vp) = (A —2n)v, € W and Y (v,) = (n + 1)v,q1 € W (because vp,+1 = 0).

Let us prove that W is irreducible. Let U be a submodule and let © € U be a non zero vector.
Write u = 3" u,v, and let k be the smallest integer such that ug # 0. We have Y™ *(u) = ZL—!!ukvm
therefore v, € U and by succesive application of X we get that v, € U for all n. O

10.4 Structure of finite dimensional representations

We shall see that the modules generated by primitve vectors are the only irreducible representations
of sly. Let us first construct an irreducible sls representation on any m + 1 dimensional vector space.

Proposition 10.4.1 Let W, be an m + 1 dimensional vector space with a fized basis (Un)ne[o,m}- Let
us define endomorphisms X, Y and H on Wy, by the formulas

H(v,) = (m —2n)v,
Y (un) = (1 + tnss
X(vp)=(m—n+1)v,_1.

for all n € [0, m] with the convention v_1 = vVy41 = 0, then Wy, is a sly-representation.
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Proof. We need to check the commutation relations [X,Y]| = H, [H,X] = 2X and [H,Y] = -2Y.
This follows easily from the definitions. g

Theorem 10.4.2 (1) The representations Wy, are irreducible for all m > 0.
(1) Any irreducible finite dimensional representation V' of sly is isomorphic to Wy, with m + 1 =

dimV.

Proof. (1) In W,,, the element vy is by definition primitive of weight m. Therefore, W,, contains as
an irreducible subrepresentation the span of the (vp)ne(0,m) Which is Wi, itself.

(11) Let V be irreducible and let v be a primitive element of weight A\. Then by Corollary 10.3.2 the
weight \ is an integer m and by Corollary 10.3.2 the space V' contains an irreducible subrepresentation
isomorphic to W,,. The result follows. ]

Corollary 10.4.3 Any finite dimensional representation V' of sla is a direct sum of representations
Wi

Proof. This is a direct consequence of Weyl’s Theorem 8.3.1 and the previous statement. U

Recall that for V a sly-representation, V* denotes the eigenspace associated to the eigenvalue A
for the action of H.

Corollary 10.4.4 Let V be a finite dimensional representation of sls.

(1) Then the endomorphism induced by H is diagonalisable, its eigenvalues are integers and if n is
an eigenvalue, then so are the integers (n — 2k)pe(on]-

(n) For any integer n > 0, the linear maps Y™ : V" = V=" and X" : V=" — V" are isomorphisms.
In particular dim V" = dim V=",

Proof. By the previous Corollary, we only need to prove these results on the irreducible representations
W,n. But all these results are trivial in this case. ]

Example 10.4.5 Let X be a compact Kéhler manifold of complex dimension n (say for example a
compact projective variety). Then Hodge theory defines endomorphisms L and A on H*(X,C). Set
X =Land Y = A and H(v) = (n — p)v for v € HP(X,C). Then one can prove that this defines a
slyp-representation structure on H*(X,C). Then Corollary 10.4.4 (u) for V' = H*(X,C) is called the
Hard Lefschetz Theorem. Of course the difficulty here is to construct the endomorphisms L and A
and prove that they satisfy the correct commuting relations.
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10.5 Exercices

Exercice 10.5.1 Give a very simple proof (without using Lie’s Theorem) of the fact that in any non
trivial finite dimensional representation of slo, there is a primitive element.

Exercice 10.5.2 Let V be a finite dimensional representation V of sls.
(1) Prove that V is determined by the eigenvalues of H on V.
(1) Prove that if V' is the direct sum of n simple modules, we have the formula:

n=dimV°+dim V!
where Vi ={v eV / H(v) = iv}.

Exercice 10.5.3 Let V be a 2-dimensional vector space over C. Describe the representations Wy and
W5 in terms of V.

Exercice 10.5.4 Consider the embedding ¢ : sl — sl3 defined by
b a b 0
L< @ d > — | c d 0
¢ 00 0

This defines a structure of sly representation on sl3 by z -y = [¢(z),y] for = € sly and y € sl3. Prove
that as slo representation, we have slg ~ Wy ® W1 @& W1 & W1 @ Wh.

Exercice 10.5.5 Let C[z,y] be the space of polynomials in the variables x and y. For P(x,y) € C[x, y]

and A € sly, define
OP oP T
P = (Gh e Sam)a( ).

(1) Prove that this gives to C[xz,y] a structure of sly representation.

(1) Let us denote by C[x,y],, the subspace in C[z,y] of homogeneous polynomials of degree m.
(a) Prove that C|x,y],, is stable under sls.
(b) Prove that C[z,y],, is isomorphic to W,,.
(c) Deduce that W, = S™W;.

Exercice 10.5.6 (1) With the same notation as in the previous exercice but replacing Clz,y| by
klx,y] with chark = p > 0, prove that k[z,y| is again a sly(k) representation and that k[z,y|,, are
subrepresentations.

(11) Prove that k[z,y], is not irreducible. Give the irreducible submodules in W,.
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Chapter 11

Root systems

This chapter is independent of the previous chapters. We define and study the root systems and give
a classification of all root systems. In this chapter, all vector spaces will be considered over R the field
of real numbers. All vector spaces will be finite dimensional.

11.1 Definition

Definition 11.1.1 Let V be a finite dimensional vector space and o € V' a nonzero vector. A sym-
metry with vector « is an automorphism s of V' such that

e s(a)=—a
o the set H={B €V | s(B) =B} of fized elements is an hyperplane of V.

We have the following fact where we use the notation (f,v) = f(v) for f € V¥ and v € V.

Fact 11.1.2 Let s be a symmetry with vector a.
(1) The space H={p €V [ s(B) = B} is a complement for Ro in V.
(1) The element s has order 2.
(11) There is a unique element o € V'V such that («V,H) =0 and (a,a) = 2. We have

s(v) = v — (", v)a,

(w) If a and o are elements in V and V" such that (o, a) = 2, then the map s defined by

Vov)a is a symmetry with vector a.

s(v) =v—(«
Proof. (1) The space H is of codimension 1 and does not contain «, the result follows.

(12) The order of s on H is 1 and 2 on Ra, the result follows from (7).

(112) The uniqueness is clear because H and Ra are in direct sum. Furthermore, for v € V| write
v = h+ A, we have s(v) = h— Aa and v — (@Y, v)a = h+ Aa — 2 a = h— A and the formula follows.

(w) Let H be the kernel of aV. Tt is an hyperplane and for h € H, we have s(h) = h. Furthermore
we have the equality s(a) = —a proving the result. O

Lemma 11.1.3 Let a be a nonzero element in V and R be a finite subset of V' which spans V. Then
there is at most one symmetry with vector « leaving R invariant.
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Proof. Let s and s’ be two such symmetries and let u = s o s’.

On the one hand, we have u(a) = a and u induces the identity on the quotient V/Ra. This proves
that the eigenvalues of u are all equal to 1.

On the other hand, we have u(R) = R therefore u induces a permutation of R and therefore, there
exists an integer n such that (u|r)"™ = Idg. But because R spans V we get u" = Idy. In particular u
is semisimple. As is has only 1 as eigenvalue we get v = Idy and s = 5. ([l

Definition 11.1.4 subset R of a vector space V is called a root system in V' if the following conditions
are satisfied:

(1) R is finite, spans V and does not contain 0;
(2) for each oo € R, there exists a symmetry s, with vector a leaving R invariant;

(3) for each o and B in R, the vector so(B) — B is an integer multiple of o (i.e. (aV,B) € Z).

Remark that the symmetry s, is unique by the above Lemma. The dimension of V' is called the
rank of the root system and the elements « in R are called the roots of the root system. The element
oV is called the dual oot or inverse root of a.

Remark 11.1.5 By (2), we have for o in R that —a = sq(a) € R.

Definition 11.1.6 A root system is called reduced if the intersection of R with Ra for a € R is the
set {a, —ac}.

Fact 11.1.7 Let R be a non reduced root system and o € R such that RNRa contains more than the
two roots {—a, a}, then we have
1 1

RNRa ={—2a,—a,a,2a}, or RNRa = {—aq, 5% 5% at.

Proof. By taking for a the root with biggest coefficient in R N R, we may assume that any other
root # € RN Ry« is of the form ta with 0 < ¢t < 1. Applying point (3) of the definition, we have
sa(B) — B = —ta — ta = —2ta € Za. Therefore we have ¢ = % and the result follows. O

Example 11.1.8 (1) The only reduced root system of rank 1 is {—«, a} and is called of type Aj;.
(11) The only nonreduced root system of rank 1 is {—2«, —a, a, 2a}.
(1) The following subsets in R? are root systems:

o {—f,—a,a, B} with a = (1,0) and 8 = (0,1). Root system of type A; x A;.
o {—a—03,-08,—a,a,8,a+ f} with a = (1,0) and g = (—%, @) Root system of type As.

o {20—p,—a—3,-8,—a,a, B, + B,2a+ [} with a = (1,0) and § = (—1,1). Root system of
type By = (.

o {—3a—28,-3a—-p,—2a—03,—a—p,—8,—a,a, B,a+,2a+,3a+3,3a+28} with a = (1,0)

and 8 = (—%, @) Root system of type Gbs.
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11.2 Weyl group

Definition 11.2.1 Let R be a root system in the R-vector space V.

(1) The Weyl group of R is the subgroup of GL(V') generated by the symmetrie s, for a € R, we
denote it by W (R).

(1) The group of automorphisms of R is the subgroup of all elements in GL(V') preserving R, we
denote it by Aut(R).

Fact 11.2.2 The Weyl group W (R) is a normal subgroup of Aut(R) and both are finite.

Proof. The two groups are contained in the group of permutation of R (the map Aut(R) — S(R) is
injective because R generates V). Furthermore, if u € Aut(R), then us,u~! = Su(a) for all @ € R

therefore W(R) is normal in Aut(R). O

Example 11.2.3 (1) When R is a reduced root system of rank 2 as in the previous example, then the
Weyl group is isomorphic to the dihedral group of order 2n (which is isomorphic to Z/27Z x Z/nZ)
with n = 2 for type A; x Ay, n =3 for As, n =4 for By and n = 6 for G.

(1) For the automorphism group Aut(R) of the previous example, we have |Aut(R) : W(R)| = 2
for type A; x A1 and Az and Aut(R) = W(R) in the last two cases.

11.3 Invariant bilinear form

Definition 11.3.1 Let B be a bilinear form on V, an element u € GL(V') preserves B if for all v
and v' in V, we have B(u(v),u(v')) = B(v,v"). The subgroup of all elements preserving B is called
the orthogonal group associated to B and denoted by O(V, B).

Definition 11.3.2 A bilinear form B on V is called invariant under a subgroup G C GL(V) if we
have G C O(V, B).

Proposition 11.3.3 Let R be a root system, there exists a positive definite symmetric bilinear form
(, ) on V which is invariant under the Weyl group W (R).

Proof. Let B be any positive definite bilinear form on V. We define the following symmetric bilinear

TWR) > B(u(v),u(v)).

ueW (R)
We have that (, ) is positive definite and invariant under the Weyl group W(R). O

form:

(U7U/) =

From now on, we fix a positive definte W (R)-invariant bilinear form (, ) on V which has therefore
the structure of an Euclidean space. We dnote by O(V') the group O(V, (, )). We have the inclusion
W(R) C O(V).

Fact 11.3.4 For o« € R and v € V we have the formula

(@, 0)

Sq(v) =v—2
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Proof. Let v € V such that s,(v) = v, we have (v, a) = (54(v), sa(a)) = (—a,v) therefore (v,a) = 0.
For an element v € V, we write v = Aa + vy with vy € a* (the orthogonal being taken for the form

(,)). We have s,(v) = —Aa+ vg and v — 2((2‘—’2))04 =0 — 2\ = 54(v).

This means that for v € V, we have (o, v) = 2((2‘—’2)) = ((5%), v) giving the second assertion. [J

11.4 Dual root system

Proposition 11.4.1 Let R be a root system and denote by RY the set of all dual roots a¥ for a € R.
(1) The set R in V'V is a root system.
(u) We have (a¥)” =« and (RV)" = R.

Proof. Let us check the three axioms of roots systems on R".

(1) The set RY is in bijection with R and is therefore finite. Furthermore, for o € R, the symmetry
S is not the identity (because s, (o) = —a) therefore o is not trivial. Finally, the set RY spans V.
Indeed, if not there would be a non-zero vector v € V' such that oV (v) = 0 for all & € R. This would
imply v € Rt but R spans V thus we have R+ = V! = 0 a contradiction.

(2) Let us define sov (f) = f— (f,v)a”. Thisis a symmetry in V" and s,v(a¥) = —a" therefore it
has vector a¥. We have s,v = 's,. Indeed, by definition of the transpose, for any f € V¥ and v € V,
we have “sq(£)(v) = fosa(v) = f(v—{a¥,v)a) = [(v) — (0¥, 0) f(a) = (f - {f, a)a")(v) = sav ()(0).

In particular, for o, 8 € R and v € V, we have

V; — (8. s (v :2(5’504(”)): 2(sa(8),v) — (s Vo
<SOév(/8 )7U>_</8 ’ Oé( )> (,8,,8) (Sa(ﬁ),sa(ﬁ)) <Oé(/8) ’ >

therefore sov(8Y) = s4(8)Y and s,v preserves RY.
We see from this point that («¥)Y = « and that (RY)Y = R.

(3) This condition is equivalent to the condition (a¥,) € Z for all a and 3 in R. But we have
(av,B) = (", (8Y)Y) and point (3) follows. 0

Definition 11.4.2 The root system RY is called the dual root system.

Proposition 11.4.3 The Weyl group W(R") is isomorphic to the Weyl group W (R).
More precisely, ® : GL(V) — GL(VY) be the isomorphism defined by ®(u) = *u~!. Then ®
restricts to an isomorphism from W (R) to W (RY).

Proof. We have seen that ‘s, = s,v therefore ®(s,) = sov. Furthermore, because ® is involutive we
get the result. O

11.5 Relative position of two roots

Let R C V be a root system. From now on we fix a positive definite bilinear form (, ) on V' which is
invariant under the Weyl group W = W(R). This defines an Euclidian structure on V. We want in
this section to describe all possibilities for the relative position of two roots.

Let o and (8 be two roots and let us denote by || the length of a (i.e. |a] = /(a, ). Let us
denote by ¢ the angle between the lines geberated by a and 5. Remark that if « and S are colinear,
we already know they relative position.
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Proposition 11.5.1 If o and B are non colinear, then there are 7 possibilites (up to transposition of
a and f3):

av B)=—1, (8Y,a) = -1, ¢ = 27/3 and |B| = |a|;
,(BY,a) =1, ¢ =7/4 and |B] = V2|al;
av,B) = -2, (BY,a) = -1, ¢ = 31/4 and |B| = V2|al;

[ ]

—~ —~ —~ —~ —~ — —~
R
<
@

~ ~ ~— ~ ~— ~— ~
[\]

= -3, (8Y,a) = —1, ¢ = 57/6 and || = V/3|a/.
Proof. We habe the equality (a, 8) = |a||8] cos ¢. In particular, we get
B B)

1ol (, )

and we deduce that 4 cos? ¢ = (aV, 8)(BY,a) € Z. We choose a and 3 such that |a| < |3|. This implies
that (aV,B) > (8Y, ).

The previous relation gives in particular that we have 4 cos? ¢ = 0; 1; 2; 3; 4 and the corresponding
values for (o, ) and (8Y,«) are 0,0; 1,1 or —1,—1; 2,1 or —2,—1; 3,1 or —3,—1; 4,1 or —4, —1.
Remark that in the case cos?¢ = 1, then ¢ = 0 or 7 and « and 3 are colinear so this case does not
happend.

In the other cases we have cos ¢ = 0; +1/2; ++/2/2; +1/3/2 and therefore ¢ = 7/2; /3 or 27/3;
/4 or 3w /4; /6 or 5w /6 and the result follows. O

0s ¢ = 2

=(a",8) €Z

Proposition 11.5.2 Let a and 8 be non colinear roots. If (o, 3) > 0, then a — f3 is a root.

Proof. From the previous proposition, we get that («V,8) = 1 of (8Y,a) = 1. In the first case, we
have s4(8) = B — (¥, 8)a = B — « therefore @ — 8 = —s,(8) € R. In the second case, we have
a—B=a—(8Y,a) =sp(a) € R. O

11.6 System of simple roots

Definition 11.6.1 A subset S of R is called a system of simple roots or a base of R if the following
two conditions are satisfied:

e S is a basis for V;
e cach root B € R can be written as a linear combination of roots in S as § = Z aq0 with the
a€esS

alternative

—aq >0 forallae S or
— aq <0 foralla e S.
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Example 11.6.2 With the notation as in Example 11.1.8, the set S = {«, 8} is a base for the different
root systems.

Theorem 11.6.3 There exists a base.

Proof. We will prove a more precise statement. Let ¢ € V'V be an element such that (t,a) # 0 for all
« € R. This is possible because R is a finite set and R an infinite field. Define the set

Rf ={a € R/ (t,a) >0}
We have R = R U (—R;").
Definition 11.6.4 An element o € R} is called decomposable if there exists two oot 3 and y in R}

such that « = 8+ . If a is not decomposable, it is called indecomposable. We denote by Sy the set
of indecomposable elements in R;r.

We will prove that S; is a base for the root system and that any base for the root system is of the
form S;.

Lemma 11.6.5 Any element o € Rt+ is a linear combination with non-negative integer coefficients
of elements in St.

Proof. Let I be the set of all elements o € R;‘ for which the above property is not satisfied. If I were
non empty, then there exists an element o € I with (¢, @) minimal. But « is not in S; (otherwise « can
be written as a linear combination with non-negative integer coefficients of elements in S;), therefore
it is reducible and o = 3+ with 8,7 € R;'. We have 8 € I or v € I (otherwise a € I). Say we have
B € I, then we have (t,3) = (t,a) — (t,y) < (t,«) a contradiction to the minimality of (¢, ). O

Lemma 11.6.6 We have («, 8) <0 for all o and B in Sy.

Proof. 1f (o, ) > 0, then by Proposition 11.5.2 (remark that o and 8 cannot be colinear otherwise
one of them would not be in S;) we know that v = o — 8 is a root. If v € R;r, then we have a = B+
a contradiction to a € S;. If v € (—R}"), then —y € R/ and we have 3 = a + (—) a contradiction to
B € S; O

Lemma 11.6.7 Lett € VY and A C V such that
o (t,a) >0 for a € A;
o (a,8) <0 fora,B e A,

then the elements in A are linearly independent.

Proof. Let us consider a relation ) 4 oo = 0. Let B be the subset of elements o € A with a, > 0
and C be the subset of elements o € A with a, < 0. Define b, = o, for @ € B and ¢, = —a, for
a € C, we have b, and ¢, non negative. We obtain a relation

Z boa = Z Ca L.

aEeB aeC
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We have the inequality

(Z bact, Y baa> = <Z bact, » caa> =3 bacsla, f) <0

aEB aEeB aeB acC aeB peC

therefore ) pboa = 0. Applying (¢, ), we get

0=(t, Y bact) =Y balt,)

aEB aeB

and because (t,a) > 0 for all « € A and b, > 0, we have b, = 0 for all « € B. The symmetric
argument gives that ¢, = 0 for all a € C. O

The above three lemmas prove that S; is a base for R. Let us now prove that any base S for R
is of the form S; for some ¢t € VV. Indeed, let t € V'V such that (t,«) > 0 for all & € S. This is
possible because S is a base of V. Let us denote by R the set of all roots a € R such that a can be
written as a linear combination of elements in S with non negative coefficients. We have R* C R} and
(—=R*) C (=R;") therefore we have equalities in both inclusions. Let a € S, then « is indecomposable
in R;. Indeed, if & = 8+~ with 3,7 € R}, then 8 and v are linear combination of elements in S
with non negative coefficients, therefore so is . But the only combinaison for « is a = «, therefore
{B,7} ={a,0} a contradiction. We thus have S C S; but they have the same number of elements are
they are basis for V' and we have S = S;. O

From now on we fix a base .S of the root system R.
Definition 11.6.8 We denote by R™ the set of roots o € R which can be written as a linear combi-

nation of elements in S with non negative coefficients. The elements in RT are called positive roots.
The elements in R~ = (—R™) are called the negative roots.

Proposition 11.6.9 Any positive o root can be written as o = Zle o; with a; € S such that for all
j €[1,k] the sum >_1_, o is a root.

Proof. Let t € VV be the element defined by (t,3) = 1 for all 8 € S. We proceed by induction on
(t,a). For (t,a) = 1, then a € S and the result follows. Assume that the result holds for all root
B € RT such that (t,3) < (a,t). We may assume that o € S.

Lemma 11.6.10 There exists a simple root B such that («, 3) > 0.

Proof. Otherwise, by Lemma 11.6.7, the set S U {a} would be linearly independent, a contradiction
to the fact that a ¢ S and that S is a base. O

There is therefore a simple root aj € S such that (a,ax) > 0. But this implies that o — oy, is a
root and {t,a — o) = (t,a) — 1 > 0 therefore o — ay, € R™ and we apply the induction hypothesis on
o — ay, to conclude the proof. O

Proposition 11.6.11 If R is reduced, then for a € S, the symmetry s, associated with o leaves
R\ {a} invariant.

Proof. Let 8 € R\ {a} and write 8 =

a such that a,, > 0. Now we have

sa(B) =Y aysa(r) =D ay— [ D a(a”,y) | o

VER YER YER

ves Ay with a, > 0. There is a simple root vy different from
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Therefore, the coefficient of vy is again a., > 0 for the root s,(/3) which has to be positive and different
from a. ]

Corollary 11.6.12 If R is reduced and let p be half the sum of the positive roots. We have the equality
sa(p)=p—a foralla e S.

Proof. We have by definition the following formula for p and we define p, by the right hand side

formula: 1 )
p=5 ) Bandpa=5 > B

BeR* BeRT\{a}

Therefore p = po + /2. By the above proposition, we have s,(ps) = pa, therefore we have the
equality so(p) = pa — /2 =p — a. O

Proposition 11.6.13 If R is reduced, then the set S¥ = {a¥ |/ a € S} is a root system for the dual
root system R .

Proof. Recall that we fixed an invariant bilinear form ( , ) on V identifying V' with V'V via the map
® : V — VV defined by u — (v — (u,v)). We therefore also have an invariant bilinear form on V'V
defined by ((¢,%)) = (27 1(p), ®71(¢))). Remark that under this identification, we have

Fact 11.6.14

Proof. Indeed, we have seen that the following formula (", v) = (a%)(a, v) holds for any v € V, the
result follows. 7 0

In particular, we know that the set of roots SV is a basis of the vector space V'V because non-zero
multiple of its elements are the image of the basis .S by ®. In symbols,

§Y = (@")aes = (ﬁ@(a))a@.

Furthermore, we know that S is a basis for the roots system therefore any root 8 € R can be writen

ﬁ:Zaaa

a€eS

as a suin

where the coefficients a, are integers all non negative or non positive at the same time. We get

2 2 2 (o, o)
BY = o(p8) = ) (Z aaoz) = Z a,®(a) = Z Qo aV
(5.5) 3.5 \ & (3.5) 23, 5)
therefore the coefficients are all non negative or non positive at the same time. We however a priori
do not know if these coeflicients are integers.
To prove this, fix t € V'V such that (t,a) =1 for « € S. We have S = {a € R / {t,a) = 1} and
for B € R, we have (t, 3) € Z. Let T = ®~1(t) € V. We have the equality

(@, @)

(t,a) = (T, «x) = (¥, T)
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therefore we have the equality (RY)T = {a¥ € RV / a € R;}. The set S¥. of indecomposable elements
in (RV)# is a basis for RV. By definition, SV is contained in (RV)F. By what we proved above, the
cone generated by SV is equal to the cone generated by (RV);F. Therefore, the extremal rays of these
cones, which are the half line generated by the elements in SV or in S} are the same. The elements
in SV and in Sy, are therefore proportional and because R is reduced, the result follows. O

The next result describes how the Weyl group acts on the set of basis.

Theorem 11.6.15 Assume that R is reduced, let W be its Weyl group and fix S a basis of R.
(1) For any t € V'V, there exists an element w € W such that (w(t),a) >0 for all « € S.
(u) If S’ is another basis of R, there exists w € W such that w(S") = S.

(1) For each 8 € R, there exists w € W such that w(B) € S.
(w) The group W is generated by the symmetries s, for a € S.

Proof. Let us define Wg to be the subgroup of W generated by the symmetries s, for a € S. We first
prove (1), (1) and (w1) and then prove that W = Wg.

(1) for Wg. We proceed by induction on the number n(t) of simple roots a such that (¢,a) < 0.
If n(t) = 0, then just take w = Id. Assume that the result is true for n(t) = n and let ¢ such
that n(t) = n+ 1. Let a be a simple root with (¢,a) < 0. Then we consider s,(t). We have
(sa(t),a) = (t,sa(®)) = —(t,a) > 0 and for g € S\ {a}, we have (s4(t), 8) = (¢, s4(5)). But on the
set S\ {a}, the linear form (¢, ) takes n times a negative value and because s,(S \ {a}) = S\ {a}
the same is true for s,(t). Therefore we have n(s,(t)) = n and the result follows by induction.

(n) If S’ is a basis, there exists an element ¢ € VY such that S’ = S;. Let w € Wg given by (1)
such that (w(t),a) > 0 for a € S. The choice of ¢ also implies that (¢,3) # 0 for € R therefore
(w(t),a) > 0 for « € S. The set of positive roots RT is R:;(t) therefore S = S,,). This gives
S = Su(ry = w(S) = w(S").

(12) Let t be a linear form such that (¢, «) # for all « € R and such that

(¢, 8)] = min{|(t, )| / a € R}

and (t, 5) > 0. We prove that 5 € S; and the result will follow from (22). Assume we have § = o +
with a and 7 in R;". We have (t,8) = (t,a) + (t,7) therefore 0 < (t,a) = (t,8) — (t,7) < {t,B) a
contradition to the minimality.

(w) We need to prove that s3 € Wg for § any root. By (u1), there exists w € Wg such that
w(B) = a € S, therefore we have wsgw™! = s, € Wy ands the result follows. O

Definition 11.6.16 The set Cs of elements t in V'V such that (t,«) > 0 for all « € S is called the
Weyl chamber associated to S.

Remark 11.6.17 The Weyl chambers are the connected components of

VV\LJozl

aER

where o = {t € VV / (t,a) = 0}. The previous result proves that the Weyl group W act transitively
on the Weyl chambers.

We shall prove later (if time permits) the following:

Theorem™* 11.6.18 The group W acts simply transitively on the set of Weyl chambers.
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Remark 11.6.19 One can be more precise and prove that the Weyl group is generated by the sym-
metries s, with o € S and that the only relations among the (s,)aes are the relations

(sasp)™% =1

with m(a, 8) = 2,3,4 or 6 if the angle between « and (3 is 7/2, 27/3, 37 /4 or 57 /6.

11.7 The Cartan matrix

Definition 11.7.1 The Cartan matrix for the root system associated to the base S is by definition
the matriz ({(BY,a))a,ges-

Example 11.7.2 Consider the rank two root systems as in Example 11.1.8 and choose a base S as
in Example 11.6.2. The Cartan matrix for type Ao, By = Cs or G4 are the following matrices:

2 -1 2 =2 2 -3

1 2 )0 \=-1 2 )% =1 2 )
Proposition 11.7.3 Let R and R’ be two reduced root systems in two vector spaces V and V'. Let
S and S’ be basis for R and R’ and let ¢ : S — S’ be a bijection such that (p(a)Y,d(B)) = (aV, B).

Then there exists a unique isomoprhism f :V — V' such that f|s = ¢ and realising a bijection from
R to R.

Proof. Because S and S’ are basis of V' and V', there exists a unique isomorphism f : V — V' such
that f|s = ¢. Let us prove that f maps bijectively R into R’. For this we prove the comuutation
relation: sg(o) © f = f o sqa. To prove this we only need to check on a basis, for example on S. We
have for 8§ € S:

Sp(a) (F(B)) = 54(a) (0(B)) = ¢(B) — (d(a)", 8(B)) () = f(B) — (o, B) f (@) = f(s4(B))
and the commutation relation holds. Therefore if W resp. W' is the Weyl group of R resp. R’, then
we have W' = fW =1, therefore, because W(S) = R and W'(S’) = R’ we get f(R) = R'. O
Corollary 11.7.4 A reduced root system is determined by its Cartan matriz.
Definition 11.7.5 The subgroup Out(R) of the group Aut(S) of bijections of S defined by
Out(R) = {o € Aut(S) / (o(a)¥,0(B)) = (", B) for all « and B in S}
is called the group of outer automorphism of the root system.
Corollary 11.7.6 The group Out(R) is the subgroup of Aut(R) leaving S invariant.
Proposition* 11.7.7 The group Aut(R) is the semidirect product of Out(R) and W .

Proof. First remark that W is normal in Aut(R). Indeed, if f € Aut(R) and if @ € R is a root, then
fsaf ' = S5f(a)- Let w be in the intersection W N Out(R), then w maps the Weyl chamber defined by
C to itself therefore w = 1 by Theorem™ 11.6.18. Furthermore, for f € Aut(R), we have that f(5) is
a base for R therefore, there exists w € W such that w(f(S)) = S thus wo f € Out(R) and the result
follows. O

Corollary* 11.7.8 The group Out(R) is isomorphic to the quotient Aut(R)/W .
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11.8 The Coxeter graph

Definition 11.8.1 A Coxeter graph is a finite graph such that the vertices are linked by 0, 1, 2 or 8
edges.

Definition 11.8.2 Let R be a root system and let S be a base of R. The Coxeter graph of R with
respect to S is the graph whose vertices are the elements in S and such that two vertices o and B in

S are linked by (", 8)(BY,a) vertices.

Remark 11.8.3 Recall that we have (", 8)(8Y,a) is an integer with value 4 cos? ¢ where ¢ is the
angle between « and 3 so that, because o and 3 are not colinear, the above definition defines a Coxeter
graph.

Lemma 11.8.4 If S and S’ are two basis of R, then the Coxzeter graph of R associated to S and S’
are isomorphic.

Proof. We know that there is an element w € W such that w(S) = S’. This element w induces a
bijection from S to S’.

Fact 11.8.5 Forw in W, f € VYV and v € V, we have (w(f),w(v)) = (f,v).

Proof. We only need to check that (so(f),v) = (f, sa(v)) for any root a. But we have
<3a(f)7v> = <f - <f7 a>a\/7 <a\/7 >a>

:<f,1)>—<f704><04\/,1)> <f,04>< >+<f704><04\/,1)><04\/,a>

= (f,0) = {(f.a)(a",v) = (f,e){a’,v) + 2(f, ) (", v)

= <f7 1)>.
The result follows. U

Wew therefore have (w(a)Y,w(B))(w(B)Y,w(a)) = (a",B)(BY,a), giving that the two Coxeter

graph are isomorphic. O

Example 11.8.6 The Coxeter graphs of roots systems of type Ay, A1 X Ay, As, Bo = C5 and G4 are
the following:

@] [¢] @] o———=0O O——=0 =0

Al A1 X Al A2 B2 = 02 G2

11.9 Irreducible root systems

Proposition 11.9.1 Fort i € {1,2}, let R; a root system in a vector space V;. Let V be the direct
sum of V1 and Vo and identify R; as subsets of V.. Then the union R = R4 U Ry is a root system in V.

Proof. (1) We have that R is finite, spans V' and does not contain 0.

(2) For o an element in R then « is in Ry or in Ry. Say it is in R;, then there is a symmetry s, on
V1 and we extend this symmetry on V' by the identity on V5. This defines a symmetry on V' mapping
R1 to Ry because s, does on Vi and Re on Ry because it is the identity on V5.

(3) Let o and B be elements in R. If both are in R; or in Ry, then s, () — 3 is an integer multiple
of a because Ry and Ry are root systems. If & € Ry and 8 € R, then s,(8) = 8 and so(8) — 8 =0
is an integer multiple of a. U
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Definition 11.9.2 A root system R in V is called reductible if there exists a non trivial direct sum
V=VieV, with Ri = Vi N R and Ry = Vo N R root systems in Vi and Va. A root system is called
irreducible if it is not reductible.

Proposition 11.9.3 Let R be a root system in V and suppose that V is a direct sum of Vi and Vs
such that R is contained in V3 UV,. Let Ry =V N R fori € {1,2}.

(1) The spaces Vi and Vo are orthogonal for any invariant bilinear form.

(n) For i € {1,2}, the subset R; is a root system in V;.

Proof. (1) Let a € Ry and 8 € Ry. We have that s,(8) = 8 — (o, B)a is a root therefore in V; or in
Vo. But § in is Vo and non zero therefore s,(3) € Vo which implies that (o, 8)a € V4 N Va = 0 thus
(a¥,8) = 0 and for any invariant form we have (a, ) = 0. Remark that R; and Ry span V; and V3
(because R spans V'), the result follows.

(1) We know that R; is finite and does not contain 0 (because R is finite and does not contain
0) and because R spans V, the R; respectively span V;. Let a € Ry, then « is a root in R therefore
Sq is a bijection of Ry U Ry. But because (", 8) = 0 for 8 € Ry, we have that s, is the identity on
Ry and therefore maps R; on itself. The same is true for a € Ry. Finally, if @ and § are in Ry, then
sq(B) — B is an integer multiple of a because this is true for R. O

Corollary 11.9.4 A root system R in V is reductible if and only if there exists a non trivial decom-
position V =V, @& V, such that R is contained in V13 U Vs,

Proposition 11.9.5 A root system is irreducible if and only if its Coxeter graph is non empty and
connected.

Proof. If R is reductible, write R = R U Ry and we take S = 51 U Sy where S; is a basis of R; for
i € {1,2}. This is easily seen to be a basis of R. By the above proposition, we see that the Coxeter
graph is not connected: the graphs with vertices in S; and S5 are disconnected.

Conversely, if the Coxeter graph of a root system R in V' is not connected, then let S = 57 U S,
be a decomposition of a basis S such that for « € S; and 8 € Ss, we have (o, ) = 0. Let V; be the
span of S7 and let V5 be the span of Sy. These spaces are non trivial and we need to prove that R
is contained in V; U V5. But for @ € R, there exists w € W such that w(a) € S, therefore w(a) is is
S1 or in Sy. Let us assume it is in S7. We prove that « is in V;. Indeed, the group W is spanned by
reflections sg for B € S. We have sg(V1) C Vi and sg(Va) C Va (because sg maps elements in S resp.
Sy to linear combinaison of elements in Sp resp. Sz). Therefore a = w=!(w(a)) is in V3. O
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11.10 Exercices

Exercice 11.10.1 Prove that the only two dimensional reduced roots systems are those of type As,
BQ == 02 and GQ.

Exercice 11.10.2 Complete the root system Bs to obtain a nonreduced root system. Can one do
the same with root systems of type As and Go?

Exercice 11.10.3 Let R be a non reduced root system and S a base of R. Let S; (resp. S2) be the
subset of S of roots a such that 2« is not a root (resp. such that 2« is a root). Prove that the set

SV ={a"/aeSi}u{a’/2 ) ac S}

is a base for RY.



92

CHAPTER 11. ROOT SYSTEMS



Chapter 12

Classification of Connected Coxeter
graphs

In this chapter we give the classification of a special class of Coxeter graphs. In this chapter again,
the base field is the fiels of real numbers R.

We first define, for a Coxeter graph, a vector space V with a symmetric bilinear form b. Let C be
a Coxeter graph and denote by Cy and C; the set of vertices and the set of edges in C. Let Vg be a
vector space of of dimension the number of elements in Cy (i.e. the number of vertices in C') and let
us fix a base (e,)pec,. We define a quadratic form bo on Vi by linearity and by

s
+2

bo(ey,ey) =1 and be(ey, €y) = — cos for v # o/
m

where m is the number of edges between v and v' (recall that m € {0,1,2,3}). We shall denote
be(ey, €y) by ¢y and the number m of edges between v and v' by m(v,v").

Definition 12.0.4 The vector space Vo together with the bilinear form bo is called the geometric
representation of C'.

Definition 12.0.5 A Cozeter graph is called finite or non degenerate if the bilinear form bc of the
geometric representation is positive definite.
12.1 Contraction of an edge

Let C be a finite Coxeter graph and let e be an edge of C i.e. e € C7 and let v and v' be the two
vertices related by e.

Lemma 12.1.1 Let C be a finite connected Cozeter graph, then C has no loop.

Proof. Indeed, if there were a loop, then there would be a sequence of vertices (e;);c[1,, such that
there is an edge between e;_; and e; for i € [1,n] and between ey and e,. Let = ey + - + e,. We
have Bo(z,x) = n+ 1+, q,; where ¢;; = bo(e;, ej). But this last term is —cos(m/(m + 2)) =
0,—1/2,—v/2/2,—/3/2 for m = 0, 1,2, 3 thus for m # 0 we have — cos(r/(m+2)) < —1/2. This gives

Beo(z,z) <2(n+1)(-1/2) =0

which implies = 0 because b¢ is positive definite, a contradiction. O

93
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Definition 12.1.2 For C a finite Cozeter graph, we define the graph obtained by contraction of e
denoted by C(e), as follows:

e the set of vertices C(e)g is the set (Co \ {v,v'}) U{e};
e the edges between two points in Cy \ {v,v'} is the same as in C;
e the edges between a point v" in Cy \ {v,v'} and e is the union of the edges from v to v and v'.

Remark that in the last case, there can not be edges from v and v’ to v" at the same time otherwise
there would be a loop (v,v',v") in C.

Proposition 12.1.3 If C is a finite Cozeter graph and if e is an edge between two vertices v and v’
such that m(v,v") =1 (i.e. e is the only edge between v and v'), then C(e) is again a finite Cozeter
graph.

Proof. For any two vertices ¢ and j of C(e), we denote by qg,j the value of Bg(.)(ei,e;). Let i and j be
two vertices of C(e) different from e, we have g; ; = ¢; ;. We also have for i a vertex of C(e) different
from e the equality qae = ¢iv+¢i (one of the two vanishes). Write x = Ziec(e)m#e TieitTeee € Vo)
and define y = Ziec(e)o,z‘;ée Tie; + Tey + Teey € V. We have

boey(x, @) = Z i,jTi%Tj + 2 Z 2ewi(gin + i) + 2 while
ije ize

bC(ya y) = Z qi,jLiTj + 2 Z Teliqiw +2 Z Lelidi + $3(2 + QQU,U/)'

i,jF#e i#e i#e
Because q,,» = —1/2 we get that these two values are equal thus bo() (7, ) is non negative and if it
vanishes, we have y =0 i.e. z = 0. U

12.2 Classification

Theorem 12.2.1 The connected finite Coxeter graphs are the following (the index indicates the num-
ber of vertices):

A, B,=C, D,

HJLHHLWH
HJL%%@HEO

Fy Ga



12.2. CLASSIFICATION 95

Proof. We prove several Lemmas which imply the result. The first lemma controls the local structure
of the graph at one special vertex.

Lemma 12.2.2 Let v be a vertex in C, then 3,1, q>, <1l

Proof. For v' and v" distinct and distinct from v with ¢, # 0 and ¢, ,» # 0, we have gy, = 0
(otherwise there is a loop in C). Therefore if C, is the set of vertices v' with g,, # 0 and if
T =—ey+ Y yecc, €, We have

0< bC’(xax) = Z Quv' Quu” Qv " — 2 Z qz,y’ +1=1- Z q12;7v/
v’ " eCy, v eCy, v'eCy,

and the result follows. O

Corollary 12.2.3 (1) If a vertex v of C is connected to three different vertices vi, vy and vs, then
m(v,v;) =1 fori € [1,3] and v is not connected to any other vertez.

(1) There is at most one double edge starting form a vertex v.

(u1) If there is a triple edge between v and v, then C has only two vertices (i.e. is of type Gs).

Proof. Let us apply the previous Lemma to the vertex v, where we denote by (Uz‘)z‘e[l,n} the vertices
connected to v. Assume there are ny vertices v; with m(v,v;) = k for k € [1,3]. If m(v,v;) = k, we
have q7, > k/4 thus

n
9 n1 + 2ng 4+ 3ng
i=1

This gives ni + 2ng + 3nz < 3 thus
e n; < 3 and if n; = 3, then ny = ng = 0, proving (2);
e ny <1 proving (u);
e n3 <1 andif ng =1, then ny =ng = 0.

To finish the proof of (u2), remark that by the above v and v" are only connected to each other.
Because C is connected this implies that C has only two vertices. U

The next lemma controls the number of special vertices in the graph.

Lemma 12.2.4 We have the alternative:

e the graph C has one ramification point with exactly 3 simple edges and all the edges of the graph
are simple;

e the graph has no ramification point and at most one double edge.

Proof. We proceed by induction on the number n of vertices in the graph. If n = 1, 2 or 3 then the
result follows by the previous Corollary (in the case n = 3). Assume the result holds for any finite
Coxeter graph with n vertices. Let C be a finite Coxeter graph with n 4+ 1 vertices.

If C has a ramification point v, then by the previous Corollary, we know that this point is related
to exactly 3 vertices vy, v and wvg by simple edges. If none of these 3 vertices is related to another
vertex, then n + 1 = 4 and the result follows. If at least one of these vertices, say v, is related to
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another vertex, let e be an edge linking v; to v. We know that C(e) is again a finite Coxeter graph
and it has a ramification at e. Therefore by induction C(e) has only simple edges and so has C'.

If C has no ramification point by a double edge between v and v’. If C' has only two vertices,
we are done. If not, there must be another edge e starting from v or v/, say from v, and this edge
is simple by the previous Corollary. Therefore C(e) is again a finite Coxeter graph and has a double
edge. By induction it has no other double edge and so is C. U

We are therefore left with two types of graphs: chains with at most one double edge of a graph
with only simple edges and a unique ramification points. We thus need to rule out few more cases.

Lemma 12.2.5 Assume that the is a chain (vi)ie[l,n] of vertices in C' with only simple edges between
v; and viqy fori € [l,n—1]. Put x =) | ie,,, then we have

1
bo(z,z) = n(ni"")
2
Proof. We compute
n n—1 n—1
bo(w,x) =Y ijbo(en, en) =Y 2= i(i+1)=n>=) i
ij i=1 i=1 i=1
and the result follows. O

Lemma 12.2.6 Assume that C has no ramification and that there is a double edge whose end vertices
are connected to other vertices. Then C is the following graph:

o—0O0—0—-o-0

Proof. By Lemma 12.2.4, the graph C' is a chain. Let us denote by v; and w; the vertices of the double
edge. There are chains (v;)ie[1,n) and (w;);e[1,m) of vertices in C' with only simple edges between v;
and vi41 (and between w; and wjyq) fori € [I,n—1] and j € [I,m —1]. Put z =Y (n+ 1 —i)ey,
and y = X%, (m + 1 — jlew;, we have bo(z,z) = n(n + 1)/2 and bc(y,y) = m(m + 1)/2. By
Cauchy-Schwartz we get |bo(x,y)?| < bo(z, x)be(y, y) i-e.

1 5 o nn+1)mm+1)

—-n-m

2 2 2

which gives (n — 1)(m — 1) < 1. By hypothesis we have n,m > 2 thus we have equality. O

If C has a ramification point r, then C' is the union of r and three chains (uy)rep,; (vi)ic[1,n) and
(wj)je[l,m} with only simple edges between u; and ki1, between v; and v;41 and between w; and
wjyq) for ke [1,1 —1], i € [1,n—1] and j € [1,m — 1] and with edges linking 7 to uy, v; and wy.

Lemma 12.2.7 The only possible values of (I,m,n) with | < m < n are (1,2,2), (1,2,3), (1,2,4),
(1,1,n).

Proof. As in the previous lemma we define the elements = = 22:1@"‘ 1—k)ey,, y=Y i (n+1—i)e,
and z = » 1 (m+1-j)ey;. We have bo(z, ) = I(1+1)/2, b (y, y) = n(n+1)/2, bo(z, 2) = m(m+1)/2
and bo(x,e,) = —1/2, bo(y,e,) = —n/2 and bo(z,e,) = —m/2. Let F be the span of z, y and z and
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let us denote by ||v|| the non negative square root of bo (v, v). The elements z/||x||, y/||ly|| and z/||z||
form an orthonormal basis of F' therefore the distance of e, to F' is given by

be(er,er) = beler,a/|l|l)? = boler, y/ Iyl — be(er, 2/1I2]1)?

and is positive. We get the inequality

l m n

1_2(l+1)_2(m+1)_2(n+1) >0

and thus
1 1 1

>

[+1 +m+1+n+1
Because I < m <nweget 3 >1+1thusl! <1 i.e [ =1. Pluging this value in the inequality we get
4>m+14de m<2 Form=2weget6>n+1thusn <4. O

1

We are left with the graphs given in the theorem. To finish the proof one needs to check that
the associated bilinear form b¢ is indeed positive definite for these graphs. We shall do this when
explicitely constructing the root systems. O

12.3 Dynkin diagrams and classification of root systems

Let us go back to root systems. We shall assume in the sequel that our root systems are reduced and
irreducible.

We have seen that to any root system R with a base S, there is a Coxeter graph associated to
the situation and that the graph does not depend on the choice of the base S. However, the Coxeter
graph does not determine the Cartan matrix: a Cartan matrix and its transpose (which is the Cartan
matrix of the dual root system) have the same Coxeter graph. This comes from the fact that the
Coxeter graph only determines the angle between two roots but not which of the roots is the longest
and which is the shortest. This problem is solved by looking at Dynkin diagrams.

To define the Dynkin diagrams, we fix an positive definite form ( , ) invariant under the Weyl

group.

Definition 12.3.1 Let R be a root system and C(R) be its Cozeter graph. The Dynkin diagram of
R is the Cozxeter graph C(R) together with, for each vertex v, corresponding to a simple root «, the
length (o, @) attached to the vertex vg.

Proposition 12.3.2 The Dynkin diagram determines the Cartan matriz (and therefore the root sys-
tem,).

Proof. Let us describe the Cartan matrix in terms of the Dynkin diagram. Let « and 8 be two simple
roots.

e If 3 =a, then (8, a) = 2.
e If we have (8, 3) > (o, ), then (8Y,a) = —1.
e If we have (3,) < (a, ), then (8", @) = —number of edges connecting v, and vg.
In particular knowing the relative length gives the Cartan matrix. U

Recall that a root system is irreducible if and only if its Coxeter graph, or equivalently its Dynkin
diagram, is connected. The following result therefore gives a complete classification of irreducible and
reduced root systems.
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Theorem 12.3.3 The connected Dynkin diagrams are the following

A, By,
o—0----0—0—"0 o0—0----0—0C=0
1 1 1 1 1 2 2 2 2 1

Cn D, 1
o—0O----0—0=0 o0—0---

1 1 1 1 2 1 1 1 1
1
E6 E7
O—O—i—]O—O O—O—i—]O—O—O
1 1 1 1 1 1 1 1 1 1 1

Eg
O—O—i—O—O—O oO—0O0—=—0—-o0 (0==6)
1 1 1 1 1 1

1 1 2 2 1 3

Proof. Let us look at the vector space V' in which the root system R lives. We have a natural basis
given by the simple roots o € S and we define a new basis by e, = a/|a|. With this base we have

_ (f)
(eas€8) = m = Cos ¢

with ¢ the angle between o and 8 and we get the bilinear form defined by a Coxeter graph. In particu-
lar, we know that this form in positive definite therefore the Coxeter graph is finite and connected (this
is equivalent to R irreducible). The only possible graphs are therefore those given in the statement.
We shall now construct the corresponding root systems.

In R™ we denote by (ei)z‘e[l,n} the canonical basis and we denote by L,, the lattice define by

Ln = é Zei.
i=1

In R™ we shall also consider the canonical positive definite bilinear form defined by (e;, e;) = &; ;.

Type A,. Weset V = (e1 + -+ eny1)t C R*L and define R C V by
R={ae€Ll,;1nNV /(a,a) =2}

This set does not contain 0 and is finite (intersection of a compact and a discrete subset). The
symmetry s, for a € R is defined s,(v) = v — (o, v)a. The elements in R are the vectors e; — e; for
i # j. One easily checks that this is a root system and that a basis is given by (e; — €i+1)z‘e[1,n}- This
gives a Dynkin diagram of type A,,. The Weyl group is the group &, 11 acting by permutation on the
elements of the canonical basis in R**1,
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Type B,. Weset V =R", and define R C V by
R={aeL,NV /(xa)=1or (a,a) =2}.

This set does not contain 0 and is finite (intersection of a compact and a discrete subset). The elements
in R are the vectors Le; for all i and te; &= e; for 7 # j. One easily checks that this is a root system
and that a basis is given by ((€; — €i+1)ic1,n—1],€n). This gives a Dynkin diagram of type B,. The
Weyl group is the group &,, x (Z/2Z)" where &,, acts by permutation on the elements of the canonical
basis in R™ and (Z/27Z)™ acts by sign change on each coordinate in the canonical basis in R".

Type C,. This is simply the dual root system of B,,. We can realise it as follows: we set V = R"”
take R to be the union of all elements of the form +2e; for all 7 and +e; £ ¢; for i # j. One easily
checks that this is a root system and that a basis is given by ((€; — €i11)i[1,n—1], 265). This gives a
Dynkin diagram of type C,. The Weyl group is the group &,, x (Z/2Z)" as in type B,, and acts in
the same way: &,, acts by permutation on the elements of the canonical basis in R” and (Z/2Z)" acts
by sign change on each coordinate in the canonical basis in R™.

Type D,. Weset V =R" and define R C V by
R={aeL,NV /(aqa)=2}.

This set does not contain 0 and is finite (intersection of a compact and a discrete subset). The elements
in R are the vectors %e; & e; for ¢ # j. One easily checks that this is a root system and that a basis
is given by ((e; — €i+1)ie[1,n—1]> én—1 + €n). This gives a Dynkin diagram of type D,,. The Weyl group
is the group &,, x (Z/27)"~! where &,, acts by permutation on the elements of the canonical basis in
R™ and (Z/2Z)"~! acts by sign change on each coordinate in the canonical basis in R™ such that the
product of the sign changes is 1 (i.e. it acts on an even number of coordinates).

Type Go. This root system was described in Example 11.1.8. Its Weyl group is Z/67Z x Z/27. 1t
can also be described an follows: let ¢ be a primitive third root of 1 and let K = Q(¢). There is a
norm defined on K by Nk (a+b() = (a+b()(a+b() = a® +b* —ab. Let O C K be the set of intergers
in K i.e. O=7Z[(], then

R={a €0/ Ng(a)=1or Ng(a) = 3}.

A basis is given by (1,¢ —1).

Type Fy. Weset V = R* and let L, be the lattice generated by Ly and the vector %(el +ea+e3tey).
We define R C V' by
R={aecLlinV /(a,a)=1or (a,a) =2}

This set does not contain 0 and is finite (intersection of a compact and a discrete subset). The elements
in R are the vectors +e; for all 4, +e; £e; for i # j and %(iel + ey +e3+eq). One easily checks that
this is a root system and that a basis is given by (es — e3,e3 — ey, ey, %(61 —eg —e3 —ey4)). This gives
a Dynkin diagram of type F;. The Weyl group is of order 2732

Type Fs. Weset V =R3 let L} be the lattice generated by Lg and the vector %(el +---+eg) and
define L{ to be the sublattice of L§ of elements > aie; with Y a; even. We define R C V' by

R={aecL{inV / (a,a) =2}
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This set does not contain 0 and is finite (intersection of a compact and a discrete subset). The elements
in R are the vectors

+e; £ej for i # j and ~ Z el with Zm even.

One easily checks that this is a root system and that a basis is given by

1

5(61 +es—e2—e3—e4—e5—€5—€7),€1 + 3,62 — €1,€3 — €,€4 — €3,€5 — €4,€6 — €5,€7 — €6 | -
This gives a Dynkin diagram of type Eg. The Weyl group is of order 2'43°527.

Type E;. Take the intersection of the root system of Eg with the subspace spanned by the vectors
(e1,e2,e3,€e4,€5,€6,€7).

Type Eg. Take the intersection of the root system of Eg with the subspace spanned by the vectors
(e1,e2,€3,€4,€5,€6). O

Remark 12.3.4 As there are only two different value for the length of roots, instead of drawing all
the values of the length, one usually indicates which root is longer than the other by drawing an arrow
goning from the longest root to the shortest one. Here are the Dynkin diagrams one obtain in this

way:
Ap By
o—0----0—0—-°0 o0—0----0—0=0
Ch D,
o—0----0—0C==0 o—0-—--
E6 E?

Eg
Fy Go

oot oo0  oomoo o
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12.4 Exercices

Exercice 12.4.1 Prove that the sets described below define root systems and basis.

Type A,. Weset V = (e; + -+ eps1)t C R™ and define R = {a € L,y 1 NV / (o, ) = 2}.
Prove that this is a root system and that a basis is given by (e; — €i+1)ie[1,n]- Verify that the associated
Dynkin diagram is of type A,.

Type B,. Weset V=R" and R={a€L,NV / (a,a) =1or (o,a) = 2}. Prove that this is a
root system and that a basis is given by ((e; — €i+1)ig[1,n—1],€n). Verify that the associated Dynkin
diagram is of type B,,.

Type C,. Consider the dual root system of the previous one. Prove that (identifying V' with its
dual using the form (, )) that it is given by the union of all elements of the form +2e; for all 7 and
te; £e; for i # j. Prove that a basis is given by ((e; — €i+1)ic[1,n—1], 2€n). Verify that the associated
Dynkin diagram is of type C),.

Type D,. We set V = R", and define R = {a € L, NV / (a,) = 2}. Prove that this is a root
system and that a basis is given by ((e; — €;j11)ie1,n—1)- Verify that the associated Dynkin diagram is
of type Dy,.

Type G2. Let ¢ be a primitive third root of 1 and let K = Q(({). There is a norm defined on K by
Ng(a+b¢) = (a+bC)(a+bl) = a® +b*> — ab. Let O C K be the set of intergers in K i.e. O = Z[(],
then define R = {a € O / Ng(a) =1 or Ng(«) = 3}. Prove that this is a root system, that a basis is
given by (1,¢ — 1) and that the associated Dynkin diagram is of type Gs.

Type Fy. Weset V =R* and let L, be the lattice generated by Ly and the vector %(61 +eat+eztey).
We define R = {a € LNV / (a,a) = 1 or (a,«) = 2}. Prove that this is a root system and that a
basis is given by (e3 — e3, e3 — ey, €4, %(el — ey —e3 —ey4)). Prove that the associated Dynkin diagram
is of type Fy.

Type Ez. We set V = R3, let L be the lattice generated by Lg and the vector %(61 + - +eg)
and define L§ to be the sublattice of Lg of elements ), ae; with >, a; even. Define R = {a €
L{NV / (a,a) = 2}. Prove that this is a root system and that a basis is given by (3(e1 + es — ea —
€3 —e4—e5—€5—e7),61+ €2, —e€1,€3 —€a,64 — €3, €5 — €4, €6 — €5, €7 — €g). Prove that the asociated
Dynkin diagram is of type Fs.

Type E;. Take the intersection of the root system of Fg with the subspace spanned by the vectors
(e1,€9,€3, €4, €5,¢e6,e7). Prove that this is a root system and that the basis of Eg restricts to a basis.
Prove that the associated Dynkin diagram is of type FE7.

Type Fg. Take the intersection of the root system of Eg with the subspace spanned by the vectors
(e1,e2,e3,€eq,65,65). Prove that this is a root system and that the basis of Eg restricts to a basis.
Prove that the associated Dynkin diagram is of type Eg.

Exercice 12.4.2 Let R bs a root system and S be a basis of R. Let S’ be a subset of S and let R’
the the subset of R of all roots which are linear combination of elements in S’.
Prove that R’ is a root system and that S’ is a base for R'.
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Exercice 12.4.3 Prove that the Weyl group of a root system of type A, is isomorphic to &,, 11 and
that it acts transitively on the roots.

Exercice 12.4.4 (1) Let R be an irreducible root system and S be a basis. Let o € S, prove that
any simple root of the same length as « is in the orbit of v under the action of the Weyl group.

Hint: consider the subsystem generated by the roots of the same length as « (see Exercice 12.4.2)
and the use Exercice 12.4.3.

(1) Let 8 =3 cgbyy be a positive root. Prove by induction on . b, that 8 is in the orbit under
the Weyl group of some simple root.

(m) Prove that the orbits of the Weyl group on R are the sets of roots with the same length.

Exercice 12.4.5 Montrer que les racines de meme longueur forment un sous-systeme et decrire les
sous systemes ainsi obtenus.



Chapter 13

Classification of complex semisimple
Lie algebras

13.1 Decomposition of the Lie algebra

Let g be a semisimple Lie algebra and let h be a Cartan subalgebra in g. We know that b is abelian
and self centralising. Furthermore all its elements are semisimple and because they commute they are
diagonalisable simultaneously. Let us fix such a diagonalising base (e;);c[1,,) With n = dim g. For any
x € b, we thus have

ad (z)(e;) = [z, ei] = Ai(x)e;

where \;(x) is the eigenvalue of z associated to the eigenvector e;.
Fact 13.1.1 The map \; : h — k defined by x — X\i(x) is a linear form.

Proof. Let w in k and x,y in h we compute \;(z + uy)e; = [z + uy, ;] = [z, ¢;] + uly, e;] = (Ni(x) +
uXi(y))e; and the result follows. O

Corollary 13.1.2 We have a decomposition

g="b @ Ja

achv\{0}
where go = {z € g / Vy € h ad (y)(z) = a(y)z}.

Definition 13.1.3 A linear form o € §Y such that g, is not trivial is called a root of the Lie algebra.
We denote by R the set of all roots of g, this is a (finite) subset of hY.
For a € R, elements in g, are said to have weight o and elements in b are said to have weight 0.

Proposition 13.1.4 Let (, ) be an invariant non degenerate bilinear form on g (for example the
Killing form).
(1) The subspaces go and gg are orthogonal for (, ) except if o+ 3 = 0.
(1) The subspaces go and g—o are dual with respect to (, ) and its restriction to b is non degenerate.
() If x € go, Y € g—a and h € b, then we have

(h, [2,9]) = a(h)(z, y).

103
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(w) Let o € R and let hy be the element in b corresponding to « under the isomorphism b ~ bV
defined by (, ). We have
[,y] = (2, y)ha

forx € gy andy € g_q.
Proof. (1) Let = € g, and y € gg. We have for all h € b the formula:

a(h)(z,y) = ([h,z],y) = —(z, [h,y]) = =B(h)(z,y)

therefore (a(h) — f(h))(x,y) = 0 and if a + 5 # 0, there exists an element h € b with a(h) —S(h) #0

giving (z,y) = 0.
(11) We have a direct sum of orthogonal spaces for the bilinear form ( , ) as follows:

€

g=5 @(ga @g—a)

a€ER

and because the bilinear form is non degenerate, it has to be non degenerate on each spaces and the
result follows.

() By invariance of (, ) we have (h, [z,y]) = ([h,z],y) = a(h)(x,y).

(1v) For any element h in hh we compute:

([z,y],h) = a(h)(z,y) = (ha, h)(z,y) = (2, y)has h).

Remark that [z,5] € b (indeed [h, [z,3]) = (b, 2], 5] + [z, [h,5]] = (), 4] — a(h) 5] = O thus [z, ]
has weight 0 and is in ). Thus because (, ) is non degenerate on ) we get the result. O

13.2 Structure theorem for complex semisimple Lie algebras

Theorem 13.2.1 Let g be a complex semisimple Lie algebra.

(1) The set R is a root system in h" and is reduced.

(1) For a a root, the space g, is one dimensional as well as the subspace ho = [ga, 9—a] of b.

(1) There is a unique element Hy, € bo such that a(H,) = 2, this is the inverse root of c.

(w) Let « be a root, for each non zero element X, € gq, there is a unique element Yy, € g_o such
that [ Xy, Y] = Hy.

(v) We have the formulas [Hy, Xo] = 2X, and [Hy, Y] = 2Y, thus s = g—a @ ho @ ga 5 a
subalgebra of g isomorphic to sla.

(v) For a and (3 two roots such that o+ 3 # 0, we have the equality go+5 = [ga, 95]-

Proof. We will not prove this result linearly but in several steps. We fix a non degenerate invariant
bilinear form ( , ). Let us first prove the following very easy fact (that we already partially used in
the previous proposition).

e We have the inclusion [gq, 9s] C ga+3-

We have for « € aq, y € gg and h € b the equalities [k, [z,y]] = [[h, 2], y] + [z, [k, y]] = a(h)[z,y] +
B(h)[x,y] and the result follows.

e R spans hV.

For this we only need to prove that if h € b is such that a(h) = 0 for all @ € R, then h = 0. But
for such an element h, we have [h, g] = [h,b] +>__[h, ga] = >, @(h)gq = 0. Thus h lies in the center
of g and because g is semisimple, the result follows.
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e We have dim b, = 1.

This follows from the previous proposition: all the elements in this spaces are colinear to h,,.

e There exists an element H, in b, with a(H,) = 2.

In view of the previous point, we only need to prove that « is non trivial on h,. If it were not the
case, then a(h,) = 0. Because g, and g_,, are dual to each other for ( , ), there exist elements = € g,
and y € g_q such that (z,y) # 0 thus z = [z,y] = (z,y)ha # 0. We have a(z) = 0. We thus have the
formulas [z,y] = z, [z,x] = [2,y] = 0, thus the span s of x, y and z is a subalgebra of g.

This subalgebra s is nilpotent and therefore solvable. Thus in the representation ad : g — gl(g),
the image stabilises a fixed flag. Furthermore, the elements z lie in Ds therefore its image is nilpotent.
But z lies in h thus is semisimple and so is its image under the adjoint representation. Therefore
ad (z) = 0 thus z = 0 a contradiction.

e Let a be a root, for each non zero element X, € g, there is an element Y, € g_, such that
[(Xo, Y] = Ha.

For y € g_q, we have [X,,y] = (Xa,y)ha and hy = cH, for some ¢ € k*. Let y € g_, such
that (Xa,y) # 0 (this is possible because g, and g_, are dual for ( , )). We can therefore set
Yo = y/(c(Xary).

e We have the formulas [Hy, X,| = 2X,, and [H,, Y,] = 2Y, thus s, = g_o Db D g, is a subalgebra
of g isomorphic to sls.

We compute [Hy, Xo] = a(Hy) Xy = 2X, and [Hy, Y,] = —a(Hy)Y, = —2Y,. We therefore have
an identification with the canonical basis of sls.

We shall in the sequel consider g as an sls = s, representation thanks to the adjoint representation.

e We have dimg, = 1 for o € R, the element Y, is unique and we have s, = g_o ® ha @ ga-

If dimg, > 1, then the same is true for g_, because it is dual to go. Therefore there exists a
non zero element y € g_, such that (X,,y) = 0. We therefore have [X,,y] = (X4, y)ha = 0 by the
previous proposition. But we have [Hy,y| = —a(H,)y = —2y thus y is a primitive element of negative
weight. This is not possible. The last two assertions follow from the first one.

e Let o and 8 be two roots, then 5(H,) is an integer and 8 — f(H, )« is a root.

Let = € gg be a non trivial vector. We have [H,,z] = B(Hy)x therefore 5(H,) is a weight for the
representation of s, in g. We get that S(H,) is an integer. If S(H,) > 0, we set y = Yf(H“)(x) and if
B(Hy) <0, we set y = X(;B(H“)(x). We know that y # 0 but we have that y has weight 8 — (Ha )«
which has therefore to be a root.

e R is a root system.

We already know that R is finite does not contain 0 and spans hY. Let us define, for o € R,
the endomorphism s, : hY — §Y by s4(8) = B — B(Hy)a. Because a(H,) = 2, this is a reflection.
Furthermore by the previous points, this reflection maps R to itself and s, (3)— f is an integer multiple
of a.

e The root system R is reduced.

Let € R and let © € go,. We want to show that x = 0. Let us remark that we already know
(because R is a root system) that gs, = 0. We have [H,,z] = 2a(H,)x = 4x. On the other hand,
we have [Hy, z] = [[Xa, Yal, 2] = [Xa, 2], Ya| + [Xas [Ya, 2]] = [Xa, [Ya, 2]] because [Xq, x] € g3 = 0.
But [Ya, 2] € g4 is colinear to X, thus 4o = [H,, 2] = 0 and the result follows.

e Let o and 8 be non proportional roots. Let p and g the greatest integers such that 8 — pa and
B + ga are roots. Let

q
E = @ 9B+ka-

k=—p
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Then E is an irreducible representation of s, of dimension p + ¢ + 1 and for k € [—p,q — 1], the map

ad (Xa) : 9+ka = 08+ (k+1)a

is an isomorphism. We have 3(H,) = p — q.

This is clearly a subrepresentation of g. The weights of H, on E are given by (8 + ka)(Hy) =
B(H,) + 2k for those k such that § + ka is a root. Because all these weights have multiplicity one,
this in particular implies that E is irreducible. The assertions on the dimension and the map ad (X,)
follow from the theory of representation of sly. Furthermore, we have that S(H,) — 2p is the lowest
weight of E while B(H,) + 2¢ is its highest weight. We thus have S(H,) —2p = —(5(Ha) + 2q) giving
the last assertion.

e For a« € R, f € R with a + 8 € R, we have [g4, 93] = ga+t5-

With the notation of the previous point we have ¢ > 1 and p > 0, thus for k£ = 0 we get that
ad (Xa) : 98 = ga+p is an isomorphism and in particular go4s C [ga,8s). The converse inclusion was
proved as first point. O

Corollary 13.2.2 The root system R does not depend on the choice of b but only on the semisimple
Lie algebra g.

Proof. Indeed, let h and b’ be two Cartan subalgebras and let R and R’ be the corresponding root
systems. We know that there exists an automorphism ¢ : g — g of the Lie algebra such that the
restriction of ¢ to b is an isomorphisms ¢|y : h — h’. Let us denote by tp=1:pY — (B')V the transpose
of its inverse. For o € R, x € g, and h € ), we have

[6(h), ¢(x)] = b([h, 2]) = a(h)p(z)

therefore ¢(x) is an eigenvector for i’ = ¢(h) € b’ with eigenvalue a(h) = a(¢~1(h')) =t ¢~ () (V).
Therefore ‘¢! (a) is a root. Thus ‘¢~ is an isomorphism of root systems from R to R’ (its inverse is

tg). 0

Corollary 13.2.3 Let g be a semisimple Lie algebra and R be the root system associated to g defined
in the previous theorem. Then g is simple if and only if R is irreducible.

Proof. If g is not simple, then g = g1 x go with g; semisimple Lie algebras. We easily get that if b; is
a Cartan subalgebra for g;, then h = h; @ hs is a Cartan subalgebra for g and that the root system
for b in g is the union of the root systems for h; in g; and ho in go.

Conversely, if R is reducible, then it is the orthogonal union of two root systems R; and Ry and
if we set h; to be the span in h of the elements H, for a € R; and if we define

gi=bi® P sa
aER;

then we have g = g1 X go. O

13.3 Free Lie algebras, Lie algebras defined by generators and rela-
tions

Recall that for V' a vector space, the tensor algebra T'(V') is the free associative algebra generated
by V. Let us denote by ¢ the natural inclusion V' — T'(V). Recall also that we have the following
universal property characterising free associative algebras.
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Proposition 13.3.1 For any associative algebra A and any linear map f : V. — A, there exists a
unique associative algebra morphism F : T(V) — A such that f = F oi.

Let us now, in the same spirit, define Free Lie algebras.

Definition 13.3.2 Let V' be a vector space and let T'(V') be its tensor algebra viewed as a Lie algebra
under the bracket [a,b] = a ® b — b® a. The free Lie algebra generated by V', denoted F(V'), is the
Lie subalgebra generated by the subspace V in T (V). We denote by j the embedding V — F (V).

If (€i)ic(1,m) is a base of V', we call F'(V') the free Lie algebra generated by the (€;)ic[1,m]-

The following is the characteristic property of free Lie algebras.

Proposition 13.3.3 For any Lie algebra g and any linear map f : V — g, there exists a unique Lie
algebra morphism F : F(V) — g such that f = F o j.

Proof. Let T(g) be the tensor algebra of g. We have a linear map V' — g — T'(g) therefore by the
universal property of T'(V'), we get a morphism of associative algebras T'(V) — T'(g). We may then
compose this map with the quotient 7'(g) — U(g) to the universal envelopping algebra.

Let us now consider the restrition of this map to F'(V') and denote it by ¢. We claim that the image
of ¢ is contained in the image of g in U(g). Indeed, the Lie algebra F'(V') is generated by the elements
in V but if v and v" are in V', we have ¢([v,7']) = ¢(v ® v/ —v' @ v) = ¢(v) ® P(v') — P(v') @ p(v) =
[6(v),d(v")]. As f maps V to g, the elements ¢(v) and ¢(v') as well as the element [p(v), p(v')] live
in the image of g in U(g).

To conclude, we need to invoque Poincaré-Birkhoff-Witt Theorem 15.0.7 and the fact that the map
fo : 8 — U(g) is injective therefore the Lie algebra morphism ¢ : F(V)) — fy(g) C U(g) lifts to a Lie
algebra morphism F(V) — g. O

Definition 13.3.4 Let E be a finite set, let V' be the vector space k¥ and consider F(V') the free Lie
algebra generated by E. Let R be a subset of F(V'), the Lie algebra defined by the generators FE and
the relations R is the quotient of F(V') by the ideal generated by R.

13.4 Serre’s presentation

In this section we give a description of a semisimple Lie algebra by generators and relations. Let us
denote by n the sum of the g, for « € R; and n_ the sum of the g, for « € R_. Remark that because
H, is the dual root of o € R, we have a(Hpg) = (8", ).

Theorem 13.4.1 (1) The subspaces n resp. n_ are subalgebras in g and are generated by the X, resp.
Y, with o € S.

(1) The Lie algebra g is generated by the elements X, Y, and H, for a € S.

(12) We have the relations (called Weyl relations)

o [X,,Y,|=H, foraes,
o [Xo,Ys] =0 for o, p €S with a # 3,
4 [HaaXﬁ] = <av’ﬁ>Xa fOT OZ,B € S7

o [Ho, Y] = —(a",B)Ys for o, B € S,
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and the relations (called Serre relations)
o ad (X))@' B)(Xg) = 0 for o, B € S with a # B,

o ad (Y,)' =@ B)(Yy) = 0 for o, B € S with a # B.

Proof. (1) Let us prove that n is generated by the elements X, for a € S. For this we only need
to prove that for € R, the element Xg is in the subalgebra generated by the (X,)acs. From
Proposition 11.6.9, the root 8 can be written as 8 = Zle a; with o; € S such that for all j € [1,k]
the sum Zgzl «; is a root. By Theorem 13.2.1 and induction, we get that the element

[onkf e 7[X27X1]]

is non trivial in gg therefore a multiple of it is equal to Xg.

By the same argument we get the result for n_.

(n) Because the H, for a € S generate b (they form a base for the dual root system RY) we get
the result for g.

(1) In the Weyl relations, only the relations [X,,Y3] = 0 for o, 5 € S with a # 3, are not already
known from Theorem 13.2.1. But the weight of [X,,Y3] = 0 is o — 8 which is not a root (because
root are linear combinations with constant signs of simple roots).

To prove Serre relations we proceed in the same way. The weight of ad (X(X)I*(O‘V’B> (Xg) =0is
equal to B+ a — (oY, B)a = a+ s4(8) = sa(B — ). Because 3 — « is not a root, the same is true for
Sq(B — @) and the result follows. The same method works for the second type of Serre relations. [

We want to prove that the above relations define a semisimple Lie algebra. For R a reduced root
system and S a base for R, we first study the Lie algebra g generated by the elements H,, Y, and H,
for a € S subject only to the Weyl relations.

Proposition 13.4.2 Let g be the Lie algebra generated by elements H,,, Y, and H,, for o € S subject
to the relations:

o [X,.Y]=H, foracs,

o [Xo, Y3 =0 fora,8 €S with o # 3,
o [Ha, X5 = (o, 8)Xq for a, B € 8,

o [Ha, Y5 = —(a¥, )Y, fora,B €S,

(1) The elements H,, for o € S are linearly independent in g. Their span is denoted by 6
(1) Denote by 0 resp. n_ the Lie subalgebras of § generated by the X, resp. Y,, then we have the
decomposition
g=n_&hon
and 0 resp. n_ is isomorphic to the free Lie algebra generated by the X, resp. Y.

Proof. Remark that in general, the Lie algebra g is of infinite dimension. To study this Lie algebra,
we define a representation of g in a vector space V. To do this we only need to define a linear map
g — gl(V) such that the images of the elements H,, X, and Y, satisfy the Weyl relations.

Let W be a vector space of dimension |S| and fix a base (eq)acs in W. Let V = T(W) be the
tensor algebra over W, a base is given by the elements ey, ® - - - ® eq, for any sequence (aq,--- , o)
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of simple roots ; € S. Let us define elements in gl(V') as follows (the elements X, is defined by
induction):

Ha(1) =0

Halea @+ @ eay) = —((a¥, 1) + - + (0¥, 0 )ea, @+ B ea,

Ya(1) = ea

Y(eoq®"'®€ak):ea®€a1®"'®€ak

Xo(1)=0

Xa(eg) =0for g e S

XOé(eOél Q- & eOék) = €y ®Xa(ea2 X ® eak) - 5a7a1(<av,a2> + .o+ <Oév704k>)ea2 R ® eq,

Lemma 13.4.3 The map g — gl(V) defined by X, — Xa, Yo — Y, and Hy — H, is a Lie algebra
morphism.

Proof. We only need to check the Weyl relations. Remark that the elements fIa act diagonally in the
base (eq, ® - ® eq, ), therefore we have [H,, PAIB] =0.

We also have the equalities [ﬁa,?ﬁ](l) = —(a¥,B)eg = —(av,ﬁﬂ?ﬁ(l) and together with the
equal/i\ties/\[HQ,}?5](60{1 ®:-® €a,) = —(a,Bleg R eq, ® - Req, = —(ozv,ﬁ)i?g(eal R ® eq,) We
get [Ha, Y] = —(a”, B)Yj. R o R

We compute [Xa,YB]( ) =0 =005Ha(1), [Xa,Y5](ey) = 5a5( aY,v)ey = do3Ha(ey) and the
equahtles (X, Yg](eo{1 R ®eq,) =€ ® )Ea(eal ® - ®eq,) — ((a a1> +--- 4 (a Q) )€qy @

"®eq, —€g® XA (€ay ® -+ Deq,) = ba,pHa(ea; @ - ®en,) we get [Xa,Yg] = agH

We compute [Hq, X5](1) =0 = (¥, 8)Xp(1), [Ha, Xg](ey) =0 = (a ,ﬁ)Xﬁ(ey). For the general
case, we first need to prove the following formula

Ho(Xp(ea, @+ ®eq)) = (@Y, 8) = ({0”, 1) + - + (0¥, ) Xpea, @ - ® eay,)-

We prove this formula by induction on k. For k = 0 or k = 1 we get the trivial equality 0 = 0. Assume
the equality is true and compute

ﬁa()?ﬁ(eal Q- Qeq @ eak+1)) = ﬁa(em ® Xﬁ(eaz Q& eak+1))
—55,a1(<04v,042> +ot <av= ak+1>)ea2 Q- @ ayy,-

By induction )?B(em ® - ® eq,,) is an eigenvector for H,, therefore it can be writen as a linear
combinaison of elements eq/1 ® -+ ® ey, with the same eigenvalue i.e. —((a¥,v1) + -+ + (a¥, 7)) =
(", B8) — ((a¥,a) + - + (¥, ag))). We get the equality

Heo(eay, ® Xp(ea, @+ @eagy)) = (@, 8) — (0¥, 1)+ -+ (0, 1)) )eay @ Xp(ea, @+ @ ey, y)-

Discussing on the cases § = a; and # aq, we get the desired equality. We may now compute the
equalities [Hy, Xs](eq, @ o ® ea,) = ((@Y,8) — ((a” a1> + 4 (av,ak>))X£(eaA1 ® - ® eakz\—i-
(<aV, Oé1> +eeet <ava ak>)Xﬁ(6al Q- ®eak) = < ,B>Xﬁ(6a1 - ®€ak) thus [HCH Xﬁ] = <ava 5>Xﬁ
O

(1) From this representation we easily deduce that all the H, are linearly independent. Indeed, we
only have to show that the H, are linearly independent. But we have >, a;Hq,(eg) = — >, ai{ey, B)eg
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thus ), aifIai =0 if and only if Y, a;(e;/, ) = 0 for all 8 € S. This gives

20,2‘04@' -
(3] =o

thus a; = 0 for all ¢ because ( , ) is non degenerate and the «; are linearly independent.

(1) Let us first prove that the elements X, Y, and H, are linearly independent (here o may vary
in S). For « fixed, the span of X,, Y, and H, is a quotient of sly (map X, Y and H to X,, Y, and
H,). This map is a Lie algebra morhism and is not trivial (because H, # 0). As sly is simple it has
to be injective. Thus X,, Y, and H, are linearly independent and in particular do not vanish. Now
let a general element H = 3 AsHpg act by the adjoint action. We see that the elements X,, Y, and
H, are eigenvectors with eigenvalue 35 Ag(8", ), —> 5 A(8",a) and 0. Thus these elements are
linearly independent.

Let us now compute the action of g on elements of the form [Xa,, [Xay, [ Xar_y» Xa,)]] and
Yoi: [Yass - s Yar_y» Yo, l]]- By induction and using Jacobi identity, we get
[HOM [qua [XOé27 ) [XOék—NXOék]m = < \/7 o1+t ak>[X0417 [Xa27 ) [Xak—NXOék]H
[HOM [Yoqa [Ya27 T [Yak—NYOékHH = _< \/7 o1+ -+ ak>[Yc¥17 [Ya27 ) [YOék—NYak]H'
We also have, by easy induction the following inclusions for k > 2:
[Ya’ [XCVI’ [XOQ’ N [Xak—l’XakHH €n
[Xa, [Yoqa [Ya27 o [Yak—NYOékHH €n_.
We therefore see that the Lie algebras n resp. n_ are generated by the elements of the form
[(Xois [Xag, s [Xap_1s Xagll] resp. [Yaus [Yags -+ 5 [Yar_y» Ya,l]]. These elements are eigenvectors for

the abelian algebra b with eigenvalue (a¥, iy + - - - + ay) resp. —(a¥, a1 + - - - + o) therefore the sum

n_ + b +nis direct. This sum is a subalgebra by the above inclusion and contain generators of g thus
we have § = _ @ h @ 1.

Finally, consider the free Lie algebra F(Y) over the elements Y,. We have a natural morphism
F(Y) = F — g where F is the free Lie algebra generated by the X,, the Y, and the H,. The first
map is injective therefore we only need to prove that the intersection of F'(X) (seen as a subalgebra
in F') and the ideal spanned by the Weyl relations is trivial. For this we again use the repesentation
in gl(V). Recall that F(Y) is the Lie subalgebra of T(Y") (where here Y = k* with base the elements
Y, for a € S). We have a natural representation of T'(Y") (as an associative algebra) in V' defined by:

Ya.ea1®...®eak:ea®ea1®...®eak_

This representation restricts to a representation of Lie algebra T'(Y) — gl(V') and to a representation
F(Y) — gl(V). Furthermore, this representation is the representation obtained by the composition
F(Y) - F — g — gl(V). But the map T(Y) — gl(V) is injective (remark that T(Y) ~ V and
that this representation is simply the left multiplication which is injective because T'(Y") is a domain)
therefore the same is true for the composition and the result follows. O

Remark 13.4.4 For A a linear form on i)\, let us denote by g, the eigenspace associated to \ i.e.:
Gr={z€§/ [ha] =A(h)x for all h € b}.

The previous proof shows that the only linear form A for which gy is non trivial are such that A =
Y acs o With the a, integers all non negative at the same time (denoted by A = 0) or all non
positive at the same time (denoted by A < 0)

Theorem 13.4.5 Let R be a reduced root system with base S and let g be the Lie algebra defined
by generators and relations as in the previous theorem, then g is a semisimple Lie algebra, the Lie
subalgebra by generated by the H,, for a € S is a Cartan subalgebra and the root system of g is R.
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Proof. Let 6,3 and 6, 5 be the image in § of the elements ad (X, )~ {@"5) (X3) and ad (Vo) (@".h) (Ys)
for a, f € S. Denote by uresp. u_ the ideal of n and n_ generated by the (64 3)a,ses resp. (004_,6)0‘7565'
Let t=uu_.

Lemma 13.4.6 The spaces u and u_ are ideals of g.

Proof. Consider the ideal u, g of g generated by the element 6, 5. If U(g) is the envelopping algebra of
g, then u, g is generated as vector space by the elements U -6, g for U € U(g). We have the following
fact (which is a special case of Poicaré-Birkhoff-Witt theorem 15.0.7).

Fact 13.4.7 Any element U € U(g) is a linear combinaison of elements of the form XY H where X,
Y and H are respectively image in U(g) of tensors of elements in 0, n_ and b.

Proof. Any element in U(g) is the image (under the map T'(g) — U(g)) of a linear combinaison
of pure tensors of elements X, Y, and H,. Let us write such a pure tensor in the following form
V=01 ® - Quv,. Weprove that v =X, ® - ® X, @Y3 ®--- Q@Y @ Hy ®@---® H,,_ for simple
roots «;, B; and ;.

We first prove that we can move all the X,’s to the right. We proceed by induction on I(v) = n+m,
where

my, = max{i / v; = Xa for some a € S and v;11 = Hg or Yy for some 5 € S}.

We thus have vy, @V, +1 = Xo®Y3 or Xo® Hg. But in U(g) we have the relation 2@y = y®z+ [z, y]
thus we have vy, ® Um,41 = Xa ® Y3 = Y3 @ Xo + [Xo, Y3] O v, @ U1 = Xo ® Hg = Hz ®
Xo + [Xo, Hg]. We have [X,,Y3] = 0o sHq and [X,, Hg] = —f(a) X, thus replacing vy, ® v, 41 by
Umyt1 @ Uy + [Umy s Um,y+1) I v gives a new expression for v as linear combinaison of two elements v’
and v” with smaller [(v") and I(v"”). We conclude by induction.

The same arguments with the Y,’s and Hg’s give the result. O

So we get that the element U -0,3 = XY H -0, 3. But H -0, g is a multiple of 6, 3. We prove the
following

Fact 13.4.8 We have Y, - 0,3 = 0 for any root .

Proof. We have Y., - 0, 3 = ad (Y;) o ad (X o)t (a8 (Xp3).

If v # «, then Y, and X, commute therefore we have Y, - 0,3 = ad (Xa)l_mv’ﬁ)([Y%Xg]). If
v # B we get the result because [Y,, Xg] = 0 in that case. If v = f, then [Y,, Xg] = Hg and
Y, 0,5 = ad (Xa)l_@‘Vﬁ)(Hﬁ) = —(8Y,a)ad (Xo)"#)(X,). But because a and 8 are distinct
simple roots, we have («",3) < 0 and (8Y,a) < 0 with equality simultaneously. If both vanish, the
result follows, if not then ad (X,)@ %) (X,) vanishes.

If v = «, by an easy induction, we get for k > 0:

ad (Ya) 0 ad (Xo)* 1 (X5) = —(k + 1)(k + (0¥, B))ad (Xa)*(X5).

For k = —(aV, ) > 0 we get the result. O

From this fact we deduce that the element Y - 0, 5 is a multiple of 6, 5 (it is non zero if Y =1 in
U(g)). Because 0, s is a weight vector, H -0, g is also a multiple of 6, g thus XY H -0, g is a multiple
of X -0,,. This implies that u, g is contained in u. We thus have u = Zaﬁ U, g thus u is an ideal in
g because the u, g’s are. The same proof gives the result for u_. U
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As a consequence of the previous lemma, we see that the ideal vt = u_ @ u is the ideal generated
by the 0,5 and the 0, 5 in g. We also know that u C n and u_ C n_ thus we have the decomposition

g=n_©obhodn
where n =n/u and n_ =n_/u_. We shall now need the following definition:

Definition 13.4.9 Let V be a vector space (possibly of infinite dimension, otherwise the definition is
the one of nilpotent elements) and let w € End(V'). The endomorphism u is called locally nilpotent if
for any element v € V', there exists an integer n with u™(v) = 0.

Example 13.4.10 (1) If V is finite dimensional, then u is locally nilpotent if and only if u is nilpotent.
(1) Let V' = k[z] the vector space of polynomial in the variable x and let u = 9/0z. Then u is
locally nilpotent but not nilpotent.

If w is a locally nilpotent element, the endomorphism exp(u) is well defined because for v € V
fixed, u™(v) vanishes for large n.

Lemma 13.4.11 The endomorphisms ad (X,) and ad (Y,,) are locally nilpotent on g.

Proof. Remark that since we do not know that g is finite dimensional yet, it makes sense to ask for
local nilpotence and not simply nilpotence.
Let g(a) = {z € g / ad (X,)*(x) = 0 for some k > 0}. We prove that g(a) is a Lie subalgebra of
g. Indeed, if x and y are in g(a), we have ad (X,)*(x) = 0 and ad (X4)'(y) = 0. But because ad (X,,)
is a derivation, we have by Lemma 9.3.2 with A = u = 0 the equality
n
n . s
o (X)) = 3 () el () )0 (X))
1=0
The result follows.
We have X, € g(a). By the Serre relations, we know that Xg € g(a) and by the Weyl relations,
Hpg and Y3 are in g(o). Therefore g(o) = g. The same method gives the result for Y,. O

We now introduce for the Lie algebra g the same notation as we did for semisimple Lie algebras
with roots: for A a linear form on b, we define gy = {x € g / [h, 2] = A(h)z for all h € h}. The forms A
with gy # 0 are called the weights of g and a element in g, is said to have weight A. By Remark 13.4.4
and Proposition 13.4.2 we know that g is a direct sum of weight spaces (the sum is direct because the
spaces are eigenspaces for different eigenvalues) with weights A < 0 or A > 0. By quotienting by t, the
same is true for g. Furthermore, we have

b=g0, n=EPgrandn_ =P
A=0 A<0
Lemma 13.4.12 If A\ = w(p) for w € W, then dimgy = dimg,.
Proof. It is enough to prove this for w = s, where « is a simpe root because W is generated by
reflection with respect to simple roots. Thus we assume A = s,(1). Let us define the automorphism

0o 19— g by
oo = exp(ad (X)) exp(—ad (Yy)) exp(ad (X4 )).

For x € gy, we check that o,(x) € g,. We first compute, for h € b, the formula (the first equality
comes from the fact that the exponential of nilpotent element is a Lie algebra morphism):

[0a(h), 0a(2)] = ga([h, z]) = ga(A(R)2) = A(h)oa(2).
We now compute o,(h) for h € b.
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Fact 13.4.13 We have the equality oo (h) = h — a(h)H,.

Proof. Indeed, we first compute exp(ad (X,))(H) = H — a(H)X,, then we get exp(—ad (Y,))(H —
a(H)Xy) = H —a(H)(X, + Hy) and finally the formula follows. O

Therefore, we see that for h' = o,(h) we have h = o,(h') and for any h € h (or any b’ € b) we
have the equality

[, 0a(2)] = A(h)oa(z) = AW = a(h))Ha)oa(z) = (A = A(Ha)a) (Moo (z) = p(h)ou ()

proving that o.(z) € g,. Applying the inverse of o, we map g, to gy therefore o, realises an
isomorphism from gy onto g, and the result follows. O

Lemma 13.4.14 We have dimg, = 1 and dimg,,o =0 for a € S and m ¢ {-1,0,1}. For 5 € R,
we have dimgg =1 and dim g,,3 = 0 for m ¢ {—1,0,1}.

Proof. We have seen that § = n_ @ h @7 and that 1 is generated by the X,’s for a € S. Therefore we
have g, = kX, for « € S and g,,, =0 for « € S and m ¢ {—1,0,1}. As X, & t, the result follows.
The result for § € R comes from the simple root case and the previous lemma. O

Lemma 13.4.15 Let \ be real linear combinaison of simple roots in §Y such that X\ is not colinear
to any root. Then there exists an element w € W such that w(\) = > g ta with some t, >0 and
some t, < 0.

a€Ees

Proof. Let by, and hg the real spans of the & € S and H, for « € S. Let L (resp. L,) be the
hyperplane orthogonal to A (resp. to «) in hr. The hyperplane L is distinct form all the hyperplanes
H,. Let H € L such that a(H) # 0 for all @ € S. We know that there exists w € W such that
a(w(H)) > 0 for all @« € S. We therefore get, writing w(\) = > _ o taq, the equality

a€sS
0=\H) = (N)(w  w(H)) = (wX)(w(H)) = tac(w(H)).
a€sS
Therefore the result follows because all the ¢, do not vanish. O

Lemma 13.4.16 If A is not a root and is not zero then gy = 0.

Proof. We know that the weights of g are integral linear combinaison of simple roots with constant
sign coefficients. In particular, if A is a multiple of a root, then it is an integer multiple of a root and
by Lemma 13.4.14 we have gy = 0.

If A is not a multiple of a root, then we know by the previous lemma that there exists w € W
with w(\) not a linear combinaison with constant sign coefficients of the simple roots. In particular
Guw(x) = 0 thus g, = 0 and we get gy = 0. O

The Lie algebra g is therefore finite dimensional and its dimension is |S| + |R|. Indeed, we have
the decomposition into weight spaces which is direct

g:h@ga-

aER

For a € S, we have that [ga,g—] is one dimensional equal to the span of H,. The Lie algebra s,
generated by go, g_o and H, is isomorphic to sly. Applying elements of the form o, we see that for
any root 3 € R, there is an element Hg € b such that the Lie algebra sg generated by gg, g—3 and
Hp is isomorphic to sls.
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Lemma 13.4.17 The Lie algebra g is semisimple.

Proof. Let a be an abelian ideal in g. Because it is stable under b, it has to be a direct sum of weight
spaces for b thus we have
a=anh EB angq.
acR
But aNs, is an abelian ideal in s, thus aNs, = 0 therefore aNg, =0and a Ch. Let h € anh, we
have [h, X,] = a(h)X, € a thus a(h) = 0 for all root & thus h =0 and a = 0. O

To finish we prove that b is a Cartan subalgebra and that the root system is R. We have that b
is abelian therefore nilpotent. Furthermore, if € ng(h), then z = h + 3 paa Xy where h € h. We
get for all A’ € b the inclusion

(B, 2] = Z aocc(h )X, €H
aER
thus for all & € R and all ' € b, the equalities aqa(h’) = 0 giving a, = 0 for all « € R and x € b.
The fact that R is the root system is clear. O

Corollary 13.4.18 For any reduced root system R, there exists a semisimple Lie algebra with root
system R.

Corollary 13.4.19 Let g be a semisimple Lie algebra, it is equal to the Lie algebra generated by X,
Y, and H, for a € S with relations the Weyl and Serre relations.

Proof. Let g’ be the Lie algebra with the above presentation with generators X/, Y, and H], for o € S.
It is semisimple with root system R. By Theorem 13.4.1, the relations over the elements X, Y, and
H, for « € S are satisfied in g therefore the map g’ — g sending X/, to X,, Y. to Y, and H), to H, is
a Lie algebra morphism. It is surjective by loc. cit.. Furthermore, we have in both case by Theorem
13.2.1 the equalities dim g’ = |S| 4+ |R| = dim g and the result follows. O

Corollary 13.4.20 Two Lie algebras are isomorphic if and only if they have the same root system.

Proof. If the two Lie algebra are isomorphic they have the same root system (all the Cartan subalgebra

are conjugated therefore the root system does not depend on the choice of a Cartan subalgebra).
Conversely, if two Lie algebra have the same root system, they have the same presentation and are

therefore isomorphic by the previous corollary. O

Corollary 13.4.21 The simple Lie algera are in one to one correspondence with connected Dynkin
diagrams.

Corollary 13.4.22 Let g be a semisimple Lie algebra, there exists a Lie algebra involution ¢« mapping
Xo to =Yy, Y, to —X, and H, to —H,.

Proof. This is true because the elements —Y,, — X, and —H, satisfy the same relations as X,, Y,
and H,. ]
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13.5 Exercices

Exercice 13.5.1 Let g be a semisimple Lie algebra and h a Cartan subalgebra in g. Let R be the
associated root system in hV.

(1) Prove that dimg = dim b + |R| where |R| is even.

(1) Prove that there are no semisimple Lie algebra of dimension 4,5 and 7.

(m) Prove that any 3-dimensional semisimpple Lie algebra is isomorphic to sls.
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Chapter 14

Representations of semisimple Lie
algebras

In this chapter we study a special type of representations of semisimple Lie algberas: the so called
highest weight representations. In particular every finite dimensional representation is an highest
weight representation.

We fix in all the chapter a semisimple Lie algebras g and a Cartan subalgebra . We denote by R
the associated root system and we fix a base S of R. We denote by R, (resp. R_ the set of positive
(resp. negative) roots and we fix for any positive root o € R, elements X, € g, and Y, € g_, such
that [X,,Y_o] = H,. We define the subalgebras

n= @ga, n_= @gaandb:hean.

acR acER_

14.1 Weights

Definition 14.1.1 Let V be a representation of g (not necessarily finite dimensional) and let A € hY
be a linear form on . An element v € V is said of weight A if for all h € b, we have h-v = X (h)v.
The set of all elements of weight X\ is a vector space V) called a weight space of V' . If V) is non trivial
then X is calles aweight of the representation . The dimension dim V) is called the multiplicity of the
weight A in V.

Proposition 14.1.2 Let V be a representation of g.
(1) We have go - Vi = Vaia for A€ b and a € R.
(1) The sum V' =", V) is direct and is a subrepresentation of V.

Proof. (1) Let x € go, h € h and v € V), we have the equalities
h-(x-v)=Ihzx]-v+a-(h-v)=ah)z-v+Ah)z- v
and the result follows.

(1) The fact that the sum is direct comes from the classical fact that eigenspaces are in direct
sum. Furthermore, from (2), we get that V' is a subrepresentation. U

117



118 CHAPTER 14. REPRESENTATIONS OF SEMISIMPLE LIE ALGEBRAS

14.2 Primitive elements

Definition 14.2.1 Let V be a representation of g and X\ € hY. A wvector v € V is called a promitive
element of weight \ if h-v = A(h)v for all h € h and x - v =0 for all z € n.

Remark 14.2.2 The last condition defining a primitive element is equivalent to the following two
conditions:

o Xo,-v=0foralla e Ry,
e X, -v=0forallaesb.

The primitive elements are also the eigenvalues of the Borel subalgebra b.

Proposition 14.2.3 Let V be a representation of g and let v € V' be a primitive element of weight
A. Let E be the submodule generated by v in V.

(1) If By,---,Bn are the positive roots, then E is spanned by the elements Yﬁkl1 . Y;: - v with
k; € ZZO

(1) The weight of E have finite multiplicity and are of the form

A= laa with o € Zo.
a€esS

(11) The weight A has multiplicity 1 in E.
(w) The representation E is irreducible.

Proof. (1) The subrepresentation E generated by v is the subspace of all elements of the form U - v
for U € U(g). Recall from Fact 13.4.7 that any element U € U(g) can be written in the form
U =Y X H (we exchange the role of positive and negative roots here) with X € U(n), Y € U(n_) and
H € U(h). By the definition of primitive elements, we have that H - v and X - v are multiples of v
(for X - v, this multiple is 0 except for X = 1). We therefore get U - v = Y - v. But any element of
U(n_) can be written in the form YBI? e Y;:, the result follows (for this last result, use the relations
Yﬁi (039 Yﬁj = Yﬁj (039 Yﬁi + [Yﬁi’yﬁj] for 7 > ])

(1) This is direct consequence of (2) and the previous proposition.

(12) This comes from the fact that A — > glocr = X if and only if I, = 0 for all o € S.

(w) Assume that E = E;® E5 where E; is a subrepresentation of E. In particular, we may consider
the weight spaces (E;)x.

Fact 14.2.4 We have E) = (El))\ D (EQ))\.

Proof. We easily have that the sum is direct and the inclusion of the right hand side in the left hand
side. Let v € E), we have v = v; + v9 with v; € F;. For h € b, we get

AR)(v1 +v2) =A(h)v=h-v=h-vi+h-vo

but h - v; € E; thus h-v; = A(h)v; and the result follows. O

In our situation, because FE) is one dimensional, we get that one of the two (E;), vanishes and the
other is Ey. Let us say (E1)) = E), because E is generated by v € E) we get E = Ej and Ey = 0. O
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14.3 Highest weight representations

Definition 14.3.1 An simple representation of g with a primitive vector of weight X\ is called an
highest weight representation of weight \.

Theorem 14.3.2 Let V' be an highest weight representation of weight .
(1) There is a unique primitive vector modulo scalar multiplication, its weight is \.
(1) The weights of V' have finite multiplicity and are of the form

A — Z loa with lo € Z>g.
a€eS

(1) The weight A\ has multiplicity 1.
(w) Two highest weight representations Vi and Vo of highest weights A1 and Ay are isomorphic if
and only if Ay = Aa.

Proof. (1) The submodule E generated by a primitive vector v in V' is non trivial (because it contains
v) and therefore it is equal to V' because V is simple. This implies that the weight of v is A by the
previous proposition. The result now follows from point (211) of the previous proposition.

(1) Follows from point (u2) of the previous proposition.

(12) Follows from point (#1) of the previous proposition.

(w) Let V; for ¢ € {1,2} be two highest weight representations of highest weight \; and let v; be
primitive vectors. If Vi ~ V5, we have \; = Ao by (1). Conversely, assume that \; = Ay and define
V =V; & Vs, the vector v = v1 + w9 is a primitive vector for V' of weight A = A\; = A\o. Let E be the
subrepresentation generated by v in V. The projection V' — V; induces a morphism of representations
FE — V; mapping v to v;. Because v; spans V; as representation, this implies that this map E — Vj is
surjective. Its kernel is ENV3_; and is a submodule of V5_;. It does not contain vy because dim £y = 1
thus it is a proper submodule of V3_;. But V3_; being simple we get £ N V5_; = 0 and the projection
E — V; is an isomorphism. Therefore Vi ~ E ~ V5. O

Remark 14.3.3 There are simple modules with no primitive elements, these are infinite dimensional.

Theorem 14.3.4 For each linear form \ € bV, there is an highest weight representation of highest
weight .

Proof. We first construct a representation of g with a primitive element of weight A\. Let L()\) be a
one dimensional vector space and define a representation of b on L(\) as follows: if v € L()\) is any

vector we define
Xo-v=0and Hy-v = AHgy)v.

This is indeed a representation because these elements satisfy the relations between the generators X,
and H, for o € S in b. Therefore L()\) is a U(b)-module, but because of the inclusion b C g we have
a morphism U(b) — U(g). We can therfore consider

V(A) = U(g) @u) L(N).

This module is generated by the element w = 1 ® v. We have X, -w = 1 ® X, -w = 0 and
H, w=1® Hy-v = A(Hy)w. Therefore w is an primitive vector of highest weight \ as soon as it is
non trivial. The non triviality comes from Poincaré-Birkhoff-Witt Theorem 15.0.7: the algebra U(g)
is a free U(b)-module. We also see, using Fact 13.4.7 (and exchanging the role of the X,’s and of the
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Y,’s), that V() is generated as vector space by the elements of the form YHX - w therefore of the
form Yfll e Y(fn’j -w. Its weight with respect to b is A — >, k;a; and we have

Vi) =P Vv

HehY

We now want to construct a simple module out of V()). Let V' be any proper submodule of
V(A) and consider the weight space V). We have V{ C V(X),. But the last one is one dimensional
thus either Vi = V(X)) or V] = 0. In the first case, because w generates V(\) we get V! = V()) a
contradiction, thus for any proper submodule V' we have Vi = 0. Because V' is stable under b, we
also have by restriction of the decomposition of V(\) a decomposition

V-,
HehY

and we get the inclusion

VcEPVn, =W

HFEX
Thus, the sum N of all proper submodules is contained in W and is again proper. It is the maximal
proper submodule and the quotient V' (A)/N is a highest weight module of highest weight . O

14.4 Finite dimensional representations

Proposition 14.4.1 Let V be a finite dimensional representation of g. The following properties hold.
(1) We have the equality V = @)V
(1) If X\ is a weight of V', then AN(H,,) € Z for all « € R.
(ua) If V' is not trivial, then v contains a primitive element.
(w) If V is generated by a primitive element, then V is simple.

Proof. (1) All elements of h act as diagonalisable endomorphisms and are therefore simultaneously
diagonalisable because h is abelian.

(n) If g acts, then the subalgebra s, which is isomorphic to sly also acts. The weights of H,, are
therefore integers and these weights are the scalars A\(Hy ).

(1) This follows from Lie’s theorem: because b is solvable it has a non zero eigenvector which is
therefore primitive.

(1w) By Weyl’s Theorem, the representation V' is completely reducible. But we know that V', being
the representation generated by a primitive element, is irreductible, therefore it is simple. O

Corollary 14.4.2 FEwvery finite dimensional representation has a highest weight.

Theorem 14.4.3 Let A € hY and let V()\) be a simple representation of g with highest weight \.
Then V() is finite dimensional if and only if N(Hy) € Z>o for all o« € R

Proof. If V(X) is finite dimensional, then A\(H,) is the weight of a primitive elements in the finite
dimensional sly >~ s,-representation V. Therefore we have A\(H,) € Z>o.

Conversely, let v be a primitive element of weight A and let m, = A(H,) for a a simple root. We
have m, > 0 and put v, = Y™ F1(y). We have for 3 # a a simple root the equality

Xp(ve) = Y (Xp(v) =0
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and also X, (vs) = 0 by our formula in Proposition 10.3.1 on sly-representations (here v is a primitive
vector of weight m,, for V() seen have a sly = s,-representation). Therefore v, is a primitive element
of weight A — (mq + 1)« this is not possible because there are only primitive vectors of weight A in
V(A). Thus we have v, = 0.

Denote by F, the subrepresentation of V() as a s,-representation generated by v. It is finite
dimensional and spanned by the elements Y*(v) for k € [0,m,]. Let T, be the set of all finite
dimensional sub-s,-representations of V().

Fact 14.4.4 Let £ € T, we have g- E € T,.

Proof. Because g and E are finite dimensional, the same is true for g- E£. We have to prove that g- F
is a representation of s, but this is clear since s, -g- F C g- E. O

Let Eo = per, E.
Fact 14.4.5 The space E, is a representation of g.

Proof. Indeed, let z € E € T,, we have g-x € g- F € T, thus z € E,. As any element in F, is a
linear combination of elements in E € T, for some E, the result follows. O

We therefore have a subrepresentation E,, of V() which is non trivial because it contains v. There-
fore, as V(A) is simple, we have E, = V(\) and V() is a sum of finite dimensional s,-representations.

Let Py be the set of weights of V(). It is enough to prove that Py is finite since all weight spaces
are finite dimensional. Recall also that P, is contained in the set of linear forms of the form

)\—Zkaa
a€esS

with ko € Z>¢. We therefore only need to bound Py to get the result. For this we use the action of
the Weyl group.

Fact 14.4.6 The set Py is invariant under the action of the Weyl group.

Proof. Let 1 be a weight and let v/ be a vector of weight u. We only need to prove that Py is stable
under the action of simple reflections. Let a be a simple root, we know that v’ is contained in some
finite dimensional subspace F, which is stable under s,. We therefore have m = u(H,) € Z and we
can look at

z=Y"() form>0and z = X,

«

" (v') for m < 0.

By our study on sly-representations, we know that x is non trivial and its weight is p — ma = s ().
The result follows. O

We apply this result to the element w of the Weyl group sending the base S to its opposite —5.
We have that for any weight p, the linear form w(u) is a weight of V(\) thus can be written in the

form
w(p) =X — Z koa
aesS

Dwe get p=wt(A) = 3 cqkaw (@) but because w(S) = —S and

with k, € Z>o and applying w™
because i € Py, we have

p=w )+ Z Euy(aya and pp= X — Z loc
ags a€cS

with ko € Z>o and with [, € Z>¢. Writing A — w () = Yo Tat we get I + w(a) = Ta therefore for
any weight y € Py, we have the bound [, < r, thus Py is bounded and therefore finite. O
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Proposition 14.4.7 Let V be a finite dimensional representation of g and let P(V') be the set of
weights of V.. Then W acts on P(V) and if X and p are in the same orbit then dimV\ = dim V,.

Proof. The first part of the proposition was proved in the proof of the previous theorem. One easily
check that for any simple root (ad even any root) «, the element X, acts nilpotently on V. Indeed,
if « has weight A, then X g - x has weight A + ka. Because the set of weights is finite we must have
Xk .2 =0 for k large enough. The same is true for the action of Y,. We may therefore define the
action of o, = exp(X, ) exp(—Yq) exp(X,) on V. This action is bijective. But because o, acts on b
as s we see that o,(Vy) = Vsa( A)s these spaces therefore have the same dimension. The result follows
because the Weyl group is generated by the simple reflections. O

14.5 Application to the Weyl group

Definition 14.5.1 The fundamental weights (@, )acs form by definition the dual base in §Y to the
base (Hoz)aes th

Remark 14.5.2 Let V(\) be the highest weight module of highest weight A\. Then V() is finite
dimensional if and only if A is a linear combination of fundamental weights with non negative integer
coefficients. We denote by P the set of fundamental weights.

Proposition 14.5.3 The Weyl group acts simply transitively on the set of bases of the root system.

Proof. We already know that the Weyl group acts transitively so we only need to prove that if w € W
is such that w(S) = S, then w = 1. We first remark that if w(S) = S, then the elements w acting
on b satisfies w(SY) = SV i.e. the element w permutes the dual simple roots. But the fundamental
weights forming the dual base to SV we get the equality w(P) = P.

On the other hand, for w € P, let V(w) be the simple highest weight module with highest weight
w. This module is finite dimensional therefore w(w) is a weight of V(w) and thus w — w(w) is a
linear combination of simple roots with non negative integer coefficients. Now we have

Z(w—w(m)): Zw— szO.

weP wEP wEP

This is possible only for w — w(w) = 0 for any w € P. Therefore w acts trivially on P and because
P is a base w = 1. O

14.6 Characters

Definition 14.6.1

(1) Let P be the subgroup of bV of linear forms with integer values on the base (Hy)acs. The group
P is a free abelian group generated by the fundamental weights (wwy)acs. The group P is called the
weight lattice.

(u) We denote by Q the Z-submodule of " generated by the simple roots. The group Q is called
the root lattice. We have the inclusion Q C P.

(1) We denote by A the algebra Z[P] which is the group algebra of the group P with coefficients
in Z. It has a Z-basis given by (e(\))xep and multiplication defined by

e(Ne(p) = e(A + p).
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Remark that there is a natural action of the Weyl group W on the algebra A defined by w(e(\)) =

e(w(N)).

Definition 14.6.2 Let V be a finite dimensional representation of g. We define the character of V
to be the element

Ch(V) =) dim Vye())

of the algebra A.

Proposition 14.6.3 (1) Let V be a finite dimensional representation of g, then the character Ch(V')
is invariant under the action of the Weyl group i.e. Ch(V) € AW.
(1) We have the formulas
Ch(V @ V') = Ch(V) + Ch(V"),

Ch(V ® V') = Ch(V)Ch(V").

(12) Two finite dimensional representations are isomorphic if and only if their character coincide.

Proof. (1) This is a consequence of Proposition 14.4.7.
(1) We have the simple formulas (V & V'), = V) & V), and

VeVn= P v.eV,.
prv=A>A

These formulas easily imply the statement.

(1) If V and V' are isomorphic then we have Ch(V) = Ch(V’). Conversely we proceed by
induction on dim V. If dimV = 0, then Ch(V’) = Ch)V) = 0 thus V' = 0. Otherwise, let A be a
weight in V' which is maximal i.e. A+ « is not a weight of V' for any simple root a. Then A is also
a maximal weight for V'. Let E and E’ be the submodules in V and V' generated by a primitive
elements of weight A\. The modules are simple highest weight modules with the same weight therefore
E ~ FE’. Furthermore, because V and V' are finite dimensional, we have by Weyl’s Theorem the
existence of subrepresentations W and W' of V and V' such that V = E@ W and V' = E' @ W'.
But we have Ch(V) = Ch(V’) and Ch(E) = Ch(E’) therefore Ch(W) = Ch(W’). By induction we
get W~W and V ~ V. O

We also have the following result we shall not prove.

Theorem* 14.6.4 Let T, be the character of the simple module of higest weight w,,, then the elements
(Tn)acs are algebraically independent in A and generate the algebra AW .

Corollary* 14.6.5 The map Ch between isomophism classes of representations with sum & and
product ® to AW is an isomorphism.

Proof. The injectivity comes from the above proposition while the surjectivity comes from the above
theorem. O

Example 14.6.6 In the case of sl, 1, let (ei)ie[lmzl} be a base of R"! such that the roots are
described by the elements o; ; = ef — e; for i # j. The fundamental weights are given by

7 n

mim (St 1— i) — 3 ie).

n-+1
T k=1 k=i+1
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The corresponding representations are the vector spaces A‘C™*!. The character T} as a function on
the basis vectors is writen as

Ti = oier, -+ s eny1)
where o; is the i-th symmetric function and (e]);c[1,n41) is the dual base to (e;)e[1,n+1]- The ring AW
is therefore the ring of symmetric polynomials in n + 1 variables.

14.7 Weyl!’s character formula

In this section we state without proof the formula of H. Weyl computing the character of any finite
dimensional simple representation.

Definition 14.7.1 Sign representation. We define the group morphism e : W — {£1} by the equality
e(w) = det(w) where w is seen as an element in GL(HY).

Remark 14.7.2 We have ¢(w) = 1 if w can be written as a product of an even number of simple reflec-
tion and —1 otherwise. If we define the length of w to be £(w) = min{n / w = sq4, -+ - Sq,, With a; € S},
then e(w) = (—1)®),

n

Definition 14.7.3 Recall the definition of p by
1
-iT
acER

Recall also that we have (", p) =1 for a € S. This means p(Hy) = 1 for a € S therefore p € P.
(1) We define the element D € Z[3P] by

D= 1] (e(a/2) — e(-a/2)).

acR4

Proposition* 14.7.4 We have the equality in Z[3P]:
D= c(we(w(p).
weW

Theorem* 14.7.5 (Weyl’s character formula) Let V be a finite dimensional simple representa-
tion of g of highest weight X\, then we have the equality

D-Ch(V) =Y e(w)e(w(X + p)).
weW

In other words we have the formula

> elw)e(w(A +p))
Ch(V) _ weW
> elwe(w(p))

weW

Corollary* 14.7.6 With the notation as in the above theorem, we have the equality

gimy = [[ oAt qp et

(Y, p) (o, p)

ac€R4 acR



Chapter 15

Envelopping algebra 11

In this chapter, we state the Poincaré-Birkhoff-Witt Theorem. We do have have time in the lectures
to prove this statement. We refer to [3, Chapitre I, paragraphe 2, numero 7] for a proof.

Theorem™ 15.0.7 (Poincaré-Birkhoff-Witt) Let g be a Lie algebra and let (e;);c(1n) be a base of
g. Then the monomials e’fl ®@---®ekn form a base of the universal envelopping algebra U(g) of g.

Corollary* 15.0.8 Assume that we have a decomposition g = n@® b ® n_, then we have an algebra
isomorphism U(g) ~U(n) @ U(h) @ U(n_).

Corollary* 15.0.9 Let b C g be an inclusion of Lie algebras, then U(g) is a free U(b)-module.

Corollary* 15.0.10 The morphism fy: g — U(g) is injective.
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Chapter 16

Groups

In this chapter we give some unproved information on the classification of complex Lie groups corre-
sponding to the semisimple Lie algebras.

Definition 16.0.11 (1) A complex Lie group G is a complex variety with a group structure such that
the maps 1 : Gx G — G defined by 1(g,g') = g¢' andi : G — G defined by i(g) = g~' are holomorphic.

(1) A complex Lie subgroup of a complex Lie group is a subgroup H of G such that the inclusion
map H — G is a morphism.

Example 16.0.12 Consider the groups G = (C*)?2 and H = C*. Define a map ¢ : H — G by
d(z) = (z,2%) for a ¢ 2mrQ. Then ¢ is a morphism and bijective onto its image. However the image
of ¢ is not closed (it is dense in G) therefore ¢ is not homeomorphic to its image.

We denote by g the tangent space of G at the unit element e € G. Let us define for g € G the map
Inty : G — G by Inty(g') = gg'g~'. This map is a group morphism and its differential at e is denoted
Ad(g) : deIntg : g — g. It is an automorphism of g, we therefore have a natural map

Ad: G — GL(g)
The differential at e of this map is the map
ad : g — gl(g).

Proposition* 16.0.13 Define the map [, | : g x g — g by [x,y] = ad (x)(y). This defines a Lie
algebra structure on g. The Lie algebra g is called the Lie algebra of the group G.

Theorem™* 16.0.14 Let G be a complex Lie group, there is a bijection between the set of complex Lie
subgroups ¢ : H — G of G and the set of Lie subalgebras b of g, the map being defined by taking for
b the image by de¢ of the Lie algebra of the subgroup H.

Remark 16.0.15 Not every Lie subgroup of G is a closed subgroup. Therefore not every subalgebra
of g is the Lie subalgebra of a closed subgroup. For example, for the group G = (C*)2, then the Lie
algebra of G is g = C? and if Ce; are the Lie subalgebras of the subgroups given by the two factors
of the products G = (C*)2, then the only one dimensional subalgebras in g that come from closed
subgroups of G are the subalgebras ae; + bes with (a,b) € Z2.

Definition 16.0.16 A complex Lie group is called semisimple if its Lie algebra g is semisimple.
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Definition 16.0.17 Let G be a complex semisimple Lie group and let  be a Cartan subalgebra of g
the Lie algebra of G. Then the complex Lie subgroup H of G corresponding to § is called a Cartan
subgroup of G. The conjuguates of H are called the Cartan subgroups of G.

Theorem* 16.0.18 (1) The group H is a closed subgroup of G.
(1) The group H is isomorphic to a product (C*)".

Corollary* 16.0.19 The group H is a closed subgroup of the group GL,(C) and the Lie algebra b a
subalgebra of gl,,(C).

Proof. Take the diagonal matrices. O

Definition 16.0.20 Define the exponential map exp : h — H by taking the restriction of the expo-
nential gl,,(C) — GL,,(C) on matrices.

Let R be the root system in h¥ and let RY be the dual root system which lives in h. Let us denote
by QY and by PV the root lattice and weight lattice of the dual root system RY.

Theorem™* 16.0.21 The exponential map exp : h — H is surjective and its kernel T'(G) satisfies the
inclusions:

Q¥ c T(G) c PY.
In particular H is isomorphic to h/I'(G) and therefore m (H) = I'(G).

Theorem* 16.0.22
(1) exp defines an isomorphism from PV /T(G) onto Z(QG) the center of G.
(1) The map m(H) — m1(G) is sujective and induces an isomorphism from T'(G)/QY onto m(G).
(m1) Let g be a semisimple Lie algebra and T' be a subgroup of b such that Q¥ C T' C PV. Then there
is a unique, up to unique isomorphism complex Lie group G with Lie algebra g and with T'(G) =T.

Definition 16.0.23 Let g be a semisimpe Lie algebra.

(1) There is a unique simple complex Lie group with Lie algebra g. This group is called the adjoint
group associated to g. We have m1(G) = PV/QV.

(1) There is a unique simply connected complex Lie group with Lie algebra g. This group is called
the semisimple group associated to g. We have Z(G) = PV/QV.

Remark 16.0.24 (1) The map Ad : G — GL(g) is a representation of any complex Lie group in its
Lie algebra called the adjoint representation. . If G is a complex semisimple Lie group associated to
a semisimple Lie algebra g, then the adjoint group associated to g is Ad(G) the image of G in the
adjoint representation.

(n) If G is a complex semisimple Lie group associated to a semisimple Lie algebra g, then the
simply connected group associated to g is the universal covering G of G.

Remark 16.0.25 This proves that the fundamental group of G is always abelian.

Example 16.0.26 If g is the Lie algebra sls, then we easily compute the equality

PY/QY =7/2Z.
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There are therefore exacly two semisimple Lie groups whose Lie algebra is slo, the adjoint group and
the simply connected group. The adjoint group is PGLg(C) = PSLy(C) i.e. the quotient of GLy(C)
by homotheties. The simply connected group is SLa(C). There is a natural 2 to 1 Galois cover

SLQ((C) — PSLQ((C)
given by dividing by the center of SLy(C).

Proposition* 16.0.27 The group PV/QV is described in the following array for the simple Lie alge-
bras:

Type PV /Qv

A, Z/(n + 1)Z
B, 7.)27.

Cp 727

D,,, n odd YAZY/

D,,, n even Z]27 x 7]2Z .
Eg 727

E, 7.)27.

Eg 0

Fy 0

Gs 0
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