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Introduction

This text consists of lecture notes for lectures given in Bonn University.

The main inspiration for these notes was the book of V. Kac [Ka90]. I stayed very close from this
book at least for the begining of the lecture: definition and first properties of Kac-Moody Lie algebras.
In particular I have choosen to keep the definition of g(A) the Kac-Moody Lie algebra associated to
a generalised Cartan matrix A as the quotient of the Lie algebra g̃(A) with the obvious commuting
relations but the quotient of the maximal ideal with trivial intersection with the Cartan subalgebra
instead taking the definition using Serre relations. This has many advantages when one wants to
identity a Lie algebra as a special Kac-Moody Lie algebra in particular in the explicit constructions
of finite dimensional simple Lie algebras (Chapter 13) or of twisted and untwisted affine Lie algebras
(Chapter 12 and 14).

The second source of inspiration was the book of S. Kumar [Ku02]. In particular we took his
point of view to define the Weyl group of a Kac-Moody Lie algebra and also to some extend in the
presentation of the invariant bilinear form on a Kac-Moody Lie algebra as well as in the presentation
of the representation theory of Kac-Moody Lie algebras and the celebrated character formula.

Finally the books [Hu90] and [Bo54] where my main sources for the treatment of Coxeter groups
in general even if the link with Weyl group of Kac-Moody Lie algebras is inspired from [Ku02].

As a conclusion, I would like to thank the HCM and the University of Bonn for giving me the
opportunity to give these lectures. I also thank the students for their patience when I tried to explain
the flavour of some tedious computations that may appear in proofs in the subject. I would finally
like to thank Manfred Lehn whose lectures on affine Lie algebras in WS2001-2002 in Cologne was my
first and inspirating introduction to the subject.

Let me briefly review the content of these lecture notes: in the first part I give a quick introduction
to semisimple Lie algebras and semisimple groups. This part should serve as a guide to what we want
to obtain for Kac-Moody Lie algebras (and Kac-Moody groups that should be treated in a forthcoming
third part). The main references are J.E. Humpreys book [Hu72] for Chapter 1 and T.A. Springer’s
book [Sp98] for Chapter 2.

In a third chapter, we recall some basic facts and definitions on algebras and Lie algebras like free
Lie algebras, enveloping algebras an the Poincaré-Birkhoff-Witt Theorem.

We then enter the subject with the defintion and first properties of Kac-Moody Lie algebras in
Chapter 4. In Chapter 5 we define the Weyl group of a Kac-Moody Lie algebra and associated
geometric representation. In the next Chapter, we review the theory of Coxeter group and end with a
proof of the fact that the Weyl group of a Kac-Moody Lie algebra is a cristallographic Coxeter group.

At this point we start to study some particular generalised Cartan matrices especially, in Chapter
7, the so called symmetrisable Cartan matrices A for which the Kac-Moody Lie algebra g(A) has
an invariant bilinear form. These are the Kac-Moody Lie algebra for which we prove the character
formula. In Chapter 8, we give the classification of generalised Cartan matrices in finite, affine and
general type. We also give the possible connected Dynkin diagrams in finite and affine case. In
Chapter 9, we give a first description of the root system of Kac-Moody Lie algebras. In particular a
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new phenomenon occurs here: not all roots are in the orbit of simple roots, these are the imaginary
roots.

We then start with the representation theory of Kac-Moody Lie algebras in Chapter 10. We define
Verma modules and intergrable highest weight. In Chapter 11, we define the Casimir operator which
exists only if the algebra is symmetrisable. We use this operator to prove the character formula for
symmetrisable Kac-Moody Lie algebras.

We then start to realise explicitly the Kac-Moody Lie algebras of finte and affine type. We start
in Chapter 12 with untwisted affine Lie algebras. Then in Chapter 13 we come back to the finite case
and explicitly realise simply laced and non simply laced simple Lie algebras. We use this construction
in Chapter 14 to construct twisted affine Lie algebras. The explicit construction in particular induce
description of the root system and Weyl groups of the affine Lie algebras.
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Chapter 1

Semisimple Lie algebras

1.1 Semisimple Lie algebras and Killing form

Definition 1.1.1 A bf Lie algebra g is a vector space over a field k together with an alternate bilinear
map [ , ] : g× g → g satisfying the Jacobi identity [x, [y, z]] + [[x, z], y] + [z, [x, y]] = 0.

Example 1.1.2 The basic examples of Lie algebras are gl(V ) = End(V ) the set of endomorphisms
of a fixed vector space V with Lie bracket [f, g] = f ◦ g − g ◦ f . The Lie algebra sl(V ) is defined for
V of finite dimension by sl(V ) = {f ∈ gl(V ) / Tr(f) = 0}.

To a Lie algebra one defines its adjoint representation ad : g → gl(g) = End(g) defined by
ad (x)(y) = [x, y]. This is a Lie algebra morphism thanks to Jacobi identity.

Definition 1.1.3 More generally, a Lie algebra representation of g is a vector space V together
with a Lie algebra map g → gl(V ).

When V is a finite dimensional representation of g, one define an invariant quadratic form on g by
(x, y) = TrV (ϕ(x)ϕ(y)) where ϕ : g → gl(V ) defines the representation. Here invariant means that we
have (x, [y, z]) = ([x, y], z). In particular, if g is finite dimensional, the adjoint representation leads to
the Killing form κ(x, y) on g.

Definition 1.1.4 (ı) An ideal a of a Lie algebra g is a subvectorspace such that [g, a] ⊂ a.
Remark that if a is an ideal of g, then the quotient g/a is again a Lie algebra.
(ıı) A Lie algebra g is abelian if [g, g] = 0.
(ııı) A Lie algebra g is simple if 2 ≤ dim g < +∞ and g as no non trivial ideal.
(ıv) A Lie algebra g is semisimple if g is a direct sum of finitely many simple Lie algebras.

Example 1.1.5 The Lie algebra sl(V ) is simple for any finite dimensional vector space V .

Proposition 1.1.6 Let g be a finite dimensional Lie algebra. The following are equivalent:
(ı) The Lie algebra g is semisimple.
(ıı) The Killing form is non degenerate.
(ııı) There is no non trivial abelian ideal.

For Kac-Moody Lie algebras one can not define the Killing form because the Lie algebra will
be of infinite dimension so that the trace is not defined. However, we will look for equivariant non
degenerate quadratic forms. This will not always exist but in a large class of Kac-Moody Lie algebras
called symmetrisable it will be the case.

13
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1.2 Cartan subalgebras, roots and Weyl group

I will now give a brief account of the classification theory of semisimple Lie algebras. A very important
tool in this classification is the existence of Cartan subalgebras.

Definition 1.2.1 A Lie subalgebra h of a semisimple Lie algebrag is said to be Cartan if h is abelian
and Ng(h) = h,where Ng(h) = {x ∈ g / ∀h ∈ h, [x, h] ∈ h}.

Proposition 1.2.2 There always exists a Cartan subalgebra and all Cartan subalgebras are conjugated
by Int(g).

Example 1.2.3 A Cartan Lie subalgebra of sl(V ) is given by the choice of a basis of V by taking h

to be all endomorphisms that are diagonalised in that basis.

The important point on Cartan Lie algebras is the following result.

Proposition 1.2.4 If g is semisimple then for all h ∈ h the endomorphism adh : g → g is semisimple.

In particular there is a simultaneous decomposition of the vector space g into eigenspaces with
respect to h. Set gα = {x ∈ g / ∀h ∈ h, [h, x] = α(h)x}, in particular, we have g0 = h and the
decomposition:

g =
⊕

α∈h∗

gα

Definition 1.2.5 Define the set ∆ = {α ∈ h∗ \ {0} / dim gα 6= 0}. An element of this set will be
called a root of the Lie algebra g. The integer dim h = l is called the rank of g.

Example 1.2.6 In the case of sl(V ), assume that a Cartan algebra is fixed (i.e. a basis of V is fixed).
We may identify sl(V ) with the n × n matrices of vanishing trace 9where n = dim(V ). Consider the
linear formes ǫi for i ∈ [1, n] on h for given by Diag(ak)k∈[1,n] 7→ ai. Then we have

∆ = {ǫi − ǫj, for i 6= j}.

For α = ǫi−ǫj, the vector space gα is one dimensional generated by the matrix Ei,j = (δ(k,l);(i,j))k,l∈[1,n]
where δ is the Kronecker symbol. You can easily see the decomposition of g on the matrices.

Proposition 1.2.7 The Killing form κ is non degenerate on h and we have for all α ∈ Φ, the equality
dim gα = 1.

Because the Killing form κ is non degenerate on h it defines an isomorphism between h and h∗

and in particular the Killing from induces a non degenerate bilinear form on h∗. Denote by ( , ) this
form. Then for any α ∈ ∆, we have (α,α) 6= 0 and we may define the reflection sα : h∗ → h∗ by

sα(u) = u− 2
(u, α)

(α,α)
α.

These reflections preserve the bilinear form ( , ).

Definition 1.2.8 The Weyl group of g is the subgroup of SO(h∗, ( , )) generated by these reflections.
Remark that because any two Cartan algebras are conjugate, this does only depend on g.

Proposition 1.2.9 The Weyl group is finite.
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The set of roots ∆ satisfy the following properties:

Theorem 1.2.10 (ı) The set ∆ spans h∗ and 0 6∈ ∆.

(ıı) If σ ∈ ∆, then −α ∈ ∆ but no other scalar multiple of α is a root.

(ııı) The set of roots ∆ is stable under W .

(ıv) For u ∈ h∗, define 〈〈α, u〉〉 = 2 (u,α)
(α,α) , then for all (α, β) ∈ ∆2 we have 〈〈α, β〉〉 ∈ Z.

Definition 1.2.11 A subset ∆ in an Euclidian vector space satisfying the conclusion of the previous
theorem is called a root system. The associated reflection group W is called the Weyl group of the
root system.

Example 1.2.12 In the case sl(V ) with V of dimension n, the Weyl group will be Sn acting on the
ǫi by permutation.

The Cartan Lie algebras will be the starting point of the consruction of Kac-Moody Lie algebras
so they will be given for free. The decomposition will follow and the definition of roots will be similar.
The Weyl group will exist but an important difference is that it will not be finite any more. It
will however still be a Coxeter group, a natural generalisation of the Weyl groups of semisimple Lie
algebras.

1.3 Cartan matrices and Dynkin diagrams

1.3.1 Simple roots

Definition 1.3.1 A subset Π of ∆ is called a base if it is a basis of h∗ and if each root β can be
written as β =

∑
kαα with integral coefficients kα all nonnegative or all non positive. The roots in Π

are called simple.

It is not completely obvious that such a base exists. Let Hα the hyperplane orthogonal to α (with
respect to ( , )). An element γ in h∗ \ ∪αHα is called regular. The connected components of the
former set are called Weyl chambers. Let ∆+(γ) = {α ∈ ∆ / (α, γ) > 0}. An element α ∈ ∆+(γ) is
called indecomposable if it is not the sum of two elements in ∆+(γ).

Theorem 1.3.2 The set Π(γ) of indecomposable roots in ∆(γ) is a base of ∆.

Theorem 1.3.3 Let Π be a basis of ∆.

(ı) If γ is regular, then there exist w ∈ W such that (w(γ), α) > 0 for all α ∈ Π (in other words
W acts transitively on the Weyl Chambers). In this case Π = Π(w(γ))

(ıı) If Π′ is another basis, then there exists w ∈ W such that w(Π′) = w (so W acts transitively
on the bases).

(ııı) If α ∈ ∆, then there exists w ∈W such that w(α) ∈ Π.

(ıv) The group W is generated by the sα with α ∈ Π.

(v) If w(Π) = Π and w ∈ W , then w = 1 (so W acts simply transitively on the basis and the
chambers).
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1.3.2 Cartan matrices

Definition 1.3.4 Let Π be a basis of the root system. Fix an ordering on Π, then the Cartan matrix
is the matrix A = (〈〈αi, αj〉〉)i,j∈[1,n].

Remark 1.3.5 Let α ∈ ∆, and define the coroots α∨ ∈ h by 〈α∨, β〉 = 〈〈α, β〉〉 for all β ∈ ∆ (this
is well defined because these conditions when β ∈ Π imply the others). With these notation we have
A = (〈α∨i , αj〉)i,j∈[1,n].

Proposition 1.3.6 Modulo conjugation by a permutation matrix, the Cartan matrix only depend on
g. Furthermore, the Cartan matrix determines ∆ up to isomorphism.

Theorem 1.3.7 The Cartan matrix A = (ai,j)i,j∈[1,n] satisfies the following properties
(ı) ai,i = 2.
(ıı) ai,j for i 6= j are non positive integers.
(ııı) ai,j = 0 ⇔ aj,i = 0.
(ıv) det(A) > 0.

Furthermore, any matrix with these properties is a Cartan matrix for a semisimple Lie algebra g.

Example 1.3.8 Let us give the Cartan matrix of type An:

An =




2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −1
0 0 0 0 −1 2




.

Proposition 1.3.9 The coroots define a root system in h called the dual root system. The associ-
ated Cartan matrix is the transpose of the Cartan matrix.

Example 1.3.10 For more Cartan matrices, see Proposition 8.2.7

1.3.3 Serre’s presentation

Let Π be a root base and Π∨ the corresponding set of coroots (it is a base for the dual root system
∆∨ formed by the coroots). Fix generators eα (resp. fα) of gα (resp. of g−α) for all α ∈ Π such that
[eα, fα] = α∨.

Theorem 1.3.11 (Serre) The Lie algebra g is the quotient of the free Lie algebra1, generated by the
eα, fα and α∨ for α ∈ Π, by the ideal generated by the following relations:

(ı) [α∨, β∨] = 0 for all α, β in Π.
(ıı) [eα, fβ] = δα,βα

∨ for all α, β in Π.
(ııı) [β∨, eα] = 〈α∨, β〉eα and [β∨, fα] = 〈α∨, β〉fα for all α, β in Π.
(ıv) (ad eα)

1−〈α∨,β〉(eβ) = 0 for all α 6= β in Π.
(v) (ad fα)

1−〈α∨,β〉(fβ) = 0 for all α 6= β in Π.

Example 1.3.12 For the only rank one Cartan matrix we get a Lie algebra of dimension 3 with 3
generators e, f and h such that [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. This is sl2.

1see chapter 3 for more on free Lie algebras.
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1.3.4 Dynkin diagrams

Let Π be a basis of ∆.

Proposition 1.3.13 For α and β two distinct positive roots (i.e. linear combination of elements in
Π with non negative coefficients) then 〈α, β〉〈〈β, α〉〉 = 〈〈α, β〉〉〈〈β, α〉〉 = 0, 1, 2 or 3.

Definition 1.3.14 The Dynkin diagram is the graph having l = |Π| = dim h vertices indexed by Π
and the vertex α is jointed to the vertex β by 〈α, β〉〈〈β, α〉〉 edges with an arrow going from the vertex
indexed by the longest root to the vertex indexed by the shortest one (with respect to ( , )) and no
arrow if the two roots have the same length.

Proposition 1.3.15 The connected components of the Dynkin diagram are in one to one correspon-
dence with the semisimple factors of g.

Theorem 1.3.16 The connected Dynkin diagrams are the following:

An �������� �������� �������� ❴❴❴ �������� �������� �������� Bn �������� �������� �������� ❴❴❴ �������� �������� +3��������

Cn �������� �������� �������� ❴❴❴ �������� ��������ks ��������

��������

Dn
�������� �������� �������� ❴❴❴ �������� ��������

☎☎☎☎☎☎☎☎☎

✿✿
✿✿

✿✿
✿✿

✿

��������
��������

E6
�������� �������� �������� �������� ��������

��������

E7
�������� �������� �������� �������� �������� ��������

��������

E8
�������� �������� �������� �������� �������� �������� �������� F4

�������� �������� ��������+3��������

G2
�������� ❴ *4��������

For each of them, there exist a corresponding indecomposable semisimple Lie algebra.

Cartan matrices (in fact generalised Cartan matrices where the condition on the determinant is
removed) will really be the starting point of the construction of Kac-Moody Lie algebras so that Cartan
matrices and simple root will also show up in Kac-Moody theory. For the Serre equations, this could
be a way to define Kac-Moody Lie algebras (see for example the book of Kumar [Ku02] where this
point of view is taken). At least we will see that the Serre relations are satisfied by Kac-Moody Lie
algebras and that for symmetrisable ones, they are defined by these equations like in the semisimple
theory.

1.4 Representation theory of semisimple Lie algebras

We now want to describe the representations of semisimple Lie algebras. In fact we will focus on finite
dimensional representation. For Kac-Moody Lie algebras, this will be different because one of the
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first representations we want to study is the adjoint representation. So if the Lie algebra is infinite
dimensional, we will need to admit more representations that only finite dimensional ones. This will
lead to some technicalities on finite or infinite sums...

The starting point is the following result:

Theorem 1.4.1 (Weyl) Let g be a semisimple Lie algebra, then any finite dimensional representation
is a direct sum of irreducible representations.

In particular we only need to describe the irreducible representations of g. Let V be a finite
dimensional representation of g.

1.4.1 Weights of a representation

Because any element h ∈ h is semisimple on the adjoint representation, this implies that is has to
be semisimple on any representation. In particular, we get a decomposition of V with respect to the
action of h as follows:

V =
⊕

λ∈h∗

Vλ

where Vλ = {v ∈ V / h(v) = 〈λ, h〉v, ∀h ∈ h}.

Definition 1.4.2 An element λ ∈ h∗ such that Vλ 6= 0 is a weight of V . The set P (V ) is the set of
weights of V . The multiplicity multλ of λ ∈ P (V ) is the dimension of Vλ.

Example 1.4.3 (ı) For the adjoint representation, the weights are the roots plus the zero weight. All
the roots have (as weights) multiplicity one and the zero weight has dimension rk(g) the rank of g i.e.
the dimension of the Cartan subalgebra.

(ıı) For sl(V ), then V can be seen as a representation by the map Id : sl(V ) → sl(V ). This is the
standard representation. The weights of this representation are given by ǫ1, ǫ2 and ǫ3. In the basis
given by α1 = ǫ1 − ǫ2 and α2 = ǫ2 − ǫ3 the weights are of the form 1

3(2α1 + α2),
1
3(α2 − α1) and

1
3(−α1 − 2α2)

If you look at the representation Λ2V , then it is isomorphic to V ∗ and its weights are the opposite
of the weights of V . It is easy to compute these weights because they are the sum of two different
weights of V . Remark that if we try to compute the weights of sl3 = V ⊗ V ∗/C by this way we get
back the roots.

1.4.2 Weight lattice

Definition 1.4.4 Consider the root system ∆ in h and define the root lattice to be the lattice Q
generated by the roots. The weight lattice is the dual lattice P for the form 〈〈 , 〉〉 that is

P = {λ ∈ h∗ / 〈〈λ, α〉〉 ∈ Z for all α ∈ Q}.

Remark that the root lattice is always contained in the weight lattice.

Example 1.4.5 For sl3 it is not hard to compute that the weight lattice if generated by the weights
ǫ1 and −ǫ3 that is to say by the weights of V and Λ2V . In particular the weight lattice is stricly bigger
that the root lattice. On can check that P/Q = Z/3Z.

Proposition 1.4.6 The quotient P/Q is always finite and we have |P/Q| = det(A). It is called the
fundamental group of the situation.
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Proposition 1.4.7 (ı) Let V be a finite dimensional representation of g, then the set P (V ) is con-
tained in the weight lattice.

(ıı) Let w ∈ W , we have an isomorphism Vw(λ) ≃ Vλ. In particular the set P (V ) is W -invariant
and λ and w(λ) have the same multiplicity.

1.4.3 Dominant weights

Definition 1.4.8 Chose a basis Π of ∆ or equivalently a Weyl chamber of equivalently a set of positive
roots.

(ı) Then there is an induced partial order on weights of V defined for λ and µ by λ 4 µ in P (V )
if µ is obtained from λ by adding positive roots.

(ıı) We may also define a unipotent subalgebra u by

u =
⊕

α∈∆+

gα.

Proposition 1.4.9 Let V be a representation of g, then we have the following property:

gα(Vλ) ⊂ Vλ+α.

Definition 1.4.10 (ı) Let V be a representation of g, we say that V has a highest weight λ ∈ P (V )
if the unipotent Lie subalbegra u acts trivially on Vλ.

Proposition 1.4.11 (ı) Any finite dimensional representation V has a highest weight.
(ıı) If λ is a highest weight of V , then any weight µ of V satisfies µ 4 λ.
(ııı) If V is irreducible, then the highest weight is unique.

Definition 1.4.12 The set P+ of dominant weights is defined by (it is the principal Weyl chamber
associated to Π):

P+ = {λ ∈ P / 〈〈α, λ〉〉 > 0 ∀α ∈ ∆+}.

Proposition 1.4.13 Any highest weight is a dominant weight.

Theorem 1.4.14 There is a canonical bijection λ 7→ V (λ) between P+ and the set of finite dimen-
sional irreducible representations of g modulo isomorphism.

1.4.4 Verma modules

In this section, we give a more explicit description of the bijection in Theorem 1.4.14. Let b be the
subalgebra of g generated by h and the eα for α ∈ Π. Let λ ∈ P+ and let b act on C by h(x) = 〈λ, h〉x
and eα(x) = 0 for x ∈ C and α ∈ Π. Consider the following tensor product:

M(λ) = u(g)⊗u(b) C.

This gives us the representation M(λ) of g. This representation is called the Verma module. We have
the following Theorem.

Theorem 1.4.15 We have
(ı) λ is the unique highest weight of M(λ).
(ıı) There exist a unique maximal subrepresentation M ′(λ) of M(λ).
(ııı) The quotient V (λ) =M(λ)/M ′(λ) is irreducible of highest weight λ.
(ıv) V (λ) ≃ V (λ′) ⇔ λ = λ′.
(v) dimV (λ) <∞ ⇔ λ ∈ P+.
(vı) Any finite dimensional irreducible representation of g is isomorphic to some V (λ) for λ ∈ P+.
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1.4.5 Character formula

The purpose of this formula is to describe the multiplicity mλ(µ) = dim(V (λ)µ) of any weight µ of
V (λ).

Definition 1.4.16 (ı) Let f : P → Z be a function. We define the support of f denoted by Supp(f)
to be the set {λ ∈ P / f(λ) 6= 0}.

(ıı) Define the following subset H of the set F(P,Z) from P to Z:

H = {f ∈ F(P,Z) / ∃ S ⊂ P a finite subset, such that ∀ λ ∈ Supp(f), λ 4 s for some s ∈ S}

We define a ring structure on H by (f + g)(λ) = f(λ) + g(λ) and

(fg)(λ) =
∑

µ∈P

f(µ)g(λ− µ).

This is well defined because of our hypothesis on H. For any λ ∈ P , we define a function eλ by
eλ(µ) = δλ,µ.

Proposition 1.4.17 We have
(ı) eλ ∈ H.
(ıı) eλeµ = eλ+µ.
(ııı) e0 is a 1 for H.

Definition 1.4.18 Let V be an h-diagonalisable g-representation. Then we define ChV (λ) = dimVλ.
It is called the character of V .

Proposition 1.4.19 Let ρ =
1

2

∑

α∈∆+

α (the Weyl vector), then

ChM(λ) =
eλ+ρ∏

α∈∆+

(e
α
2 − e−

α
2 )
.

Theorem 1.4.20 (Weyl character formula) The character of the irreducible representation V (λ)
is given by:

ChV (λ)

(∑

w∈W

sgn(w)ew(ρ)

)
=
∑

w∈W

sgn(w)ew(λ+ρ).
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Semisimple groups

2.1 Algebraic groups

2.1.1 First properties

Here when I use the word variety, you can think either to an algebraic variety or to a complex variety.

Definition 2.1.1 An algebraic group G is a variety and a group such that the multiplication map
µ : G×G→ G and the inverse map G→ G sending an element to its inverse are morphisms.

From now on we will assume that our group is generically reduced. In particular it has a smooth
point and by action of the group it is smooth. In particular if an algebraic group is connected then it
is irreducible. There is a natural notion of tangent space TxX at a point x of an algebraic variety X.

Definition 2.1.2 We define the Lie algebra of G to be g = TeG.

We define the adjoint action as follows. Consider for g ∈ G the automorphism G → G defined by
g′ 7→ gg′g−1. Then we may differentiate this map to get Ad (g) : g → g. The map

Ad : G→ Aut(g)

is called the adjoint action of G on g. We may differentiate the map Ad to get a map ad : g → End(g).

Proposition 2.1.3 The Lie algebra g of G is endowed with a structure of Lie algebra defined by
[x, y] = ad (x)(y).

In characteristic 0, there are very strong links between the group and its Lie algebra. It is also
true in positive characteristic but some caution has to be taken. For example a non abelian group can
have an abelian Lie algebra.

Theorem 2.1.4 The Kernel of the adjoint action Ad is the center Z(G) of G. The center of ad is
the center z(g) of g.

We see that the adjoint action encaptures all the group except his center. We will see that this has
a very nice presentation is the semisimple case. We can go back from the Lie algebra to the group.
Indeed, we have the

Proposition 2.1.5 There is a unique map exp : g → G taking 0 to e and whose differential g =
T0g → TeG = g is the identity. This map is called the exponential map.
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2.1.2 Semisimple groups

Definition 2.1.6 A algebraic group is semisimple if it is connected and has no non trivial closed
connected commutative normal subgroup.

Theorem 2.1.7 Assume that we are in characteristic zero. Let G be a connected algebraic group.
The correspondence H → h is bijective and preserves the inclusion between the set of closed connected
subgroups H of G and the set of their Lie algebras regarded as subalgebras of g. In this correspondence,
normal subgroups are sent to ideals of g.

This leads to the equivalent definition of semisimple groups

Theorem 2.1.8 In char. 0, a connected algebraic group G is semisimple if and only if its Lie algebra
g is semisimple.

So that we will be able to use the classification of semisimple Lie algebras for the study of semisimple
Lie groups.

Theorem 2.1.9 Let G be a semisimple group, then Ad (G) = (Autg)◦ the connected component of
identity of Autg.

Theorem 2.1.10 Let G be a semisimple group with Lie algebra g, then
(ı) there is a unique simple group Gad with the same Lie algebra. This group is the adjoint group

Ad (G).
(ıı) There is a unique simply connected semisimple Lie group G̃ with the same Lie algebra and

Z(G̃) = G̃/Ad (G) is finite.
(ııı) The group G is lies between Ad(G) and G̃. More precisely G is a quotient of G̃ whose kernel

is a subgroup of Z(G̃).

We will describe more precisely the center of G in the following.

2.2 Some subgroups of G

2.2.1 Maximal torus and root systems

Definition 2.2.1 An algebraic group T is aTorus if it is isomorphic to the group of diagonal matrices
in GLn for some n.

Definition 2.2.2 On a field k, a character of an algebraic group G is a group morphism G → k×.
The set of all characters is a group denoted X(G).

Proposition 2.2.3 Let T be a torus, then the group X(T ) is a free abelian group of rank dimT . More
over all elements of a torus are semisimple.

Definition 2.2.4 Let G be an algebraic group and T a torus in G. Then T acts by the adjoint
representation on g and this action induces a decomposition

g = gT ⊕
⊕

α∈X(T )

gα

where gα = {x ∈ g / Ad(t)(x) = α(t)x for all t ∈ T}. The set ∆(G,T ) of characters such that gα is
non zero is called the set of roots of G with respect to T .
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Theorem 2.2.5 (ı) Let G be a semisimple algebraic group, then all maximal torus are conjugated.
The dimension of such maximal torus is called the rank og G.

(ıı) Let T be a maximal torus, the group character X(T ) does not depend on T and we have a
natural isomorphism of X(T )⊗Z R with h∗ where h is the Lie algebra of T .

(ııı) Let T be a maximal torus, then the group NG(T )/T is idependent of T and is finite. It is
called the Weyl group of G.

(ııı) The set ∆(G,T ) in h∗ does not depend on T and is a root system. This root system is the
root system of g as a Lie algebra. The Weyl group of G and of g are isomorphic.

Theorem 2.2.6 (ı) The lattice Q (the root lattice) generated by the set of roots ∆ in X(T ) (the weigth
lattice) for any maximal torus in G semisimple if of maximal rank and

|X(T )/Q| = |W | = det(A)

where A is the associated Cartan matrix.
(ıı) The center Z(G) of G is isomorphic to the dual of the quotient X(T )/Q.

Here we see the problem of dual groups appearing: when A is a Cartan matrix, then At is also a
Cartan matrix and the associated group is the dual group. The dual of the quotient X(T )/Q is the
same quotient but for the dual group. These king of dualities will be more accurate for Kac-Moody
Lie algebras and Kac-Moody groups.

2.2.2 Borel subgroups

Definition 2.2.7 A Borel subgroup of an algebraic group G is a maximal closed connected solvable
subgroup of G.

Theorem 2.2.8 Let B be a Borel subgroup of G, then the quotient G/B is a projective variety.

Theorem 2.2.9 (ı) Any maximal torus T is contained in a Borel subgroup.
(ıı) All Borel subgroups are conjugated and even all pairs T ⊂ B of a maximal torus contained in

a Borel subgroup are conjugated.
(ııı) Let T be a maximal torus contained in a Borel B, then T acts on b the Lie algebra of B by

the adjoint representation and we have the decomposition

b = h⊕
⊕

α∈∆(B)

gα

where Delta(B) is a set of positive roots in ∆ the root system of G. In particular B defines a basis of
∆ i.e. a set of simple roots.

(ıv) Conversely, any set of positive roots is obtained from a Borel subgroup containing T .

2.3 Characters and line bundles

We will now review more on the geometry of the variety G/B for B a Borel subgroup of a semisimple
algebraic group G. Because all Borel subgroups are conjugated, this variety is isomorphic to the
variety B of all Borel subgroups in G.

Let χ ∈ X(T ) be a character of a maximal torus contained in B a Borel subgroup. Then T acts
on C via the map T → C∗ and this induces an action of B on C because of the structure of B: there
is an exact sequence

1 → U → B → T → 1
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where U is an unipotent normal subgroup of B. We extend the action of T to B by letting U acts
trivially.

Definition 2.3.1 We may define the line bundle Lχ associated to χ as the quotient of the product
G × C under the action of B on the right on G and on the left on C. This variety together with the
first projection map to G/B has a structure of line bundle on G/B.

Theorem 2.3.2 The map X(T ) → Pic(G) defined by χ 7→ Lχ is an isomorphism of abelian groups.

Recall that B defines in ∆ ⊂ X(T )⊗ZR = h∗ a set ∆(B) of positive roots. In particular, it defines
a cones

C = {x ∈ h∗ / (x, α) ≥ 0 for all α ∈ ∆(B)}
where ( , ) is the Killing form. Let us define the hyperplanes Hα = {x ∈ h∗ / (x, α) = 0}.

Theorem 2.3.3 The Weyl group W acts simply transitively on the connected components of the set
h∗ \⋃α∈∆Hα and C is a fundamental domain for this action.

Theorem 2.3.4 Let χ be a domiant weigth (i.e. in C, the dominant chamber), then we have the
following vanishing H i(G/B,Lχ) = 0 for all i > 0. Moreover H0(G/B,Lχ) is non zero and is the
irreducible representation of G of highest weight χ.

Theorem 2.3.5 More generaly in characteristic zero, let us consider the following action w ∗ χ =
w(λ+ ρ)− ρ where ρ is half the sum of all positive roots. Then for χ,

(ı) either the orbit W ∗χ does not meet C and in this case all the cohomology group H i(G/B,Lχ)
vanish,

(ıı) or there exist a unique w ∈W such that w ∗χ ∈ C. In that case H i(G/B,Lχ) = 0 for i 6= ℓ(w)
the length of w and H i(G/B,Lχ) is the representation with highest weight w ∗ χ.
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Kac-Moody Lie algebras
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Chapter 3

Some facts on associative algebras

3.1 Free algebras

Definition 3.1.1 Let V be a vector space, then T (V ), the tensor algebra, is the free associative
algebra generated by V . Let us denote by i the natural inclusion V → T (V ).

The following is the characteristic property of free associative algebras.

Proposition 3.1.2 For any associative algebra A and any linear map f : V → A, there exists a
unique associative algebra morphism F : T (V ) → A such that f = F ◦ i.

Definition 3.1.3 Let V be a vector space and let T (V ) be its tensor algebra viewed as a Lie algebra
under the bracket [a, b] = a ⊗ b − b ⊗ a. The free Lie algebra generated by V , denoted F (V ), is by
definition the Lie subalgebra generated by the subspace V in T (V ). Let us denote by j the embedding
V → F (V ).

The following is the characteristic property of free Lie algebras.

Proposition 3.1.4 For any Lie algebra A and any linear map f : V → A, there exists a unique Lie
algebra morphism F : F (V ) → A such that f = F ◦ j.

3.2 Enveloping algebras

Let us recall basic facts on enveloping algebras. For more details and proofs see [Hu72].

Definition 3.2.1 Let g be a Lie algebra and consider the associative C-algebra U(g) defined as the
quotient of the tensor algebra T (g) by the two-sided ideal generated by elements of the form x⊗y−[x, y]
for any x and y in g. Denote by τ the map from g to U(g).

Remark that U(g) is generated, as an algebra, by the image of g. The enveloping algebra has the
following universal property:

Proposition 3.2.2 For any associative C-algebra A, and any linear map f : g → A such that
f([x, y]) = f(x)f(y) − f(y)f(x), there exists a unique C-algebra morphism F : U(g) → A such that
f = F ◦ τ .
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Corollary 3.2.3 Let g be a Lie algebra and assume A is a free associative C-algebra with a linear
map f : g → A such that f([x, y]) = f(x)f(y) − f(y)f(x) and the image of f contains a C-algebra
basis of A. Then A is the enveloping algebra of g.

Proof : Let B be a C-algebra and let g : g → B be a linear map such that g([x, y]) = g(x)g(y) −
g(y)g(x). Let (f(ei)) be a basis of A contained in the image of fand let us define the map G : A→ B
by G(f(ei)) = g(ei). Because A is free and (f(ei)) is a basis, this map is well defined and we have
g = G ◦ f . �

Theorem 3.2.4 (Poincaré-Birkhoff-Witt) Let (e1, · · · , en) be a basis of g. Then the monomials
xa11 · · · xann (the product being taken in this order) for (a1, · · · , an) ∈ Nn, form a basis of U(g) as a
C-vector space.

Corollary 3.2.5 (ı) The map τ : g → U(g) is injective.
(ıı) If we have the decomposition g = n− ⊕ h⊕ n+, then U(g) = U(n−)⊗ U(h)⊗ U(n+).

Remark 3.2.6 Any g-representation will be a U(g)-module and the converse is also true. In partic-
ular, if b ⊂ g is a subalgebra and V is a representation of b, we get an induced representation of g by
considering the U(g)-module obtained by U(g)⊗U(b) V (the enveloping algebra of g is a module over
U(b)).



Chapter 4

Kac-Moody Lie algebras

4.1 Lie algebras associated to a complex square matrix

4.1.1 Realization of a matrix

Let A be a complex n×n matrix. In this section, we define for any complex square matrix A of size n
two Lie algebras g̃(A) and g(A) and study their first properties. The rank of A will be denoted by ℓ.

Definition 4.1.1 A realization of a matrix A is a triple (h,Π,Π∨) where h is a complex vector space,
Π = {α1, · · · , αn} and Π∨ = {α∨1 , · · · , α∨n} are indexed subsets in h∗ and h respectively satisfying the
following conditions:

(R1) Π and Π∨ are linearly independent in h∗ and h;

(R2) 〈α∨i , αj〉 = ai,j where 〈 , 〉 denotes the natural pairing between a vector space and its dual;

(R3) dim h = n+Corank(A).

Proposition 4.1.2 Let A be a complex square matrix of size ℓ.
(ı) Let h be a complex vector space satisfying conditions (R1) and (R2) of the preceding definition,

then dim h ≥ n+Corank(A).
(ıı) There exist a unique up to isomorphism (non unique isomorphism if det(A) = 0) realization

of A.

Proof : (ı) Consider t ⊂ h the orthogonal to (α1, · · · , αn). This subspace is of codimension n and the
image of the subspace spanned by (α∨1 , · · · , α∨n) in h/t is of dimension Corank(A). This implies that
dim h ≥ n+Corank(A).

(ıı) We may assume that A has the following form

A =

(
A1 A2

A3 A4

)

where A1 is non degenerate of rank ℓ. We may consider the following square matrix of size 2n − ℓ:

B =




A1 A2 0
A3 A4 In−ℓ
0 In−ℓ 0


 .

We have det(B) = det(A1) 6= 0. Set h = C2n−ℓ = Cn+Corank(A) and take α1, · · · , αn the first n linear
coordinates and α∨1 , · · · , α∨n the first n rows of the matrix. This yields a realization of A.
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Conversely, let (h,Π,Π∨) be a realization of A. Complete Π∨ to a basis of h by adding elements
α∨n+1, · · · , α∨2n−ℓ. Define elements αn+1, · · · , α2n−ℓ in h∗ such that

C = (〈α∨i , αj〉)i,j∈[1,2n−ℓ] =




A1 A2 0
A3 A4 In−ℓ
X1 X2 0




for some matrices X1 andX2 and with A1 still non degenerate. We prove that C is non degenerate. For
this, we may assume that A3 = 0 and A4 = 0. But then (Vect(α∨ℓ+1, · · · , α∨n))⊥ = Vect(α1, · · · , αn) and
(Vect(α∨1 , · · · , α∨ℓ , α∨n+1, · · · , α∨2n−ℓ))⊥ = Vect(αn+1, · · · , α2n−ℓ). This implies that (α1, · · · , α2n−ℓ) is
a basis and the matrix C is non degenerate.

Now changing α∨n+1, · · · , α∨2n−ℓ we may assume that X1 = 0 in C. Then det(X2) 6= 0 and by a
new change, the matrix C becomes equal to B and we are done. �

Remark 4.1.3 (ı) If (h,Π,Π∨) is a realization of a matrix A, then (h∗,Π∨,Π) is a realization of At.
(ıı) If (h1,Π1,Π

∨
1 ) and (h2,Π2,Π

∨
2 ) are respectively realizations of the matrices A1 and A2, then

(h1 ⊕ h2,Π1 × {0} ∪ {0} ×Π2,Π
∨
1 × {0} ∪ {0} ×Π∨2 ) is a realization of the matrix

(
A1 0
0 A2

)
.

Such a matrix is called a direct sum matrix.

Definition 4.1.4 (ı) A matrix A and its realization is said decomposable if after reordering the
indices, A decomposes into a non trivial direct sum. Any matrix can be decomposed as a direct sum
of indecomposable matrices.

(ıı) We define the root lattice Q ⊂ h∗ to be the Z-module generated by Π (this set is called the
root basis and its elements the simple roots) and the coroot lattice Q∨ ⊂ h to be the Z-module
generated by Π∨ (this set is called the coroot basis and its elements the simple coroots). Denote
by Q+ the monoid generated in Q by the simple roots (i.e. Q+ =

∑
i Z+αi).

(ııı) For an element α ∈ Q with α =
∑

i kiαi, denote by htα =
∑

i ki the height of α. We introduce
a partial ordering on Q by setting α ≥ β if α− β ∈ Q+.

4.1.2 The Lie algebra g̃(A)

The uniqueness of a realization allows the following definition.

Definition 4.1.5 Let A = (ai,j)i,j∈[1,n] be a complex matrix and (h,Π,Π∨) a realization of A. The
Lie algebra g̃(A) has (ei)i∈[1,n], (fi)i∈[1,n] and h for generators and the following relations:

• [ei, fj] = δi,jα
∨
i

• [h, h′] = 0

• [h, ei] = 〈αi, h〉ei
• [h, fi] = −〈αi, h〉fi.

Denote by ñ+ and ñ− the Lie subalgebras of g̃(A) generated by (ei)i∈[1,n] and (fi)i∈[1,n] respectively.

We have the
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Theorem 4.1.6 The Lie algebra g̃(A) satisfies the following properties:
(ı) g̃(A) = ñ− ⊕ h⊕ ñ+
(ıı) ñ+ (resp. ñ−) is freely generated by (ei)i∈[1,n] (resp. (fi)i∈[1,n]).
(ııı) The map ei 7→ −fi, fi 7→ −ei, h 7→ −h can be uniquely extended to an involution ω of the Lie

algebra g̃(A).
(ıv) There is a root space decomposition with respect to h-eigenvalues:

g̃(A) =


 ⊕

α∈Q+, α6=0

g̃−α


⊕ h⊕


 ⊕

α∈Q+, α6=0

g̃α


 ,

where g̃α(A) = {x ∈ g̃(A) / [h, x] = 〈α, h〉x, ∀h ∈ h}, dim g̃α <∞ and g̃α ⊂ n± for ±α ∈ Q+.
(v) There exist a unique maximal ideal r in g̃(A) among the ideals intersecting h trivially. Fur-

thermore we have the following sum of ideals:

r = (r ∩ ñ−)⊕ (r ∩ ñ+).

Proof : We will first define a representation of the Lie algebra g̃(A). Let V be a vector space of
dimension n with basis v1, · · · , vn. Let α be any element in h∗, we define an action of g̃(A) on the
tensor algebra T (V ) by:

• fi(a) = vi ⊗ a for a ∈ T (V ),

• h(1) = 〈α, h〉1, and inductively on s, h(vj ⊗ a) = −〈αj , h〉vj ⊗ a+ vj ⊗ h(a) for a ∈ T s−1(V ),

• ei(1) = 0, and inductively on s, ei(vj ⊗ a) = δi,jα
∨
i (a) + vj ⊗ ei(a) for a ∈ T s−1(V ).

Let us first check that this indeed defines a representation of the Lie algebra g̃(A). We need to check
that the defining relations of g̃(A) are satisfied. We have:

(eifj − fjei)(a) = ei(vj ⊗ a)− vj ⊗ ei(a) = δi,jα
∨
i (a) + vj ⊗ ei(a)− vj ⊗ ei(a) = δi,jα

∨
i (a).

Since h acts diagonally, the relations [h, h′] are satisfied. For the third relation, we proceed by induction
on s. Let a ∈ T s−1(V ), we have:

(hei − eih)(a ⊗ vj) = h(δi,jα
∨
i (a) + vj ⊗ ei(a))− ei(−〈αj , h〉vj ⊗ a+ vj ⊗ h(a))

= δi,jhα
∨
i (a)−〈αj , h〉vj⊗ei(a)+vj⊗hei(a)+〈αj , h〉δi,jα∨i (a)+〈αj , h〉vj⊗ei(a)−δi,jα∨i h(a)−vj⊗eih(a)

= vj ⊗ [h, ei](a) + 〈αj , h〉δi,jα∨i (a) = 〈αi, h〉vj ⊗ ei(a) + 〈αi, h〉δi,jα∨i (a) = 〈αi, h〉ei(a⊗ vj).

And we also have for the last relation:

(hfi − fih)(a) = h(vi ⊗ a)− vi ⊗ h(a) = −〈αi, h〉vi ⊗ a = −〈αi, h〉fi(a).

Let us also consider the map ñ− → T (V ) sending fi to vi = fi(1) or more generally n− ∈ ñ− to
n−(1). We prove that this is the embedding of ñ− in its enveloping algebra U(ñ−). Indeed, because
of what we just proved, there is a surjective map U(ñ−) → T (V ). But because T (V ) is free, corollary
3.2.3 implies that T (V ) is the enveloping algebra of ñ− with n− 7→ n−(1) its natural embedding.

Let us now prove the Theorem. An easy induction proves that we have g̃(A) = ñ− + h + ñ+
(simply remark that the subspace ñ−+ h+ ñ+ is stable by the adjoint action of g̃(A) and contains the
generators of g̃(A)). Assume there is a relation n− + h+ n+ = 0 with n− ∈ ñ−, h ∈ h and n+ ∈ ñ+.
We have n−(1) + h(1) + n+(1) = 0. But ñ+ being generated by the (ei)i∈[1,n], we have n+(1) = 0 and
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n−(1)+h(1) = 0 or n−(1) = 〈α, h〉1. This is true for all α ∈ h∗ so that h = 0 and n−(1) = 0. Because
the map n− 7→ n−(1) is an embedding we get n− = 0 and the part (ı) of the theorem.

For point (ıı), we have seen that U(ñ−) = T (V ) so that ñ− is the Lie subalgebra of T (V ) generated
by the (fi)i∈[1,n] which is by definition a free Lie algebra. For ñ+ we use point (ııı) which is trivial
because the involution respects the defining relations of g̃(A).

Using Jacobi identity and the defining relations of g̃(A), it is easy to see that any composition of
ad (ei)’s applied to some ej is an eigenvector for h with eigenvalue in Q+. This proves, together with
the symmetry in (ııı), the decompositions

n± =
⊕

α∈Q+, α6=0

g̃±.

Furthermore, because n+ is generated by the (ei)i∈[1,n], we have the inequality dim g̃α ≤ n|htα|, proving
(ıv). Remark that h = g̃0.

For the last assertion, let us prove the following useful Lemma:

Lemma 4.1.7 Let h be a commutative Lie algebra and V be a diagonalisable h-module meaning that
we have a decomposition

V =
⊕

α∈h∗

Vα, with Vα = {v ∈ V / h(v) = 〈α, h〉v}.

Then any submodule U of V can be decomposed as

U =
⊕

α∈h∗

U ∩ Vα.

Proof : Let u ∈ U , it is decomposed as u =
∑m

i=1 uαi
with uαi

∈ Vαi
. We want to prove that uαi

∈ U
for any i. But let h ∈ h such that all the 〈αi, h〉 are distinct. We have hk(u) =

∑m
i=1〈αi, h〉kuαi

∈ U
because U is an h-module. This is an independent system of equations proving the result. �

Now let u be any ideal of g̃(A). We have the decomposition

u =
⊕

α∈Q

(g̃α ∩ u),

hence a sum of ideals intersecting h = g0 trivially will intersect h trivially. The sum of all these ideals
is the desired ideal r. We have the decomposition

r = (ñ− ∩ r)⊕ (ñ+ ∩ r)

as vector spaces thanks to the previous Lemma. But [fi, ñ+] ⊂ n+⊕h hence [fi, ñ+∩r] ⊂ (n+⊕h)∩r ⊂
n+ ∩ r. This implies the inclusion [g̃(A), n+ ∩ r] ⊂ n+ ∩ r proving that n+ ∩ r is an ideal. The same
method shows that n− ∩ r is an ideal. �

4.1.3 The Lie algebra g(A)

We are now in position to define the Lie algebra g(A) associated to a complex n× n-matrix A.

Definition 4.1.8 Let (h,Π,Π∨) be a realization of A and let g̃(A) the Lie algebra defined in the
previous section.

(ı)Let us set g(A) = g̃(A)/r where r is the ideal defined by Theorem 4.1.6.
(ıı) Remark that by Theorem 4.1.6, the abelian Lie algebra h is contained in g̃(A) and because r

does not meet h is it also contained in g(A). The quadruple (g(A), h,Π,Π∨) is called the (g, h)-pair
associated to A.
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Remark that the decomposition of g̃(A) induces a decomposition, called the root space decompo-
sition

g(A) =


 ⊕

α∈Q+, α6=0

g−α


⊕ h⊕


 ⊕

α∈Q+, α6=0

gα


 ,

where gα(A) = {x ∈ g(A) / [h, x] = 〈α, h〉x, ∀h ∈ h}. We have the estimate dim gα < n|htα| and
g0 = h. We also call dim gα the multiplicity of α and denote it by mult(α). We denote by n± the
image of ñ± in g(A). We have the decomposition

g(A) = n− ⊕ h⊕ n+.

Definition 4.1.9 An element α ∈ Q is called a root if α 6= 0 and multα 6= 0. A root α is called
positive if α ∈ Q+ and negative if −α ∈ Q+. We denote by ∆, ∆+ and ∆− the set of roots, positive
roots and negative roots. We have a disjoint union ∆ = ∆+ ∪∆−.

Remark 4.1.10 (ı) The space gα, for α ∈ ∆+ (resp. for α ∈ ∆−), is the linear span of the elements of
the form [· · · [[ei1 , ei2 ], ei3 ] · · · , eik ] (resp. [· · · [[fi1 , fi2 ], fi3 ] · · · , fik ]) such that αi1 +αi2 = · · ·+αik = α
(resp. −α). In particular, we have

gαi
= Cei, g−αi

= Cfi and gsαi
= 0 for |s| > 1.

Indeed, the first fact comes from the inclusion of gα in n+ which is generated by the ei’s. The
multiplicity of the simple roots follows immediately. The last point follows from the multiplicity of
simple roots.

(ıı) The involution defined in Theorem 4.1.6 induces an involution ω on g(A). Because of (ı), we
have ω(gα) = g−α. In particular multα = mult(−α) and ω(∆+) = ∆−.

Proposition 4.1.11 Let g′(A) = [g(A), g(A)] be the derived algebra.
(ı) We have g(A) = g′(A) + h and g′(A) = g(A) if and only if det(A) 6= 0.
(ıı) Let us denote by h′ the subspace of h spanned by the images of the αi’s (one more time still

denoted αi in g(A)). We have g′(A) ∩ h = h′ and g′(A) ∩ gα = gα.
(ııı) The image of the ei’s and the fi’s in g(A) are, by abuse of notation, denoted by ei and fi,

they generate the subalgebra g′(A).

Proof : In view of the defining relations of g̃(A), it is clear that the ei’s and the fi’s are in g′(A). In
particular n− ⊕ n+ is contained in g′(A) proving that g(A) = g′(A) + h and that g′(A) ∩ gα = gα for
α ∈ Q with α 6= 0.

It is clear from the relations defining g̃(A) that h′ is contained in g′(A) ∩ h. For the converse
inclusion, it suffices to prove that [gα, g−α] ⊂ h′ for α ∈ Q+. We prove it by induction on htα. It is
clear if htα = 1. Assume htα > 1 and let x ∈ gα and y ∈ g−α. Now x is in n+ and we may assume
that x = [ei, z] for some i and some z ∈ gα−αi

. We compute [x, y] = [ei, [z, y]]− [z, [ei, y]] and conclude
by induction.

In particular, we have g′(A) = g(A) if and only if h ⊂ g′(A) or if and only if h′ = h which is
equivalent to det(A) = 0.

We can now prove (ııı). The ei’s and fi’s generate n−⊕ h′⊕ n+ which is g′(A) by what we already
proved. �

Proposition 4.1.12 The center c of g(A) is given by

c = {h ∈ h / 〈α, h〉 = 0, ∀α ∈ Π}.
We have the inclusion c ⊂ h′.
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Proof : Let x ∈ c, we have [h, x] = 0 for all h ∈ h so that x ∈ g0 = h. Furthermore, we have
[x, y] = 0 for any y ∈ gα which implies that 〈α, x〉 = 0 for all α ∈ ∆ (we need y to be non zero) which
is equivalent to 〈α, x〉 = 0 for all α ∈ Π. Conversely, if x ∈ h satisfies the previous condition, then it
lies in the center.

For the last condition, we have that dim c = n − ℓ = Corank(A). But dim(c ∩ h′) = Corank(A)
and the conclusion follows. �

4.2 Kac-Moody Lie algebras

4.2.1 Generalized Cartan matrices

We will now consider a special type of complex matrices: the generalized Cartan matrices. Recall that
a Cartan matrix A = (ai,j)i,j∈[1,n] has the following characteristic properties:

• ai,i = 2;

• ai,j ≤ 0 for i 6= j;

• ai,j = 0 ⇒ aj,i = 0;

• det(A) > 0.

We only relax the condition on the rank of the matrix A.

Definition 4.2.1 A matrix A = (ai,j)i,j∈[1,n] is said to be a generalized Cartan matrix (GCM) if it
satisfies the following conditions:

• ai,i = 2;

• ai,j ≤ 0 for i 6= j;

• ai,j = 0 ⇒ aj,i = 0.

Definition 4.2.2 A Lie algebra g(A) associated to a generalised Cartan algebra A is called a Kac-
Moody Lie algebra.

Remark 4.2.3 The defining relations of g̃(A) are the relations in Serre’s presentation (see section
1.3) except for the last two relations. We will see that these relations are contained in r and that
in many occasions these relations generate r so that we could have defined g(A) as the Lie algebra
generated by (ei)i∈[1,n], (fi)i∈[1,n] and h for generators and the following relations:

• [ei, fj] = δi,jα
∨
i

• [h, h′] = 0

• [h, ei] = 〈αi, h〉ei

• [h, fi] = −〈αi, h〉fi

• (ad ei)
1−ai,j (ej) = 0 for i 6= j

• (ad fi)
1−ai,j (fj) = 0 for i 6= j.
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4.2.2 Isomorphisms of Kac-Moody Lie algebras

In this section we try to understand in what extend the Lie algebra g(A) determines the generalized
Cartan matrix A. We start with the following proposition which is an easy consequence of Proposition
4.1.2 and Theorem 4.1.6.

Proposition 4.2.4 (ı) Let g be a Lie algebra, let h be a commutative subalgebra, let e1, · · · , en,
f1, · · · , fn be elements in g and let Π∨ = {α1, · · · , αn} ⊂ h, Π = {α∨1 , · · · , α∨n} ⊂ h∗ be linearly
independent sets such that

• [ei, fj] = δi,jα
∨
i

• [h, ei] = 〈αi, h〉ei, [h, fi] = −〈αi, h〉fi.

Suppose that the ei’s, the fi’s and h generate g and that g has a no non zero ideal which intersect h
trivially. Finally, set A = (〈α∨i , αj〉) and suppose that dim h = 2n − Rank(A). Then (g, h,Π,Π∨) is
the (g, h)-pair associated to A.

(ıı) Given two n × n complex matrices A and A′, there exist an isomorphism of the associated
(g, h)-pairs if and only if there exist a non-degenerated diagonal matrix D such that A′ can be obtained
from DA by a permutation of the rows and the same permutation of the columns.

Proof :(ı) We have that (h,Π,Π∨) is a realization of A. Let g̃(A) the associated Lie algebra already
defined. Because of the relations in g, we have a map g̃(A) → g (surjective because g is generated by
the ei’s, the fi’s and h). Because h is a subalgebra in g, this map has to factorize the map g̃(A) → g(A).
But because g has a no non zero ideal which intersect h trivially, we have an isomorphism g → g(A).

(ıı) Any isomorphism of (g, h)-pair gives the permutation between the simple root. And I can only
see this permutation and no matrix D. However, if we do only fix simple roots and not simple coroots,
we get by rescaling a matrix D: the map ei 7→ ei, fi 7→ difi and identity on h is an isomorphism from
g(A) to g(DA) with D = diag(di). �

One has the following Theorem:

Theorem 4.2.5 (see Peterson-Kac [PK83]) Let g be a Kac-Moody Lie algebra, then any two max-
imal diagonalisable subalgebra are conjugate. As a consequence, any two Kac-Moody algebras are iso-
morphic if and only if their generalized Cartan matrices can be obtained from each other by a reordering
of the index set.

4.2.3 Serre relations

In this section we prove that Serre relations are satisfied in a Kac-Moody Lie algebra. Let us recall
results on sl2 representations.

Recall that sl2 = {A ∈ gl2 / Tr(A) = 0}. Let us define the following elements in sl2:

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
and f =

(
0 0
1 0

)
,

then we have [e, f ] = h, [h, e] = 2e and [h, f ] = −2f .

Proposition 4.2.6 (ı) In U(sl2), the following formulas hold: [h, fk] = −2kfk, [h, ek] = 2kek,
[e, fk] = −k(k − 1)fk−1 + kfk−1h.

(ıı) Let V be a sl2-module and v ∈ V such that h(v) = av for some a ∈ C, then we have the
relation h(f j(v)) = (a− 2j)f j(v) and if moreover e(v) = 0 then e(f j(v)) = j(a− j + 1)f j−1(v).
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(ııı) For each integer k ∈ N, there is a unique irreducible sl2 representation of dimension k+1 (up
to isomorphism) denoted by Sk. Moreover, there exist a basis (vi)i∈[0,k] of Sk such that

h(vi) = (k − 2i)vi, f(vi) = vi+1 and e(vi) = j(k + 1− j)vj−1

where vk+1 = v0 = 0.

Proof : (ı) We proceed by induction on k. We have

[h, fk] = h⊗ fk − fk ⊗ h = f ⊗ [h, fk−1]− 2fk = −2(k − 1)f ⊗ fk−1 − 2fk = −2kfk.

The second formula comes in the same way. For the last one we have:

[e, fk] = f ⊗ [e, fk−1] + h⊗ fk−1 = f ⊗ [e, fk−1] + [h, fk−1]− fk−1 ⊗ h

and we conclude by induction.

(ıı) We compute h(f j(v)) = [h, f j ](v) + f j(h(v)) = −2jf j(v) + af j(v). If e(v) = 0, we get
e(f j(v)) = [e, f j ](v) + f j(e(v)) = −i(i− 1)f j(v) + jf j(h(v)) = j(a− j + 1)f j(v).

(ııı) Let V be an irreducible representation of dimension k+1. Let u be an eigenvector for h say of
eigenvalue a. If es(u) 6= 0, then it is an eigenvector of h with eigenvalue a+ 2s so that (u, · · · , es(u))
is linearly independent. In particular there is an s such that es(u) = 0. Take s minimal with this
property and set v = es−1(u). Then v is an eigenvector of h say of eigenvalue b and e(v) = 0. Set
vj = f j(v). We know that v0 is an eigenvector for h and so are the vj ’s as soon as they don’t vanish.
Furthermore, the non vanishing vj’s having different eigenvalues are linearly independent so there exist
a j with vj = 0. Let l be the smallest number such that vl 6= 0. The subspace spanned by the vj ’s
is easily seen to be an sl2-module. It has to be V and l = k. The rest of the proposition comes from
(ıı). �

Proposition 4.2.7 Let g(A) be a Kac-Moody Lie algebra and let ei and fi be its Chevalley generators.
Then the Serre relations hold, namely:

(ad ei)
1−ai,j (ej) = 0 and (ad fi)

1−ai,j (fj) = 0, for i 6= j.

Proof : Each relation can be deduced from the other thanks to the involution ω. We prove the second
one. Remark that g(i) = g−αi

⊕Cα∨i ⊕gαi
is isomorphic to sl2 with elements e, f and h corresponding

to ei, fi and α
∨
i . Consider g(A) as a sl2 = g(i)-module that to the adjoint action. For j 6= i, set v = fj,

we have e(v) = 0 and h(v) = −ai,jv. We want to prove the relation w = f1−ai,j (v) = 0. Let us prove
the following

Lemma 4.2.8 Let x ∈ n+ (resp. in n−) such that [fi, x] = 0 (resp. [ei, x] = 0) for all i, then x = 0.

Proof : Consider the subspace E generated by the ei and set i =
∑

i,j(ad E)i(ad h)j(x). We
claim it is an ideal of g(A). Indeed, elements in i are linear combination of elements of the form
[ei1 , [· · · [eis , [h1, [· · · [hk, x] · · · ] and ad (h) for h ∈ h sends (by easy induction and Jacobi) an element
of that form to a linear combination of elements of that form. It it clear for ad (ei). For ad (fi),
we use Jacobi to end up with linear combinations of elements of that form and elements of the form
[ei1 , [· · · [eis , [h1, [· · · [hk, [fi, x]] · · · ] which vanishes.

Furthermore any such element is in n+ because a is and because h and n+ stabilize n+. The ideal
i does not intersect h. It has to be trivial and a = 0. �
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In view of the previous Lemma, we only need to prove that [ek, w] = 0 for all k. This is clear for
k 6∈ {i, j}. Now Lemme 4.2.6 gives

[ei, w] = (1− ai,j)(−ai,j − (1− ai,j) + 1)w = 0.

Finally, we have

[ej , w] = (ad fi)
1−ai,j [ej , fj ] = (ad fi)

1−ai,j (α∨j ) = −ai,j(ad fi)−ai,j (fi).

This vanishes and the result follows. �

4.2.4 Ideals in the Kac-Moody Lie algebras

Let us prove the following Lemma

Lemma 4.2.9 Let A be a Cartan matrix. The matrix is indecomposable if and only if the following
condition hold: for any pair of indices (i, j) ∈ [1, n]2, there exists a sequence of indices i0 = i, · · · , ik =
j such that ai0,i1 · · · aik−1,ik 6= 0.

Proof : Define the equivalence relation on the set of indices [1, n] by setting i ∼ j if there exists a
sequence of indices i0 = i, · · · , ik = j such that ai0,i1 · · · aik−1,ik 6= 0. Now we may reorder the indices
so that the first indices are in the same orbit for this equivalence, the next in the same orbit and so
on. The matrix A becomes a block matrix with blocks given by the orbits of the equivalence relation.
In particular, it is indecomposable if and only if there is an unique orbit for this relation. �

Proposition 4.2.10 Let A be an indecomposable Cartan matrix.

(ı) The Lie algebra g(A) is simple if and only if det(A) 6= 0.

(ıı) Any ideal of the Lie algebra g(A) is either contained in the center c or contains the derived
Lie algebra g′(A).

(ııı) Assume that there exist no root α such that α|h′ = 0 then g′(A)/c = 0

Proof : (ı) Assume that the Lie algebra is simple. Then its center has to be trivial so that c = {h ∈
h / 〈αi, h〉 = 0} is trivial. This implies that 0 = dim c = dim h− n i.e. h = h′ and thus det(A) 6= 0.

Let i be an ideal of g(A) not contained in the center.

Assume first that i contains a element h ∈ h not in the center. Then there exists an index i ∈ [1, n]
such that 〈αi, h〉 6= 0 and we have [h, ei] = 〈αi, h〉ei and ei is in i. As a consequence, α∨i = [ei, fi] ∈ i.
But by letting α∨i act on the elements ej and because of the characterisation of indecomposable
matrices of the previous Lemma, we get any α∨j , any ej and any fj is in i thus i contains g′(A).

Let us prove the general case. We know that i is decomposed into its eigenspaces i ∩ gα. If for
any α we have i ∩ a = 0 then i ⊂ h and there must be an element h ∈ h ∩ i not in the center. We get
a contradiction thanks to the previous study. We can therefore take α a root minimal for the order
defined on roots by Q+ and such that i ∩ gα 6= 0. Let x be an element in that intersection. Because
this element is non zero, the Lemma 4.2.8 gives us an index i such that [fi, x] 6= 0. But [fi, x] is in
i ∩ gα−αi

and by minimality of α this implies that α − αi = 0 and x is colinear to ei. We use the
previous argument to conclude for the end of (ı) and for (ıı).

(ııı) Consider i′ an ideal of the quotient and i its inverse image in g′(A). It is an ideal of g′(A). If
there exists an element h ∈ i ∩ h not in the center, then h ∈ h′ and because it is not in the center, we
may use the previous argument because all the products are taken with elements in g′(A).
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To prove the general case we consider the decomposition of g(A) with respect to the action of h′.
It is given by the subspaces

gβ =
⊕

α∈f−1(β)

gα

where β ∈ h′
∗ and f : h∗ → h′

∗ is the natural projection. The set ∆′ of roots for this decomposition is
f(∆). Remark that g0 = g0 = h because of our hypothesis (the fibre f−1(0) is {0}). If i′ is not trivial,
then there exists an element x ∈ i not in the center. Let us consider the decomposition of x as the
sum x = n+ h where n ∈ n−⊕ n+ and h ∈ h. Because i is h′-stable, we know that the element h is in
i∩ g0 = i∩ h ⊂ i. If h is not in the center, we are done. Otherwise, the element n is not in the center.
Let us consider the set Xi of all the elements x ∈ i such that x =

∑
α∈∆ xα with xα ∈ gα and the set

∆i of roots γ ∈ ∆ such that there exists an element x ∈ Xi with x =
∑

α xα and xγ 6= 0. We know
that Xi is not empty so that ∆i is also not empty and at least one of the sets ∆i ∩ ∆+ or ∆i ∩ ∆−
is not empty. Let us assume that ∆i ∩∆+ is not empty (the other case is similar). Let γ minimal in
∆i ∩∆+ and let x ∈ Xi such that x =

∑
α xα with xγ 6= 0. The element xγ is a non zero element in

n+ thus thanks to Lemma 4.2.8 there exists an index i such that [fi, xγ ] 6= 0. We have [fi, x] ∈ i and
[fi, x]γ−αi

= [fi, xγ ] 6= 0. By minimality, this implies that γ = αi and xγ is a non zero multiple of ei.
But then [fi, xγ ] is a non zero multiple of α∨i . This element is the component of [fi, x] in h and is not
in the center. But as [fi, x] ∈ i its zero component is also in i and we are done. �



Chapter 5

Weyl group

In this chapter, we define and study the Weyl group of a Kac-Moody Lie algebra and describe the
similarities and differences with the classical situation. Here because the Lie algebra g(A) is not finite
dimensional, we will need to be more careful with sums. In particular, we will need locally finite
and locally nilpotent elements as well as integrable representations. In all the chapter g(A) will be a
Kac-Moody Lie algebra.

5.1 locally finite and nilpotent elements

We start with the

Definition 5.1.1 (ı) Let T : V → V be an endomorphism of a complex vector space V . It is called
locally finite at v ∈ V if there exists a finite dimensional subspace W of V containing v and stable by
T . If T |W is nilpotent, then T is called locally nilpotent at v. The endomorphism T is called locally
finite (resp. locally nilpotent) if it is locally finite (resp. locally nilpotent) at every v ∈ V .

(ıı) For a locally finite T : V → V , we can define an automorphism expT : V → V by

expT =
∑

n≥0

T n

n!

and we have the formula exp(kT ) = (expT )k. If T is locally finite at v, we can define (exp T )(v).

Let us prove some useful formulas:

Lemma 5.1.2 (ı) Let A be an associative algebra, let D be a derivation on A, let x, y and z be
elements in A and let [x, y] = xy − yx, then we have the following formulas:

Dk[x, y] =
k∑

i=0

(
k

i

)
[Dix,Dk−iy], xky =

k∑

i=0

(
k

i

)
((ad x)iy)xk−i and (ad x)ky =

k∑

i=0

(−1)i
(
k

i

)
xk−iyxi.

(ıı) Let g be a Lie algebra and x, y and z be elements in g, then we have:

(ad x)k[y, z] =

k∑

i=0

(
k

i

)
[(ad x)iy, (ad x)k−iz].

39
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Proof : (ı) We prove the first formula by induction (it is simply the Leibnitz rule. For k = 0 this is
true and for k = 1 it is the formula D[x, y] = [x,Dy] + [Dx, y]. Compute

Dk+1[x, y] = D

(
k∑

i=0

(
k

i

)
[Dix,Dk−iy]

)

and the result follows from the previous formula. For the second formula, consider the operators
Lx and Rx of left and right multiplication by x. These operators commute and ad x = Lx − Rx or
Lx = adx+Rx so that the three operators commute. Applying the binomial formula to Lx = adx+Rx
yields the first formula while applying it to adx = Lx −Rx yields the second.

(ıı) The first formula is true in U(g) where ad x is a derivation. Applying it to the adjoint
representation gives the result. �

Corollary 5.1.3 Let T and S be two endomorphisms of V and assume that T is locally finite and
that {(ad T )kS ; k ∈ N} spans a finite-dimensional subspace of End(V ), then we have the formula:

(exp T )S exp(−T ) =
∑

n≥0

(ad T )n

n!
S = (exp(ad T ))(S).

Proof : The hypothesis on ad T is simply that ad T is locally finite at S ∈ End(V ). In particular
both parts of the equality are well defined. The proof is now a formal computation using the previous
Lemma:

(exp T )S exp(−T ) =
∑

n≥0

T nS

n!
·
∑

n≥0

(−T )n
n!

=
∑

n≥0

n∑

i=0

(−1)i
T n−iST i

i!(n− i)!
=
∑

n≥0

(adT )nS

n!
.

�

Let us prove the following Lemmas on finite and nilpotent elements.

Lemma 5.1.4 (ı) Let s be a Lie algebra and let π : s → gl(V ) be a representation. Assume that y ∈ s

is such that ad y is locally finite (resp. locally nilpotent) on x ∈ s, then π(ad y) is locally finite (resp.
locally nilpotent) on π(x) ∈ gl(V ).

(ıı) Let T ∈ End(V ) be a locally finite (resp. locally nilpotent element) and let f : V → W be an
isomorphism, then f ◦ T ◦ f−1 is locally finite (resp. locally nilpotent).

Proof : (ı) Let U be a finite dimensional subspace of s such that x ∈ U and ad y stabilizes U (and
furthermore (ady)|U is nilpotent is the locally nilpotent case). Consider the subspace π(U) ⊂ V which
contains π(x). It is π(ad y) stable (and the restriction is nilpotent in the nilpotent case).

(ıı) For this part simply take f(U). �

Lemma 5.1.5 (ı) Let s be a Lie algebra and let x ∈ s. Define

sx = {y ∈ s / (ad x)nyy = 0 for some ny ∈ N}.

Then sx is a Lie subalgebra of s.
(ıı) Let π : s → gl(V ) be a representation of s and let x ∈ s. Define

Vx = {v ∈ V / π(x)nvv = 0 for some nv ∈ N}.

Then Vx is a sx-submodule of V .
(ııı) Let π : s → gl(V ) be a representation of s such that s is generated as a Lie algebra by the set

FV = {x ∈ s / ad x is locally finite on s and π(x) is locally finite on V }. Then
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• the Lie algebra s is spanned by FV as a C vector space. In particular, if s is generated as a Lie
algebra by the set F of its ad -locally finite vectors, then F spans s as a vector space.

• If dim s <∞, then any v ∈ V lies in a finite-dimensional s-submodule of V .

Proof : The points (ı) and (ıı) follow directly from the formulas 2 and 4 of Lemma 5.1.2.

(ııı) Let x and y in FV and t ∈ C. Because ady is locally finite, we may consider exp(ady) and even
exp(t·ady). This is an endomorphism of s so we may apply it to x and get (exp(t·ady))(x) ∈ s. We want
to prove that this element is in FV . For this we want to apply Corollary 5.1.3 to π((exp(t · ad y))(x)).
But because π is a Lie algebra morphism, we have π((ady)nx) = (adπ(y))nπ(x) and because of Lemma
5.1.4 we have π(exp(ad y))(x)) = (exp(adπ(y)))(π(x)). But π(y) is locally finite and adπ(y) is locally
finite on π(x) so we may apply Corollary 5.1.3 to get

π(exp(ad y))(x)) = (exp(π(y)))π(x)(exp(−π(y))).

Because π(x) is locally finite, this proves thanks to Lemma 5.1.4 (ıı) that π(exp(ad y))(x)) is locally
finite. The same proof shows that ad (exp(ad y))(x))is locally finite and that exp(ad y))(x)) ∈ FV .
Now we have the formula

lim
t→0

(exp(tad y))x− x

t
= [y, x].

Proving that the linear span of elements in FV is a Lie subalgebra of s.

The last result follows from the previous one and Poincaré-Birkhoff-Witt Theorem. �

Let us now prove the following characterizations of locally nilpotent elements.

Lemma 5.1.6 (ı) Let y1, y2, · · · be a system of generators of a Lie algebra g and let x ∈ g such that
(ad x)Niyi = 0 for some positive integers Ni. Then ad x is locally nilpotent on g.

(ıı) Let v1, v2, · · · be a system of generators of a g-module V and let x ∈ g be such that ad x is
locally nilpotent on g and xNi(vi) = 0 for some positive integer Ni. Then x is nilpotent on V .

Proof : (ı) If an element is locally nilpotent on a vector space basis, then it is locally nilpotent on
the space. This together with formula (ıı) of the Lemma 5.1.2 concludes the proof.

(ıı) To prove this result, we need to prove that a power of x will kill an element of the form
y1 · · · ys(v) where yi ∈ g and v ∈ V . We apply the second formula of Lemma 5.1.2 (ı) to xky1 · · · yk in
U(g) and get the result. �

Corollary 5.1.7 The elements ad ei and ad fi and locally nilpotent on g(A).

Proof : We give two proofs.

We have adei(fj) = 0 and (adei)
1−ai,j (ej) = 0 for i 6= j. Furthermore, adei(ei) = 0, (adei)

2(h) = 0
for any h ∈ h. Indeed, we have (ad ei)

2(h) = −〈αi, h〉ad ei(ei) = 0. Finally, we have (ad ei)
3(fi) = 0

and the result follows from Lemma 5.1.6 (ı). The same proof works for ad fi.

Second proof. Let x = ei and consider g(A)x = {y ∈ g(A) / (ad x)nyy = 0 for some ny ∈ N} as in
Lemma 5.1.5. We know that g(A)x is a Lie subalgebra and because of the defining relations of g(A)
and of Proposition 4.2.7, we know that h and all the ej and the fj are in g(A)x so that g(A)x = g(A).
�
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5.2 Integrable representations and Weyl group

5.2.1 Integrable representations

Definition 5.2.1 (ı) A g(A)-module V is h-diagonalisable (sometimes also called a weight module)
if there is a decomposition V = ⊕λ∈h∗Vα where Vλ = {v ∈ V / h(v) = 〈λ, h〉v ∀h ∈ h}. The subspace
Vλ is called a weight space, λ is called a weight if Vλ 6= 0 and dimVλ is the multiplicity of λ denoted
by multV λ.

(ıı) An h-diagonalisable module V over g(A) is called integrable if ei and fi are locally nilpotent
on V for all i in [1, n].

Let us give a Proposition explaining the terminology of integrable representations without proof
(this should be proved in chapter 11).

Proposition 5.2.2 Let V be an integral representation of g(A) and let g(i) be the sl2 isomorphic Lie
subalgebra of g(A) defined by ei, fi and α

∨
i . Then V decomposes as a direct sum of finite dimensional

irreducible h-invariant modules and in particular the action of g(i) can be ”integrated” to an action of
SL2(C).

Proof : We only need to apply Lemma 5.1.5. Because g(i) is finite dimensional, we know that any
element v ∈ V sits in a g(i)-stable finite dimensional subspace of V . These finite dimensional subspaces
are integrable. �

Proposition 5.2.3 The adjoint representation of g(A) is integrable.

Proof : We already know that the adjoint representation is h-diagonalisable and the rest follows from
Corollary 5.1.7. �

5.2.2 Definition of the Weyl group and action on integrable representations

Definition 5.2.4 (ı) For any i ∈ [1, n], define the reflection si ∈ Auth∗ by si(λ) = λ− 〈λ, α∨i 〉αi, for
λ ∈ h∗. It is the reflection with respect to the hyperplane {λ ∈ h∗ / 〈λ, α∨i 〉 = 0}. In particular we
have s2i = 1.

(ıı) Let W the subgroup of Auth∗ generated by the reflections si for i ∈ [1, n]. This group is the
Weyl group of the Kac-Moody Lie algebra g(A) and the reflections si are called simple reflections.
The faithful representation of W in h∗ is called the standard representation of W .

(ııı) Dualizing the representation, we get the congradient representation W ⊂ Auth, which is
explicitly given for any 1 ≤ i ≤ n by si(h) = h− 〈αi, h〉α∨i , for h ∈ h.

(ıv) The length of an element w ∈ W is the smallest k such that we can write w = si1 · · · sik with
the sij simple reflections.

Definition 5.2.5 Let π : g(A) → gl(V ) be an integrable representation of g(A). We may define the
following element si(π) ∈ End(V ) by

si(π) = (exp π(fi))(exp(−π(ei)))(exp(π(fi))).

Proposition 5.2.6 Let π : gl(A) → V be an integrable representation. Let λ ∈ h∗ and si ∈ W a
simple reflection.

(ı) We have the equality si(π)(Vλ) = Vsi(λ), in particular multV λ = multV wλ for all w ∈W .
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(ıı) For any v ∈ V and x ∈ g(A), we have si(π)(xv) = (si(ad )x)(si(π)v). In particular si(ad ) is
a Lie algebra automorphism of g(A) (preserves the Lie bracket).

(ııı) For v ∈ Vλ, we have si(π)
2(v) = (−1)〈λ,α

∨
i 〉v and if v 6= 0, then 〈λ, α∨i 〉 ∈ Z.

(ıv)Let mi,j be the order of sisj in W , then if mi,j <∞, we have

si(π)sj(π)si(π) · · ·︸ ︷︷ ︸
mi,j factors

= sj(π)si(π)sj(π) · · ·︸ ︷︷ ︸
mi,j factors

Proof : (ı) Let us prove the inclusion si(π)(Vλ) ⊂ Vsi(λ). A very similar proof gives the inclusion
si(π)

−1(Vλ) ⊂ Vsi(λ) and the result follows from the fact that si is an involution (the element si(π) is
however not an involution as proved in (ııı)).

Let v ∈ Vλ and consider the element h(si(π)(v)) in V . If 〈αi, h〉 = 0, then h and ei commute in
U(g(A)) and also h and fi commute in U(g(A)). In particular, we get h(si(π)(v)) = si(π)(h(v)) =
〈λ, h〉si(π)(v). But in that case we have si(λ) = λ − 〈λ, α∨i 〉αi and 〈si(λ), h〉 = 〈λ, h〉. We thus have
the result for the hyperplane of weights orthogonal to αi. To prove the result we only need to prove
it on one element not in that orthogonal (by linearity). For example, it is enough to prove it for
h = α∨i that is to say it is enough to prove the relation α∨i (si(π)v) = −〈λ, α∨i 〉si(π)v for v ∈ Vλ or
si(π)

−1(α∨i (si(π)v)) = −〈λ, α∨i 〉v for v ∈ Vλ or the equality

si(π)
−1π(α∨i )si(π) = −π(α∨i )

of elements in End(V ). Using Corollary 5.1.3, we get the equality

si(π)
−1π(α∨i )si(π) = π((exp(−ad fi))(exp ad ei)(exp(−ad fi))(α

∨
i )).

But because of the defining relations of g(A), we get the equalities (exp(−ad fi))(α
∨
i ) = α∨i − 2fi,

(exp(−ad fi))(fi) = fi, (exp ad ei)(α
∨
i ) = α∨i − 2ei and (exp ad ei)(fi) = fi + α∨i − ei. We thus get the

formula
(exp(−ad fi))(exp ad ei)(exp(−ad fi))(α

∨
i ) = −α∨i .

(ıı) We compute si(π)(xv) = si(π)π(x)si(π)
−1si(π)(v) but the composition si(π)π(x)si(π)

−1 is
equal to (expπ(fi))(exp π(−ei))(exp π(fi))x(exp π(−fi))(exp π(ei))(exp π(−fi)) and applying Corol-
lary 5.1.3 we obtain the equality

si(π)π(x) si(π)
−1 = π((exp ad fi)(exp(−ad ei))(exp ad fi)x) = π(si(ad )(x)).

(ııı) To prove this result, we may assume that g(A) = g(i) ≃ sl2 and by Lemma 5.1.5 we may
assume that V is finite dimensional. By Proposition 4.2.6, we obtain that if v 6= 0 then 〈λ, α∨i 〉 ∈ Z.
Furthermore, we have the commutative diagram

sl2

Exp

��

π // End(V )

exp

��
SL2

// Aut(V )

and it is enough to check the relation (Exp(f)Exp(−e)Exp(f))2 = −1 = Exp(iπh) in SL2. This is an
easy calculation. Now we compute Exp(iπh)(v) = exp(iπ〈λ, h〉)v = (−1)〈λ,h〉v.

(ıv) To prove this part, we may assume that A is a 2× 2 matrix of the from

A =

(
2 ai,j
aj,i 2

)
.



44 CHAPTER 5. WEYL GROUP

Let us first prove that we may assume that a = ai,jaj,i is an integer in the interval [0, 3]. For this we
prove that if a ≥ 4, then the order mi,j of sisj is infinite. We know that both ai,j and aj,i are non
positive so a is non negative. Consider the 2-dimensional subspace U of h∗ generated by αi and αj.
The matrix of si (resp. sj) in the basis {αi, αj} is given by

(
−1 −ai,j
0 1

) (
resp.

(
1 0

−aj,i −1

))
.

The composition sisj is given by the matrix
(

−1 + a ai,j
−aj,i −1

)
.

The eigenvalues of this matrix are roots of the polynomial X2 + (2 − a)X + 1 and thus given by

a− 2±
√
a(a− 4)

2
. If a > 5, then one eigenvalue is bigger than 1 and the composition sisj has to be

of infinite order. If a = 4, then the eigenvalues are equal to 1. But as the composition is not identity,
it has to be of infinite order.

Now we may assume that a = 0, 1, 2 or 3. This implies that g(A) is of type A1 × A1, A2, B2 or
G2 (because Serre relations are satisfied and because there is no non trivial ideal meeting h trivially
in such Lie algebras). By Lemma 5.1.5 we may assume that V is finite dimensional. We have the
commutative diagram

g(A)

Exp

��

π // End(V )

exp

��
G(A) // Aut(V )

where G(A) is the simply-connected group associated to g(A). We need to prove the following relation
SiSjSi · · · = SjSiSj · · · with mi,j terms and where Si = Exp(fi)Exp(−ei)Exp(fi) (similar definition
for Sj). This can be proved case-by-case (see for example [Sp98, Proposition 9.3.2]). �

Corollary 5.2.7 (ı) For any simple reflection si, we have si(ad )|h = si as an automorphism of h.
(ıı) Assume that for some i and j in [1, n] and for w ∈W we have αj = w(αi), then w(α

∨
i ) = α∨j .

Proof : (ı) Take any integrable representation (V, π) of g(A) and let v ∈ V of weight λ and x ∈ h.
We have by the previous Proposition:

λ(x)si(π)(v) = si(π)(xv) = (si(ad )(x))(si(π)(v)) = ((siλ)(si(ad )(x)))(si(π)(v))

hence λ(x) = (siλ)(si(ad )(x)). Replacing λ by siλ we get that (siλ)(x) = λ(si(x)) = λ(si(ad )(x)).
This is true for any weight λ so that si(x) = si(ad)(x) and we have the result (we shall see in Chapter
10 that the linear span of the weights of integrable representations is h∗).

We may give a direct proof of this result by simple computation, indeed, we want to com-
pute si(ad )(h) = exp(ad (fi)) exp(−ad (ei)) exp(ad (fi))(h) for h ∈ h. But we have the formulas:
exp(ad (fi))(h) = h+ 〈h, αi〉fi, exp(−ad (ei))(h) = h+ 〈h, αi〉ei, exp(−ad (ei))(fi) = fi + α∨i − ei and
exp(ad (fi))(fi) = fi. This gives the formula si(ad )(h) = h− 〈h, αi〉α∨i .

(ıı) We know from (ı) that there exists a Lie algebra automorphism ŵ : g(A) → g(A) such that
ŵ|h = w. In particular, we have [ŵ(ei), ŵ(fi)] = ŵ[ei, fi] = w(α∨i ). But because w(αi) = αj and by
the previous Proposition, we have that ŵ(ei) ∈ gαj

and ŵ(fi) ∈ gαj
thus [ŵ(ei), ŵ(fi)] = cα∨j for some

c ∈ C. We thus have w(α∨i ) = cα∨j . Apply αj to this equality to get αj(w(α
∨
i )) = (w−1(αj)(αi(

∨)) =
αi(α

∨
i ) = 2 and αj(cα

∨
j ) = 2c thus c = 1 and we are done. �
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Definition 5.2.8 Let α be a root such that α = w(αi) for some w in the Weyl group and some index
i ∈ [1, n]. Such roots will be called real roots (see Chapter 9). We may define the coroot of α,
denoted α∨ by w(α∨i ). The previous Corollary implies that this is well defined.

5.3 Using integrable representations to construct groups

In this section we explain how to construct some group associated to the Lie algebra g(A). These
groups will be studied more in details later on but we can already introduce them by using integrable
representations.

Definition 5.3.1 Let g(A) be a Kac-Moody Lie algebra. We know that there exists a C-basis of
g(A) consisting of locally finite elements (and even of locally nilpotent elements). We define the group
G∗ to be the free group generated by the set of locally finite elements in g(A). For any integrable
representation π : g(A) → gl(V ), we define a representation I(π) of G∗ on V by

I(π)(x) =
∑

n≥0

π(x)n

n!
,

for x in the generating set of G i.e. locally finite in g(A). This exponential exists because of Lemma
5.1.5. Now define N to be the intersection of all ker(I(π)) and define G by G = G∗/N . This group is
called the group associated to the Lie algebra g(A).

Proposition 5.3.2 If g(A) is a finite dimensional simple Lie algebra, then G is the semisimple simply
connected group associated to g(A).

Proof : Let V be an integrable representation. Then thanks to Lemma 5.1.5, we may decompose V
into sums of finite dimensional representations and we may construct G using only finite dimensional
representations. Now it is clear that for any finite dimensional representation π, the map I(π) :
G∗ → GL(V ) factors through the simply connected group Gsc associated to g(A) (see Chapter 2). In
particular we may define a map G∗ → Gsc whose kernel is contained in all ker I(π). We thus have a
map G → Gsc. To conclude, it is enough to show that for any element exp(x) ∈ Gsc there exists a
representation on which it acts non trivially. This is true because — for example — Gsc is reductive
and affine. �

We may construct another group associated to the Lie algebra g(A) in the following way. Let
V be an integrable representation whose kernel lies in h (for example take V = g(A) the adjoint
representation, whose kernel is the center c ⊂ h′). This induces a representation of the sl2-isomorphic
Lie algebra g(i) generated by ei and fi. Furthermore this representation is a sum of finite dimensional
representations and thus can be integrated in a representation πi : SL2 → GL(V ). We may also
integrate the action of h to an action of an abelian group T ≃ (C∗)2n−ℓ of the same dimension. We
define the group Gπ generated by the images of the πi for i ∈ [1, n] and by the image of T .

Proposition 5.3.3 The group G is a central extension of Gad.

Proof : This is an easy application of the formula

exp(x) exp(y) exp(−x) exp(−y) = exp([x, y]).

Indeed, this formula shows that the image of G∗ in GL(g(A)) for the adjoint representation is the
group Gad. Furthermore, the kernel of this representation is the center of g(A) an this implies that



46 CHAPTER 5. WEYL GROUP

the kernel of G → Gad is given by central elements (exponentials of elements in c): let us start
with an element x ∈ gα, then we have exp(x)(h) = h + 〈α, h〉x for any h ∈ h. If α 6= 0, the
endomorphism exp(x) is never the identity expect if x = 0. If x = x1 + · · · + xk with xi ∈ gβi and
βi ∈ ∆ ∪ {0}, then chose h ∈ h such that 〈h, βi〉 = 0 for i 6= 1 and 〈h, β1〉 6= 0. Then we have
exp(x)(h) = exp(x1) · · · exp(xk)(h) = exp(x1)(h) = h + 〈h, β1〉x1 and if exp(x) = Id then x1 = 0 and
even x ∈ h. Now if h ∈ h, we have exp(h)(ei) = exp(〈h, αi〉)ei and exp(h)(ei) = ei if and only if
〈h, αi〉 ∈ 2πZ. This proves the result. �



Chapter 6

Coxeter groups

In this chapter we give a quick review of Coxeter groups and prove that the Weyl group of a Kac-
Moody Lie algebra is a Coxeter group and even a crystallographic group. We will always assume that
the generating set S is finite. The basic references are [Hu90] and [Bo54].

6.1 Definition

6.1.1 Coxeter systems

Definition 6.1.1 A Coxeter system is a pair (W,S) where W is a group and S ⊂ W is a set of
generators of W satisfying relations of the form (ss′)m(s,s′) = 1 with m(s, s) = 1 and m(s, s′) ≥ 2 for
s 6= s′. If there is no relation between s and S′ then m(s, s′) = ∞.

The number |S| is called the rank of the Coxeter system. The group W is called a Coxeter
group. The elements of S are called the simple reflections.

Definition 6.1.2 To a Coxeter system (W,S) we may associate a graph Γ called the Coxeter graph
as follows: the vertices of Γ are in bijection with S and with an edge labeled by m(s, s′) between the
vertices s and s′ whenever m(s, s′) ≥ 3. When m(s, s′) = 3 we omit the label on the edge. The
Coxeter graph determines the Coxeter group.

Example 6.1.3 Let W = S3 the permutation group on the set {1, 2, 3} and let S ∈ W be the set of
transpositions {(1, 2); (2, 3)}. Then (W,S) is a Coxeter system whose graph is the following

◦ ◦

6.1.2 Length function

Definition 6.1.4 Let (W,S) be a Coxeter system, we define a function ℓ :W → N called the length
function. If w ∈W then we set ℓ(w) = n where n is the smallest integer such that w can be written
as a product of n elements of S. An expression w = s1 · · · sn with si ∈ S and n = ℓ(w) is called a
reduced expression. Note that ℓ(1) = 0.

Lemma 6.1.5 The length satisfies the following properties:

(ı) ℓ(w) = ℓ(w−1) for all w ∈W

(ıı) ℓ(w) = 1 if and only if w ∈ S.

(ııı) ℓ(w)− ℓ(w′) ≤ ℓ(ww′) ≤ ℓ(w) + ℓ(w′) for all (w,w′) ∈W 2.

47
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Proof : For (ı) use the fact that if w = s1 · · · sn then w−1 = sn · · · s1. Point (ıı) is clear. For (ııı), if
w = s1 · · · sn and w′ = s′1 · · · s′m are reduced, then ww′ = s1 · · · sns′1 · · · s′m and the second inequality
follows. Forthe first one, we have ℓ(w) = ℓ(ww′w′−1) ≤ ℓ(ww′) + ℓ(w′) and the result follows. �

Proposition 6.1.6 There is a unique group morphism ε :W → {±1} sending s to −1. Furthermore,
we have ε(w) = (−1)ℓ(w) for all w ∈W .

Proof : To prove that the morphism does exist, we only need to prove that the defining equations of
W are satisfies but we have (ε(s)ε(s′))m(s,s′) = 1 for all s and s′ in S. Now let w = s1 · · · sℓ(w) be a

reduced expression, we have ε(w) = (−1)ℓ(w). �

Corollary 6.1.7 For all w ∈W and all s ∈ S, we have ℓ(ws) = ℓ(w) ± 1 and the same for ℓ(sw).

Proof : We already know from the previous Lemma that ℓ(w) − 1 ≤ ℓ(ws) ≤ ℓ(w) + 1. But
ε(ws) = −ε(w) so that ℓ(ws)− ℓ(w) ≡ 1 mod 2. This gives the result.

The same proof works for sw. �

6.2 Geometric representation

In this section, we give a geometric interpretation of Coxeter groups as groups of hyperplane reflections.
Let (W,S) be a Coxeter system and let V be an R-vector space of dimension the rank of the Coxeter
group (i.e. |S|) and with a fixed basis (αs)s∈S . We define a bilinear form on V .

Definition 6.2.1 (ı) The bilinear form B on V is defined by

B(αs, αs′) = − cos
π

m(s, s′)

with the convention that it equal −1 when m(s, s′) = ∞.
(ıı) Let s ∈ W , we define σs : V → V by σs(v) = v − 2B(αs, v)αs. We have σs(αs) = −αs and σs

fixes Hs = {v ∈ V / B(αs, v) = 0} pointwise.

Proposition 6.2.2 (ı) The bilinear form B is invariant under σs
(ıı) There is a unique group morphism from W to O(V,B) the subgroup of GL(V ) preserving B

such that the image of any s ∈ S is σs.

Proof : (ı) We compute B(σs(u), σs(v)) = B(u, v)− 4B(u, αs)B(αs, v) + 4B(u, αs)B(v, αs)B(αs, αs)
and the result follows because B(αs, αs) = 1.

(ıı) Let us first consider the two dimensional subspace Vs,s′ of V generated by αs and αs′ . The
restriction of B to Vs,s′ is positive and non degenerated if and only if m(s, s′) < ∞. Indeed, for
v = aαs + bαs′ , we have the formula

B(v, v) =
(
a− b cos

π

m

)2
+
(
b sin

π

m

)2

where m = m(s, s′).
Now remark that σs and σs′ leave the space Vs,s′ stable and we compute the order of the restriction

of σsσs′ on this subspace.
In the case m < ∞ then B gives Vs,s′ a structure of Euclidian subspace and σs and σs′ act as

orthogonal reflections. The composition is therefore a rotation. Because of the defining relation
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B(αs, αs′) = − cos(π/m), the rays generated by αs and αs′ are separated by an angle of π − π/m so
that the angle of the rotation is π/m and the order of σsσs′ restricted to Vs,s′ is m.

But because B is non degenerate on Vs,s′, we have V = Vs,s′ ⊕ V ⊥s,s′. But σsσs′ acts trivially on

V ⊥s,s′ so that the order of σsσs′ is m.
In the case m = ∞, let u = αs+αs′ . We have B(αs, u) = B(αs′ , u) = 0 so that σs(u) = σs′(u) = u

and (σsσs′)
n(αs) = αs + 2nu and σsσs′ is of infinite order.

In all cases we have σsσs′ is of order m(s, s′) and there is a unique group morphism W → O(V,B)
sending s ti σs. �

Corollary 6.2.3 For any elements s and s′ in S, the order of ss′ is exactly m(s, s′). In particular
all the elements of S are distinct.

Proof : This follows from the proof of the previous Proposition. Indeed, the image σsσs′ of ss
′ has

order m(s, s′). �

6.2.1 Root system

We want to study the group W thanks to the geometric representation. In particular, the length
will have a nice geometric interpretation. But before doing this, we need to prove that the geometric
representation W → O(V,B) is injective.

Definition 6.2.4 The root system of W associated to the geometric representation V is the set ∆
of all vectors of the form w(αs) for w ∈W and s ∈ S. Any root α ∈ ∆ can be uniquely written in the
form

α =
∑

s∈S

asαs

with as ∈ R. We call positive (resp. negative) roots the roots α such that for all s ∈ S we have as ≥ 0
(resp. as ≤ 0). The set of positive (resp. negative) roots will be denoted ∆+ (resp. ∆−).

Remark 6.2.5 (ı) All vectors of ∆ are unit vectors (i.e. B(α,α) = 1 for α ∈ ∆).
(ıı) Because σs(αs) = −αs, we have ∆ = −∆.

Definition 6.2.6 Let I be a subset of S. We define the parabolic subgroup WI of W to be the
subgroup of W generated by the simple reflections s ∈ I. This group has a length function ℓI defined
by the set I of generators. We have ℓ|WI

≤ ℓI (we will see that there is equality).

Theorem 6.2.7 (Tits Theorem) Let w ∈ W and s ∈ S. If ℓ(ws) > ℓ(w), then w(αs) > 0. If
ℓ(ws) < ℓ(w), then w(αs) < 0.

Proof : The second assertion follows from the first one applied to ws in place of w.
We proceed by induction on ℓ(w). It is clear if w = 1. If ℓ(w) > 0, then there exist s′ ∈ S

such that ℓ(ws′) < ℓ(w) (take a reduced expression w = s1 · · · sn and set s′ = sn). We then have
ℓ(ws′) = ℓ(w)− 1. Because ℓ(ws) > ℓ(w), we have s 6= s′.

Let I = {s, s′}. The idea is to try to translate the problem on a Coxeter group with only two
element s and s′. Consider the set

A = {v ∈W / v−1w ∈WI and ℓ(v) + ℓI(v
−1w) = ℓ(w)}.

This is a particular choice of elements in the coset wWI . We have w ∈ A. Choose v ∈ A with
minimal length and write w = vvI with vI ∈ WI and ℓ(w) = ℓ(v) + ℓI(vI). We have ws′ ∈ A, indeed
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(ws′)−1w = s′ ∈ WI and ℓ(w) = ℓ(ws′) + 1 = ℓ(ws′) + ℓI(s
′). In particular ℓ(v) ≤ ℓ(ws′) = ℓ(w) − 1

and we could apply induction on v if we prove that ℓ(vs) > ℓ(v).
Assume that ℓ(vs) < ℓ(v), then we have ℓ(vs) ≤ ℓ(v) − 1 and the inequalities

ℓ(w) ≤ ℓ(vs) + ℓ(sv−1w)
≤ ℓ(vs) + ℓI(sv

−1w)
≤ ℓ(v)− 1 + ℓI(v

−1w) + 1
≤ ℓ(v) + ℓI(v

−1w)
= ℓ(w).

In particular, there is equality in all inequalities and ℓ(w) = ℓ(vs) + ℓI((vs)
−1w) thus vs ∈ A but

ℓ(vs) < ℓ(v) contradicts the minimality of ℓ(v). We thus have ℓ(vs) > ℓ(v) and we may apply
induction hypothesis to get that v(αs) > 0. The same proof shows that v(αs′) > 0.

Now, because of the equality w = vvI , we will be done if we prove that vI(αs) = aαs + bαs′

with a and b non negative. Remark that we have ℓI(vIs) ≥ ℓI(vI). Indeed, otherwise we would have
ℓ(ws) = ℓ(vvIs) ≤ ℓ(v) + ℓ(vIs) ≤ ℓ(v) + ℓI(vIs) ≤ ℓ(v) + ℓI(vI)− 1 = ℓ(w) − 1 a contradiction. This
implies that a reduced writing of vI must finish with s′. In particular vI can be written as vI = (ss′)a

or vI = s′(ss′)b. Furthermore, since (ss′)m = 1 with m = m(s, s′), we may assume that a < m/2 and
b ≤ [m/2] − 1.

In the case m < ∞, we are on the Euclidian plane with two reflections whose axes form a π/m
angle. The cone generated by αs and αs′ has an angle of π−π/m. The element vI is either a rotation
of angle 2aπ/m or the composition of s′ with a rotation of angle 2bπ/m. The image of αs by such an
isometry is always in the cone and we are done.

In the case m = ∞, we already did the computation of (ss′)a(αs) = αs + 2au where u = αs + αs′ .
This implies the result for vI of that form. But now s′(ss′)b(αs) = s′(αs + 2bu) = αs + (2b+ 1)u and
we are done. �

Corollary 6.2.8 Any root α ∈ ∆ is either positive or negative.

6.2.2 Geometric interpretation of length function

We will now describe a geometric way of thinking to the length function. Recall that we denoted by
∆, ∆+ and ∆− the sets of roots, positive roots and negative roots.

Proposition 6.2.9 (ı) Let s ∈ S, then σs(αs) = −αs and for any α ∈ ∆+ \ {αs} we have σs(α) ∈
∆+ \ {αs}.

(ıı) For any w ∈W the length ℓ(w) is the number of positive roots α such that w(α) is a negative
root.

Proof : (ı) We already know that σs(αs) = −αs. Let α be a positive root distinct from αs. We have
α =

∑
u∈S auαu with au > 0 for some u 6= s. But σs(α) = (as − 2B(αs, α))αs +

∑
u 6=s auαu and has a

positive coefficient on some αu. But σs(α) is a root and thus is positive.
(ıı) Let n(w) be the number of positive roots send to a negative one. We have the equality

n(w) = |∆+ ∩ (w−1(∆−))|. We proceed by induction on ℓ(w). The case ℓ(w) = 0 is trivial and the
case ℓ(w) = 1 is given by (ı). Consider s ∈ S such that ℓ(ws) = ℓ(w) − 1, then ℓ(ws) is n(ws). But
the condition ℓ(ws) < ℓ(w) implies that w(αs) < 0. The set ∆+ of positive roots is send by σs to
∆+ \ {αs} ∪ {−αs}. In particular ws(αs) = −w(αs) > 0 and the positive roots send to negative roots
by ws are in ∆+ \{αs}. Because σs permutes these roots, they are the same number n(ws) = ℓ(w)−1
of roots in ∆+ \ {αs} sent to a negative one by w. But αs is send to a negative roots by w thus
n(w) = n(ws) + 1 = ℓ(w) �



6.2. GEOMETRIC REPRESENTATION 51

Corollary 6.2.10 If W is infinite, then ∆ is infinite.

Proof : Indeed, let us consider all elements of fixed length n. Because S is finite, this is a finite
set. This implies that the length of elements in W can be arbitrary large and implies that there are
infinitely many roots. �

Let us finish this section with a criterion on the form B for the Coxeter group W to be finite.

Proposition 6.2.11 Assume W is irreducible i.e. its Coxeter graph is connected. Let V 0 be the
subspace of V orthogonal to V with respect to B (the kernel of B).

(ı) The Coxeter group W acts trivialy on V 0 and any subspace of V stable under W is contained
in V 0.

(ıı) If W is finite, then B is positive definite and any W -invariant bilinear form is a scalar multiple
of B. Furthermore if u ∈ End(V ) commutes with any element of W then u is a homothetie.

(ııı) The Coxeter group W is finite if and only if B is positive definite.

Proof : (ı) Let x ∈ V 0, then σs(x) = x− 2B(x, αs)αs = x for all s ∈ S.

If S = {s} the second assertion is trivial. Let V ′ a proper subspace of V stable under W . Let s
and s′ in S with m(s, s′) ≥ 3. Assume that αs ∈ V ′, then σs′(αs) = αs − 2B(αs, αs′)αs′ ∈ V ′ thus
2B(αs, αs′)αs′ ∈ V ′ andbecause B(αs, αs′) 6= 0 we get αs′ ∈ V ′. Thus if V ′ contains some αs, it
contains all of them and V ′ = V . A contradiction.

Let s ∈ S and assume that there exists x ∈ V ′ with B(x, αs) 6= 0. Then we have

αs =
1

2B(x, αs)
(σs(x)− x) ∈ V ′,

a contradiction. We get V ′ ⊂ V 0.

(ıı) If B has a non trivial kernel V 0, then this kernel is W -stable and because W is finite, it has a
stable supplementary (take the kernel of the mean of elements in W of any projection to V 0). This is
impossible by (ı).

Let u ∈ End(V ) commuting with any element of W . Let s ∈ S and consider ps = 1
2(IdV − σs)

which is a projector on the line Rαs and commutes with u. We have ps(u(αs)) = u(ps(αs)) = u(αs)
thus u(αs) = λαs. The subspace ker(u− λIdV ) which is non trivial and stable under W . It has to be
V itself and the result follows.

Because B is non degenerate, any bilinear form B′ can be written as

B′(x, y) = B(u(x), y)

for some u ∈ End(V ). But if B′ is W -invariant, this implies that

B(u(w(x)), y) = B′(w(x), y) = B′(x,w−1(y)) = B(u(x), w−1(y)) = B(w(u(x)), y)

and because B is non degenerate, we get w(u(x)) = u(w(x)). This implies u = λIdV and B′ = λB.

Finally we prove that B is symmetric positive: let B′ be a positive symmetric form and let B′′ be
the mean of the translate of B′ under the group W . The form B′′ is symmetric positive and we have
B′′ = λB for some λ. Because B(αs, αs) = 1 this implies λ > 0 and B is positive.

(ııı) We proved in (ıı) that W finite implies that B is positive definite. Conversely let us denote by
C the set of linear forms x∗ on V such that x∗(αs) > 0 for all s ∈ S. In particular we have x∗(α) > 0
for any positive root α. For x∗ ∈ C, the set U(x∗) of elements g ∈ GL(V ) such that x∗ ◦ g ∈ C
is an open neiboughood of Id. But by Tits Theorem (Theorem 6.2.7) we have W ∩ U(x∗) = {Id}.
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Indeed, if ℓ(w) > 0, then there exists an element s ∈ S such that ℓ(ws) < ℓ(w) which implies that
−α = w(αs) < 0 by Tits Theorem and that x∗w(αs) = x∗(−α) < 0 and w is not in the intersection.

The group W is thus discrete in GL(V ) but because B is positive definite O(V,B) is compact and
this implies that W is finite. �

6.3 Exchange conditions

6.3.1 Reflections

As we already know from the classical case. The choice of simple roots is not canonical and any root
can be chosen simple. Here we consider all the reflections in the Coxeter group W . Let α = w(αs) be
a root, we may consider the element wsw−1 ∈W . Its action on V is given by

wsw−1(v) = w(w−1(v)− 2B(w−1, αs)αs)
= v − 2B(v, α)α.

In particular this element depends only on α and not on w and s. We denote it sα and it acts on V
as a reflection. We define the set T of all such reflections sα by

T =
⋃

w∈W

wSw−1.

Proposition 6.3.1 Let w ∈W and α ∈ ∆+, then ℓ(wsα) > ℓ(w) if and only if w(α) > 0.

Proof : We prove the implication, the converse will be automatic (because if ℓ(wsα) < ℓ(w), the same
proof will imply that w(α) < 0). We proceed by induction on ℓ(w). The case ℓ(w) = 0 is trivial. If
ℓ(w) > 0, then there exists s ∈ S such that ℓ(w) = ℓ(sw) + 1. We have ℓ(wsα) > ℓ(w) > ℓ(sw). This
implies that ℓ(swsα) ≥ ℓ(wsα)− 1 > ℓ(w)− 1 = ℓ(sw). The induction hypothesis implies sw(α) > 0.
Assume that w(α) < 0, this implies that w(α) = αs and in particular wsα = sw contradicting the
length inequalities. �

6.3.2 Strong exchange condition

Theorem 6.3.2 (Strong exchange condition) Let w = s1 · · · sr be a not necessary reduced expres-
sion with si ∈ S. Suppose that a reflection t ∈ T satisfies ℓ(wt) < ℓ(w), then there is an index i for
which wt = s1 · · · ŝi · · · sr. If the expression for w is reduced, then i is unique.

Proof : There exists an α ∈ ∆+ such that t = sα. Because of the relation on the length, we have
w(α) < 0. In particular, there exists an index i for which si+1 · · · sr(α) > 0 but si · · · sr(α) < 0.
This implies that αi = si+1 · · · sr(α) where αi is the simple root associated to si. We thus have
si+1 · · · srtsr · · · si+1 = si. This gives wt = s1 · · · ŝi · · · sr.

Assume the expression is reduced and that there are i < j such that wt = s1 · · · ŝi · · · sr =
s1 · · · ŝj · · · sr. This gives the relation si+1 · · · sj = si · · · sj−1 and thus si · · · sj = si+1 · · · sj−1 a contra-
diction to the fact that the expression was reduced. �

Corollary 6.3.3 (Deletion Condition) (ı) Let w = s1 · · · sr be a non reduced expression, then there
exist indices i < j such that wt = s1 · · · ŝi · · · ŝj · · · sr.

(ıı) Let w = s1 · · · sr be any expression, then a reduced expression of w can be obtained by omitting
an even number of si.
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Proof : (ı) By hypothesis, there exists an index j such that ℓ(s1 · · · sj) < l(s1 · · · sj−1). Applying
the Strong exchange condition, we get an index i < j such that s1 · · · sj = s1 · · · ŝi · · · sj−1, the result
follows.

(ıı) Apply (ı) as long as the expression is not reduced. �

Definition 6.3.4 The Bruhat order is the order generated on W by v ≤ w if there exists a reduced
expression w = s1 · · · sr such that v = s1 · · · ŝi · · · sr (or if ℓ(v) < ℓ(w) and v = wt for some t ∈ T ).

6.4 Weyl groups of Kac-Moody Lie algebras

6.4.1 Equivalent definitions

We now give equivalent conditions for a group W to be a Coxeter group. We will use this result to
prove that the Weyl groups of Kac-Moody Lie algebras are Coxeter groups.

Let W be a group generated by a fixed (finite even if it is not necessary) subset S of elements of
order 2. We may define the length of any element as in the Coxeter group case.

Theorem 6.4.1 The following conditions are equivalent:

(ı) Coxeter condition: the group W is the quotient of the free group generated by the set S
modulo the relations s2 = 1 for all S ∈ S and (st)m(s,t) = 1 for some integer (eventually infinite)
m(s, t) ≥ 2.

(ıı) Root system condition: there exists a representation V of W over R together with a subset
∆ of V \ {0} such that

• ∆ = −∆;

• ∆ is W -invariant;

• there exist a subset Π = {αs}s∈S of ∆ such that any α ∈ ∆ is such that exactely one of α or −α
belongs to the positive cone generated by Π. In the first case α is called positive and negative in
the other. We denote by ∆+ and ∆− the sets of positive and negative roots;

• we have sαs ∈ ∆− and, for all α ∈ ∆+ \ {αs}, we have sα ∈ ∆+;

• For s and t in S and for w ∈W such that wαs = αt, then wsw
−1 = t.

(ııı) Strong exchange condition: let s ∈ S and v and w in W be such that ℓ(vsv−1w) < ℓ(w)
then for any expression w = s1 · · · sr with sk ∈ S, we have vsv−1w = s1 · · · ŝi · · · sr for some i.

(ıv) Exchange condition: let s ∈ S and w ∈W be such that ℓ(sw) < ℓ(w) then for any reduced
expression w = s1 · · · sr with sk ∈ S, we have sw = s1 · · · ŝi · · · sr for some i.

Proof : We have already proved in our study of Coxeter groups that (ı) implies (ıı). It is evident that
(ııı) implies (ıv) and we are left to prove that (ıı) implies (ııı) and that (ıv) implies (ı).

Let us prove the first implication. This will give another proof of the Strong exchange condition
for a Coxeter group.

We know that −s(αs) > 0 and s(−s(αs)) = −αs < 0, this implies by the fourth hypothesis that
s(αs)− αs.

Let us prove that the set T = {wsw−1 / s ∈ S w ∈ W} is in bijection with {α > 0 / α =
w(αs) for some s ∈ S}. For α > 0, with α = w(αs), s ∈ S, we define tα = wsw−1. If α = w′(au)
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with u ∈ S, then we have w′w−1(αs) = αu and by hypothesis w′w−1sww′−1 = u and in particular
wsw−1 = w′uw′−1 and t does not depend on the choice of s and w but only on α. Conversely, let t ∈ T
be such that t = wsw−1 and let βt = w(αs) or −w(αs) whichever is positive. If t = w′s′w′−1, then
w−1w′s′w′−1w = s. Set α = w−1w′(αs′), then we have s(α) = w−1w′(−αs′) = −α. By hypothesis,
this implies that α = αs or −αs. Therefore βt and w(α) = w′(αs′) are colinear so that βt = w′(αs′) or
−w′(αs′) whichever is positive. In particular βt does only depend on t and not on w and s such that
t = wsw−1. These two maps are clearly inverse of each other. Remark that we have t(βt) = −βt.

Before proving (ııı), we prove that, if w = s1 · · · sr is a non necessary reduced expression and if
t ∈ T is such that w−1(βt) < 0, then tw = s1 · · · ŝi · · · sr for some i. Indeed, as for Theorem 6.3.2
consider i be such that si−1 · · · s1(βt) > 0 but si · · · s1(βt) < 0 (this element always exist because βt > 0
but w−1(βt) < 0. Thus, this implies by hypothesis that si−1 · · · s1(βt) = αsi thus βt = s1 · · · si−1(αsi).
And by construction of βt be have t = s1 · · · si−1sisi−1 · · · s1 thus tw = s1 · · · ŝi · · · sr.

In particular, we get that if w−1(βt) < 0, then ℓ(wt) < ℓ(w). Conversely, if ℓ(tw) ≤ ℓ(w), then by
remark that the proof of Proposition 6.3.1 applies readily to get that w−1(βt) < 0. In particular we
proved that ℓ(tw) ≤ ℓ(w) if and inly if w−1(βt) < 0 and we are done.

Finally lets prove that (ıv) implies (ı). This is a bit technical. Consider the group W̃ which is the
quotient of the free group generated by the elements s ∈ S by the relations s2 = 1 for s ∈ S. For
s ∈ S we denote by s̃ the corresponding element in W̃ . Let f : W̃ → W be the canonical map and
denote by Ñ the normal subgroup generated by the elements (ss′)m(s,s′) for s and s′ in S. We want
to prove that Ñ = ker f .

Assume this is not true, then there exists an element z = s̃1 · · · s̃k ∈ ker f such that z 6∈ Ñ . Assume
that ℓ(z) = k is minimal for this property. We have 1 = s1 · · · sk thus ℓ(s1 · · · sk) = 0 and ℓ(sk) = 1 and
there exists an index i < k such that ℓ(si · · · sk) ≤ ℓ(si+1 · · · sk) and si+1 · · · sk is reduced. The fact that
ℓ(s1 · · · sk) = 0 implies that i ≥ k/2. We may now apply Exchange condition to get an index j such
that i < j ≤ k such that si · · · sk = si+1 · · · ŝj · · · sk i.e. we have si · · · sj = si+1 · · · sj−1. This implies
that z0 = s̃i · · · s̃j s̃j−1 · · · s̃i+1 lies in ker f . But we also have that ℓ(z0) ≤ j−i+1+j−i−1 = 2j−2i ≤ k.

If ℓ(z0) < k, then by minimality we have that z0 ∈ Ñ and then we get

z = s̃1 · · · s̃k = s̃1 · · · s̃i−1z0s̃i+1 · · · s̃j−1s̃j+1 · · · s̃r
= (s̃1 · · · s̃i−1z0s̃i−1 · · · s̃1)s̃1 · · · s̃i−1s̃i+1 · · · s̃j−1s̃j+1 · · · s̃r

.

The two factors on the last line are in Ñ (because Ñ is normal and because of the minimality condition)
thus z ∈ Ñ a contradiction.

We must have ℓ(z0) = k and in particular i = k/2 and j = k. We thus have the equalities s1 · · · sk =
1 = s1 · · · ŝi · · · ŝk implying the inclusion s̃1 · · · ̂̃si · · · ̂̃sk ∈ Ñ (by minimality). Thus we have z =

s̃1 · · · s̃i−1s̃is̃i−1 · · · s̃1s̃ks̃ks̃1 · · · ̂̃si · · · ̂̃sk ∈ s̃1 · · · s̃i−1s̃is̃i−1 · · · s̃1s̃k · Ñ . Let z1 = s̃ks̃1 · · · s̃i−1s̃is̃i−1s̃1,
we have z ∈ z−11 · N and because N is normal, we get that z1 ∈ z−1 · N . Now we replace z by z1.

We have ℓ(z1)leq2i = k but z1 6∈ Ñ (otherwise z would be in Ñ) thus ℓ(z1) = k. Applying the same
method gives us

z2 = s̃1s̃ks̃1 · · · s̃i−2s̃i−1s̃i−2 · · · s̃1s̃k ∈ z−11 ·N
and then a sequence of elements

z2a = (s̃1s̃k)
as̃1 · s̃i−2as̃i−2a+1s̃i−2a · · · s̃1(s̃ks̃1)a−1s̃k ∈ z−12a−1 ·N

z2a+1 = s̃k(s̃1s̃k)
as̃1 · s̃i−2a−1s̃i−2as̃i−2a−1 · · · s̃1(s̃ks̃1)a ∈ z−12a ·N.

In particular, we get that zi−1 = (s̃1s̃k)
i or (s̃ks̃1)

i and zi−1 ∈ z± · Ñ . But zi−1 ∈ ker f thus m(s1, sk)
divides i and thus zi−1 ∈ Ñ by definition and thus Ñ = ker f . �
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Definition 6.4.2 A Coxeter group is called cristallographic if m(i, j) ∈ {2, 3, 4, 6,∞} for all i and j
in [1, n].

Corollary 6.4.3 The Weyl group of any Kac-Moody Lie algebra is a Coxeter cristallographic group.

Proof : We prove that the root system condition of the previous Theorem is satisfied. We take V the
R-linear span of the αi for i ∈ [1, n] in the algebra h∗ and for ∆ the set of roots of g(A). We already
know that ∆ is symmetric and by Proposition 5.2.6 that it is W -invariant. We also know that any
root is either positive or negative. We already know that s · αi = −αi and because any root as to be
either positive or negative, the same proof as is Proposition 6.2.9 gives the fourth condition.

Let us prove the last condition. Assume that αj = w · αj for i and j in [1, n]. We need to prove
that wsiw

−1 = sj. But let v ∈ V be such that 〈v, α∨j 〉 = 0, then we have

wsiw
−1(v) = v − 〈w−1(v), α∨i 〉w(αi) = v − 〈v,w(α∨i )〉w(αi) = v

because w(α∨i ) = α∨j . On the other hand, we have wsiw
−1(αj) = αj so that the equality follows. The

group W is a Coxeter group.
We have already seen that if the product a = ai,jaj,i ≥ 4, then the order of sisj is infinite.

Furthermore, if a = 0, 1, 2, 3 or 4, we have seen that the order of σiσj on the vector space generated
by αi and αj is 2, 3, 4 or 6. Furthermore we have also seen that the order of σiσj is equal to that
order. �

6.5 Dominant chambers and Tits cone

Let W be the Weyl group of a Kac-Moody Lie algebra g(A) with Cartan Lie algebra h.

Definition 6.5.1 Let us fix a real form hR of h (that is to say a real subvector space such that
hR ⊗C ≃ h). Assume that hR satisfies:

• {α∨1 , · · ·α∨n} ⊂ hR

• αi(hR) ⊂ R for any i ∈ [1, n].

We have that hR is W -stableand define the Dominant Chamber CR by

CR = {h ∈ hR / 〈h, αi〉 ∈ R≥0 for all i}.

Define the Tits cone X by

X =
⋃

w∈W

wCR.

Theorem 6.5.2 (ı) For λ ∈ CR, the isotropy group Wλ = {w ∈ W / w(λ) = λ} is generated by the
simple reflections it contains.

(
iı) The dominant chamber CR is a fundamental domain for the action of W on X (i.e. any orbit
intersects CR is exactly one point).

(ııı) We have X = {λ ∈ hR / 〈λ, α〉 < 0 for a finite number of α ∈ ∆+}. In particular X is a
convex cone.

(ıv)We have CR = {h ∈ hR / for every w ∈W, h− w(h) =
∑

i ciα
∨
i where ci ≥ 0}.

(v)The following conditions are equivalent:
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• |W | <∞;

• X = hR;

• |∆| <∞;

• |∆∨| <∞ where ∆∨ is the root system for the matrix At.

(vı) If h ∈ hR, then |Wh| <∞ if and only if h lies in the interior of X (for the Hausdorff topology).

Proof : We prove (ı) and (ıı). Let w ∈ W and w = si1 · · · sir a reduced expression. Assume that
w(h) = h′ with h and h′ in CR. We have 〈h, αir 〉 ≥ 0 and thus 〈h′, w(αir )〉 ≥ 0. But because the
expression is reduced, we have that w(αir ) < 0 thus 〈h′, w(αir )〉 ≤ 0. We deduce that 〈h′, w(αir )〉 = 0
and 〈h, air 〉 = 0. In particular this implies that sir(h) = h. We conclude (ı) and (ıı) by induction on
the length.

For (ııı), set X ′ be the set defined by the condition in the Theorem. We have CR ⊂ X ′. It is
also W -invariant (because for any element w ∈ W only a finite number of roots become negative) so
that we have the inclusion X ⊂ X ′. Let us prove the reverse inclusion. Take h ∈ X ′, and consider
Mh = {α ∈ ∆+ / 〈h, α〉 < 0}. This set is finite and if it is empty then h ∈ C ⊂ X. Otherwise, there
exists an i such that αi ∈Mh and applying si we get that |Msi(h)| < |Mh|. We conclude by induction.

(ıv) Let h ∈ CR, we proceed by induction on ℓ(w) to prove that h− w(h) =
∑

i ciα
∨
i with ci ≥ 0.

Take w = sv with ℓ(w) = ℓ(v) + 1. We have v−1(αs) > 0. But we have

w(h) = sv(h) = v(h) − 〈v(h), αs〉α∨s = h−
∑

i

ciα
∨
i − 〈h, v−1(αs)〉α∨s

giving that

h− w(h) =
∑

i

ciα
∨
i + 〈h, v−1(αs)〉α∨s

but by induction ci ≥ 0 and 〈h, v−1(αs)〉 ≥ 0 because v−1(αs) > 0.
Conversely, we have that 〈h, αi〉α∨i = h− si(h) =

∑
k ckα

∨
k with ck ≥ 0 and we have the result.

(v) Let h ∈ hR and take h′ be a maximal element (for the order defined by positive coroots) in the
orbit W · h. Such an element exists because W is finite. But thenwe have si(h

′) = h′− scah′αiα
∨
i and

because of the maximality condition, we get that 〈h′, αi〉 ≥ 0 and thus h′ ∈ CR.
Let h ∈ hR such that 〈h, α〉 6= 0 for all α ∈ ∆. We thus have 〈h, α〉 < 0 or 〈h,−α〉 < 0. But h

is in X and by the point (ııı) we get that ∆ is finite. We already proved in Corollary 6.2.10 that if
∆ is finite then W is finite so that we get the equivalence of the condition except for the dual root
system. But remark that the Weyl group W is determined by the generalised Cartan matrix A and
that the Weyl group of the transpose matrix is isomorphic to W . We get the equivalence for the dual
root system.

(v) Consider the set S′ of simple reflections in Wh. We now by (i) that S′ generates Wh and in
particular any positive root α such that sα is in Wh can be written as a linear combination of simple
roots in S′. These positive roots form the set ∆h

+ = {α ∈ ∆+ / 〈α, h,=〉0}. This is also the root system
of the group Wh. In particular Wh is finite if and only if ∆h

+ is finite. But in a small neighborhood of
h these only positive roots α on which the sign of the evaluation may change are exactly the roots in
∆h

+. We conclude by the description of X that this neighborhood is contained in X if and only if ∆h
+

is finite. �



Chapter 7

Invariant bilinear form on g(A)

7.1 Symmetrisable Cartan matrices

We define a special class of Cartan matrices which will include all finite dimensional and affine Kac-
Moody Lie algebras. They will have special very usefull properties (in particular the existence of a
Casimir operator, see Chapter 11).

Definition 7.1.1 Let A = (ai,j) be an n × n matrix, it is called symmetrizable if there exists a non
degenerated diagonal matrix D = Diag(ǫ1, · · · , ǫn) and a symmetric matrix B such that A = DB.

Proposition 7.1.2 (ı) If A is symmetrisable generalised Cartan matrix, then there exists a non de-
generate diagonal matrix D with coefficients in Q such that D−1A = B is symmetric.

(ıı) If A is a symmetric indecomposable GCM, then D is unique up to scalar multiple and we may
choose all the ǫi ∈ Q and positive.

(ııı) Assume A to be a symmetric indecomposable GCM, then there is an unique diagonal matrix
D = Diag(ǫi) whose coefficients are in Z and positive, such that D−1A is symmetric and such that if
D′ = Diag(ǫ′i) is another matrix with the same properties, then ǫi ≤ ǫ′i. Such a matrix is called the
minimal D.

Proof : (ı) Consider the equations for D, we have that for all i and j in [1, n], ǫ−1i ai,j = ǫ−1j aj,i. These
solutions are homogeneous in ǫi. In particular, if ai,j is non vannishing and if the quotient aj,i/ai,j is
a rational number, then if the system has a solution, it has a rational solution.

(ıı) If furthermore A is indecomposable, then for any i, there exists a sequence (i1, · · · , ik) of
integers in [1, n] such that i1 = 1, ik = i, ij 6= ij+1 and aij ,ij+1 6= 0 for 1 ≤ j ≤ k − 1. This implies
that ǫi is determined by ǫ1 thus the matrix D is unique modulo scalars. Furthermore because all the
aij ,ij+1 are non negative, this implies that all the ǫi have the same sign and me may assume they are
positive.

(ııı) We have seen that if A is indecomposable then the matrix D is unique up to scalar multiples.
The result follows. �

We end this section with a combinatorial characterisation of symmetrisable matrices.

Proposition 7.1.3 A matrix A = (ai,j)i,j∈[1,n] is symmetrisable if and only if the following two
conditions are satisfied

• ai,j = 0 implies aj,i = 0;

• for all sequence i1 · · · ik of indexes in [1, n], we have ai1,i2 · · · aik−1,ikaik,i1 = ai2,i1 · · · aik,ik−1
ai1,ik .
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Proof : If A is symmetrisable, then there exists a non degenerate diagonal matrix D and there exists
a symmetric matrix B such that A = DB. We have ai,j = di,ibi,j and aj,i = dj,jbj,i thus

aj,i =
dj,j
di,i

ai,j.

This proves the first implication.
Conversely, assume that A satisfies the two conditions above. We may assume that A is indecom-

posable (otherwise we prove the result composentwise). Let i ∈ [1, n], there exists (see Lemma 4.2.9)
a sequence i1 = 1, · · · , ik = i of indices such that ai1,i2 · · · aik−1,ik 6= 0. Set d1,1 = 1 and

di,i =
ai2,i1 · · · aik,ik−1

ai1,i2 · · · aik−1,ik

.

Remark that because of the second condition, this definition does not depend on the choice of such
a sequence of indices and that for any sequence of indices l1, · · · , lr with l1 = i and lr = j and with
al1,l2 · · · alr−1,lr 6= 0 we have

dj,j =
al2,l1 · · · alr ,lr−1

al1,l2 · · · alr−1,lr

di,i.

We may now set B = D−1A. We want to prove that B is symmetric. We have

bi,j =
ai,j
di,i

and bj,i =
aj,i
dj,j

and these two are equal by the previous formula. �

7.2 Invariant bilinear forms

Proposition 7.2.1 (ı) Let A be symmetrizable and indecomposable. Let (h,Π,Π∨) be a realisation of
A. There exists a non degenerate symmetric W -invariant bilinear form ( , ) on h.

(ıı) The kernel of the resctriction of this form to h′ =
∑

iCα
∨
i is c.

(ııı) The restriction of ( , ) to h′ is unique up to scalar multiple. Moreover if such a form exists
on h′ then A is symmetrisable.

Proof : (ı) and (ıı). Let D = Diag(ǫi) be a diagonal matrix such that D−1A is symmetric. Let h′′ be
a supplementary to h′ in h. We define ( , ) by the following equations:

(α∨i , h) = 〈αi, h〉ǫi for h ∈ h, i = 1, · · · , n;

(h′, h′′) = 0, for h′, h′′ ∈ h′′.

As we have (α∨i , α
∨
j ) = 〈αi, α∨j 〉ǫi = 〈α∨j , αi〉ǫj = (α∨j , α

∨
i ) we see that ( , ) is well defined and

symmetric.
Let h ∈ h such that (h, h′) = 0 for all h′ ∈ h. Then, write h =

∑
i ciα

∨
i + h′′ with h′′ ∈ h′′, then we

have h ∈ c ⊂ h′. In particular h′′ = 0 and for any h′ ∈ h, we have 〈∑i ciǫiα
∨
i , h

′〉 = 0. This implies
that

∑
i ciǫiα

∨
i = 0 thus h = 0. Furthermore, we proved (ıı) for ( , ).

Let us compute

(si(h), si(h
′)) = (h− 〈αi, h〉α∨i , h′ − 〈αi, h′〉α∨i )

= (h, h′)− 〈αi, h〉(α∨i , h′)− (h, 〈αi, h′〉α∨i ) + 〈αi, h′〉〈αi, h′〉(α∨i , α∨i )
= (h, h′)− 〈αi, h〉〈αi, h′〉ǫi − 〈αi, h′〉〈h′, αi〉ǫi + 2〈αi, h′〉〈αi, h′〉ǫi
= (h, h′).
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The invariance is proved.

(ııı) Assume that there exists a non zero W -invariant bilinear form (( , )) on h′. We don’t assume
it is symmetric nor non degenerate. Let us set ǫi = ((αi, α

∨
i ))/2 and compute

2ǫj = ((siα
∨
j , siα

∨
j )) = 2ǫj − 〈αi, α∨j 〉((α∨i , α∨j ))− 〈αi, α∨j 〉((α∨j , α∨i )) + 2〈αi, α∨j 〉2ǫi

((α∨i , α
∨
j )) = ((siα

∨
i , siα

∨
j )) = 2ǫi〈αi, α∨j 〉 − ((α∨i , α

∨
j )).

The second relation gives ((α∨i , α
∨
j )) = ǫi〈αi, α∨j 〉 and ((α∨j , α

∨
i )) = ǫj〈αj , α∨i 〉. Together with the first

one when 〈αi, α∨j 〉 6= 0, we get ǫi〈αi, α∨j 〉 = ǫj〈αj , α∨i 〉. This is also true if 〈αi, α∨j 〉 = 0 because in that
case 〈αj , α∨i 〉 = 0. This implies because of the indecomposability of A that if ǫi = 0 for some i, then
it is true for all i. But in that case the second relation gives ((α∨i , α

∨
j )) = 0 for all i and j and (( , ))

would be zero. This implies that all the ǫi are non zero thus A is symmetrisable. To get the unicity,
apply the previous to

(( , ))− ((α∨1 , α
∨
1 ))

(α∨1 , α
∨
1 )

( , ).

It has to be zero. �

Since the bilinear form ( , ) is non degenerate, it induces an isomorphism ν : h → h∗ defined by
〈ν(h), h′〉 = (h, h′) for all h′ ∈ h. We still denote ( , ) the induced bilinear form on h∗. We have the
easy:

Fact 7.2.2 We have the following formulas:

(ı) ν(α∨i ) = ǫiαi for all i ∈ [1, n].

(ıı) (αi, αj) = ǫ−1j 〈αi, α∨j 〉 = ǫ−1i 〈αj , α∨i 〉 for all i and j in [1, n].

Remark 7.2.3 We have the inequality (αi, αi) > 0 and the identity

A =

(
2(αi, αj)

(αi, αi)

)
.

Definition 7.2.4 A form satisfying the conclusion of the previous Proposition is called a normalised
form on h.

Let g(A) be the associated Lie algebra.

Theorem 7.2.5 (ı) If A is a indecomposable symmetrisable generalised Cartan matrix, then there
exists a bilinear form ( , ) on g(A) satisfying

• ( , ) is invariant, i.e. ([x, y], z) = (x, [y, z]).

• ( , )|h is a normalised form on h.

(ıı) Moreover, once ( , )|h is fixed, such a form is unique and automatically symmetric. It satisfies

• (gα, gβ) = 0 unless α+ β = 0 for any roots α and β.

• The restriction ( , )|gα+g−α is non degenerate for α ∈ ∆ and hence gα and g−α are non degen-
erately paired. The form ( , ) is non degenerate.

• [x, y] = (x, y)ν−1(α) for x ∈ gα, y ∈ g−α and α ∈ ∆.
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Proof : For α =
∑

i αi a root we define |α| by ∑i ki. For any integer k define gk by:

gk =
⊕

α∈∆∪{0},|α|=k

gα. Set g(N) =

N⊕

k=−N

gk.

We extend the bilinear form ( , ) on g(1) by: (fj, ei) = (ei, fj) = δi,jǫi and (gk1 , gk2) = 0 for k1+k2 6= 0
and |k1|, |k2| smaller than or equal to 1. We check that this form is invariant with respect to the action
of g(1). We compute ([ei, fj ], h) = (δi,jα

∨
j , h) = δi,jǫi〈αj , h〉 = (ei, [fj , h]) this proves the invariance

since the other conditions all vanish.
We now extend ( , ) on g(N) by induction on N so that (gk1 , gk2) = 0 if k1 + k2 6= 0 and

|k1|,|k2| ≤ N and that ([x, y], z) = (x, [y, z]) for all x, y, z, [x, y] and [y, z] in g(N). Assume this form
is defined on g(N − 1). Then we have to define (x, y) and (y, x) for x ∈ gN and y ∈ g−N . We may
write y =

∑
i[ui, vi] where ui and vi are homogeneous of negative degrees and in g(N − 1) (this is

because y lies in n− which is generated by the elements fj). We may define

(x, y) =
∑

i

([x, ui], vi)

which is defined because [x, ui] lies in g(N − 1). To prove that this is well defined, we need to prove
that it does not depend on the choice of the writing y =

∑
i[ui, vi]. For this we prove the following

relation in g(N − 1):
([[a, b], c], d) = (a, [b, [c, d]])

where all the elements a, b, c and d as well as the brackets [[a, b], c], [b, [c, d]], [[a, c], b], [a, [b, c]], [a, c],
[b, d], [[b, c], d] and [c, [b, d]] are in g(N − 1). Indeed, we have the equalities:

([[a, b], c], d) = ([[a, c], b], d) + ([a, [b, c]], d)
= ([a, c], [b, d]) + (a, [[b, c], d])
= (a, [c, [b, d]] + [[b, c], d])
= (a, [b, [c, d]]).

But then if we write x =
∑

j [sj, tj ] with the sj and tj homogeneous of positive degree and in g(N−1).
Setting a = sj, b = tj , c = ui and d = vi we see that the previous conditions are satisfied and we get
([[sj , tj ], ui], vj) = (sj , [tj , [ui, vi]]) for all i and j so that we have

∑

i

([x, ui], vi) =
∑

j

(sj , [tj , y]).

This implies that this value does not depend on the writing of x nor on the writing of y.
For the invariance, we still need to prove that for x ∈ gN , for y ∈ g−N and for all h we have the

relations
(x, [h, y]) = ([x, h], y) and ([x, y], h) = (x, [y, h]).

We prove it by induction on N . We already proved that for g(1). Assume this is true for g(N − 1).
Then write x =

∑
j [sj, tj ] and y =

∑
i[ui, vi] we have

(x, [h, y]) =
∑

i(sj , [tj , [h, y]])
=
∑

i(sj , [h, [tj , y]]) +
∑

i(sj , [[tj , h], y])
=
∑

i([sj , h], [tj , y]) +
∑

i([sj , [tj , h]], y)
=
∑

i([[sj , h], tj ], y) +
∑

i([sj , [tj , h]], y)
= ([x, h], y)
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(x, [h, y]) =
∑

i(x, [h, [ui, vi]])
=
∑

i(x, [ui, [h, vi]]) +
∑

i(x, [[h, ui], vi])
=
∑

i([x, ui], [h, vi]) +
∑

i([vi, x], [h, ui])
=
∑

i([vi, [x, ui], h) +
∑

i([[vi, x], ui], h])
= ([y, x], h)

The third point is proved as follows.

0 = (x, [h, y]) + ([h, x], y) = (x, y)〈α + β, h〉

so that if α + β 6= 0, we need that (x, y) = 0. Let us prove the last point. We have for x ∈ gα and
y ∈ g−α:

([x, y]− (x, y)ν−1(α), h) = (x, [y, h]) − (x, y)〈α, h〉 = 0.

This implies that ( , ) is symmetric.
Finally, remark that if the restriction to gα + g−α is degenerate, then because of the third point,

the form is degenerate on the full space g(A). The kernel has to be an ideal of g(A) (because the form
is invariant) but the intersection of this ideal with h is trivial so that by construction of g(A) it has
to be trivial, the form is non degenerate and its restriction to gα + g−α is also non degenerate. �

Remark 7.2.6 If we define the Kac-Moody Lie algebras as the quotient of a free Lie algebra modulo
Serre’s relations, then the invariant bilinear form still exists but it is not, a priori, necessary non
degenerate. This is one of the reasons why we choose this definition of Kac-Moody Lie algebras.
In fact in the symmetrisable setting the two definitions coincide so that the form will also be non
degenerate.
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Chapter 8

Classification of Cartan matrices

In this chapter we describe a classification of generalised Cartan matrices. This classification can be
compared as the “rough” classification of varieties in terms of Fano varieties (−K ample, discrete
moduli space), Calabi-Yau varieties (more generally K-trivial varieties, tame moduli space) and vari-
eties of general type (K ample, big moduli space). We will indeed get the case of finite dimensional
Lie algebras, of Affine Lie algebras and of Kac-Moody Lie algebras of general type. In the first case,
we recover semisimple Lie algebras. The second class is very rich and we shall construct explicitly
these algebras in Chapter 12. The last case is more obscure even if special Lie algebras can be studied.

8.1 Finite, affine and indefinite case

We will prove the decomposition into these three catgories for a more larger class of matrices than
the generalised Cartan matrices. We will deal with square matrices A = (ai,j) of size n satisfying the
following properties:

• A is indecomposable;

• ai,j ≤ 0;

• (ai,j = 0) ⇒ (aj,i = 0).

Let us recall the following result on systems of inequalities:

Lemma 8.1.1 A system of real inequalities λi(xj) =
∑

j ui,jxj > 0 for i ∈ [1,m], j ∈ [1, n] has a
solution if and only if there is no non trivial dependence relation

∑
i viλi = 0 with vi ≤ 0 for all i.

Proof : If there is such a non trivial relation, the system has no solution. We prove the converse by
induction on m. Assume there is no non trivial such relation. By induction, the system λi > 0 for
i < m has a solution. The set of solutions is a cone C containing 0 in its closure. We need to prove
that this cone intersects the half space defined by λm > 0.

If it is not the case then we first prove that λm is in the linear span of the λi for i < m. Indeed,
otherwise there would exist an element x such that λm(x) = 1 and λi(x) = 0 for i < m. But then
there exists a small deformation y of x satisfying λm(y) > 0 and λi(y) > 0 for i < m.

Let us consider a relation between λm and the λi and write
∑m

i=1 viλi = 0. We take such a relation
of minimal length that is the number of non vanishing vi’s is as small a possible. Let us denote by
I the set of indices i < m such that vi 6= 0. Consider the restriction of the cone C to the subspace
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λm = 0. If this intersection is non empty, we get as before a solution of our system by perturbing the
element in the intersection. If the intersection is empty, this implies that there is a relation

m∑

i∈I

uiλi = 0

with all ui ≤ 0. But by our minimality condition, the linear forms λi for i ∈ I are independent.
Thus the restriction of these linear forms on the hyperplane λm = 0 satisfy a unique equation. This
equation is given by the restriction of the relation

∑m
i=1 viλi = 0. Therefore that all the vi for i < m

are non positive. But one of the vi is positive by hypothesis thus vm > 0 and vi ≤ 0 for i < m. We
are done: the system has a solution has soon as it has a solution for the first m− 1 inequalities. �

Definition 8.1.2 A vector x = (xi) will be called positive (resp. non negative), this will be
denoted x > 0 (resp. x ≥ 0) if for all i we have xi > 0 (resp. xi ≥ 0).

Corollary 8.1.3 If A = (ai,j) is an n ×m real matrix for which there is no x ≥ 0, x 6= 0 such that
Atx ≥ 0 (here At is the transpose of A), then there exists v > 0 such that Av < 0.

Proof : We look for a vector v = (v1, · · · , vm) such that vi > 0 for all i and λj =
∑

k aj,kvk < 0 that
is −λj > 0. We know from the previous Lemma that this system has a solution if and only if there is
non non trivial dependence relation between the vectors vi and −λj with non positive coefficients.

Assume we have such a relation, it can be written as

∑

i

aivi +
∑

j

uj(−λj) = 0

with ai and uj non positive. This leads to the equation vta = vtAtu where a = (ai) is non positive
and u = (uj) is non positive. This gives the equation Atu = a and we get that −u ≥ 0 with
At(−u) = −a ≥ 0 which is impossible. �

Lemma 8.1.4 Let A satisfy the above three properties. Then Au ≥ 0 and u ≥ 0 imply that either
u > 0 or u = 0.

Proof : Let u a be non zero vector such that Au ≥ 0 and u ≥ 0. We have

ai,iui ≥
∑

j

(−ai,j)uj .

So if ui vanishes, then all the uj such that there is a sequence i0 = i, · · · , ik = j with ai0,i1 · · · aik−1,ik 6= 0
vanish. As the matrix is indecomposable and thanks to our hypothesis on the matrix, this implies by
Lemma 4.2.9 that u = 0. This is not the case so that u > 0.

Here is another proof without Lemma 4.2.9. Reorder the indexes such that ui = 0 for i < s and
ui > 0 for i ≥ s. Then we get that ai,j = 0 = aj,i for i < s and j ≥ s. The matrix is decomposable
except if u > 0. �

We may now prove the classification of our matrices into three disjoint categories.

Theorem 8.1.5 Let A be a real n×n-matrix satisfying the above three conditions. Then we have the
following alternative for both A and At:

• det(A) 6= 0, there exists u > 0 such that Au > 0 and Av ≥ 0 implies that v > 0 or v = 0.
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• Corank(A) = 1, there exists u > 0 such that Au = 0 and Av ≥ 0 implies that Av = 0.

• there exists u > 0 such that Au < 0 and (Av ≥ 0 and v ≥ 0) implies that v = 0.

A matrix of the first type is called a finite type matrix, of the second case, a affine type matrix
and of the third one, a indefinite type matrix.

Proof : Remark that the third case is disjoint from the first two because in the first two there is no
u > 0 such that Au < 0 (set v = −u and apply the result on Av ≥ 0). Furthermore because of the
rank condition on the matrix the first two cases are disjoint.

We consider the following convex cone:

KA = {u / Au ≥ 0}.

But the previous Lemma, this cone intersects the cone {u ≥ 0} only in {0} or in its interior {u > 0}.
We thus have the inclusion KA ∩ {u ≥ 0} ⊂ {0} ∪ {u > 0}. Assume this intersection is not reduced to
the point 0. Then we have the alternative:

• KA is contained in {u > 0} ∪ {0} (and thus does not contain any linear subspace)

• KA = {u / Au = 0} is a 1-dimensional line.

Indeed, we assume that KA meets the cone {u > 0} in some point say u. But if there is an element v
of KA outside this cone, because of the convexity of KA, we know that the interval [u, v] is contained
in KA and this interval has to meet the boundary of {u ≥ 0}. This is only possible on the 0 element
thus v has to be in the half line generated by −u and the whole line through u is contained in KA.
We are in the second case. Assume there is an element w ∈ KA not in that line. Then because KA

is a convex cone we get that the whole half plane generated by w and the line trough u is contained
in KA but this half plane will meet the boundary of the cone {u ≥ 0} outside 0 which is impossible.
Because u and −u are in KA, this implies that Au = 0.

The first case is equivalent to the finite type case. If Av ≥ 0, then v ∈ KA and v > 0 or v = 0
because of the inclusion of KA in {u > 0} ∪ {0}. Because KA does not contain any linear subspace, A
has to be non degenerate. In particular A is surjective thus there exists a vector u with Au > 0. This
u satisfies u > 0 or u = 0. The last case is not possible since otherwise we would have Au = 0.

The second case is equivalent to the affine case: we know that there is an element u > 0 such that
Au = 0 and the kernel of A is KA and of dimension 1 and we get the condition on Av ≥ 0.

Furthermore, in the finite (resp. affine) case, we see that there is no v > 0 such that Av < 0. By
Corollary 8.1.3, this implies that there is an element u in the cone {u ≥ 0} different from 0 and in
KAt . In particular At is again of finite (resp. affine type), we distinguish the two cases thanks to the
rank of the matrix.

In the last case, we know that there is no u ≥ 0 with u 6= 0 such that Atu ≥ 0. Lemma 8.1.3 tells
us that there exists an element v > 0 such that Av < 0. If Aw ≥ 0 and w ≥ 0 we know that w = 0.
�

Corollary 8.1.6 Let A be as in the previous Theorem, then A is of finite (resp. affine, resp. in-
definite) type if and only if there exists and element u > 0 such that Au > 0 (resp. Au = 0, resp.
Au < 0).
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8.2 Finite and affine cases

8.2.1 First results

Definition 8.2.1 A matrix (ai,j)i,j∈I with I ⊂ [1, n] is called a principal submatrix of A =
(ai,j)i,j∈[1,n]. The determinant of a principal submatrix is a principal minor.

Lemma 8.2.2 Let A be indecomposable of finite or affine type. Then any proper principal submatrix
of A decomposes into a direct sum of matrices of finite type.

Proof : Let I ⊂ [1, n] and let AI be the associated principal submatrix. If u = (ui)i∈[1,n], denote by uI
the vector (ui)i∈I . We know by hypothesis that there exists a vector u > 0 such that Au ≥ 0. Consider
the subproduct AIuI . Because all the ai,j for i 6= j are non positive, this implies that (Au)I ≤ AIuI
with equality if and only if for all i ∈ I and all j 6∈ I we have ai,j = 0. We thus have uI > 0 and
AIuI ≥ 0 which implies that AI is of affine or finite type. If it is of affine type then AIuI ≥ 0 implies
AIuI = 0 and in particular AIuI = (Au)I . This means that I = [1, n] or A is decomposable. �

Lemma 8.2.3 A symmetric matrix A is of finite (resp. affine) type if and only if A is positive definite
(resp. positive semidefinite of corank 1).

Proof : Assume A is positive semidefinite, then if there exists u > 0 with Au < 0, then utAu < 0
which is impossible. In particular A is of finite of affine type. The rank condition distinguishes the
two cases.

Conversely, if A is of finite or affine type, then there exists an u > 0 such that Au ≥ 0. For λ > 0,
we have (A + λI)u > 0 thus A is of finite type and hence non degenerate. Therefore the eigenvalues
of A are non negative and the result follows with the rank condition. �

Lemma 8.2.4 Let A = (ai,j)i,j∈[1,n] be a matrix of finite or affine type such that ai,i = 2 and ai,jaj,i ≥
1. Then A is symmetrisable. Moreover if there exists a sequence i1, i2, i3, · · · , ik of indices with k ≥ 3
such that ai1,i2ai2,i3 · · · aik−1,ikaik,i1 6= 0, then A is of the form




2 −u1 · · · 0 −u−1n
−u−11 2 0 0

...
. . .

...
0 0 2 −un−1

−un 0 · · · −u−1n−1 2




where the ui are some positive numbers.

Proof : Let us prove that the second part of the Lemma implies the first one. Indeed, if there is no such
sequence, then the conditions of Proposition 7.1.3 are satisfies (all products ai1,i2ai2,i3 · · · aik−1,ikaik,i1
vanish) and the matrix is symmetrisable).

Consider such a sequence of indices with ai1,i2ai2,i3 · · · aik−1,ikaik ,i1 6= 0. We may reorder the indices
and suppose that ij = j so that we have a principal submatrix of A of the form

B =




2 −b1 · · · ∗ −bk
−b′1 2 ∗ ∗
...

. . .
...

∗ ∗ 2 −bk−1
−b′k ∗ · · · −b′k−1 2



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where the ∗ are non positive elements and the bi and b
′
i are positive. We know that this matrix B is of

affine or finite type so that there exists a vector u > 0 such that Bu ≥ 0. Let U be the diagonal matrix
with the coefficients of u on the diagonal. Replacing B by U tBU , we may assume that ut = (1, · · · , 1).
The condition Bu ≥ 0 gives us conditions

∑
j Bi,juj ≥ 0 and by sum of all these conditions and the

fact that the ∗ in B are non positive we get

2k −
k∑

i=1

(bi + b′i) ≥ 0.

But because bib
′
i ≥ 1, we get that bi + b′i ≥ 2 (the roots of X2 − (bi + b′i)X + bib

′
i are real positive

thus the discriminant (bi + b′i)
2 − 4bib

′
i is non negative and bi + b′i ≥ 2). But this, together with the

previous inequality, implies that for all i, we have bi = b′i = 1 and all the ∗ in B vanish. But then
det(B) = 0 and thus A = B (because non proper principal submatrix is affine. Conjugating with U
gives the matrix of the lemma. �

To summarise properties of generalised Cartan matrices (as for classical Cartan matrices), it is
usefull to define the associated Dynkin diagram D(A).

Definition 8.2.5 The Dynkin diagram D(A) of a generalised Cartan matrix A is the graph whose
vertices are indexed by the row of the matrix (i.e. by [1, n]) and whose edges are described as follows

• if ai,jaj,i ≤ 4 and |ai,j | ≥ |aj,i|, the vertices i and j are connected by |ai,j | lines equipped with
an arrow pointing toward i if |ai,j| > 1;

• if ai,jaj,i > 4, the vertices i and j are connected by a line colored by the ordered pair of integers
|ai,j |, |aj,i|.

The matrix A is indecomposable if and only if D(A) is connected and the matrix A is determined
by the Dynkin diagram D(A) modulo permutation of the indices. We say that the Dynkin diagramm
D(A) is of finite, affine or indefinite type if A is.

Proposition 8.2.6 Let A be any indecomposable generalised Cartan matrix, then we have:

(ı) the matrix A is of finite type if and only if all its principal minors are positive.

(ıı) The matrix A is of affine type if and only if all its proper principal minors are positive and
det(A) = 0.

(ııı) If A is of finite or affine type, then any proper subdiagram of D(A) is an union of Dynkin
diagrams of finite type.

(ıv) If A is of finite type or affine type and if D(A) contains a cycle of length at least 3, then D(A)
is the following cycle:

��������

��������

♦♦♦♦♦♦♦♦♦♦♦♦♦ �������� ❴❴❴ �������� ❴❴❴ �������� ��������

❖❖❖❖❖❖❖❖❖❖❖❖❖

(v) The matrix A is of affine type if and only if there exists a vector δ > 0 with Aδ = 0. Such a
vector is unique up to scalar multiple.

Proof : Let us prove (ı) and (ıı). Let AI be a principal submatrix of A, it is of finite or affine type and
is a generalised Cartan matrix. We know from Lemma 8.2.4 that any generalised Cartan matrix of
finite or affine type is symmetrisable. Let DI be a diagonal matrix with positive diagonal coefficients
such that BI = DIAI is symmetric. The matrix BI has the same type as AI and by Lemma 8.2.3
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this implies that BI is positive and even positive definite if AI is proper or if A is of finite type. In
particular in all these cases we have det(BI) > 0 and thus det(AI) > 0.

Conversely, if all principal minors of A are positive, then assume there exists a vector u > 0
with Au < 0. We get inequalities of the form

∑
j ai,juj < 0. Now we eliminate the variables ui for

i > 1 in the equation
∑

i a1,iui < 0. For this we remove a1,i/2 times the inequality
∑

j ai,juj < 0.
Because a1,ileq0 for i > 1 we end up with an inequality of the form λu1 < 0. Furthermore, we have
det(A) = λdet(A′) where A′ is the submatrix of A defined by the indices [2, n]. Because all the proper
minors are positive, we get that λ > 0 in the first case and λ = 0 in the second case. In both case the
inequalities u1 > 0 and λu1 < 0 are impossible. The matrix A is thus of finite or affine type and the
cases are described by the rank.

(ııı) This is a direct consequence of Lemma 8.2.2.

(ıv) If D(A) contains a cycle of length at least 3, this implies that the condition: there exists a
sequence i1, i2, i3, · · · , ik of indices with k ≥ 3 such that ai1,i2ai2,i3 · · · aik−1,ikaik ,i1 6= 0, of Lemma 8.2.4
is satisfied. The matrix A is thus given by Lemma 8.2.4. Furthermore, in the case of generalised
Cartan matrices, if ui and u

−1
i are positive integers, this implies that ui = 1. The associated Dynkin

diagram is the desired cycle.

(v) This is a direct consequence of Theorem 8.1.5. �

8.2.2 Examples of finite and affine type matrices

In this subsection we give examples of generalised Cartan matrices of finite and affine type and we
describe their Dynkin diagrams.

Proposition 8.2.7

(ı) The following matrices are generalised Cartan matrices of finite type. Their associated Dynkin
diagrams are given in Table 1.

Cartan matrices

An =




2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −1
0 0 0 0 −1 2




Bn =




2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −2
0 0 0 0 −1 2



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Cn =




2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −1
0 0 0 0 −2 2




= Bt
n

Dn =




2 −1 0 0 · · · 0

−1 2
. . .

. . .
. . . 0

0
. . . 2 −1 0 0

0
. . . −1 2 −1 −1

...
. . . 0 −1 2 0

0 0 0 −1 0 2




E6 =




2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2




E7 =




2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2




E8 =




2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2




F4 =




2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2




G2 =

(
2 −1
−3 2

)
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Dynkin diagrams

An �������� �������� �������� ❴❴❴ �������� �������� ��������

Bn �������� �������� �������� ❴❴❴ �������� �������� +3��������

Cn �������� �������� �������� ❴❴❴ �������� ��������ks ��������

��������

Dn : �������� �������� �������� ❴❴❴ �������� ��������

☎☎☎☎☎☎☎☎☎

✿✿
✿✿

✿✿
✿✿

✿

��������

��������

E6
�������� �������� �������� �������� ��������

��������

E7
�������� �������� �������� �������� �������� ��������

��������

E8
�������� �������� �������� �������� �������� �������� ��������

F4
�������� �������� +3�������� ��������

G2 : �������� ❴*4��������

Table 1.

(ıı) The following matrices are generalised Cartan matrices of affine type. Their associated Dynkin
diagrams are given in Table 2.1, Table 2.2 and Table 2.3. Furthermore the smallest vector δ with
positive integers values such that Aδ = 0 is given by δ =

∑
i aiei where the ai are the coefficients in

the vertices and the ei are the vector of the canonical basis. The node 0 is represented by a square.
We will often forget the tilde in the sequel and denote A1

n instead of Ã1
n for example. The exponent 4

on the arrow of Ã2
2 mens that we have a quadruple arrow.
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Cartan matrices

Order 1.

Ã1
1 =

(
2 −2
−2 2

)

Ã1
n =




2 −1 0 0 · · · −1
−1 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −1
−1 0 0 0 −1 2




B̃1
n =




2 0 −1 0 · · · 0
0 2 −1 0 · · · 0

−1 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −1
0 0 0 0 −2 2




Ct1n =




2 −1 0 0 · · · 0
−2 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −2
0 0 0 0 −1 2




D̃1
n =




2 0 −1 0 0 · · · 0

0 2 −1 0
. . .

. . . 0

−1 −1 2 −1
. . .

. . . 0

0 0 −1 2 −1
. . . 0

0 0
. . . −1 2 −1 −1

...
...

. . . 0 −1 2 0
0 0 · · · 0 −1 0 2




Ẽ1
6 =




2 0 −1 0 0 0 0
0 2 0 −1 0 0 −1
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 −1 0 0 0 0 2



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Ẽ1
7 =




2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 −1
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 −1 0 0 0 0 0 2




Ẽ1
8 =




2 0 −1 0 0 0 0 0 0
0 2 0 −1 0 0 0 0 −1
−1 0 2 −1 0 0 0 0 0
0 −1 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 −1 0 0 0 0 0 0 2




F̃ 1
4 =




2 −1 0 0 0
−1 2 −2 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




G̃1
2 =




2 −1 −1
−3 2 0
−1 0 2




Cartan matrices

Order 2.

Ã2
2 =

(
2 −4
−1 2

)

Ã2
2n =




2 −2 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −2
0 0 0 0 −1 2



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Ã2
2n−1 =




2 0 −1 0 0 · · · 0

0 2 −1 0
. . .

. . . 0

−1 −1 2 −1
. . .

. . . 0

0 0 −1 2 −1
. . . 0

0 0
. . . −1 2 −1 0

...
...

. . . 0 −1 2 −2
0 0 · · · 0 0 −1 2




D̃2
n+1 =




2 −2 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . .
. . .

. . . −1
0 0 0 0 −2 2




Ẽ2
6 =




2 −1 0 0 0
−1 2 −1 0 0
0 −2 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




Cartan matrices

Order 3.

D̃3
4 =




2 −3 −1
−1 2 0
−1 0 2




Dynkin diagrams

Ã1
1 1 ks +3/.-,()*+1

1

Ãn /.-,()*+1

qqqqqqqqqqqqqq /.-,()*+1 ❴❴❴ /.-,()*+1 ❴❴❴ /.-,()*+1 /.-,()*+1

▼▼▼▼▼▼▼▼▼▼▼▼▼▼

1

B̃1
n

/.-,()*+1 /.-,()*+2 /.-,()*+2 ❴❴❴ /.-,()*+2 +3/.-,()*+2
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C̃1
n 1 +3/.-,()*+2 /.-,()*+2 ❴❴❴ /.-,()*+2 /.-,()*+2 ks /.-,()*+1

1

❀❀
❀❀

❀❀
❀❀

/.-,()*+1

D̃1
n

/.-,()*+2 /.-,()*+2 ❴❴❴ /.-,()*+2 /.-,()*+2

✄✄✄✄✄✄✄✄✄

❀❀
❀❀

❀❀
❀❀

❀

/.-,()*+1

✄✄✄✄✄✄✄✄✄ /.-,()*+1

1

Ẽ1
6

/.-,()*+2

/.-,()*+1 /.-,()*+2 /.-,()*+3 /.-,()*+2 /.-,()*+1

/.-,()*+2

Ẽ1
7 1 /.-,()*+2 /.-,()*+3 /.-,()*+4 /.-,()*+3 /.-,()*+2 /.-,()*+1

/.-,()*+3

Ẽ1
8 1 /.-,()*+2 /.-,()*+3 /.-,()*+4 /.-,()*+5 /.-,()*+6 /.-,()*+4 /.-,()*+2

F̃ 1
4 1 /.-,()*+2 /.-,()*+3 +3/.-,()*+4 /.-,()*+2

G̃1
2 1 /.-,()*+2 ❴ *4/.-,()*+3

Table 2.1
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Ã2
2 2 oo 4 /.-,()*+1

Ã2
2n 2 ks /.-,()*+2 /.-,()*+2 ❴❴❴ /.-,()*+2 /.-,()*+2 ks /.-,()*+1

1

Ã2
2n−1

/.-,()*+1 /.-,()*+2 /.-,()*+2 ❴❴❴ /.-,()*+2 ks /.-,()*+1

D̃2
n+1 1 ks /.-,()*+1 /.-,()*+1 ❴❴❴ /.-,()*+1 /.-,()*+1 +3/.-,()*+1

F̃ 2
4 1 /.-,()*+2 /.-,()*+3 ks /.-,()*+2 /.-,()*+1

Table 2.2

D̃3
4 1 /.-,()*+2 ❴jt /.-,()*+1

Table 2.3

Remark 8.2.8 (ı) One may ask: where do these matrices come from. For the finite type case, these
are the Cartan matrices of simple Lie algebras.We will see in Chapter 12 that there is a natural
construction associating to any Lie algebra g a Lie algebra t which is essentially the loop algebra
Lg = g ⊗ C[t, t−1]. This construction with g a simple Lie algebra give rise to the affine matrices of
order 1 described in the proposition. When taking a finite order automorphism of a simple Lie algebra
and performing this construction twisted by the automorphism, we get the order 2 and 3 cases (for
more details, see Chapter 12.

(ıı) One may remark that, in the finite type case, the matrix is symmetric if and only if the Dynkin
diagram has only simple edges. This case is called the simply laced case. Remark also that even
if the matrices F4 and G2 are not symmetric, their transpose give rise to the same Lie algebra, we
only need to reorder the simple roots. However the matrices of type Bn and Cn are exchanged by
transposition.

Things are a little more complicated for affine type matrices because the order may change while
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transposing the matrix but we still have that the transpose of an affine type matrix if of affine type.
We get the following equalities:

tB̃1
n = Ã2

2n−1,
tC̃1

n = D̃2
n+1,

tF̃ 1
4 = Ẽ2

6 and tG̃1
2 = D̃3

4 .

the other matrices are symmetric or their transpose give rise to the same matrix (and thus the same
Lie algebra g(A)) after reordering the indices.

Proof : To prove this proposition, we only need to check that the vector δ given by

δ =
∑

i

aiei

satisfies Aδ = 0 for all the affine type matrices and then to prove that the finite type matrices (or
Dynkin diagrams) are principal proper submatrices of matrix of affine type.

This is done case by case. Remark however that in the order 1 case, the vector δ is the sum θ+α0

of the longest root of the finite root system and the simple added root. �

8.2.3 Classification of finite and affine type matrices

We may now prove the following classification Theorem:

Theorem 8.2.9 All the indecomposable generalised Cartan matrices of finite or affine type are those
given in Proposition 8.2.7

Proof : We proceed by induction on the number of vertices of the Dynkin diagram. The only matrix
of size 1 × 1 being the matrix A = (2) of type A1. It is also clear that the rank 2 finite and affine
type indecomposable generalised Cartan matrices are given by matrices of type A2, B2, C2, G2, A

1
1

and A2
2. We will also need that the following matrices are not of finite or affine type:




2 −1 0
−2 2 −1
0 −3 2


 ,




2 −2 0
−1 2 −1
0 −3 2


 and




2 −1 0
−2 2 −3
0 −1 2


 .

But the vectors v = (2, 5, 7), v = (4, 5, 7) and v = (7, 15, 7) are such that v > 0 and Av < 0 proving
the result.

For the induction, we proceed as follows: a diagram D of finite or affine type with at least three
vertices is obtained from a smaller diagram D′ of finite type (and at least two vertices) by adding a
vertex (by Lemma 8.2.2). Furthermore, the diagram D has to be such that when removing any vertex,
we obtain a finite type diagram. Furthermore, thanks to Proposition 8.2.6 we may assume that D has
no cycle.

Starting with type An, we may add a vertex with simple edge to root 1 and root 2 (or the last two
roots) to root 3 (or n − 2) if and only if n ≤ 8 and also to root 4 if n ≤ 7. We get diagrams of type
An+1, Dn+1, E6, E7, Ẽ

1
7 , E8 or Ẽ1

9 . We may now add a vertex with double edge to root 1 (or n) or

to root 2 if n = 3. We get diagrams of type Bn+1, Cn+1, B̃
1
3 and Ã2

5. We may now add a vertex with

triple edge to root 1 (or n) if n = 2. We get diagrams of type G̃1
2 and D̃3

4.
Starting with type Bn or Cn, we may add a vertex with simple edge to root 1 and root 2, we may

also add it to root n if and only if n ≤ 4. We get diagrams of type Bn+1, Cn+1, B̃
1
n, Ã

2
2n−1, F4, F̃

1
4

or Ẽ2
6 . We may now add a vertex with double edge to root 1. We get diagrams of type C̃1

n, Ã
2
2n and

D̃2
n+1. We may not add a vertex with triple edge.
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In type E, it is clear that we may only add vertices with simple edges. Furthermore, these vertices
can be add only to end vertices of the diagram. We get diagrams of type Ẽ1

6 , E7, Ẽ
1
7 E8 and Ẽ1

8 .
For F4, we may only add simple vertices to the end vertices of the diagram. We get diagrams of

type Ẽ2
6 and F̃ 1

4 .
Finally, for G2, �

We end with a characterisation of Kac-Moody Lie algebras g(A) isomorphic to simple finite di-
mensional Lie algebras.

Proposition 8.2.10 The following conditions are equivalent:
(ı) The matrix A is a generalised Cartan matrix of finite type.
(ıı) The matrix A is symmetrisable and the bilinear form ( , )|h is positive definite.
(ııı) The Weyl group W is finite.
(ıv) The root system is finite.
(v) The Lie algebra g(A) is simple and finite dimensional.
(vı) There exists a root θ ∈ ∆ such that for any simple root αi, we have θ + αi 6∈ ∆. Such a root

is called a highest root.

Proof : (ı) ⇒ (ıı) We know by Lemma 8.2.4 that the matrix A is symmetrisable (so that ( , )|h is
well defined) and we also know that the matrix B = D−1A defining the bilinear form is of finite type
(because we have u > 0 such that Au > 0 thus Bu = D−1Au > 0 because D can be chosen positive).
Now Lemma 8.2.3 gives that the form is positive definite.

(ıı) ⇒ (ııı) Follows from Proposition 6.2.11 and is an equivalence.
(ııı) ⇒ (ıv) Follows from Theorem 6.5.2 and is an equivalence.
(ıv) ⇒ (v) The bilinear form ( , )|h is positive definite and in particular A is regular thus by

Proposition 4.2.10 we get that g(A) is simple and because all the weight spaces are of finite dimension,
the Lie algebra g(A) is of finite dimension.

(v) ⇒ (vı) We take θ a root of maximal height and the result follows.
(vı) ⇒ (ı) Let θ be a root such that for all simple root αi we have θ + αi 6∈ ∆. Consider the

g(i)-submodule of g(A) generated by an element x in gθ. It is of finite dimension and by the sl2 theory,
we obtain that x is a highest weight vector of non negative weight 〈αi, θ〉. In particular we have
〈αi, θ〉 ≥ 0 for all i. This implies that the matrix A is of affine or finite type. If it was of affine type we
would have 〈αi, θ〉 = 0 for all i. Furthermore, if θ was negative, the condition on θ would imply that
x = 0 thus θ > 0 and because x is non zero, there exists an index i such that [fi, x] 6= 0 i.e. θ−αi ∈ ∆.
But 〈αi, θ〉 = 0 is the highest weight (and thus the lowest weight) of the g(i)-module generated by x,
this is a contradiction. �
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Chapter 9

Real and imaginary roots

In this chapter, we continue the classification of Cartan matrices by studying the root systems of the
associated Kac-Moody Lie algebra. On important new feature in this setting is the appearence of
imaginary roots i.e. roots not in the orbit of simple roots under the Weyl group.

9.1 Definitions and first properties

9.1.1 real roots

Definition 9.1.1 A root α ∈ ∆ is called real if there exists w ∈W such that w(α) is a simple root.
We denote by ∆re, ∆re

+ and ∆re
− the set of real roots, positive reals roots and negative real roots.

Recall the definition of the coroot of a real root defined in Chapter 5 (see Definition 5.2.8): a real
root α can be written α = w(αi) for w ∈ W and αi a simple root, the coroot α∨ is defined by w(α∨i )
(this is well defined by 5.2.7). In particular we have a canonical bijection between ∆re and ∆∨re.

We may also define the reflection sα with respect to any real root α and acting on h∗ by:

sα(λ) = λ− 〈α∨, λ〉α, forλ ∈ h∗.

This is a reflection because 〈α∨, α〉 = 〈α∨i , αi〉 = 2 and it lies in the Weyl groupW because sα = wsiw
−1

for w and i such that α = w(αi). The real root satisfy similar properties as roots in finite root systems:

Proposition 9.1.2 Let α be a real root in a Kac-Moody algebra g(A). Then we have:
(ı) multα = 1.
(ıı) For k ∈ Z, the element kα is a root if and only if k = ±1.
(ııı) Suppose that A is symmetrisable and let ( , ) be an invariant bilinear form on g(A) as defined

in Theorem 7.2.5. Then we have

• (α,α) > 0

• α∨ = 2ν−1(α)/(α,α).

(ıv) If α and −α are not simple, then there exists an index i such that |ht(si(α))| < |ht(α)|.

Proof : We already proved points (ı), (ıı) and (ııı) for simple roots and these properties are invariant
under the action of the Weyl group. The result follows. For the last statement, take α a real positive
(for example) root such that for all i we have |ht(si(α))| ≥ |ht(α)|. This implies that for all i we have
〈α∨i , α〉 ≤ 0 and in particular −α ∈ C∨ is in the dominant chamber for the dual root system. This
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implies that v(α)−α for any v ∈W is a non negative linear combination of positive roots. Apply this
to v = w−1 with α = w(αi) to get αi − α as a non negative linear combination of positive roots. We
thus have

ht(αi) ≥ ht(α).

This implies that α is simple. �

Definition 9.1.3 Let A be a symmetrisable matrix and ( , ) an associated invariant bilinear form.
A real root α is a short root if |α|2 = (α,α) = mini |αi|2 = (αi, αi).

Remark that this definition does not depend on the invariant bilinear form choosen.

9.1.2 Imaginary roots

Definition 9.1.4 A root α which is not real is called imaginary. We denote by ∆im, ∆im
+ and ∆im

−

the set of imaginary, positive imaginary and negative imaginary roots.

We have the following disjoint unions

∆ = ∆re ∪∆im, ∆re = ∆re
+ ∪∆re

− and ∆im = ∆im
+ ∪∆im

− .

Proposition 9.1.5 (ı) The set ∆im
+ is W -invariant.

(ıı) For α ∈ ∆im
+ , there exists a unique root β ∈ −C∨ in the W orbit of α.

(ııı) If A is symmetrisable and ( , ) is a standard invariant bilinear form, then a root α is imaginary
if and only if (α,α) ≤ 0.

Proof : (ı) Remark that this is not the case for ∆re
+ since for example for any positive root α we have

sα(α) = −α < 0.
It is clear that ∆im is W -invariant (because ∆ and ∆re are W -invariant). We thus need to prove

that if α ∈ ∆im
+ , then w(α) is still positive for all w ∈W . It suffices to show that si(α) is positive for

all index i and this is clear because α is different from αi.
(ıı) Let α ∈ ∆im

+ and consider the orbit of α under the Weyl group. It is contained in the set
of positive root. Pick β an element of minimal height is that orbit. We have for all index i that
〈α∨i , β〉 ≤ 0 thus β ∈ −C∨. Furthermore because C∨ is a fundamental domain for the action of the
Weyl group β is unique.

(ııı) Let α ∈ ∆im
+ . We may assume by (ıı) that −α ∈ C∨. Write α =

∑
i aiαi with ai ≥ 0. We have

∑

i 6=j

ai〈α∨j , αi〉+ 2aj ≤ 0 or
∑

i 6=j

ai2(αj , αi) + 2aj(αj , αj) ≤ 0.

Therefore we have the inequality:

(α,α) =
∑

i

a2i (αi, αi) +
∑

j

∑

i 6=j

aiaj(αi, αj) ≤
∑

i

a2i (αi, αi)−
∑

j

a2j (αj , αj) = 0.

If α is real we already know that (α,α) > 0. �

Corollary 9.1.6 If A is of finite type, then the Kac-Moody algebra has no imaginary root.

Proof : Indeed, in that case we know that the matrix is always symmetrisable and an imaginary root
α satisfy (α,α) ≤ 0. However the bilinear form is positive definite is the finite case, a contradiction.
�
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Definition 9.1.7 Let α ∈ Q and write α =
∑

i aiαi. We define the support of α, denoted Suppα,
to be the full subdiagram of the Dynkin diagram consisting of the vertices i such that ai 6= 0.

Lemma 9.1.8 The support of a root is connected.

Proof : We first prove:

Lemma 9.1.9 Let I1 and I2 be disjoint subsets of the set of indices I such that ai,j = 0 for i ∈ I1
and j ∈ I2. Let βk =

∑
i∈Ik

ai(k)αi for k ∈ {1, 2}. If β1+β2 is a root of g(A), then β1 or β2 vanishes.

Proof : Let i ∈ I1 and j ∈ I2, then [α∨i , ej ] = 0, [α∨j , ei] = 0, [ei, fj ] = 0 and [ej , fi] = 0. Compute for
any k the Lie bracket:

[fk, [ei, ej ]] = [[fk, ei], ej ] + [ei, [fk, ej ]] = δk,i[α
∨
i , ej ] + δk,j[ei, α

∨
j ] = 0.

The same computation gives [ek, [fi, fj]] = 0 for all k. This implies that [ei, ej ] = [fi, fj] = 0. For
k ∈ {1, 2}, denote by gk the Lie subalgebra of g(A) generated by the ei and fi for i ∈ Ik. The Lie
subalgebras g1 and g2 commute. Furthermore, gβ1+β2 lies in the subalgebra generated by g1 and g2,
this implies that it is either contained in g1 or in g2. �

This lemma proves that the support of a root is connected. �

We define the following subset of Q+:

K = {α ∈ Q+ \ {0} / Suppα is connected and 〈α,α∨i 〉 ≤ 0 for all i}.

Proposition 9.1.10 We have the inclusion K ⊂ ∆im
+ .

Proof : Let us first remark that in the finite case, the proposition is easy to prove. Indeed, there are
no imaginary roots but the set K is empty: if α ∈ Q+ is such that 〈α∨i , α〉 ≤ 0, then because of the
formula

〈α∨i , α〉 = 2
(αi, α)

(αi, αi)

we have (αi, α) ≤ 0 for all i. This implies that (α,α) ≤ 0 and because the form is positive definite
that α = 0. We may thus assume that A is not of finite type.

Let α =
∑

i aiαi ∈ K and consider

Ωα = {γ ∈ ∆+ / γ ≤ α}

where the order is defined by Q+. The set Ωα is finite and non empty because Suppα ⊂ Ωα. Let
β =

∑
i biαi be an element of maximal height in Ωα.

Lemma 9.1.11 We have Suppβ = Suppα.

Proof : Assume that it is not the case. We thus have a simple root αi ∈ Suppα such that αi 6∈ Suppβ.
Furthermore, we may assume that writing β =

∑
j bjαj there exists an index j such that bj〈a∨i , αj〉 6= 0

(this is because Suppα is connected). But β + αi is not a root thus the weight 〈α∨i , β〉 is a maximal
weight of a g(i)-module and we have 〈a∨i , β〉 ≥ 0. But β =

∑
j 6=i bjαj with bj ≥ 0 thus 〈a∨i , β〉 < 0 a

contradiction. �

Let us first prove that α ∈ ∆+. Suppose it is not the case, then α 6= β and for all index i such that
bi < ai we have β + αi 6∈ ∆+ (and even not in ∆). If this were true for all index i then g(A) would
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have an highest root and thus be of finite type. This is not the case so that there exists an index
i such thatai = bi. Let I ′ be the set of such indices and consider R a connected components of the
diagram (Suppα) \ I ′. Because β + αi 6∈ ∆ for any index i ∈ R, we deduce by the usual sl2 argument
that 〈α∨i , β〉 ≥ 0.

On the one hand, let us now set β′ =
∑

i∈R biαi. Because Suppα is connected and I ′ is not empty,
the boundary of R — denoted by ∂R and defined as the set of indices j ∈ Suppα \R such that there
exists an index i ∈ R with an edge between i and j — is not empty. We get, for i ∈ R, that

〈α∨i , β′〉 = 〈α∨i , β〉 −
∑

j∈∂R

bj〈α∨i , αj〉 ≥ 0.

Furthermore, because ∂R is not empty and because for j ∈ ∂R, we have bj = aj > 0 we get that for
some i ∈ R (in fact for any index i connected to an element of ∂R) we have 〈α∨i , β′〉 > 0. Therefore,
considering the submatrix AR of A defined by R, we have a vector β′ such that β′ ≥ 0, ARβ

′ ≥ 0 and
ARβ

′ 6= 0. This implies that the Dynkin diagram of AR is of finite type.
On the other hand, set α′ = sumi∈R(ai − bi)αi. Suppα

′ is R and is a connected component of
Supp(α− β). This implies the formula

〈α∨i , α′〉 = 〈α∨i , α− β〉

for i ∈ R. But because α ∈ K, we have for all index i ∈ R the inequality 〈α∨i , α〉 ≤ 0. This leads to
〈α∨i , α′〉 ≤ for all i ∈ R and because R is of finite type we must have α′ = 0 thus R = ∅.

Now we proved that any element in K is a positive root. But the condition definingK are invariant
under scalar multiplication. In particular if α is a root contained in K, then the same is true for kα
for all k ∈ N. This implies that α is imaginary. �

We can describe the set of imaginary roots thanks to K:

Theorem 9.1.12 We have the following equality

∆im
+ =

⋃

w∈W

w(K).

Proof : Let α ∈ ∆im
+ . We know that there exists an unique root β in its W -orbit such that −β ∈ C∨.

Because β is a root, its support is connected and we thus have β ∈ K, the result follows. �

Corollary 9.1.13 If α is a positive imaginary root and r is a rational number such that rα ∈ Q, then
rα is again an imaginary root.

Proof : This comes directly from the fact that if α ∈ K and r ∈ Q are such that rα ∈ Q, then
rα ∈ K. �

We now describe the imaginary roots according to the classification of Cartan matrices and in
particular prove their existence in the non finite cases:

Theorem 9.1.14 Let A be an indecomposable generalised Cartan matrix.
(ı) If A is finite, then ∆im

+ is empty.
(ıı) If A is of finite type, then δim+ = {nδ / n ∈ N} where δ is the smallest positive vector with

integers values such that Aδ = 0.
(ııı) If A is of indefinite type, then there exists a positive imaginary root α =

∑
i kiαi with ki > 0

and 〈α∨i , α〉 < 0 for all i ∈ [1, n].
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Proof : (ı) We prove this in Corollary 9.1.6.
(ıı) Remark that another definition of δ is given by δ =

∑
i aiαi where the ai are the label of the

Dynkin diagram in the tables 2.1, 2.2 and 2.3.
Recall that any affine matrix is symmetrisable. Take α ∈ K, then we have 〈a∨i , α〉 ≤ 0 thus Aα ≤

or A(−α) ≥ 0. This implies that α = 0 because A is of affine type. In particular there exists a non
negative rational r such that α = rδ. Because of the definition of δ we must have r ∈ N.

(ııı) Let u > 0 with Au < 0. We may assume that v has rational coefficients and thus there exists
a vector α ∈ Q+ proportional to v. But then Aα < 0 thus α ∈ K and the result follows. �

9.1.3 Isotropic roots

Let A be a Kac-Moody Lie algebra and fix an invariant bilinear form ( , ).

Definition 9.1.15 A root α is called isotropic if (α,α) = 0. This does not depend on the invariant
bilinear form chosen.

Proposition 9.1.16 A root α is isotropic if and only if it is in the W -orbit of an imaginary root β
such that Suppβ is an affine type subdynkin diagram of the Dynkin diagram of A.

Proof : Let β be an imaginary root whose support is an affine type subdynkin diagram of the
Dynkin diagram of A. We thus have β = nδ and it suffices to prove that (δ, δ) = 0. But 〈α∨i , δ〉 =
2(αi, δ)/(αi, αi) and because Aδ = 0, we get (ai, δ) = 0 for all index i thus (δ, δ) = 0.

Conversely, let α be an isotropic root. Such a root is imaginary. We may assume that α is positive
and by letting W act we may assume that α ∈ K. In particular 〈α∨i , α〉 ≤ 0 for all index i. Write
α =

∑
i aiαi and consider the last inequality in the proof of Proposition 9.1.5 (ııı). It has to be an

equality and in particular we must have 〈α∨i , α〉 = 0 for all index i such that ai 6= 0. In particular, if
Aα is the proper submatrix of A defined by Suppα we have Aαα = 0 and the result follows. �



84 CHAPTER 9. REAL AND IMAGINARY ROOTS



Chapter 10

The category O

In this chapter we define the category O of modules over the Kac-Moody Lie algebra and derive its
first property.

10.1 Definition of the category O

Recall the decompositions on g(A) and its enveloping algebra U(g(A)) given by Poincaré-Birkhoff-
Witt:

g(A) = n− ⊕ h⊕ n+ and U(g(A)) = U(n−)⊗ U(h)⊗ U(n+).

Recall also that a g(A)-module V is h-diagonalisable if it decomposes as a direct sum of weight spaces
Vλ for λ ∈ h∗. If Vλ is non zero then Vλ is called a weight space, any non zero vector of Vλ is called a
weight vector and λ is called a weight of V . The set of weight of V is denoted by P (V ). We will also
need the following notation for λ ∈ h∗ set

D(λ) = {µ ∈ h∗ / µ ≤ λ}

where the order is defined thanks to Q+.

Definition 10.1.1 The category O is the full subcategory of the category of g(A)-modules whose
objets are g(A)-modules V which are h-diagonalisable with finite dimensional weight spaces and such
that there exist elements (λi)i∈[1,s] such that

P (V ) ⊂
s⋃

i=1

D(λi).

Because a submodule of an h-diagonalisable module is again h-diagonalisable, we have the

Fact 10.1.2 Any submodule and quotient of an object in O is again in O. Any sum or tensor product
of a finite number of objects in O is in O.

10.2 Highest weight modules

Definition 10.2.1 A g(A)-module V is called a highest weight module with highest weight
λ ∈ h∗ if there exists a nonzero vector vλ ∈ V such that vλ generates V as a g(A)-module and

n+(vλ) = 0 and h(vλ) = 〈λ, h〉vλ for all h ∈ h.

The vector vλ is called a highest weight vector.

85
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An easy consequence of the decomposition of the enveloping algebra is the following

Fact 10.2.2 (ı) For V a highest weight module with highest weight vector v, we have U(n−)v = V .
(ıı) A highest weight module is an object in O. Furthermore, if the highest weight is λ with highest

weight vector vλ, then P (V ) ⊂ D(λ) and Vλ = Cvλ.

Proof : The first point comes from the decomposition of the enveloping algebra. For the second, we
have a decomposition into weight spaces coming from the decomposition of g(A) and the dimension
of every weight space is finite because generated by v. Furthermore because V = U(n−)vλ the weight
are smaller than λ and the only vectors in Vλ are proportional to vλ. �

Corollary 10.2.3 Let V be a highest weight module, then Endg(A)(V ) = CIdV .

Proof : The highest weight vector is send to a vector of same weight thus to multiple of itself and
the result follows from the fact that the highest weight vector generates V . �

10.3 Verma modules

Definition 10.3.1 A g(A)-module M(λ) with highest weight λ is called a Verma module if every
g(A) module with highest weight λ is a quotient of M(λ).

Proposition 10.3.2 (ı) For every λ ∈ h∗, there exists a unique up to isomorphism Verma module
M(λ).

(ıı) Viewed as a U(n−)-module, M(λ) is a free module generated by a highest-weight vector.
(ııı) The module M(λ) contains a unique proper maximal submodule M ′(λ).

Proof : (ı) If M and N are two Verma modules for the weight λ, then by definition, there is a
surjective morphism ϕ : M → N . This induces a surjective morphism Mλ → Nλ and in particular
dimMλ ≥ dimNλ. Reversing the roles of M and N we get that these dimensions are equal and ϕ is
an isomorphism.

To prove the existence of such a Verma module, it suffices to consider

M(λ) = U(g(A))/I(λ),

where I(λ) is the left ideal generated by n+ and the elements h−〈λ, h〉Id in g(A). The left multiplication
induces a left g(A)-module structure on M(λ) and by definition of M(λ) it is a highest weight module
of highest weight λ and highest weight vector the image of 1 in M(λ).

Furthermore, let V (λ) be any highest weight module of highest weight λ and let v be a highest
weight vector. Consider the g(A)-module morphism g(A) → V (λ) defined by x 7→ x ·v. It is surjective
and the kernel I of this map is a left ideal in g(A) containing I(λ). The result follows.

(ıı) This is Poincaré-Birkhoff-Witt and the fact that U(g(A)) = U(n−)⊗ U(h) ⊗ U(n+).
(ııı) The sum of all proper submodules is again a submodule (which is h-diagonalisable because

M(λ) is) and proper because the grading by weights is preserved and any proper submodule does not
contain M(λ)λ. �

Corollary 10.3.3 The quotient M(λ)/M ′(λ) is the unique irreducible module of highest weight λ.

We will prove that the modules L(λ) are all the irreducible modules in the category O. Let us
introduce the following
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Definition 10.3.4 Let V be a g(A)-module. A vector v ∈ Vλ is called primitive if there exists a
submodule U of V such that v 6∈ U and n+(v) ∈ U .

In that case, the weight λ is called a primitive weight. In the same way, we define primitive
vectors and weights for a g′(A)-module.

Remark 10.3.5 A weight vector v such that n+(v) = 0 is primitive.

Proposition 10.3.6 Let V be a nonzero module from the category O. Then we have:
(ı) the module V contains a nonzero weight vector such that n+(v) = 0.
(ıı) The following are equivalent

• V is irreducible;

• V is a highest weight module and any primitive vector is a highest weight vector;

• V ≃ L(λ) for some λ ∈ h∗.

(ııı) V is generated, as a g(A)-module by its primitive vectors.

Proof : (ı) Let λ be a maximal weight of V . This is possible because the weights in V are bounded
by a finite number of weights. Let v ∈ Vλ, then n+(v) = 0.

(ıı) Let v be a primitive vector with n+(v) = 0 as above. Then by irreducibility, the v generates
V as a g(A)-module and v is a highest weight vector of weight λ. Now if v′ is a primitive vector, then
me must have n+(v

′) = 0 otherwise the submodule U is the definition of primitive vectors would be a
proper non trivial submodule. The vector v′ is a highest weight vector thus v′ ∈ Vλ but this space is
of dimension 1 concluding the proof.

Let V be a highest weight module of weight λ whose primitive vectors are all highest weight
vectors. We have a surjective map M(λ) → V . Let us prove that V is irreducible. Take a non trivial
submodule U of V . By (ı), the module U contains an highest weight vector u. In particular, we have
n+(u) = 0 in V also so that by hypothesis u is primitive and thus a highest weight vector of V . We
get U = V and the result follows.

(ııı) Let V ′ the submodule generated by the primitive vectors in V . Assume that V ′ 6= V and take
λ a maximal weight such that V ′λ 6= Vλ. Let v ∈ Vλ with v 6∈ V ′. We have n+(v) ∈ V ′ by construction
thus v is a primitive vector of V and v ∈ V ′ a contradiction. �

Corollary 10.3.7 There is a bijection between h∗ and the irreducible modules in the category O given
by λ 7→ L(λ). Furthermore, the module L(λ) is defined as an (the) irreducible module containing a
vector v such that n+(v) = 0 and h(v) = 〈λ, h〉v for h ∈ h.

10.4 Lowest weight modules

Let L(λ)∗ be the dual of L(λ). Define on L(λ)∗ the congradient action of g(A) by (x ·f)(v) = −f(x ·v).
Remark that we have (x · (y · f))(v) = f(y · (x · v)). This defines an action because of the following
computation:

((xy − yx) · f)(v) = f(yx · v)− f(xy · v) = −f([x, y] · v) = ([x, y] · f)(v).

We may write the module L(λ)∗ as the product
∏

λ

(L(λ)λ)
∗ and define the following subspace of L(λ)∗:

L∗(λ) =
⊕

λ

(L(λ)lt)
∗.
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Lemma 10.4.1 (ı) For any µ ∈ h∗, we have (L∗(λ))µ = (L(λ)−µ)
∗.

(ıı) The module L∗(λ) is irreducible. Furthermore, for f ∈ L∗(λ)−λ we have n−(f) = 0 and
h(f) = −〈λ, h〉f for h ∈ h.

Proof : (ı) This point comes directly from the action of h ∈ h: for v ∈ L(λ)µ and f ∈ L∗(λ), we have
(h · f)(v) = −f(h · v) = −〈µ, h〉f(v).

(ıı) The action of h is clear. Let x ∈ n− and v ∈ L(λ), we have (x ·f)(v) = −f(x ·v). This vanishes
unless x · v ∈ L(λ)λ because f ∈ (L∗(λ))−λ = (L(λ)λ)

∗. But x · v is never in that space and we get
the vanishing condition.

Let U be a submodule of L∗(λ). Consider the subset U⊥ of L(λ) of vectors v such that f(v) = 0
for all f ∈ U . Let us prove that U⊥ is a g(A)-submodule of L(λ). Indeed, for x ∈ g(A), v ∈ U⊥ and
f ∈ U , we have f(x · v) = −(x · f)(v) = 0 because −(x · f) ∈ U . The submodule U⊥ is thus either
trivial or equal to L(λ) and the same is true for U . �

Definition 10.4.2 The module L∗(λ) is called a lowest weight module of lowest weight −λ. There is
a bijection between h∗ and the set of lowest weight modules given by λ 7→ L∗(−λ).

We define a twisted action ·ω of g(A) on L(λ) using the involution ω defined in Theorem 4.1.6 by:

x ·ω v = ω(x) · v
for x ∈ g(A) and v ∈ L(λ). We can define in the save way a twisted action of g(A) on L∗(λ). For this
twisted action L∗(λ) is an irreducible highest weight module of highest weight λ and thus isomorphic
to L(λ). Denote by ψ : L(λ) → L∗(λ) this isomorphism, it defines a non degenerate bilinear B( , ) on
L(λ) by B(u, v) = ψ(u)(v) for u, v ∈ L(λ).

Lemma 10.4.3 This bilinear form satisfies the following equation

B(x · u, v) = −B(u, ω(x)·).
Proof : We compute:

B(x · u, v) = (ψ(x · u))(v) = (x ·ω ψ(u))(v) = (ω(x) · ψ(u))(v) = −ψ(u)(ω(x)·) = −B(u, ω(x) · v).
�

Definition 10.4.4 A bilinear form B on L(λ) satisfying the above equation is called a contravariant
bilinear form.

Proposition 10.4.5 There exists a unique, up to scalar multiple, non degenerate contravariant bi-
linear form B on L(λ). This form is symmetric and L(λ) decomposes into a orthogonal direct sum of
weight spaces with respect to this form.

Proof : We already proved the existence. Assume we have B and B′ two such forms, then they define
linear maps ψB : L(λ) → L∗(λ) and ψB′ : L(λ) → L∗(λ) by (ψB(u))(v) = B(u, v) and (ψB′(u))(v) =
B′(u, v). These applications are morphisms of g(A)-modules. In particular the compositions ψB ◦ψ−1B′

and ψB′ ◦ ψ−1B are in Endg(A)(L(λ)). But this space only contains homotheties and the uniqueness
follows.

Let us prove that B(L(λ)µ, L(λ)ν) = 0 for µ 6= ν. Indeed, take h ∈ h, u ∈ L(λ)µ and v ∈ L(λ)ν ,
we have 〈µ, h〉B(u, v) = B(h · u, v) = −B(u,−h · v) = 〈ν, h〉B(u, v). The result follows. In particular,
because B is non degenerate, we get that B(v, v) 6= 0 for v ∈ L(λ)λ.

DefineB′(u, v) = B(u, v). It is a non degenerate bilinear form and we have B′(x·u, v) = B(v, x·u) =
B(v, ω(ω(x)) · u) = B(ω(x) · v, u) = B′(u, ω(x) · v). This form is thus proportional to B. But
B′(v, v) = B(v, v) 6= 0 thus B′ = B and B is symmetric. �
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10.5 Integrable highest weight modules

We start with the following

Definition 10.5.1 Theweight lattice P , the dominant weight lattice P+ and the regular dom-
inant weight lattice P++ are defined as follows:

P = {λ ∈ h∗ / ∀i, 〈λ, αi〉 ∈ Z}
P+ = {λ ∈ P / ∀i, 〈λ, αi〉 ≥ 0}
P++ = {λ ∈ P / ∀i, 〈λ, αi〉 > 0}.

Remark that the lattice Q is contained in P .

Lemma 10.5.2 The g(A)-module L(λ) is integrable if and only if λ ∈ P+.

Proof : Because of the boundedness condition on the weights of objets in O, it is clear that the
elements ei are nilpotent on L(λ). We need only to consider the elements fi.

Consider the action of the sl2 ≃ g(i)-subalgebra on a highest weight vector v. Its weight for

sl2 is 〈α∨i , λ〉 and we have ei(v) = 0. In particular by Proposition 4.2.6 (ıı) we have ei(f
N
i (v)) =

N(〈α∨i , λ〉 −N + 1)fN−1(v).
Assume that L(λ) is integrable and let N = min{n ∈ N / fn(v) = 0}. Because v 6= 0 we have

N ≥ 1. But now the preceding equation leads to N(〈α∨i , λ〉 −N + 1) = 0 thus 〈α∨i , λ〉 = N − 1 ≥ 0.

Conversely, assume that λ ∈ P+. The previous formula gives us ei(f
〈α∨

i ,λ〉+1
i (v)) = 0. But for any

j 6= i, we have ej(f
〈α∨

i ,λ〉+1
i (v)) = 0. This implies in particular that f

〈α∨
i ,λ〉+1

i (v) either vanishes or is
a primitive vector of L(λ). The last case is not possible for weight reasons. The result follows. �

Corollary 10.5.3 If λ ∈ P+, then we have multL(λ)µ = multL(λ)w(µ) for any w ∈ W . In particular
the set of weights of L(λ) is W -invariant.

Corollary 10.5.4 If λ ∈ P+and µ ∈ P (λ) is a weight of L(λ), then there exists w ∈ W such that
w(µ) ∈ C∨.

Proof : Take w such that ht(λ − w(µ) is minimal. We have for any index i that ht(λ − siw(µ)) ≥
ht(λ− w(µ)). This implies that 〈α∨i , w(µ)〉 ≥ 0. �

Lemma 10.5.5 Let L be an integrable highest weight module of weight λ, then λ ∈ P+.

Proof : The same proof as for L(λ) works. �

10.6 Filtration

In this section we try to decompose any object in O into a sequence of extensions of irreducible
module. However, an object V in O does not always admit a composition series that is a sequence
V ⊃ V1 ⊂ V2 · · · such that Vi/Vi+1 is irreducible. We start with the following

Lemma 10.6.1 Let V be an object in O. Assume that for any two primitive weights λ and µ such
that λ ≥ µ we have λ = µ. Then the module V is completely reducible (i.e. it decomposes as a direct
sum of irreducible submodules).
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Proof : Let V 0 = {v ∈ V / n+(v) = 0}. This subspace in h invariant and has thus a weight
decomposition V 0 = ⊕V 0

λ . Furthermore, the weight of V 0 correspond to primitive weights of V . For λ
such a weight and v ∈ V 0

λ , consider the submodule V ′ = U(g(A))(v). We claim that V ′ is irreducible.
Indeed, let U be a submodule of V ′. Take u a weight vector in U of weight µ with n+(u) = 0. This is
a primitive vector of V and because U is a submodule of V ′ we have µ ≤ λ thus µ = λ. But V ′λ is one
dimensional and V ′ is generated by this subspace thus U = V ′. The submodule V ′′ of V generated by
V 0 is thus completely reducible and sum of modules of the form L(λ) for weights λ primitive for V .
In particular any weight of V ′′ is smaller than a primitive weight of V .

If V ′′ is proper in V , let µ be a weight maximal for the property Vµ/V
′′
µ 6= 0. Let v ∈ Vµ and not in

V ′′µ . We have by maximality n+(v) ⊂ V ′′. This implies that v and thus µ are primitive. But because
v 6∈ V ′′ we have v 6∈ V 0 thus there exists an index i such that ei(v) 6= 0 and ei(v) ∈ V ′′. The weight of
ei(v) is thus smaller than a primitive weight λ of V . Thus λ ≥ µ+ αi > µ but λ and µ are primitive
weights for V a contradiction. �

The following lemma will replace the lack of composition series:

Lemma 10.6.2 Let V be an object in O and let λ ∈ h∗. Then there exists a filtration by a sequence
of submodules 0 = V0 ⊂ · ⊂ Vm = V and a subset J ⊂ [1,m] such that:

• if j ∈ J , then Vj/Vj−1 ≃ L(λj) for some weight λj ≥ λ;

• if j 6∈ J , then (Vj/Vj−1)µ = 0 for all µ ≥ λ.

Proof : Let us define the following integer

a(V, λ) =
∑

µ≥λ

dimVµ.

We prove the result by induction on a(V, λ). If a(V, λ) = 0 then take the trivial filtration 0 ⊂ V .
Otherwise, let µ be a maximal weight in V with µ ≥ λ. Take v a weight vector for µ. It is primitive
with n+(v) = 0. Let U be the submodule of V generated by v. Then U is a highest weight module of
weight µ and there exists a maximal proper submodule S in U (the image ofM ′(µ) from the surjection
M(µ) → U). We have U/S ≃ L(µ) and a filtration

0 ⊂ S ⊂ U ⊂ V.

We have a(S, λ) < a(U, λ) ≤ a(V, λ) and a(V/U, λ) < a(V, λ) thus by induction we have the required
filtration on S and V/U and the result follows. �

Definition 10.6.3 Let V an object in O and µ ∈ h∗. Take λ ∈ h∗ with λ ≤ µ and a filtration as in
Lemma 10.6.2. We define the multiplicity of L(µ) in V , denoted [V : L(µ)] by:

[V : L(µ)] = the number of times µ appears among the set {λj / j ∈ J}.

This is well defined and µ has non zero multiplicity if and only if it is a primitive weight of V .

10.7 Character formula for Verma modules

We introduce in this section the formal character of a object in O. For this we define the algebra E

whose elements are series of the form ∑

λ∈h∗

cλe(λ)
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with cλ ∈ C and cλ = 0 for λ outside a finite union set D(µ) for some µ ∈ h. We define an algebra
structure on E by the natural sum and product by a scalar in C and by setting


∑

λ∈h∗

cλe(λ)




∑

λ∈h∗

cλe(λ)


 =

∑

λ∈h∗


 ∑

µ+ν=λ

cµcν


 e(λ).

This is well defined because in the sum
∑

µ+ν=λ cµcν , the scalars cµ vanish for µ not smaller than all
elements of a finite set {µ1, · · · µk} and the scalars cν vanish for ν not smaller than all elements of a
finite set {ν1, · · · νl}. The sum is thus finite and the coefficient of e(λ) vanishes for λ not smaller than
a finite number of elements in h.

Remark 10.7.1 This definition of the product leads to the formula e(λ)e(µ) = e(λ+µ). The identity
is e(0).

Definition 10.7.2 Let V be a object in O, then we define the formal character of V and denote it
by ChV by:

ChV =
∑

λ∈h∗

(dimVλ)e(λ).

Lemma 10.7.3 If 0 → V ′ → V → V ′′ → 0 is an exact sequence in O, then we have the formula
ChV = ChV ′ +ChV ′′.

Proof : Clear from the definition. �

Proposition 10.7.4 Let V be an object in O, then we have the formula

ChV =
∑

λ∈h∗

[V : L(λ)]ChL(λ).

Proof : Both formula are additive for exact sequences. Let φ(V ) be the difference. We get that
φ(L(λ)) = 0. Furthermore, taking the filtration given by Lemma 10.6.2, we get that there exist some
modules Mj for j 6∈ J and weight λj for j ∈ J such that

φ(V ) =
∑

j 6∈J

φ(Mj) +
∑

j∈J

φ(L(λj)) =
∑

j 6∈J

φ(Mj).

But the modules Mj are such that for any µ ≥ λ we have (Mj)µ = 0 thus the coefficient of e(λ) in
φ(V ) is zero. This inplies that φ(V ) = 0. �

Proposition 10.7.5 For λ ∈ h∗, we have the following formula:

ChM(λ) = e(λ)
∏

α∈∆+

(1− e(−α))−mult(α).

Proof : We know that the moduleM(λ) is a free U(n−)-module. In particular, Poincaré-Birlhoff-Witt
theorem tells us that there is a basis in terms of monomials in a basis of n−. It easily follows that

ChM(λ) = e(λ)
∏

α∈∆+

(1 + e(−α) + e(−2α) + · · · )multα

and the result follows. �
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Chapter 11

Casimir operator and character

formula

In this chapter, we assume that the matrix A is symmetrisable. We also fix an invariant bilinear for
( , ) on g(A). The existence of this bilinear form will ensure the existence of the Casimir operator
which is an important tool in the character formula. Character formula is true for any Kac-Moody Lie
algebra but one requires the construction of Kac-Moody group and the use of geometric arguments to
prove it.

11.1 Casimir operator

11.1.1 Some formulas

Fix a root α ∈ ∆+ and choose basis (ekα) and (ek−α) of the spaces gα and g−α such that (ekα, e
l
−α) = δk,l

for all k and l. If α = αi is simple then there exists an unique vector ekαi
and we take ekαi

= ei. In that
case because (ei, fi) = ǫi we have ek−αi

= 1
ǫi
fi.

Lemma 11.1.1 For all x ∈ gα and y ∈ g−α, we have:

(x, y) =
∑

k

(x, ek−α)(y, e
k
α).

Proof : Write x =
∑

k(x, e
k
−α)e

k
α and y =

∑
k(y, e

k
α)e

k
−α, the result follows. �

Lemma 11.1.2 Let α and β in ∆ and let z ∈ gβ−α, then we have in g(A)⊗ g(A):

∑

s

es−α ⊗ [z, esα] =
∑

s

[es−β , z]⊗ esβ.

Proof : Define a non degenerate bilinear form on g(A)⊗g(A) by (x⊗ y, z⊗ t) = (x, z)(y, t). To prove
the result, it is enought to prove that the equality holds after taking the bilinear form with euα ⊗ ev−β
for all u and v. This gives

(∑

s

es−α ⊗ [z, esα], e
u
α ⊗ ev−β

)
=
∑

s

δs,u([z, e
s
α], e

v
−β) = (euα, [e

v
−β , z]) and

(∑

s

[es−β , z]⊗ esβ, e
u
α ⊗ ev−β

)
=
∑

s

δs,v(e
u
α, [e

s
−β , z]) = (euα, [e

v
−β , z]).

93
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The result follows. �

Corollary 11.1.3 With the notation of the previous lemma we have the formulas:

∑

s

[es−α, [z, e
s
α]] = −

∑

s

[[z, es−β ], e
s
β ] in g(A),

∑

s

es−α[z, e
s
α] = −

∑

s

[z, es−β ]e
s
β in U(g(A)),

Proof : Apply the previous lemma and the maps from g(A)⊗ g(A) to g(A) and U(g(A)) respectively
given by (x, y) 7→ [x, y] and (x, y) 7→ xy. �

Remark 11.1.4 Remark that the previous lemma and corollary are still true if one of the element α,
β or β − α is not a root.

11.1.2 Casimir operator

Definition 11.1.5 We define a special element ρ in h∗ as follows: take ρ to be a solution of the
equations 〈ρ, α∨i 〉 = 1 for all index i. In fact ρ is uniquely determined only in the finite type case. In
that case it is given by half the sum of the positive roots:

ρ =
1

2

∑

α∈∆+

α.

In general we take for ρ any solution of these equations.

Fact 11.1.6 It follows from the formula 〈ρ, α∨i 〉 =
2(ρ, αi)

(αi, αi)
that (ρ, αi) =

1
2(αi, αi).

Choose as before a basis (esα) of gα and let (es−α) be its dual basis in g−a.

Definition 11.1.7 We define the operator Ω0 on any object V of O by

Ω0 = 2
∑

α∈∆+

∑

s

es−αe
s
α.

Remark that this is well defined since because V is in O, for any vector v ∈ V , there is a finite
number of positive root α such that gα(v) 6= 0. Choose also (uk) and (uk) dual bases of h.

Definition 11.1.8 We define the Casimir operator Ω on any object V of O by

Ω = 2ν−1(ρ) +
∑

k

uku
k +Ω0.

Lemma 11.1.9 This definitions of Ω0 and Ω do not depend on the choice of the dual basis. Therefore
definition of Ω does only depend on the choice of ρ (and of the invariant bilinear form ( , )).

Proof : We denote h = g0 and α will be a root or 0. We identify g−α with g∗α thanks to the bilinear
form. With this identification, the element

∑
s e

s
−α ⊗ esα ∈ g−α ⊗ gα = g∗α ⊗ gα correspond to the

identity. In particular, it does not depend on the choice of the base. �
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Remark 11.1.10 The operators Ω0 and Ω live in a completion Û(g(A)) of the enveloping algebra
U(g(A)). Indeed, let Ud(n) be the subspace of U(n) formed by the degree d homogeneous elements
(the grading is given by the height) and define

Û(g(A)) =
∏

d≥0

U(n−)⊗ U(h) ⊗ Ud(n).

There a natural product given by

∑

d≥0

xd ·
∑

m≥0

ym =
∑

k

∑

d,m≥0

(xdym)k

where for xd and yd in U(n−)⊗U(h)⊗Ud(n+) the element (xdym)kd denotes the component of xdym
in the factor U(n−)⊗ U(h)⊗ Uk(n+).

Let us prove the main result on the Casimir operator:

Theorem 11.1.11 The action of the Casimir operator Ω on any module V of the category O commutes
with the action of g(A). In other words Ω lies in Z(Û(g(A))) the center of the completed enveloping
algebra.

Proof : Since the centraliser Z(Ω) of Ω is a subalgebra, it suffices to prove that Ω commute with the
generators i.e. with the elements ei, fi and h for h ∈ h. But the weight of Ω0 is zero as well as the
other components of Ω proving the commutation with h for all h ∈ h.We start with the following:

Lemma 11.1.12 For x ∈ gα, we have in U(g(A)):

∑

k

[ukuk, x] = x((α,α) + 2ν−1(α)).

Proof : We first compute ukukx = uk[uk, x] + ukxuk = 〈α, uk〉ukx+ ukxuk and xukuk = [x, uk]uk +
ukxuk = −〈α, uk〉xuk + ukxuk. In particular we get

∑

k

[ukuk, x] =
∑

k

〈α, uk〉ukx+
∑

k

〈α, uk〉xuk.

But ukx = [uk, x] + xuk = 〈α, uk〉x+ xuk thus we have

∑

k

[ukuk, x] =
∑

k

〈α, uk〉〈α, uk〉x+ x
∑

k

(〈α, uk〉uk + 〈α, uk〉uk).

But recall the formulas λ =
∑

k〈λ, uk〉ν(uk) =
∑

k〈λ, uk〉ν(uk) giving (λ, µ) =
∑

k〈λ, uk〉〈µ, uk〉. The
result follows. �

We compute the second part of the Casimir operator:

Lemma 11.1.13 The following formula holds in in Û(g(A)):

[Ω0, ei] = −2ei((αi, αi) + ν−1(αi)).
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Proof : In the following sums, we may regard the elements α as positive roots or elements in Q+.
In all the terms of the following equalities, this will be the same because by convention we take
esα = es−α = 0 if α is not a root and because of Remark 11.1.4. Let us now compute

[Ω0, ei] = 2
∑

α∈∆+

∑

s

[es−αe
s
α, ei] = 2

∑

α∈∆+

∑

s

([es−α, ei]e
s
α + es−α[e

s
α, ei])

= 2[e−αi
, ei]ei + 2

∑

α∈∆+\{αi}

(∑

s

[es−α, ei]e
s
α +

∑

s

[ei, e
s
−α−αi

]esα+αi

)
.

The last equality comes from Lemma 11.1.3. Furthermore, the last sum is equal to the same sum
but with indices of summation α ∈ Q+. Furthermore, if α is a root not containing αi in its support,
then es−α is a linear combination of brackets [fi1 , · · · , [fip−1 , fip ]] with all indices ij different from i. In
particular the Lie bracket [[fi1 , · · · , [fip−1 , fip ]], ei] vanishes. This implies that the same roots appear
in the two terms of the second expression which necessary vanishes. We end up with

[Ω0, ei] = 2[e−αi
, ei]ei = − 2

ǫi
α∨i ei = − 2

ǫi
〈α∨i , αi〉ei −

2

ǫi
eiα
∨
i = −2(αi, αi)ei − 2eiν

−1(αi).

The apparition of ǫi comes from the fact that the dual of ei is
1
ǫi
fi (see the definition of the invariant

bilinear form in Theorem 7.2.5). �

Now Lemma 11.1.12 gives us

∑

k

[ukuk, ei] = ei((αi, αi) + 2ν−1(αi)).

Putting all these formulas together we get:

[Ω, ei] = [2ν−1(ρ), ei] + (αi, αi)ei + 2eiν
−1(αi)− 2(αi, αi)ei − 2eiν

−1(αi)
= [2ν−1(ρ), ei]− (αi, αi)ei.

But [2ν−1(ρ), ei] = 2〈α∨i , ν−1(ρ)〉ei = 2(ρ, αi)ei = (αi, αi)ei. We get the desired formula

[Ω, ei] = 0.

The same proof works with fi and the result follows. �

Corollary 11.1.14 (ı) For any λ ∈ h∗, we have Ω|M(λ) = (|λ+ ρ|2 − |ρ|2)IdM(λ).
(ıı) In particular, for any subquotient V of M(λ) we have Ω|V = (|λ+ ρ|2 − |ρ|2)IdV .

Proof : We will consider, as in Proposition 10.3.2, the Verma module M(λ) as the quotient:

M(λ) = U(g(A))/I(λ).

It is generated by 1 and because of the previous theorem, it suffices to show that Ω(1) = (|λ+ρ|2−|ρ|2)1.
But we have n+(1) = 0 and h(1) = 〈λ, h〉1 for h ∈ h. This give the formula

Ω(1) = 〈2ν−1(ρ), λ〉1 +∑k〈λ, uk〉〈λ, uk〉1
= ((2ρ, λ) + (λ, λ))1
= ((ρ+ λ, ρ+ λ)− (ρ, ρ))1.

�
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11.2 Character formula

Let ρ be any solution of the system 〈ρ, αi〉 = 1 for all i (such a ρ is unique only is the finite case). We
prove in this section the following:

Theorem 11.2.1 Let L be an integrable highest weight module. Then we have:

Ch(L(λ)) =

∑

w∈W

ǫ(w)e(w(λ + ρ)− ρ)

∏

α∈∆+

(1− e(−α))multα
.

Corollary 11.2.2 Let L(λ) be an irreducible and integrable highest weight module. Then we have:

Ch(L(λ)) =

∑

w∈W

ǫ(w)e(w(λ + ρ))

∑

w∈W

ǫ(w)e(w(ρ))
.

Proof : Apply the theorem to L(0) which is the trivial representation. Its character is the unit and
we get the so called denominator identity:

∑

w∈W

ǫ(w)e(w(ρ) − ρ) =
∏

α∈∆+

(1− e(−α))multα.

The result follows. �

To prove Theorem 11.2.1 we need some lemmas. First remark that the Weyl groups acts naturally
on the algebra E by w(e(λ)) = e(w(λ)).

Lemma 11.2.3 Let R be the element (the denominator)
∏

α∈∆+

(1− e(−α))multα in E. Then we have

w(e(ρ)R) = ǫ(w)e(ρ)R.

Proof : It suffices to prove this for simple reflections. We have

si(e(ρ)R) = e(ρ− αi)
∏
α∈∆+

(1− e(si(−α)))multα

= e(ρ− αi)(1 − e(αi))
multαi

∏
α∈∆+\{αi}

(1− e(si(−α)))multα

= e(ρ)e(−αi)(1− e(αi))
∏
α∈∆+\{αi}

(1− e(−α))multα

= −e(ρ)R.

The result follows. �

Lemma 11.2.4 Let V be a highest weight module of highest weight λ, then

ChV =
∑

µ≤λ, |µ+ρ|2=|λ+ρ|2

cµChM(µ)

where cµ ∈ Z and cλ = 1.
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Proof : It is sufficient to prove this result for L(λ) because of Proposition 10.7.4. Now we consider
the equation given by Proposition 10.7.4

ChM(µ) =
∑

ν∈h∗

[M(µ) : L(ν)]ChL(ν).

But Corollary 11.1.14 tells us that the action of the Casimir element on M(µ) is (|µ + ρ|2 − |ρ|2)Id
and the same for all its subquotient so in particular on L(ν) if the multiplicity is non zero. But the
action of the Casimir on L(ν) is (|ν + ρ|2 − |ρ|2)Id so this implies that |µ+ ρ|2 = |ν + ρ|2.

Consider the set S(µ) = {ν ∈ h∗ / ν ≤ µ and |ν + ρ|2 = |µ+ ρ|2}. For any µ we have an equation

ChM(µ) =
∑

ν∈S(µ)

[M(µ) : L(ν)]ChL(ν).

with [M(µ) : L(µ)] = 1. This system is triangular and in particular considering this system for
µ ∈ S(λ) we get the result by inverting the system. �

Lemma 11.2.5 Let λ ∈ h∗ be such that 〈α∨i , λ〉 ≥ 0 for all index i. Then for any ν ∈ h∗ such that

• ν ≤ λ+ ρ,

• (ν, ν) = (λ+ ρ, λ+ ρ),

• 〈ν, α∨i 〉 ≥ 0 for all i,

we have ν = λ+ ρ.

Proof : Write ν = λ+ ρ−∑i aiαi with ai ∈ Z≥0. We have

(ν, ν) = (λ+ ρ, λ+ ρ)− (λ+ ρ,
∑

i aiαi)− (ν,
∑

i aiαi)
(ν, ν) = (λ+ ρ, λ+ ρ).

We thus have (λ+ρ,
∑

i aiαi) = −(ν,
∑

i aiαi). But the second term is non positive by hypothesis and
the first one is non negative (recall that (ρ, αi) =

1
2(αi, αi) > 0. This equality is possible if and only

if all the ai vanish. �

We prove the character formula.

Proof : There exist integers dµ with dλ = 1 such that:

ChL =
∑

µ∈S(λ)

dµChM(µ).

By multiplying by e(ρ)R and thanks to Proposition 10.7.5 we get

e(ρ)R · ChL =
∑

µ∈S(λ)

dµe(µ + ρ).

But now recall that because L is integrable, its character is W -invariant. This together with the
W -anti-invariance of e(ρ)R gives:

dµ = ǫ(w)dw(µ+ρ)−ρ.

Fix µ with dµ 6= 0. Then for any w ∈W , we have dw(µ+ρ)−ρ 6= 0 thus w(µ+ ρ)− ρ ≤ λ. Take v ∈W
such that ht(λ− (v(µ + ρ)− ρ)) is minimal. Set ν = v(µ + ρ).
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We have 〈ν, α∨i 〉 ≥ 0. Indeed, the condition on the height imply the inequality ht(λ−siv(µ+ρ)+ρ) ≥
ht(λ− v(µ+ ρ) + ρ). But this implies that 〈v(µ + ρ), α∨i 〉 ≥ 0.

We have ν = v(µ+ ρ) ≤ λ+ ρ and (ν, ν) = (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ) because µ ∈ S(λ). Now
the previous lemma implies that ν = λ+ ρ. In particular, for any µ with dµ 6= 0, we have that there
exists a w ∈W (here w = v−1) such that µ = w(λ+ ρ)− ρ and

dµ = ǫ(v)dv(µ+ρ)−ρ = ǫ(v)dλ = ǫ(v) = ǫ(w).

We thus have
e(ρ)R · Ch(L) =

∑

w∈W

ǫ(w)e(w(λ + ρ))

R · Ch(L) =
∑

w∈W

ǫ(w)e(w(λ + ρ)− ρ)

and the result follows. �

Corollary 11.2.6 An integrable highest weight module L is irreducible.

Proof : Indeed, the module L and its irreducible quotient have the same character. �
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Chapter 12

Untwisted affine Lie algebras

In this chapter, we present an explicit construction of untwisted affine Lie algebras using the existence
of simple Lie algebras. We will construct explicitly simple finite dimensional Lie algberas in Chapter
13 and twisted affine Lie algebras in Chapter 14.

12.1 Some results on finite root systems

In this section we prove some results on finite dimensional simple Lie algebras that we shall need in
the sequel. Let g be a simple Lie algebra and denote by W its Weyl group and by ∆ its roots system.
Denote by (αi)i∈[1,n] the simple roots. Recall from Proposition 8.2.10 that there exists a highest root
(for the height) in ∆ denoted by θ.

Proposition 12.1.1 The Weyl group W acts on ∆ with as many orbits as there are root length (at
most two and one in the simply laced case).

Proof : We first prove this result in type An. In that case, the root system is described as follows. Let
E = Rn+1 and (εi)i∈[1,n+1], then the simple roots are given by αi = εi − εi+1, the roots are described
by (εi− εj)1≤i 6=j≤n+1. The Weyl group is isomorphic to Sn+1 and acts by permutation on the indices
of the εi. In particular, because W is 2-transitive on [1, n+ 1], we get that W acts transitively on ∆.

Now consider the general case and recall that all roots are real i.e. all roots are in the orbit of a
simple root. We only need to prove that all simple roots of the same length are in the same orbit.
All simples roots of the same length are connected in the Dynkin diagram by a connected subgraph
of the Dynkin diagram with only simple edges. Furthermore, the subgroup of W generated by the
reflections with respect to simple roots in a branch of type A of the Dynkin diagram, is a Weyl group
of type A and all the simple roots corresponding to these vertices are thus in the same orbit. This
concludes the proof. �

Corollary 12.1.2 Let α be a root such that 〈θ, α∨i 〉 ≥ 0 for all i ∈ [1, n], then in the simply laced case
α = θ and in the non simply laced case there are two such roots, one of them being θ.

Proof : If θ is the highest root, then for all i, we have si(θ) ≤ θ giving the inequalities. In particular
θ ∈ C∨ where C∨ is in the dominant chamber for the dual root system.

Conversely such a root α is in C∨ and by Theorem 6.5.2 this set is a fundamental domain for the
action of W . In particular any orbit of W meets C∨ in exactly one point. In the simply laced case
there is a unique orbit of W in ∆ and thus a unique root α = θ in C∨. In the non simply laced case,

101
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there are two orbits of W in ∆ each of them meeting C∨ in exactly one root. One of this root have
to be θ because θ is in C∨. �

Recall that we described some coefficients (ai)i∈[0,n] associated to the simple roots for all Dynkin
diagrams of affine Kac-Moody Lie algebras. These coefficients are such that δ =

∑
i aiαi is the smallest

positive integer element of the kernel of the affine Cartan matrix. For g of finite dimension consider
the coefficients ai given by affine type of order 1. By convention, in the simply laced case, we consider
all roots as long and short.

Proposition 12.1.3 The root θ is long and the coroot θ∨ is short. We have the formula θ =

n∑

i=1

aiαi.

Proof : An easy computation (that we already did to prove that δ is in the kernel of the Cartan
matrix of affine type) prove that if we denote by α the right hand side, we have 〈α∨i , α〉 = 0 for all
roots except one (or two in type A). This (these) root(s) is (are) the root(s) to which the vertex
corresponding to α0 is linked. For this (these) root(s) αatt, we have 〈αatt, θ〉 > 0 (its value is 1 in all
cases except type A1 and type Cn for which its value is 2).

Lemma 12.1.4 We have α ∈ ∆ and α is long.

Proof : We assert that α = w(αi) where i = 1 except in type Cn where i = n and w is equal to
sαi1

· · · sαir
with

i1, · · · , ir =





n, · · · , 2 in type An
2, · · · , n, · · · , 2 in type Bn
1, · · · n− 1 in type Cn
2, · · · , n, · · · , 2 in type Dn

2, 4, 5, 3, 4, 2, 6, 5, 4, 3 in type E6

1, 3, 4, 5, 2, 4, 6, 5, 3, 4, 2, 7, 6, 5, 4, 3 in type E7

4, 2, 3, 4, 5, 1, 3, 4, 6, 5, 2, 4, 7, 6, 5, 3, 4, 2, 8, 7, 6, 5, 4, 3 in type E8

1, 2, 3, 4, 3, 2 in type F4

1, 2 in type G2.

�

This lemma proves that α = θ in the simply laced case. In the non simply laced case consider the
following element β = α∨ where we abuse notation here because β is not in ∆ but in ∆∨. However if
∆ is of finite type, the same is true for ∆∨ so that this defines a root β in ∆.

Lemma 12.1.5 We have β ∈ ∆ ∩ C∨ and β is short.

Proof : Because α is long and β is the coroot of α this implies that β is short. Now we have
β =

∑n
i=1 biαi with

b1, · · · , bn =





1, · · · , 1 in type An
1 · · · , 1 in type Bn
1, 2, · · · , 2, 1 in type Cn
1, 2, · · · , 2, 1, 1 in type Dn

1, 2, 2, 3, 2, 1 in type E6

2, 2, 3, 4, 3, 2, 1 in type E7

2, 3, 4, 6, 5, 4, 3, 2, 1 in type E8

1, 2, 3, 2 in type F4

1, 2 in type G2.
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It is now easy to get that β ∈ C∨ indeed, we have 〈β, α∨i 〉 = 0 for all i except αi = α∨att. In fact we do
not need to compute the exact value of β to get this result because of the following formula:

〈α∨i , β〉 = 2
(αi, β)

(αi, αi)
and 〈αi, β∨〉 = 2

(αi, β)

(β, β)

and in particular 〈α∨i , β〉 and 〈αi, β∨〉 have the same sign and even vanish at the same time. �

Now α and β are the two elements in ∆ ∩ C∨, but α ≥ β, the result follows. �

Remark 12.1.6 (ı) Remark that θ∨ is the highest root for the dual root system ∆∨ if and only if g
is simply laced.

(ıı) We have the following more general observation: let g be finite dimensional of type X and let
θX its highest root. Denote by X∨ the dual finite dimensional type obtained by reversing the arrows
in the Dynkin diagram and by g∨ the associated Lie algebra. Then θ∨X is a root in g∨ and θ∨X∨ is a
root in g (it is the root β of the preceding proposition).

Consider ĝ the affine Lie algebra of order 1 associated with g and denote its type by X̂ . Denote

by ĝ∨ its dual and by X̂∨ its type. Consider the affine Lie algebra ĝ∨
∨
of type X̂∨

∨
. Removing its 0

vertex give back a finite Lie algebra g of type X. We have the following

Fact 12.1.7 The root θ is δ
X̂

− α0 and the root θ∨ is δ∨
X̂∨

∨ − α∨0 . In particular, the root β of the

previous lemma is δ
X̂∨

∨ − α0.

Let us now describe more explicitly the invariant bilinear form on g and compute the norm of some
roots. We denote by a0, · · · , an the coefficients of the extended Dynkin diagram of order 1 and by
a∨0 , · · · , a∨n those of the dual Dynkin diagram obtained by reversing the arrows. Let A be the Cartan

matrix associated to g and Â the Cartan of the affine Lie algebra of order one associated. We first
make the following remark

Proposition 12.1.8 Let D be the following diagonal matrix:

D = Diag

(
a1
a∨1
, · · · , an

a∨n

)
.

Then D−1A is symmetric.

Proof : This fact is true for any generalised Cartan matrix of affine or finite type. Let D′ be a regular
diagonal matrix such that B = D′−1A is symmetric. Let δ = (a0, · · · , an)t and δ∨ = (a∨0 , · · · , a∨n)t. We
have Aδ = 0 and Atδ∨ = 0. This implies that D′Bδ = 0 thus Bδ = 0 and δ∨tA = 0 thus δ∨tD′B = 0
and BD′δ∨ = 0. Because the corank of A and also the corank of B is 1 we get that D′δ∨ and δ are
colinear. But any multiple D of D′ is such that D−1A is symmetric. let us take D such that Dδ∨ = δ.
The result follows. �

A direct application of the definition of the invariant bilinear form leads to the following:

Corollary 12.1.9 We have the formulas (α∨i , α
∨
j ) = aj,i ·

aj
a∨j

and (αi, αj) = ai,j ·
a∨i
ai

.

Corollary 12.1.10 We have (θ, θ) = 2
a∨0
a0

= 2 and (θ∨, θ∨) = 2
a0
a∨0

= 2
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Proof : Let us recall that in the affine case of order 1 we have δ = θ + α0. Recall also that 〈δ, α∨i 〉
vanishes if and only if (δ, αi) does. In particular we have (θ, θ) = (α0, α0) and the result follows for θ
(in all cases a∨0 = a0 = 1). For θ∨ this comes from θ∨ = δ∨

X̂∨
∨ − α∨0 . �

Corollary 12.1.11 We have θ = a0ν(θ
∨) = ν(θ∨).

Proof : Let us compute 〈θ, α∨i 〉 = −〈α0, α
∨
i 〉 = −ai,0 and (θ∨, α∨i ) = −(α∨0 , α

∨
i ) the second scalar

product being computed for coroots of ĝ∨
∨
and the result follows. �

12.2 Untwisted affine Lie algebras

12.2.1 Construction of affine Lie algebras

Let g be a simple Lie algebra and ( , ) be an invariant bilinear form on g such that (θ, θ) = 2 where
θ is the highest root of the root system of g. We will denote by O the ring C[t, t−1] and we define the
loop algebra by

L(g) = g⊗C O.

Proposition 12.2.1 The loop algebra is a Lie algebra under the Lie bracket

[x⊗ ta, y ⊗ tb] = [x, y]⊗ ta+b.

Proof : We extend the Lie bracket by bilinearity and we need to prove the Jacobi identity but it
comes directly from the Jacobi identity on g. �

Remark 12.2.2 (ı) The loop algebra may be identified with the Lie algebra of regular rational func-
tions C× → g, the element

∑
a xa ⊗ ta being the map z 7→∑

a z
axa.

Recall the compact involution ω0 on g (for example on sln it is given by A 7→ −Āt where ¯ is the
complex conjugation. Its fixed point set form the lie subalgebra sun) whose fixed point set is a Lie
subalgebra k of g of compact form. We may define a compact involution on L(g) such that the fixed
points of this involution form the Lie subalgebra of loops in k that is to say maps from S1 to k. This
is defined on sln by f(t)A 7→ −f̄(t−1)Āt.

(ıı) We may extend the bilinear form ( , ) to an O-valued bilinear form defined by

(x⊗ ta, x⊗ tb) = (x, y)ta+b.

Definition 12.2.3 Define the affine Lie algebra ĝ by ĝ = L(g)⊕ Cc⊕ Cd with Lie bracket

[x⊗ ta + λc+ µd, y ⊗ tb + λ′c+ µ′d] = [x, y]⊗ ta+b + µy ⊗ btb − µ′x⊗ ata + aδa,−b(x, y)c.

Proposition 12.2.4 This defines a Lie algebra structure on ĝ.

Proof : We first study an intermediate Lie algebra ĝ′ defined by the subspace L(g)⊕Cc. The element
c is central in this subalgebra (and even in ĝ) so that if ĝ′ is a Lie subalgebra, we get a central extension

0 → Cc→ ĝ′ → L(g) → 0.

This is a universal central extension of L(g) by C. In the same way considering the subalgebra ¯̂g
defined by the subspace L(g)⊕ Cd then the extension

0 → Cc→ ĝ → ¯̂g → 0

is a central extension.
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Lemma 12.2.5 Let φ(P,Q) = Res(dPdt Q), then φ is bilinear and we have the following properties

φ(P,Q) = −φ(Q,P )

φ(PQ,R) + φ(QR,P ) + φ(RP,Q) = 0.

Proof : The linearity comes from the linearity of the product, the derivation and the residue operator.
The first formula comes from the fact that the residue of an exact element d(PQ)/dt vanishes. The
last one from the same argument with d(PQR)/dt. �

Corollary 12.2.6 The vector space ĝ′ is a Lie algebra with the preceding Lie bracket.

Proof : We first remark that φ(ta, tb) = aδa,−b = −bδa,−b. In particular the Lie bracket on ĝ′

takes the following form [x ⊗ ta + λc, y ⊗ tb + λ′c] = ta+b[x, y] + aδa,−b(x, y)c. This generalises to
[x⊗P +λc, y⊗Q+λ′c] = PQ[x, y]+φ(P,Q)(x, y)c. The antisymmetry of the Lie bracket comes from
the first formula of the preceding Lemma and Jacobi identity comes from the second one. �

To prove that ĝ is a Lie algebra, we only need to prove it for ¯̂g because µ and µ′ do not appear in
the coefficient of c in the formula defining the Lie bracket.

Fact 12.2.7 Define d0 by d0(P ) = tdPdt , then d0 is a derivation (called the degree derivation).

The Lie bracket on ¯̂g is given by [x⊗P + µd, y⊗Q+ µ′d] = PQ[x, y] + µd0(Q)⊗ y− µ′d0(P )⊗ x.
The antisymmetry of the Lie bracket is clear, let us compute:

[x⊗ P + µd, [y ⊗Q+ µ′d, z ⊗R+ µ′′d]] = [x⊗ P + µd, [y, z] ⊗QR+ µ′d0(R)⊗ z − µ′′d0(Q)⊗ y]
= [x, [y, z]]PQR + µ′[x, z]Pd0(R)− µ′′[x, y]Pd0(Q)

+µ[y, z]⊗ d0(QR) + µµ′z ⊗ d20(R)− µµ′′y ⊗ d20(Q).

It is now an easy computation (using the fact that d0 is a derivation) to verify the Jacobi identity. �

Remark 12.2.8 The map g → ĝ is a Lie algebra embedding. In particular we will consider g as a
subalgebra of ĝ. We define the subalgebra ĥ of ĝ by ĥ = h⊕ Cc⊕ Cd.

An easy check with the definition of the Lie bracket given in Definition 12.2.3 gives the following

Fact 12.2.9 The Lie subalgebra ĥ is abelian.

12.2.2 The Lie algebra ĝ is an affine Kac-Moody algebra

We will see that ĥ will be a Cartan subalgebra for ĝ and that ĝ is the affine algebra of untwisted type
obtained from g. Let us be more precise. Let X be the type of g with Cartan matrix A and consider
the affine Lie algebra of type X̃1 whose Cartan matrix is Â. Recall that we denote by δ the element
δ ∈ Q described by

δ =
∑

i

aiαi

where ai is the coefficient of the vertex i in Table 2.1. Denote by a∨i the coefficients of the vertices in

the Dynkin diagram of the dual affine algebra associated to Ât. We may define in the same way δ∨ by

δ∨ =
∑

i

a∨i α
∨
i .
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Lemma 12.2.10 The element δ∨ generates the center of g(Â).

Proof : We know from Proposition 4.1.12 that the center is of dimension one. We only need to prove
that δ∨ is in the center. But by the characterisation of the center in Proposition loc. cit. we need to
prove that 〈δ∨, αi〉 = 0 for all i. This is true thanks to Proposition 8.2.7 �

Remark 12.2.11 Remark that in all cases, we have a0 = a∨0 = 1. Let us denote by θ the following
root θ = δ − α0. It is a root of the finite system whose matrix is A and Lie algebra g.

We already proved the following:

Fact 12.2.12 The root θ is the highest root for the root system of g.

We have seen that h is a subalgebra of ĝ. We may embed h∗ as a subalgebra of ĝ∗ as follows: for
λ ∈ h∗ we define λ(c) = λ(d) = 0. This embeds h∗ in ĝ∗. We may also define a special element δ̂ in ĝ∗

by δ̂|h = 0, δ̂(c) = 0 and δ̂(d) = 1. Let us denote by θ∨ the coroot of θ.

The first link between ĝ and g(Â) is the following:

Proposition 12.2.13 The system (ĥ,Π,Π∨) is a realisation of the matrix Â, where we have the
equalities Π = {δ̂ − θ, α1, · · · , αn} and Π∨ = {c− θ∨, α∨1 , · · · , α∨n}.

Proof : The dimension of ĥ is n + 2 = size(Â) + Corank(Â) the expected dimension. Furthermore,
the system Π and the system Π∨ are independent because is it the case of the simple roots in h and
because of the definition of c and δ̂. Finally the proposition follows from the table of simple Lie
algebras. �

Proposition 12.2.14 The Lie algebra ĝ decomposes as an ĥ-module as follows:

ĝ = ĥ⊕


 ⊕

a∈Z\{0}

h⊗ ta


⊕


 ⊕

α∈Z, α∈∆

gα ⊗ ta




where ∆ is the root system of g and if α ∈ ∆ the associated eigenspace in g is gα. Moreover ĥ acts on
h⊗ ta by aδ̂ and on gα ⊗ ta by aδ̂ + α.

Proof : All the weights are distinct and it suffices to prove that ĥ acts indeed with these weights. Let
h+ λc+ µd ∈ ĥ and let h′ ∈ h and x ∈ gα we have

[h+ λc+ µd, h′ ⊗ ta] = µah′ ⊗ ta = aδ̂(h+ λc+ µd)h′ ⊗ ta and

[h+ λc+ µd, x⊗ ta] = α(h)x ⊗ ta + aµx⊗ ta = (α+ aδ̂)(h+ λc+ µd)x⊗ ta.

The result follows. �

Remark that the weights δ̂ and δ coincide in ĥ∗ seen as a realisation of Â. We will identify them
in the rest of the lecture.

Let us fix some more notation. Let ei and fi for i ∈ [1, n] be Chevalley generators of the Lie
algebra g such that ei ∈ gαi

and fi ∈ g−αi
. Let also eθ be in gθ be such that (eθ, w(eθ)) = −1 where

w is the Cartan involution in g (in particular w(eθ) ∈ g−θ). Define e0 and f0 in ĝ by e0 = −w(x0)⊗ t
and f0 = x0 ⊗ t−1. In the same way let êi and f̂i for i ∈ [0, n] be Chevalley generators of ĝ such that
êi ∈ ĝαi

and f̂i ∈ ĝ−αi
.
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Theorem 12.2.15 There is a unique Lie algebra isomorphism ψ : g(Â) → ĝ such that for all i in
[0, n] we have ψ(êi) = ei and ψ|ĥ = Id

ĥ
.

Proof : If it exists ψ is unique because g(Â) is generated by ĥ (recall that ĥ is the vector space of a
realisation of Â) and by the Chevalley generators ei and fi for i ∈ [0, n].

To prove that this morphism exists, we start by proving its existence on g̃(Â). For this we need
to prove the following commuting relations in ĝ for all h and h′ in ĥ and all indices i and j in [0, n]:

[h, h′] = 0, [h, ei] = 〈αi, h〉ei, [h, fi] = −〈αi, h〉fi, and [ei, fj ] = δi,jα
∨
i .

We already checked the first relation. The second is clear for i 6= 0 and h ∈ h. But it is also clear
for c and d and thus for all h ∈ ĥ and i 6= 0. For e0, this comes from the fact that α0 = δ − θ giving
the relation for h ∈ h because [h, e0] = −[h,w(x0)] ⊗ t = −〈θ, h〉w(x0) ⊗ t = 〈α0, h〉e0 because δ is
in the kernel of Â. We have 〈α0, c〉 = 〈δ − θ, c〉 = 0 thus we get [c, e0] = 0 = 〈a0, c〉e0. We have
〈α0, d〉 = 〈δ − θ, d〉 = 1 thus we get [d, e0] = 0 = 〈a0, d〉e0. The same computation give the third
commuting relations. For the last one, we already know the relations for i and j in [1, n]. For ij = 0
but (i, j) 6= (0, 0), the fact that θ is a highest root imply the relation [ei, fj] = 0. Finally we have
[e0, f0] = −[w(x0)⊗ t, x0 ⊗ t−1]− (w(x0), x0)c = [x0, w(x0)] ⊗ 1 + c = (w(x0), x0)ν

−1(θ) ⊗ 1 + c thus
[e0, f0] = ν−1(θ)⊗ 1 + c where ν : h → h∗ is the isomorphism described by the invariant form ( , ). It
is easy to get that ν−1(θ) = θ∨ and the result follows.

Let us now prove that there is no non trivial ideal i intersecting ĥ trivially in ĝ. If such an i exists,
then from the weight space decomposition, there exists an element x ∈ gα with α ∈ ∆ ∪ {0} and an
integer a ∈ Z such that x⊗ ta ∈ i. If α 6= 0, then because g is finite dimensional the dimension of gα is
one and gα⊗ ta ⊂ i. In particular [gα⊗ ta, g−α⊗ t−a] 6= 0 and is in ĥ∩ ĝ a contradiction. If α = 0 but
a 6= 0, then [x⊗ ta, h⊗ t−a] 6= 0 and is in ĥ∩ i a contradition. If α = 0 and a = 0 then x⊗ ta is already
in h ⊂ ĥ and this is not possible. This proves that there is a unique such Lie algebra morphism ψ.

Let r be the kernel of ψ, then because ψ is injective on ĥ, this kernel has a trivial intersection with
ĥ and is thus trivial by condtruction of the Kac-Moody algebra g(Ã). Let us prove that ψ is surjective.
We know that g⊗ 1 is contained in the image. Furthermore, [−w(x0)⊗ t, g⊗ 1] = [−w(x0), g]⊗ t is in
this image but [−w(x0), g] = g because g is simple, thus g⊗ t is in the image. By induction, because
[x ⊗ t, y ⊗ tk] = [x, y] ⊗ tk+1 for k ≥ 0, it follows by inclusion that g ⊗ tk is in the image for k ≥ 0.
The same proof gives that g⊗ tk for k ≤ 0 is in the image and the result follows. �

Corollary 12.2.16 The set of roots ∆̂ of g(Â) is given by

∆̂ = {aδ, a ∈ Z \ {0}} ∪ {α+ aδ, α ∈ ∆, a ∈ Z}.

Moreover, the root multiplicity of aδ is n and the root multiplicity of α+ aδ is 1.

12.2.3 Affine Weyl group

LetW be the Weyl group of g. It is a finite group. Consider Q∨ the coroot lattice i.e. the Z submodule
of h generated by the simple coroots α∨i for i ∈ [1, n]. Any coroot α∨ lies in Q∨. In particular for any
w ∈W , we have w(αi) ∈ Q thus W acts on Q.

Definition 12.2.17 The affine Weyl group Ŵ is the semidirect product of the Weyl group W by
the coroot lattice Q∨. In symbols:

Ŵ =W ⋉Q∨.

For h ∈ Q∨ the corresponding element in Ŵ will be denoted th. It acts on h (or Q∨) by translation.

For α a root of g, we will denote by ŝα the reflection in Ŵ corresponding to the reflection sα ∈W .
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To describe the action of the Weyl group on ĥ∗ we will need the following element Λ ∈ ĥ∗ defined
by 〈Λ, α∨i 〉 = δ0,i and 〈Λ, d〉 = 0. The elements ((αi)i∈[0,n],Λ) form a basis of ĥ∗. As a consequence,

the elements ((αi)i∈[1,n], δ,Λ) form a basis of ĥ∗ and Cδ ⊕ CΛ is a supplementary of h in ĥ.

Remark 12.2.18 Consider the Weyl groupWaff of the Kac-Moody Lie algebra g(Â) = ĝ and consider
the simple reflections s0, · · · , sn. Let us denote by W ′ the subgroup of Waff generated by s1, · · · , sn.
The action of si on δ and Λ is trivial thus W ′ acts trivially on Cδ⊕CΛ and stabilises h. This implies
(because Waff acts faithfully on ĥ∗) that W ′ acts faithfully on h. We can thus identify W with W ′

acting on ĥ by its action on h.

Theorem 12.2.19 Let Waff the Weyl group associated to the Kac-Moody Lie algebra g(Â) = ĝ, then

there is a unique isomorphism of groups φ : Waff → Ŵ such that φ(s0) = tθ∨ ŝθ and φ(si) = ŝi for
i ∈ [1, n].

Proof : Let h ∈ h and define the following element Th ∈ End(ĥ∗):

Th(λ) = λ+ 〈λ, c〉ν(h) − (〈λ, h〉 + 1

2
(h, h)〈λ, c〉)δ.

Remark that for λ such that 〈λ, c〉 = 0 we get Th(λ) = λ− 〈λ, h〉δ. In particular Th(δ) = δ. Compute
Th ◦ Tk and remark that ν(h), ν(k) ∈ h, we get:

Th ◦ Tk(λ) = Th(λ+ 〈λ, c〉ν(k) − (〈λ, k〉 + 1
2(k, k)〈λ, c〉)δ)

= λ+ 〈λ, c〉ν(h) − (〈λ, h〉 + 1
2(h, h)〈λ, c〉)δ

+〈λ, c〉(ν(k) − 〈ν(k), h〉δ)
−(〈λ, k〉+ 1

2(k, k)〈λ, c〉)δ
= λ+ 〈λ, c〉(ν(h) + ν(k))− (〈λ, h+ k〉+ 1

2(h+ k, h+ k)〈λ, c〉)δ
= Th+k(λ).

In particular Th ∈ Aut(ĥ∗) (its inverse is T−h). This gives an embedding of h in Aut(ĥ∗) (it is injective
because as a group morphism we need to look at the kernel. It is given by the elements h ∈ h such
that Th = Id. This gives for all λ ∈ h∗ that 〈λ, h〉 = 0 thus h = 0.)

Recall that Waff is a subgroup of Aut(ĥ∗). We assert that Q∨ ⊂ h ⊂ Aut(ĥ∗) is contained in Waff .
Let us first compute the following

Tθ∨ ◦ sθ(λ) = sθ(λ) + 〈sθ(λ), c〉ν(θ∨)− (〈sθ(λ), θ∨〉+ 1
2(θ
∨, θ∨)〈sθ(λ), c〉)δ

= λ− 〈λ, θ∨〉θ + 〈λ, c〉θ − (〈λ, θ∨〉 − 2〈λ, θ∨〉+ 〈λ, c〉)δ
= λ− (〈λ, c〉 − 〈λ, θ∨〉)(δ − θ)
= sα0(λ).

We get in particular that Tθ∨ ∈Waff . Furthermore, for w ∈W and λ ∈ h∗, we have

wThw
−1(λ) = w(w−1(λ)− 〈w−1(λ), h〉δ)

= λ− 〈λ,w(h)〉δ)
= Tw(h)(λ).

But wThw
−1(δ) = δ and wThw

−1(Λ) = w(Λ + ν(h)− 1
2(h, h)δ) = Λ +w(ν(h)) − 1

2(h, h)δ. We deduce
that wThw

−1(Λ) = Tw(h)(Λ) and wThw
−1 = Tw(h). We deduce that W · Tθ∨ ∈ Waff . To prove that

Q∨ ⊂Waff , it suffices to show that W · θ∨ generates Q∨.

Lemma 12.2.20 The subset W · θ∨ generates Q∨.
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Proof : Let L be the Z-span of W · θ∨. It is W -invariant. Recall that we proved that the Weyl group
of a finite dimensional simple Lie algebra acts transitively on the roots of the same length. Moreover,
we proved that θ∨ is a short root. In particular all short roots are in L. If g is simply laced, we are
done. Otherwise, take α a short simple root and take β a long simple root with 〈β∨, α〉 6= 0 (its value
has to be −1), then sβ(α)− α = β is in L and all long roots are in L. �

Now Q∨ is contained in Waff but this subgroup is normalised by W in Waff . Moreover, because
all elements in Q∨ are of infinite order and because W is finite we have W ∩Q∨ = {1} in Waff . Now

in the subgroup generated by W and Q∨, which is Ŵ , we have all the reflections si for i 6= 0 and s0
because of a previous computation. �

Definition 12.2.21 Let us define a bilinear form on ĝ = g(Â) as follows, for x and y in g and P and
Q in O:

(x⊗ P, y ⊗Q) = (x, y)res(
PQ

t
).

and by

(c, g⊗O) = (d, g⊗O) = (c, c) = (d, d) = 0, (c, d) = 1.

Proposition 12.2.22 This bilinear form is invariant on ĝ.

Proof : Remark that taking D̂ = Diag(1, ǫ1, · · · , ǫn) were D = Diag(ǫ1, · · · , ǫn) is a diagonal matrix
such that D−1A is symmetric, then D̂−1Â is symmetric.

To prove that the above defined bilinear form is the right one, we need to check that it satisfies
on ĥ the conclusion of Proposition 7.2.1 and on ĝ the conclusion of Theorem 7.2.5. On ĥ, the form
is determined by the choice of a supplementary ĥ′′ (here choose Cd) of the space ĥ′ generated by
the simple roots and by the formulas (α∨i , h) = 〈αi, h〉ǫi for h ∈ ĥ and (h′, h′′) = 0 for h′ and h′′ in

ĥ′′. These are easily checked. We then need to check that this bilinear form is invariant for the Lie
algebra structure i.e. (X, [Y,Z]) = ([X,Y ], Z). Let X = x⊗ tu + λc+ µd, Y = y ⊗ tv + λ′c+ µ′′d and
Z = z ⊗ tw + λ′′c+ µ′′d, then

(X, [Y,Z]) = (x⊗ tu + λc+ µd, [y, z]⊗ tv+w + µ′wz ⊗ tw − µ′′vy ⊗ tv + vδv,−w(y, z)c)
= (x, [y, z])δu+v+w,0 + (x, z)µ′wδu+w,0 − (x, y)µ′′vδu+v,0 + (y, z)µvδv+w,0
= ([x, y], z)δu+v+w,0 + (x, z)µ′wδu+w,0 + (x, y)µ′′uδu+v,0 + (y, z)µvδv+w,0

and because of the symmetry of the last three terms the same computation gives the result. �

12.3 Application: Jacobi triple product formula

In this section, we consider the denominator identity for the affine non twisted Lie algebra of type A1
1.

We compute explicitly this equality and reprove the famous triple product formula:

Theorem 12.3.1 Let u and v be two formal variables, then we have the following (Jacobi triple
product) identity:

∏

n≥1

(1− unvn)(1 − un−1vn)(1 − unvn−1) =
∑

k∈Z

(−1)ku
1
2
k(k+1)v

1
2
k(k−1).
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Proof : We consider the denominator identity:
∏

α∈∆+

(1− e(−α))multα =
∑

w∈W

ǫ(w)e(w(ρ) − ρ).

We compute this formula for the root system of type A1
1. The roots are described by ∆ = {α1+nδ / n ∈

Z} ∪ {nδ / n ∈ Z \ {0}} and ∆+ = {α1 + nδ / n ≥ 0} ∪ {−α1 + nδ / n > 0} ∪ {nδ / n > 0}. In
particular, we get, because mult(α1 + nδ) = 1 and mult(nδ) = 1 (here the rank is one), the identity:

∏

n≥0

(1− e(−α1 − nδ))
∏

n>0

(1− e(α1 − nδ))(1 − e(−nδ)) =
∑

w∈W

ǫ(w)e(w(ρ) − ρ).

Let us set u = e(−α0) and v = e(−α1). Recall that δ = α0 + θ = α0 + α1. We get:
∏

n≥0

(1− unvn+1)
∏

n>0

(1− unvn)(1− unvn−1) =
∑

w∈W

ǫ(w)e(w(ρ) − ρ)

thus ∏

n≥1

(1− un−1vn)(1 − unvn)(1− unvn−1) =
∑

w∈W

ǫ(w)e(w(ρ) − ρ).

Let us now recall the structure of the Weyl group. The finite Weyl group is {±1} and the affine Weyl
group W is the semi-direct product with Q∨ = Zα∨1 . In particular an element in the Weyl group is
of the form (s0s1)

n or of the form s1(s0s1)
n for n ∈ Z. Recall that we have (ρ, α0) = 1

2(α0, α0) =
1 = 1

2 (α1, α1) = (ρ, α1). This gives s0(ρ) = ρ− (ρ, α0)α0 = ρ− α0 and s1(ρ) = ρ− α1. We also have
s0(α1) = α1 + 2α0, s1(α0) = α0 + 2α1, s0s1(α0) = 3α0 + 2α1 and s0s1(α1) = −2α0 − α1.

Lemma 12.3.2 We have the following formulas

(s0s1)
n(ρ) = ρ+ (−2n2 − n)α0 + (−2n2 + n)α1.

s1(s0s1)
n(ρ) = ρ+ (−2n2 − n)α0 + (−2n2 − 3n− 1)α1.

Proof : We prove these relations by induction on n. The second follows from the first. The first
relation is clear for n = 0. We have s0s1(ρ) = s0(ρ− α1) = ρ− α0 − α1 − 2α0 = ρ− 3α0 − α1 and the
result holds for n = 1. Assume this is true for n, we get

(s0s1)
n+1(ρ) = s0s1(ρ+ (−2n2 − n)α0 + (−2n2 + n)α1)

= ρ− 3α0 − α1 + (−2n2 − n)(3α0 + 2α1) + (−2n2 + n)(−2α0 − α1)
= ρ+ (−3− 6n2 − 3n+ 4n2 − 2n)α0 + (−1− 4n2 − 2n+ 2n2 − n)α1

= ρ+ (−2n2 − 5n− 3)α0 + (−2n2 − 3n − 1)α1

= ρ+ (−2(n+ 1)2 − (n + 1))α0 + (−2(n + 1)2 + (n+ 1))α1.

�

In particular we get, replacing e(−α0) by u and e(−α1) by v:
∑

w∈W

ǫ(w)e(w(ρ) − ρ) =
∑

n∈Z

u2n
2+nv2n

2−n −
∑

n∈Z

u2n
2+nv2n

2+3n+1.

We set m = 2n in the first sum and m = −(2n + 1) in the second. When n ∈ Z, then m describe all
even (resp. odd) terms in the first (resp. second) sum. We get

∑

w∈W

ǫ(w)e(w(ρ) − ρ) =
∑

m even

u
1
2
m(m+1)v

1
2
m(m−1) −

∑

m odd

u
1
2
m(m+1)v

1
2
m(m−1)

and the result follows. �



Chapter 13

Explicit construction of finite

dimensional Lie algebras

In the next chapter, we construct the so called twisted affine Lie algebras. These are obtained via finite
order automorphisms of finite dimensional Lie algebras. To illustrate the construction, we start in this
chapter with the finite dimensional case. We explicitly construct simply laced finite dimensional simple
Lie algebras. We then construct the non simply laced simple Lie algebras thanks to automorphisms
of the simply laced ones.

13.1 Simply laced case

Let A be a symmetric Cartan matrix of finite type. This matrix corresponds to a Dynkin diagram of
simply laced type (no double arrow). Let (h,Π,Π∨) be a realisation of A and denote by Q and Q∨

the coroot and root lattices. The matrix A is symmetric non degenerate and defines a non degenerate
quadratic form ( , ) on Q (and Q∨). We denote by ∆ be the root system associated to A and start
with the following:

Fact 13.1.1 The root system ∆ is given by

∆ = {α ∈ Q / (α,α) = 2}.

Proof : Let us define the set ∆′ to be {α ∈ Q / (α,α) = 2}. We prove that ∆′ and ∆ coincide.
We may easily remark that they both live in Q and that the set of simple roots Π is contained in ∆′.
Furthermore, the set ∆′ is W -invariant because the form ( , ) is. In particular, because in the simply
laced case the group W acts transitively on the roots, we get that ∆ ⊂ ∆′. Let us prove the converse.

First remark that Q is an even lattice that is for any α ∈ Q we have (α,α) is even. Indeed,
write α =

∑
i aiαi, then (α,α) =

∑
i a

2
i (αi, αi) + 2

∑
i<j aiaj(αi, αj) and the result follows because

(αi, αi) = 2.

Now let us prove that, for an element α ∈ ∆′, if we write α =
∑

i αiαi, then all the ai have the
same sign. Assume the converse is true, then let K and J be the (non empty) subsets of indices such
that ak > 0 for k ∈ K and aj < 0 for j ∈ J . Denote by α+ the sum

∑
k∈K akαk and α− the sum∑

j∈J ajαj . We have 2 = (α,α) = (α+, α+) + (α−, α−) + 2(α+, α−). But because K and J are non
empty we have (α+, α+) ≥ 2 and (α−, α−) ≥ 2. But we also have

2(α+, α−) =
∑

k∈K, j∈J

akaj(αk, αj).

111
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The scalar product (αk, αj) is non positive because k and j are distinct and ajak is negative thus
2(α+, α−) is non negative, a contradiction.

Denote by ∆′+ (resp. ∆′−) the set of elements in ∆′ obtained as non negative (resp. non positive)
linear combinations of simple roots. We then prove that for any element α ∈ ∆′+, there exists
a simple root αi such that (α,αi) > 0. If not, write α +

∑
i aiαi with ai ≥ 0. Then we have

2 = (α,α) =
∑

i ai(α,αi) ≤ 0 a contradiction.
Let us prove by induction on the height that all elements in ∆′ are in ∆. This is true for height

one. Let α ∈ ∆′+ not a simple root and αi such that (α,αi) > 0. Then si(α) = α− (α,αi)αi is in ∆′+
(because α 6= αi) of lower height thus in ∆. Finally ∆′− = −∆′+ and the result follows. �

We now choose an orientation of the Dynkin diagram associated to A i.e. we replace the simple
edges of the Dynkin diagram by directed simple arrows. We have 2♯{edges} such choices. For a fixed
orientation of the Dynkin diagram we define a function ε on the set of couples of vertices of the Dynkin
diagram by

ε(i, j) =

{
1 if i = j or if there is an arrow from i to j
0 otherwise.

We extend this function on Q×Q by bilinearity i.e. we define a function ε : Q×Q→ {±1}. Writing
α =

∑
i aiαi and β =

∑
i biαi we set

ε(α, β) =
∑

i,j

aibjε(i, j).

Lemma 13.1.2 For any orientation and any α ∈ Q, we have

ε(α,α) ≡ 1

2
(α,α) (mod 2) and ε(α, β) + ε(β, α) ≡ (α, β) (mod 2).

Proof : We write α =
∑

i aiαi. We then have

ε(α,α) =
∑

i

a2i +
∑

i→j

aiaj.

But we also have
1

2
(α,α) =

∑

i

a2i −
∑

{i,j}∈ Edge

aiaj

where Edge is the set of pairs of vertices linked by an edge in the Dynkin diagram. In particular, for
any orientation and any pair {i, j} in Edge there is an arrow i→ j or j → i. We get the result.

The second relation comes from the first one and the bilinearity of ε and ( , ). �

Let h be the vector space generated by the simple roots (a realisation of A or h = Q⊗Z C). Let

us define some variables Eα for α ∈ ∆. We now set g′ = h⊕ (
⊕

α∈∆

CEα) and define a bracket on g′ by





[h, h′] = 0 for h and h′ in h

[h,Eα] = −[Eα, h] = (h, α)Eα for h ∈ h and α ∈ ∆,
[Eα, Eβ ] = 0 for α and β in ∆ but 0 6= α+ β 6∈ ∆,
[Eα, E−α] = −α
[Eα, Eβ ] = (−1)ε(α,β)Eα+β for α, β and α+ β in ∆.

Let us also extend the bilinear form ( , ) from h to g′ by (h,Eα) = 0 for h ∈ h and α ∈ ∆ and
(Eα, Eβ) = −δα+β,0 for α, β ∈ ∆.
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Theorem 13.1.3 The bracket on g′ defines a Lie bracket and with this bracket g′ is the simple Lie
algebra g(A) associated to the Cartan matrix A. The bilinear form ( , ) is invariant.

Proof : Assume that the bracket is a Lie bracket. Then it is easy to see that g′ is a simple Lie algebra
of type associated with A. Indeed, define ei = Eαi

and fi = −E−αi
. Then h, ei and fi satisfy the

relations of g̃(A). We thus have a map g̃(A) → g′. To prove its surjectivity we need to prove that the
ei, fi and h generate g′. Take α a positive root, then we prove by induction on its height that Eα is
generated by the ei. If the height is 1 it is clear. Otherwise, take αi such that (α,αi) > 0. We have
si(α) = α − (α,αi)αi. But Cauchy-Schwarz gives us (α,αi)

2 ≤ (αi, αi)(α,α) thus |(αi, α)| ≤ 2 with
equality if and only if α and αi are colinear. This is not the case thus (α,αi) = 1 and si(α) = α− αi.
Now by induction we have Eα−αi

∈ g′ thus Eα = (−1)ε(α−αi,αi)[Eα−αi
, Eαi

] is in g′ and the result
follows.

Furthermore if i is an ideal in g′ not meeting h, we know that it is trivial if and only if i ∩CEα is
trivial (the CEα are the eigenspaces for the action of h). If i is not trivial, then there exists an root α
such that Eα ∈ i but then −α = [Eα, E−α] ∈ i a contradiction. This proves that we have a surjective
map g(A) → g′ and this map is injective because it is an isomorphism on h.

It is an easy check that the bilinear form is invariant.
Let us now prove that the bracket is a Lie bracket. Let α and β be two roots such that α+ β is a

root. This implies that 2(α, β) = (α+ β, α+ β)− (α,α)− (β, β) = −2. Applying the previous lemma
we get that ε(α, β) = ε(β, α) + 1 and the antisymmetry of the Lie bracket follows.

For the Jacobi formula, we want to check that X = [x, [y, z]] + [[x, z], y] + [z, [x, y]] = 0 for x, y
and z in h ∪ {Eα / α ∈ ∆}. This is clear for one of them in h and the two others equal to Eα and Eβ
with α + β 6∈ ∆ because all the brackets vanish. It is also clear if the three are in h. Furthermore, if
two of them are in h, say x and y and z = Eα then this gives X = (x, α)(y, α)Eα− (x, α)(y, α)Eα = 0.
Assume that one of them, say x, is in h and let y = Eα and z = Eβ with α+ β ∈ ∆. We get

X = (−1)ε(α,β)(x, α+ β)Eα+β + (x, β)(−1)ε(β,α)Eα+β + (x, α)(−1)ε(β,α)Eα+β

But as we already saw, in this situation, we have ε(α, β) = ε(β, α) + 1 and the result follows.
We are now left with the case x = Eα, y = Eβ and z = Eγ with α, β and γ three roots. If the

sum of any two of them is not a root or 0, the three brackets vanish. We may thus assume that
α+ β ∈ ∆ ∪ {0}.

If β = −α, then we consider three cases: γ ± α 6∈ ∆ ∪ {0}, γ = ±α, and γ + α ∈ ∆ or γ − α ∈ ∆
(the case γ + α ∈ ∆ and γ − α ∈ ∆ is not possible otherwise we would have (α, γ) = −1 = (−α, γ)).
In the first case X = [Eγ ,−α] = (α, γ)Eγ . But because γ ±α 6∈ ∆∪ {0}, we have (α, γ) = 0 (Cauchy-
Schwarz gives that |(α, γ)| = 0, 1 or 2 with 2 if γ is proportional to α i.e. γ = ±α, this is not the case.
Furthermore, if |(α, γ) = ±1, then γ−α or γ+α is a root). In the second case, we get (for γ = −α the
other case is similar) the equality X = [Eα, α] + [Eα,−α] = 0. In the third case (for γ + α ∈ ∆, the
other case is similar), we get X = (−1)ε(α,γ)[Eα+γ , E−α] + [α,Eγ ] = ((−1)ε(α,γ)+ε(α+γ,−α) + (α, γ))Eγ .
But because α+ γ is a root we have (α, γ) = −1 and but the previous lemma (−1)ε(α,γ)+ε(α+γ,−α) =
(−1)(α,γ)+1 = 1, the result follows in this case.

By symmetry, we may now assume that α+ β, α+ γ and β + γ are roots. We get that (α+ β) =
(α, γ) = (β, γ) = −1 thus (α + β, γ, α + β + γ) = 0 and thus (because the quadratic form is non
degenerate) α+ β + γ = 0. We thus get

X = (−1)ε(β,γ)(−α) + (−1)ε(α,γ)β + (−1)ε(α,β)(−γ).
Now because α + β + γ = 0 and from the bilinearity of ε, we get that ε(α,α + β + γ) = 0 thus
1+ε(α, β) = ε(α, γ). Similarly we have ε(β, γ)+1 = ε(α, γ) and we get X = (−1)ε(α,γ)(α+β+γ) = 0.
�
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13.2 Non simply laced case

Using the automorphisms of the Dynkin diagrams we construct the non simply laced simple Lie
algebras using the simply laced ones. The technics we will use are very similar to the one we will us
to construct twisted affine Lie algebras.

Let us first remark that the simply laced Dynkin diagrams of finite type do admit symmetries. We
denote by σ these symmetries. Let us describe them as follows:

• In type An, the symmetry is given by σ(i) = n+ 1− i.

• In type Dn, the symmetry is given by the exchange of the last two vertices.

• In type D4 there is an order three symmetry given by the permutation of the three non central
vertices.

• In type E6 there is a symmetry σ of order two given by (the numeration of the roots is the one
of [Bo54]): σ(1) = 6, σ(2) = 2, σ(3) = 5 and σ(4) = 4.

Lemma 13.2.1 The symmetry σ induces an automorphism, still denoted σ, of the Lie algebra g.

Proof : For this we only need to remember the definition of g as the quotient of g̃(A) by its maximal
ideal with trivial intersection with h. Recall that g̃(A) is generated by h and the elements ei and fi.
Let us define σ on g̃(A) by σ(α∨i ) = α∨σ(i), σ(ei) = eσ(i) and σ(fi) = fσ(i). Because the relations do only

depend on the Dynkin diagram, if we denote eσ(i) (resp. fσ(i), resp. α
∨
σ(i)) by e

′
i (resp. f

′
i , resp. α

′
i
∨),

these elements satisfy the same relations as the elements α∨i , ei and fi. In particular this induces a Lie
algebra morphism g̃(A) → g̃(A) which is surjective. We may consider the composition g̃(A) → g(A)
which is still surjective. Its kernel is an ideal with trivial intersection with h (because σinduced an
isomorphism of h). Furthermore, the image of the maximal ideal r with trivial intersection with h in
g̃(A) has to be contained in r because it is an ideal with trivial intersection with h. In particular r is
in the kernel of the map g̃(A) → g(A) and we get a Lie algebra epimorphism g(A) → g(A). Its kernel
is an ideal with trivial intersection with h and has to be trivial. �

Let us define an action of σ on Q by linearity: σ(
∑

i aiαi) =
∑

i aiσ(αi). Because σ preserves the
Dynkin diagram, it preserves the quadratic form ( , ) and we have the following

Fact 13.2.2 The root system ∆ is preserved by σ and furhtermore ∆+ is preserved by σ.

We may thus define another action on g′ = g(A) by σ(Eα) = Eσ(α).

Fact 13.2.3 The automorphism σ is given by this action.

Remark 13.2.4 (ı) Let us also remark that for all of these symmetries (except in type A2n), there
exists an invariant orientation of the Dynkin diagram. We exclude the case A2n and we fix such an
orientation.

(ıı) Let α be a simple root such that σ(αi) 6= αi, then the existence of the σ-invariant orientation
implies that (αi, σ(αi)) = 0.

We even have the following:

Fact 13.2.5 Let α ∈ ∆ such that α 6= σ(α), then for any integer i we have (α, σi(α)) = 0.
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Proof : We prove that if r = 2 then the value (α, σ(α)) is even for any root α. Cauchy-Schwarz will
then give that this value is 0, 2 or −2 and is case the value is 2 or -2 then α and σ(α) are colinear.
The last case is impossible because α and σ(α) have the same sign. In the first case α = σ(α). If not
we have the vanishing of the scalar product (α, σ(α)) which suffices because we may assume i = 1 in
the formula (α, σi(α)) = 0.

To prove that (α, σ(α)) is even, we proceed by induction on the length of w such that α = w(αi)
with αi simple. We know it is true for simple roots. Now if it is true for α, we have

(σ(si(α)), si(α)) = (σ(α), α) − (α,αi)((α, σ(αi)) + (σ(α), αi)) + (αi, σ(αi)).

We only need to prove that the middle term is even but because r = 2 we have (σ(α), αi) =
(σ2(α), σ(αi)) = (α, σ(αi)).

In case r = 3, we need to check all cases but there are only three orbits or cardinality 3 given by
the orbit of α1, the orbit or α1 + α2 and the orbit of α1 + α2 + α3. It is easy to check the result is
that case. �

Let us now define the following elements and sets:

• We denote by r the order of σ. We have r = 2 or 3.

• Define ∆′l = {α′ = α / α ∈ ∆ and σ(α) = α} and ∆′s = {α′ = 1
r (σ(α) + · · · + σr(α)) / α ∈

∆ and σ(α) 6= α}.

• Define ∆′ = ∆l ∪∆s and Q
′ = Z∆′.

• Set Ejα = Eα + ζ−jEσ(α) + · · · + ζ−(r−1)jEσr−1(α) where ζ = exp(2iπ/r), j ∈ Z and α ∈ ∆.
Remark that for j = 0 the element E0

α does only depend on the orbit of α under σ i.e. on the
root α′ ∈ ∆′ the root α defines. The vector space generated by Ejα does only depend on the
orbit of α under σ.

• For α ∈ ∆, let us denote by α′ the root in ∆′ it defines. Set E′α′ = Eα if α′ ∈ ∆′l and E
′
α′ = E0

α

for α′ ∈ ∆′s.

• With the same notation, define V ′(j) = ⊕α′∈∆′CEjα, h
′(j) = {h ∈ h / σ(h) = ζjh} and g′(j) =

h′(j) + V ′(j).

• h′ = h(0) and g′ = h′ ⊕ (⊕α′∈∆′CE′α′)

Theorem 13.2.6 Let (g, r) be of type (Dn+1, 2), (A2n−1, 2), (E6, 2) or (D4, 3). Then we have a
decomposition

g =

r⊕

j=0

g′(j)

where g′(j) is the eigenspace of the eigenvalue ζj for the action of σ and g′(0) = g′. Furthermore,
the Lie algebra g′ is the simple Lie algebra of type Bn, Cn, F4 or G2 respectively. Its commutation
relations are as follows:

[h, h′] = 0 for h and h′ in h′

[h,E′α′ ] = (h, α′)E′α for h ∈ h and α′ ∈ ∆′,
[E′α′ , E′β′ ] = 0 for α′ and β′ in ∆′ but 0 6= α′ + β′ 6∈ ∆′,

[E′α′ , E′−α′ ] = −α′ (resp. − rα′) for α′ ∈ ∆′l (resp. α
′ ∈ ∆′s).

[E′α′ , E′β′ ] = (p + 1)(−1)ε(α
′ ,β′)Eα′+β′ for α′, β′ and α′ + β′ in ∆′ and p the maximal integer

such that α′ − pβ′ ∈ ∆′.
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The roots system is ∆′ and ∆′l (resp. ∆′s) is the set of long (resp. short) roots. The coroot system is
given by ∆∨ = ∆l ∪ r∆s.

The invariant bilinear form is given by ( , ) on h′, by (h,E′α′) = 0 and

(E′α′ , E′β′) = −2δα′,−β′

|α′|2 .

Proof : We start by proving that g′(j) is the eigenspace associated to the eigenvalue ζj. Let α ∈ ∆
with σ(α) 6= α and denote by α′ the corresponding element in ∆′s. We have σ(Ejα) = Ejσ(α) = ζjEjα

and we get that g(j) is contained in the eigenspace associated with the eigenvalue ζj. Conversely, let
x = h +

∑
α aαEα in that eigenspace. We have ζjx = σ(x) = σ(h) +

∑
α aαEσ(α). This gives that

h ∈ h(j) and that ζjaσ(α) = aα. For α = σ(α) this gives j = 0 or aα = 0. For α 6= σ(α) we get

r−1∑

k=0

aσk(α)Eσk(α) = aα

r−1∑

j=0

ζ−kjEσk(α) = aαE
j
α.

This proves the fact that the g′(j) give the eigenspace decomposition. Furthermore, we have E′α′ = E0
α

for α′ ∈ ∆′s and E
′
α′ = Eα = 1

rE
0
α for α′ ∈ ∆′l proving that g′ = g′(0).

Let us now consider ∆′ with the induced bilinear form ( , ). For αi a simple root in ∆, let us
denote by α′i the corresponding element in ∆′. Let us denote by Q′ the submodule of h generated by
∆′ over Z. We easily get that Q′ is generated by the elements α′i and is contained in h′. We also have
that h′ is generated by ∆′. Let us compute the matrix A′ given by

A′ =

(
2(α′i, α

′
j)

(α′i, α
′
i)

)
.

According to the cases (Dn+1, 2), (A2n−1, 2), (E6, 2) or (D4, 3) we get a matrix of type Bn, Cn, F4 or
G2. We may now prove that the set ∆′ is a root system of that type. Let us denote by W ′ the Weyl
group generated by the simple reflections with respect to the elements α′i. We start with the following:

Lemma 13.2.7 The set ∆′ is W ′-stable, more precisely ∆′l and ∆′s are W ′-stable.

Proof : Let α′ and β′ two elements in ∆′ and denote by α and β the corresponding roots (not
necessarily unique but unique modulo the action of σ). There are four different cases:

1. α′ = α and β′ = β;

2. α′ = α and β′ = 1
r (β + · · · + σr−1(β));

3. α′ = 1
r (α + · · · + σr−1(α)) and β′ = β;

4. α′ = 1
r (α + · · · + σr−1(α)) and β′ = 1

r (β + · · ·+ σr−1(β))

Remark that in all cases, because α′ and β′ are invariant under σ, the element sβ′(α′) is invariant
under σ.

Thanks to the previous fact, we may compute the length of elements in ∆′l (long roots) and in ∆′s
(short roots): if α′ is long then (α′, α′) = 2 and if α′ is short, then (α′, α′) = 2/r. Remark that in
cases 1 and 2, the root α′ is long and in cases 3 and 4, the root α′ is short.

In the first case, we have sβ′(α′) = sβ(α) ∈ ∆ and thus is in ∆′l. In the second case, let us compute
(α′, β′) = 1/r

∑
i(α, σ

i(β)) = (α, β) and (β′, β′) = 2/r. We get the following formula

sβ′(α′) = α′ − 2(α′, β′)

(β′, β′)
β′ = α− (α, β)(β + · · ·+ σr−1(β)) = sβ · · · sσr−1(β)(α) ∈ ∆′l.
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In the third case we still have (α′, β′) = (α, β) and we get

sβ′(α′) = α′ − (α, β)β =
1

r
(sβ(α) + · · ·+ sβ(σ

r−1(α))) =
1

r
(sβ(α) + · · ·+ σr−1(sβ(α))) ∈ ∆′s.

In the last case, let us first set γ = sβ · · · sσr−1(β)(α) = α−∑r−1
i=0 (α, σ

i(β))σi(β). Compute

1

r

r−1∑

j=0

σj(γ) =
1

r

r−1∑

j=0

σj(α)− 1

r

r−1∑

j=0

r−1∑

i=0

(α, σi(β))σi+j(β) = α′ − 1

r

r−1∑

j=0

r−1∑

i=0

(σj(α), σi+j(β))σi+j(β)

Setting k = i+ j in the last sum we get

1

r

r−1∑

j=0

σj(γ) = α′ − 1

r

r−1∑

k=0

r−1∑

j=0

(σj(α), σk(β))σk(β) = α′ −
r−1∑

k=0

(α′, σk(β))σk(β).

But σ(α′) = α′ thus (α′, σk(β)) = (α′, β) for all k and thus also (α′, β′) = (α′, β). We get, because
(β′, β′) = 2/r:

∆′s ∋
1

r

r−1∑

j=0

σj(γ) = α′ − (α′, β)

r−1∑

k=0

σk(β) = α′ − 2(α′, β′)

(β′, β′)
· 1
r

r−1∑

k=0

σk(β) = sβ′(α′).

�

The proof is now similar to the proof of Fact 13.1.1: the Weyl group acts with two orbits on the
root system according to the length and ∆′ is invariant under the Weyl group. This implies that the
root system is contained in ∆′. We can easily define a notion of positive roots in ∆′ by setting α′ > 0
if and only if α′ is in the cone generated by the simple roots αi. We see that a root is either positive
or negative and that such a root is a linear combination of the α′i with coefficients of the same sign.
This together with the fact that for any α′ ∈ ∆′ we have (α′, α′) > 0 (it is equal to 2 or 2/r) implies
that for any α′ ∈ ∆′, there exists a simple root αi such that (α′, α′i) > 0. We may now conclude by
induction on the height of α′ ∈ ∆′ that ∆′ is contained in the root system of W ′. Indeed, this is true
for height one. If the height of α′ is bigger, then take αi with (α′, α′i) > 0. The element sα′

i
(α′) is of

smaller height and in ∆′, we conclude by induction.
Remark that because g′ is the σ-invariant part of g, it has to be a Lie algebra. To prove that g′ is

the desired Lie algebra, we start by proving the commutation relations. The first one is clear h′ being
contained in h.

For the second one we discuss two different cases depending on the condition α′ long or α′ short.
If α′ is long then α′ = α ∈ ∆ and the result follows from the commuting relations in g. If α′ is short,
then there exists α ∈ ∆ with α′ = 1/r(α + · · ·+ σr−1(α)) and E′α′ = Eα + · · ·+ Eσr−1(α). We get

[h,E′α′ ] = (h, α)Eα + · · ·+ (h, σr−1(α))Eσr−1(α) = (h, α)E′α′

because σ(h) = h and (σk(h), σk(α)) = (h, α).
For the third one, first remark that α′ + β′ 6∈ ∆′ implies α+ β 6∈ ∆ for any choice of root α and β

in ∆ corresponding to α′ and β′. This implies that in all four cases (long/long, long/short, short/long
and short/short) all the brackets [Eσi(α), Eσj (β)] appearing vanish because σi(α)+σj(β) is not a root.

For the fourth one we discuss one more time according to the length of α′. If α′ is long, this is the
corresponding relation in g. For α′ short, we get

[E′α′ , E′−α′ ] = [Eα, E−α] + · · ·+ [Eσr−1(α), E−σr−1(α)] = −α− · · · − σr−1(α) = −rα′.
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The first equality coming from the fact that all the root σk(α) are distinct and positive and all the
roots −σk(α) are distinct and negative.

For the last one, we discuss on the length of α′ and β′. Let us first remark that in all cases except
α′ and β′ short, the value of ε(α′, β′) is an integer. Indeed, as the orientation is preserved by σ, we
have ε(σi(α), σi(β)) = ε(α, β) for all α, β ∈ ∆ and i ∈ Z so that for any α, β ∈ ∆ corresponding to
α′, β′ ∈ ∆′ where α′ and β′ are not short at the same time, we have ε(α′, β′) = ε(α, β). We now prove
the following

Lemma 13.2.8 (ı) Let α and β be two roots in ∆. Assume that α+ β is a root, then α− β isnot a
root.

(ıı) Let α′ and β′ be two roots in ∆′ such that α′+β′ ∈ ∆′. Let us denote by p the greatest integer
such that α′ − pβ′ is in ∆′. Then we have the following alternative:

• α′, β′ ∈ ∆′l, then α
′ + β′ ∈ ∆′l and α

′ − β′ 6∈ ∆′;

• α′ ∈ ∆′l and β
′ ∈ ∆′s, then α

′ + β′ ∈ ∆′s and α′ − β′ 6∈ ∆′;

• α′ ∈ ∆′s and β′ ∈ ∆′l, then α
′ + β′ ∈ ∆′s and α′ − β′ 6∈ ∆′;

• α′ ∈ ∆′s and β′ ∈ ∆′s then if α′ + β′ ∈ ∆′l, we have p ≤ r − 1 and when p = r − 1 we have
α′ − pβ′ ∈ ∆l. If α′ + β′ ∈ ∆′s, then p = 0 for r = 2 and p ≤ 1 for r = 3 with α′ − pβ′ ∈ ∆l for
p = 1.

Proof : (ı) The element α+β is a root if and only if |α+β|2 = 2 i.e. (α, β) = −1 thus α−β can not
be a root.

(ıı) In the first case, we have |α′ + β′|2 = 4 + 2(α, β) ∈ 2Z thus |α′ + β′|2 6= 2/r. In particular
α′+ β′ ∈ ∆l thus α+ β is a root. The same argument shows that α′− β′ is a root if and only if α− β
is a root which is impossible by (ı).

In the second case, we have |α′ + β′|2 = 2 + 2/r + 2(α, β) ∈ 2/r + 2Z thus |α′ + β′|2 6= 2. In
particular α′ + β′ ∈ ∆s thus α + β is a root. The same argument shows that α′ − β′ is a root if and
only if α− β is a root which is impossible by (ı). The same argument works in the third case.

In the last case, we have |α′+ β′|2 = 4/r+2(α′, β′). If α′+ β′ is long then (α′, β′) = (r− 2)/r and
if α′ + β′ is short, we have (α′, β′) = −1/r. Let us now compute |α′ − pβ′|2 = 2/r+ 2p2/r− 2p(α′, β′)
for p a non negative integer. Its value is (2 + 2p2 − 2p(r − 2))/r or (2 + 2p2 + 2p)/r according to the
length of α′ + β′. If this element is a root, the norm need to be equal to 2 or 2/r. This gives the four
equations:

p2 − p(r − 2) + 1 = r ; p2 − p(r − 2) = 0 ; p2 + p+ 1 = r ; p2 + p = 0.

Recall that p is a non negative integer, the solutions are as follows:

p = r − 1 ; p = 0 or r − 2 ; p = 1 if r = 3 ; p = 0.

The result follows. �

Now according to the cases of the previous lemma, we compute [E′α′ , E′β′ ]. We get [Eα, Eβ ] in first
case and the result follows from the previous lemma and the simply laced case. In the second case,
we get

∑r−1
k=0[Eα, Eσk(β)] =

∑r−1
k=0(−1)ε(α,β)Eα+σk(β) = (−1)ε(α

′,β′)E′α′+β′ and the result follows from
the previous lemma. The same computation gives the result in case three. In the last case we get:

r−1∑

i=0

r−1∑

j=0

[Eσi(α), Eσj (β)].

We will need the following fact which is proved case by case on the root systems:
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Fact 13.2.9 There exists an index k ∈ [0, r − 1] such that α+ σk(β) is a root.

Let us discuss two cases according to r. Assume first that r = 2. Let α and β be roots in ∆
corresponding to α′ and β′. There exists an index k such that α + σk(β) ∈ ∆ and we may as well
assume that α+ β ∈ ∆. We have the following:

Fact 13.2.10 If r = 2, then α+ σ(β) 6∈ ∆. Furthermore, if α′ + β′ is long, then α′ − β′ is a root.

Proof : Because α + β is a root, we have (α, β) = −1 = (σ(α), σ(β)). We also have (α, σ(β)) =
(σ(α), β). But because α′ + β′ is a root we have |α′ + β′|2 = 1 + (α, σ(β)) = 2 or 1. This gives
(α, σ(β)) = 1 or 0 and the result follows.

If furthermore α′+β′ is long, then (α, σ(β)) = 1 thus (α,−σ(β)) = −1 and α−σ(β) is a root. We
get that α′ − β′ = 1/2(a − σ(β) + σ(α− σ(β))). is in ∆′.

If r = 3 this is not true: take α = α1 and β = α2+α3, then σ(β) = α2+α4 and α+β and α+σ(β)
are roots. �

In particular, for r = 2 we get α′ + β′ = (α + β + σ(α + β))/2 and two different situations. If
α′ + β′ ∈ ∆′s then p = 0. Otherwise, the previous fact implies that p = 1. Furthermore we conclude
thanks to the computation:

[E′α′ , E′β′ ] = [Eα, Eβ] + [Eσ(α), Eσ(β)] = (−1)ε(α,β)(Eα+β + Eσ(α+β)) = (−1)ε(α
′,β′)(p+ 1)Eα+β

because if α′ + β′ is long we have Eα+β + Eσ(α+β) = 2E′α′+β′ .
If r = 3, then we can make a case by case check. We may assume that (α, β) is one of the couple

(α2 + α3, α1), (α2 + α3 + α4, α1 + α2) or (α2 + α3 + α4, α1). In case one, we have p = 1 and p = 2 in
the last two cases. In the first case, we have

[E′α′ , E′β′ ] = (−1)ε(α2+α3,α1)Eα1+α2+α3 + (−1)ε(α2+α3,α4)Eα2+α3+α4

+(−1)ε(α2+α4,α1)Eα1+α2+α4 + (−1)ε(α2+α4,α3)Eα2+α3+α4

+(−1)ε(α1+α2,α3)Eα1+α2+α3 + (−1)ε(α1+α2,α4)Eα1+α2+α4 .

= (−1)ε(α,β)2E′α′+β′ .

We get the result by invariance of the orientation. In the second case, we get

[E′α′ , E′β′ ] = (−1)ε(α2+α3+α4,α1+α2)Eα1+2α2+α3+α4 + (−1)ε(α1+α2+α3,α2+α4)Eα1+2α2+α3+α4

+(−1)ε(α1+α2+α4,α2+α3)Eα1+2α2+α3+α4 .

= (−1)ε(α,β)3E′α′+β′ .

Finally in the last case we have:

[E′α′ , E′β′ ] = (−1)ε(α2+α3+α4,α1)Eα1+α2+α3+α4 + (−1)ε(α1+α2+α3,α4)Eα1+α2+α3+α4

+(−1)ε(α1+α2+α4,α3)Eα1+α2+α3+α4 .

= (−1)ε(α,β)3E′α′+β′ .

Let us finish by proving that g′ is indeed of the expected type. Let us first prove that there exists a
map ψ from g̃(A′) to g′ where A′ is the Cartan matrix of the non simply laced corresponding type.
We send ei to E

′
α′
i
and fi to −E′−α′

i
and let ψ|h′ = Idh′ with α

′
i
∨ = rα′i if α

′
i is short. For this we need

to prove that the E′α′
i
and −E′−α′

i
satisfy the desired relations. This is the case. Now the same proof

as in the non twisted affine case or as in the simply laced case gives that ψ factors through g(A′) and
is injective. The surjectivity comes from the last relation. �
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The modules g′(j) do also satisfy such commuting (or module) relations similar as those satisfied
by g′. For α ∈ ∆, let us define

α′
(j)

=

{
α if α ∈ ∆′l i.e. σ(α) = α

α+ ζjσ(α) + · · ·+ ζ(r−1)jσr−1(α) if α 6∈ ∆′l i.e. σ(α)neqα.

We have the following result whose proof is very similar from the previous theorem:

Theorem 13.2.11 We have the following commuting relations in g:

[h(i), h(j)] = 0 for h(i) ∈ h(i) and h(j) ∈ h(j)

[h(i), Ejα] = (h(i), α)Ei+jα for h(i) ∈ h(i) and α ∈ ∆,

[Eiα, E
j
β ] = 0 for α and β in ∆ but 0 6= α+ β 6∈ ∆,

[Eiα′ , E
j
−α] = −α(i+j) for α ∈ ∆.

[Eiα, E
j
β ] = (p+ 1)(−1)ε(α,β)Ei+jα+β for α, β and α+ β in ∆ and p the maximal integer

such that α′ − pβ′ ∈ ∆′.

In particular the g′-modules g(j) are irreducible for all j.

13.3 The case A2n

The same technics would lead to the following result:

Theorem 13.3.1 Let g be a simple Lie algebra of type A2n and let σ the unique Dynkin diagram
automophism and let us define σ(Eα) = (−1)1+ht(α)Eσ(a).

(ı) This defines a Lie algebra automorphism of g still denoted σ.
(ıı) The σ-invariant Lie subalgebra g′ is simple of type Bn with root system ∆′ = ∆′l ∪∆′s where

∆′l = {α′ = 1

2
(α+ σ(α)) / α ∈ ∆, (α, σ(α)) = 0 and σ(α) 6= α} and

∆′s = {α′ = 1

2
(α+ σ(α)) / α ∈ ∆, (α, σ(α)) 6= 0 and σ(α) 6= α}.

(ııı) Define E′α′ = Eα + (−1)ht(α)+1Eσ(α) for α′ ∈ ∆′l and E
′
α′ =

√
2
(
Eα + (−1)ht(α)+1Eσ(α)

)
for

α′ ∈ ∆′s and set h′ = g′ ∩ h, then we have the decomposition

g′ = h⊕
⊕

α′∈∆′

CE′α′

and the Lie bracket in g′ is described by the same commuting relations as in Theorem 13.2.6 i.e.:

[h, h′] = 0 for h and h′ in h′

[h,E′α′ ] = (h, α′)E′α for h ∈ h and α′ ∈ ∆′,
[E′α′ , E′β′ ] = 0 for α′ and β′ in ∆′ but 0 6= α′ + β′ 6∈ ∆′,

[E′α′ , E′−α′ ] = −α′ (resp. − rα′) for α′ ∈ ∆′l (resp. α
′ ∈ ∆′s).

[E′α′ , E′β′ ] = (p + 1)(−1)ε(α
′,β′)Eα′+β′ for α′, β′ and α′ + β′ in ∆′ and p the maximal integer

such that α′ − pβ′ ∈ ∆′.



Chapter 14

Twisted affine Lie algebras

We give an explicit construction of twisted affine Lie algebras in this chapter. This will give us a
description of the root and coroot systems and we will deduce a description of the Weyl group. We
end the chapter will some (very few) applications of the denominator identity as functional identities.

14.1 Construction

Let g be a simple finite dimensional Lie algebra and let σ be an automorphism of its Dynkin diagram.
Remark that such an automorphism is the identity except if g is simply laced and that these auto-
morphisms where already used to construct non simply laced simple finite dimensional Lie algebras.

We start the construction with the Loop algebra L(g) = g ⊗ C[t, t−1] and the affine Lie algebra
ĝ = L(g) ⊕ Cc ⊕ Cd. We already saw that the automorphism of the Dynkin diagram σ defines an
automorphism (still denoted σ) of g. We extend this automorphism to L(g) and ĝ as follows: for
x ∈ g, a ∈ Z and λ, µ ∈ C we set

σ(x⊗ ta + λc+ µd) =
1

ζa
σ(x)⊗ ta + λc+ µd

where ζ is a primitive r-th root of unity where r is as usual the order of σ.

Fact 14.1.1 This defines an automorphism (still denoted σ) of the Lie algebras L(g) and ĝ.

Definition 14.1.2 Let us denote by L(g, σ) and ĝ(σ) the σ-invariant subalgebra of L(g) and ĝ re-
spectively.

Proposition 14.1.3 Let us denote by g = ⊕r−1
i=0g(j) the eigenspaces decomposition with respect to the

action of σ (described in Theorem 13.2.6). We have the following decompositions:

L(g, σ) =
⊕

k∈Z

g(k̄)⊗ tk and ĝ(σ) =

(⊕

k∈Z

g(k̄)⊗ tk

)
⊕ Cc⊕ Cd

where k̄ is the rest of k modulo r.

Proof : It is clear that these spaces are contained in the σ-invariant subalgebra. Conversely, if
x ⊗ P + λc + µd is in ĝ(σ). Then σ(x ⊗ P ) = x ⊗ P . Writing x =

∑r−1
i=0 xi with xi ∈ g(i) and

P =
∑

k pkt
k we get ζ i−kxi ⊗ pkt

k = xi ⊗ pkt
k. In particular for i 6≡ k (mod r) we have xi ⊗ pkt

k = 0.
The result follows. �
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14.1.1 All cases except A2
2n

In this subsection we consider g a simple simply laced Lie algebra and σ a non trivial automorphism
of the Dynkin diagram. These automorphisms were described in the last chapter. Let us denote by g′

the σ-invariant subalgebra of g. We also keep the notation of the previous chapter for root systems
and basis elements of g and g′.

Theorem 14.1.4 Let g be a simple Lie algebra of type X and let σ be a rank r automorphism of the
Dynkin diagram. The Lie algebra ĝ(σ) is isomorphic to the affine Lie algebra of type Xr.

Proof : Let us fix the following additional notation:

• We denote by n the rank of g and by m the rank of g′.

• We keep the notation α′i for the simple roots in ∆′.

• We denote by α′i
∨ the coroot of α′i a simple root in ∆′.

• Denote by θ′∨ the highest root of the dual root system ∆′∨, this is also the root rβ where β was
described in Lemma 12.1.5. We denote this root β by α′θ.

• Set E′i = E′α′
i
and F ′i = −E′−α′

i
for α′i a simple root.

• Set E′0 = E1
−α′

θ
=
∑r−1

i=0 ζ
−iEσi(−αθ) and F

′
0 = −E−1α′

θ
= −∑r−1

i=0 ζ
iEσi(αθ) where αθ is any root in

∆ such that θ′∨ = rα′θ is r times the associated short root (we always have σ(αθ) 6= αθ). Remark
that E′0 and F ′0 and defined modulo a r-th root of 1 or equivalently modulo the choice of a root
in the orbit of αθ but we only need that they are both defined by the same root.

• Set e′i = E′i ⊗ 1 ∈ ĝ(σ) and f ′i = F ′i ⊗ 1 ∈ ĝ(σ) for i > 0.

• Set e′0 = E′0 ⊗ t ∈ ĝ(σ) and f ′0 = F ′0 ⊗ t−1 ∈ ĝ(σ).

• Set ĥ(σ) = h(0) ⊕ Cc⊕ Cd. We will denote by ĥ(σ)∗ its dual.

• Define δ′ ∈ ĥ(σ)∗ by δ′|h(0) = Idh(0), δ
′(c) = 0 and δ′(d) = 1.

• Define α′0 = δ′ − α′θ.

• Define α′0
∨ = r

a0
c− θ′∨ = rc− θ′∨.

• We will view h(0)∗ as being equal to h(0) thank to the invariant bilinear form and h(0)∗ as a
subspace of ĥ(σ)∗ by setting λ(c) = λ(d) = 0 for λ ∈ h(0)∗.

We first need to define a realisation of the Cartan matrix of type Xr in ĥ(σ). For this let us define
Π∨ = {α′0∨, · · · , α′m∨} and Π = {α′0, · · · , α′m}.

Lemma 14.1.5 The triple (ĥ(σ),Π,Π∨) is a realisation of the affine Cartan matrix of type Xr.

Proof : The dimension of ĥ(σ) is m + 2 which is the right dimension. We need to check that the
matrix (〈α′i, α′j〉) is the Cartan matrix of type Xr. This is true for i > 0 and j > 0 because α′i

∨

and α′j are the simple coroots and roots of g′ which is of the type Y obtained from Xr by removing

the zero vertex. We then compute 〈α′0∨, α′j〉 = −〈θ′∨, α′j〉 this gives the result for j > 0 because of

our description of β (or more conceptually because we get the same added vertex as for Ŷ ∨ but with
reversed arrow. Now compute 〈α′0∨, α′0〉 = 〈θ′∨, α′θ〉 = 2. �
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We now verify the relations [e′i, f
′
j] = δi,jα

′
i
∨, [h, e′i] = 〈α′i, h〉e′i and [h, f ′i ] = −〈α′i, h〉f ′i . The first

relation is true for i > 0 and j > 0. Because θ′∨ is the highest root of ∆′∨ we get the result for ij = 0
and (i, j) 6= 0. Furthermore [e′0, f

′
0] = [E′0, F

′
0] + (E′0, F

′
0)c. Because σ

i(αθ) is positive when −σj(αθ) is
negative, we have [Eσi(−αθ), Eσj (αθ)] = δi,jσ

i(αθ) thus

[e′0, f
′
0] = −

r−1∑

i=0

σi(αθ) + (E′0, F
′
0)c = −rα′θ + (E′0, F

′
0)c = rc− θ′∨ = α′0

∨

because we have (E′0, F
′
0) = −∑i,j ζ

j−i(Eσi(−αθ), Eσj (αθ)) = r (recall that (Eα, Eβ) = −δα,−β).
For the relations [h, e′i] = 〈α′i, h〉e′i, this is clear for i > 0 and h ∈ ĥ(σ). For [h, e′0] = 〈α′0, h〉e′0,

we start with h ∈ h′. Now the relations in g, see Theorem 13.2.11, give [h, e′0] = [h,E′0] ⊗ t =
[h,E1

−θ′∨
] ⊗ t = −(h, αθ)e

′
0 = −(h, α′θ)e

′
0 and the result follows from the fact that (δ′, h) = 0 for

h ∈ h′. We are left with h = c or d. But (c, α0) = 0 and [c, e′0] = 0, furthermore, (d, α′0) = 1 and
[d, e′0] = [d,E′0 ⊗ t] = E′0 ⊗ t = e′0. The same proof gives the relations [h, f ′i ] = −〈α′i, h〉f ′i

These relations give a map ψ : g̃(Âr) → ĝ(σ) where Âr is the Cartan matrix of type Xr. Now we
need the eigenspace decomposition with respect to ĥ:

Proposition 14.1.6 We have the following decomposition

g(σ) = ĥ(σ)⊕
(⊕

α′∈∆′

CE′α′

)
⊕
(⊕

k∈Z

h(k̄)⊗ tk

)
⊕


 ⊕

k∈Z, α′∈∆′
s

CEkα ⊗ tk


⊕


 ⊕

k∈Z, α′∈∆′
l

CErkα ⊗ trk




which is the eigenspace decomposition with respect to the action of ĥ(σ). The respective weights are
given by 0, α′ ∈ ∆′, kδ′, α′ + kδ′ and α′ + rkδ′.

Proof : The decomposition of ĝ(σ) and of the spaces g(j) give the decomposition. We only need
to prove that these spaces have the right weights under the action of ĥ(σ). This is clear for the first
two terms (this comes from the relations in g′). For h ∈ h(0) and h′ ∈ h(k̄) we have [h, h′ ⊗ tk] = 0
and [c, h′ ⊗ tk] = 0 while [d, h′ ⊗ tk] = kh′ ⊗ tk and the weight is kδ′. For h ∈ h(0), compute
[h,Ekα⊗ tk] = (h, α)Ekα⊗ tk = (h, α′)Ekα⊗ tk. Furthermore [c,Ekα⊗ tk] = 0 and [d,Ekα⊗ tk] = kEkα⊗ tk.
The weight is thus α′ + kδ′. To conclude, we need to remark that if α′ is long, then for k such that
k̄ 6= 0, we have:

Ekα =
r−1∑

j=0

ζ−kjEσj(α) =



r−1∑

j=0

ζ−kj


E(α) = 0.

�

Let r be an ideal in g(σ) with trivial intersection with ĥ(σ). Assume r is not trivial, then we get
from the fact that r has a weight space decomposition according to the action of ĥ(σ) that r∩h(k̄)⊗ tk
or r ∩ CEkα ⊗ tk is non trivial. Take a non trivial x is that intersection, then [x, h(−k̄) ⊗ t−k] or
[x,E−k−α ⊗ t−k] is non trivial giving rise to a non trivial element in r∩ ĥ(σ). This implies that the map

ψ factors through g(Âr). Denote by ψ′ this new map. Because ψ′ is the identity on ĥ(σ) this implies
that ψ′ is injective. Furthermore, the image of ψ′ contains the e′i, the f

′
i and ĥ(σ) thus the image

contains g′. Now the image contains e′0 = E′0 ⊗ t with E′0 ∈ g′(1). Because g′(1) is an irreducible
g′-module we get all g(1) ⊗ t in the image. Now we prove that g(k̄)⊗ tk is in the image by induction
on k ≥ 0. Take x ∈ g(k̄)⊗ tk and consider [e′0, x]. This is an element in g(k̄ + 1)⊗ tk+1 and one more
time because g(k̄ + 1) is a irreducible g′-module, the result follows. �
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Corollary 14.1.7 The root system ∆̂(σ) of the twisted affine Lie algebra ĝ(σ) is given by

∆̂(σ) = {kδ′ / k ∈ Z, k 6= 0} ∪ {α′ + kδ′ / k ∈ Z, α′ ∈ ∆′s} ∪ {α′ + rkδ′ / k ∈ Z, α′ ∈ ∆′l}.

The positive roots are given by

∆̂(σ)+ = ∆′+ ∪ {kδ′ / k > 0 ∈ Z} ∪ {α′ + kδ′ / k > 0, α′ ∈ ∆′s} ∪ {α′ + rkδ′ / k > 0, α′ ∈ ∆′l}.

The multiplicity of the roots α′ + kδ′ is 1 (this root is real. The multiplicity kδ′ is m for k̄ = 0 and
n−m

r − 1
otherwise.

Proof : The only subtlety is for the multiplicity of imaginary roots. For k̄ = 0 the eigenspace is
h′ = h(0) of dimension m the rank of g′. For k̄ 6= 0 the eigenspace is h(j) whose basis is given by the

elements α
(j)
i for α′i ∈ ∆′s a simple root. The dimension is s the number of short simple roots.If l is

the number of long roots, we have n = l + (r − 1)s and m = l + s. The result follows. �

14.1.2 The case A2
2n

A very similar proof but with some changes in the definition of the elements θ′∨, E
′
0 and F ′0 would lead

to the following:

Theorem 14.1.8 Let g be s simple Lie algebra of type A2n and let σ be the non trivial involution of
the Dynkin diagram. The Lie algebra ĝ(σ) is isomorphic to the affine Lie algebra of type A2

2n.

The root system is described as follows: ∆̂(σ) = ∆̂(σ)re ∪ ∆̂(σ)im. Recall that we proved that
∆̂(σ)im = {kδ′ / k ∈ Z, k 6= 0}. We have

∆̂(σ)re = {1
2
(α′+(2k−1)δ′ / k ∈ Z, α′ ∈ ∆′l}∪{α′+kδ′ / k ∈ Z, α′ ∈ ∆′s}∪{α′+rkδ′ / k ∈ Z, α′ ∈ ∆′l}.

The positive roots are given as in the other cases. The multiplicity of reals is 1 and the multiplicity

kδ′ is m for k̄ = 0 and
n−m

r − 1
otherwise.

14.1.3 Further constructions

The Dynkin diagrams of affine Lie algebras have more symmetries than the classical ones. We may
reproduce the construction by invariants for these Lie algebras. We get in this way another construc-
tion, starting from simply laced affine Lie algebras of all affine Lie algebras. We could also construct
double affine Lie algebras and double twisted affine Lie algebras by reproducing the construction with
the loop algebra.

14.2 Back to the Weyl group

14.2.1 All cases except A2
2n

Let W ′ be the Weyl group of g′. It is a finite group. Consider Q′ the root lattice i.e. the Z submodule
of h′ generated by the simple roots α′i for i ∈ [1,m]. Remark that the coroot lattice Q′∨ is contained
in Q′ (when identifying h′ and h′

∗ using the bilinear form ( , )). Any root α′ ∈ ∆′ lies in Q′. In
particular for any w ∈W ′, we have w(α′i) ∈ Q′ thus W ′ acts on Q′.
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Definition 14.2.1 The twisted affine Weyl group Ŵ ′ is the semidirect product of the Weyl group
W ′ by the root lattice Q′. In symbols:

Ŵ ′ =W ′ ⋉Q′.

For h ∈ Q′ the corresponding element in Ŵ ′ will be denoted th. It acts on h′ (or Q′) by translation.

For α′ a root of g′, we will denote by ŝα′ the reflection in Ŵ ′ corresponding to the reflection sα′ ∈W ′.

To describe the action of the Weyl group on ĥ∗(σ) we use the element Λ′ ∈ ĥ∗(σ) defined by
〈Λ′, α′i∨〉 = δ0,i and 〈Λ′, d〉 = 0. The elements ((α′i)i∈[0,n],Λ

′) form a basis of ĥ∗(σ). As a consequence,

the elements ((α′i)i∈[1,n], δ
′,Λ′) form a basis of ĥ∗(σ) and Cδ′ ⊕ CΛ′ is a supplementary of h′ in ĥ(σ).

Remark 14.2.2 Consider the Weyl group Waff
′ of the Kac-Moody Lie algebra g(Â′) = ĝ(σ) and

consider the simple reflections s′0, · · · , s′m. Let us denote by W the subgroup of Waff
′ generated by

s′1, · · · , s′m. The action of s′i on δ
′ and Λ′ is trivial thus W acts trivially on Cδ′ ⊕ CΛ′ and stabilises

h′. This implies (because Waff
′ acts faithfully on ĥ∗(σ)) that W acts faithfully on h′. We can thus

identify W ′ with W acting on ĥ(s) by its action on h′.

Theorem 14.2.3 Let Waff
′ the Weyl group associated to the Kac-Moody Lie algebra ĝ(σ), then there

is a unique isomorphism of groups φ : Waff
′ → Ŵ such that φ(s0) = tθ∨ ŝθ and φ(si) = ŝi for i ∈ [1, n].

Proof : Let γ ∈ h′
∗ and define the following element Tγ ∈ End(ĥ∗(σ)):

Tγ(λ) = λ+ 〈λ, rc〉γ − ((λ, γ) +
1

2
(γ, γ)〈λ, rc〉)δ′ .

Remark that for λ such that 〈λ, c〉 = 0 we get Tγ(λ) = λ−(λ, γ)δ′ . In particular Tγ(δ
′) = δ′. Compute

Tγ ◦ Tγ′ , we get:

Tγ ◦ Tγ′(λ) = Tγ(λ+ 〈λ, rc〉γ′ − ((λ, γ′) + 1
2 (γ
′, γ′)〈λ, rc〉)δ′)

= λ+ 〈λ, rc〉γ − ((λ, γ) + 1
2(γ, γ)〈λ, rc〉)δ′

+〈λ, rc〉(γ′ − (γ′, γ)δ′)
−((λ, γ′) + 1

2 (γ
′, γ′)〈λ, rc〉)δ′

= λ+ 〈λ, rc〉(γ + γ′)− ((λ, γ + γ′) + 1
2(γ + γ′, γ + γ′)〈λ, rc〉)δ′

= Tγ+γ′(λ).

In particular Tγ ∈ Aut(ĥ∗(σ)) (its inverse is T−γ). This gives an embedding of h′∗ in Aut(ĥ∗(σ)) (it
is injective because as a group morphism we need to look at the kernel. It is given by the elements
γ ∈ h′

∗ such that Tγ = Id. This gives for all λ ∈ h′
∗ that (λ, γ) = 0 thus γ = 0.)

Recall thatWaff
′ is a subgroup of Aut(ĥ∗(σ)). We assert that Q ⊂ h′

∗ ⊂ Aut(ĥ∗(σ)) is contained in
Waff

′. Remark that θ′∨ is the highest root for ∆′∨ and that its coroot is α′θ. We thus have 〈α′θ, θ∨〉 = 2
and 〈θ′∨, λ〉 = 2(α′θ, λ)/(α

′
θ , α
′
θ) = (λ, α′θ). Let us compute the following

Tα′
θ
◦ sα′

θ
(λ) = sα′

θ
(λ) + 〈sα′

θ
(λ), rc〉α′θ − ((sα′

θ
(λ), α′θ) +

1
2(α
′
θ, α
′
θ)〈sα′

θ
(λ), rc〉)δ′

= λ− 〈λ, θ′∨〉α′θ + 〈λ, rc〉α′θ − ((λ, α′θ)− 2〈λ, θ′∨〉+ 〈λ, rc〉)δ′
= λ− 〈λ, rc− θ′∨〉(δ′ − α′θ)
= sα′

0
(λ).

We get in particular that Tα′
θ
∈Waff

′. Furthermore, for w ∈W and λ such that 〈λ, c〉 = 0, we have

wTγw
−1(λ) = w(w−1(λ)− 〈w−1(λ), γ〉δ′)

= λ− 〈λ,w(γ)〉δ)
= Tw(γ)(λ).
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But wTγw
−1(Λ) = w(Λ+γ− 1

2(γ, γ)δ
′) = Λ+w(γ)− 1

2(γ, γ)δ
′. We deduce that wTγw

−1(Λ) = Tw(γ)(Λ)
and wTγw

−1 = Tw(γ). We deduce that W · Tα′
θ
∈ Waff

′. To prove that Q ⊂ Waff
′, it suffices to show

that W ·α′θ generates Q. But α′θ is the coroot of θ
′
∨ the highest root of the root system ∆′∨. Applying

Lemma 12.2.20 we get the result.
Now Q is contained in Waff

′ but this subgroup is normalised by W ′ in Waff
′. Moreover, because

all elements in Q are of infinite order and because W ′ is finite we have W ′ ∩Q = {1} in Waff
′. Now

in the subgroup generated by W ′ and Q, which is Ŵ ′, we have all the reflections s′i for i 6= 0 and s′0
because of a previous computation. �

14.2.2 Case A2
2n

In this case we have the same result:

Theorem 14.2.4 Let Waff
′ the Weyl group associated to the Kac-Moody Lie algebra ĝ(σ) of type A2

2n,
then there is a unique isomorphism of groups φ :Waff →W ′ ⋉Q′.



Chapter 15

Dedekin η-function identities

In this chapter we use the Denominator identity to prove more identities on power series and infinite
product. In particular we will give a power series expressions of the Dedekin eta-function:

η(q) = q
1
24

∞∏

n=1

(1− qn).

We start with a quick motivation for the study of this function by reviewing quickly the Theory of
modular form (see for example [Se70]) and its link with the moduli space of elliptic curves.

15.1 Quick introduction to modular forms

Let us consider the group Γ = SL2(Z) also called the modular group. This group is generated by the
elements

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

The modular group Γ acts on H = {z ∈ C / ℑ(z) > 0} by

A · z =
(
a b
c d

)
· z =

az + b

cz + d
.

The group Γ also acts on the differential forms on H and in particular its action is given by

dz 7→ dz

(cz + d)2
.

Taking a differential of weight k/2 form as f(z)dz
k
2 we obtain the action of the matrix A by

A∗(f(z)dz
k
2 ) = f

(
az + b

cz + d

)
· 1

(cz + d)k
dz

k
2 .

Definition 15.1.1 A function f on H is called weakly modular of weight k if for all a, b, c and d
integers such that ad− bc = 1 and all z ∈ H we have

f

(
az + b

cz + d

)
= (cz + d)kf(z).
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Remark that because S and T generate Γ, this definition is equivalent to the following two equations
for all z ∈ H:

f(z + 1) = f(z) and f

(
−1

z

)
= zkf(z).

Furthermore, because f(z + 1) = f(z), we may write f in the following form

f(z) = f̃(q)

with f̃ a function on the punctured unit disk D∗ and where q = e2iπz.

Definition 15.1.2 A function f on H is called a modular function of weight k if the function is weakly
modular of weight k and if f̃ is meromorphic on D.

If furthermore f̃ is holomorphic on D, the function f is called a modular form.

Remark 15.1.3 Remark that with our definition and taking −Id ∈ Γ, we obtain for f a weakly
modular function

f(z) = (−1)kf(z)

and in particular f is the zero function if k is odd. This is not any more the case if we change the
group Γ and take PΓ = PGL2(Z).

Let us now consider the graded ring R of modular forms. We have the following:

Theorem 15.1.4 Let k be a integer with k ≥ 4 and let us define the Eisenstein series Gk on H by

Gk(z) =
∑

(m,n)∈Z2, (m,n)6=(0,0)

1

(mz + n)k
.

All the functions are modular forms and we have:

R = C[G4, G6].

Let us now introduce the modular forms g2 = 60G4, g3 = 140G2 and ∆ = g32 − 27g23 .

Proposition 15.1.5 We have the following formula:

∆(z) = (2π)12q

(
∞∏

n=1

(1− qn)

)24

= (2π)12η(q)24.

Let us introduce the j invariant as

j(z) = 1728
g32
∆
.

The map j : H → C is Γ invariant and realises the quotient of H by Γ: the induced map j : H/Γ → C

is an isomorphism.
Let us also briefly recall the link with elliptic curves. Recall that any elliptic curve can be realised

as a smooth plane cubic. Furthermore, we may always find coordinates (x0 : x1 : x2) in P2 where the
equation of this cubic is given by

x21x2 = 4x30 − g2x0x
2
2 + g3x

3
2.

In particular, this curve being smooth, its discriminant given by ∆ = g2− 27g23 is different from 0 and
we may define its j invariant. We have the following result
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Theorem 15.1.6 Let τ ∈ H and define the associated elliptic curve E(z) = C/(Z + τZ). Define the
Weierstrass function on C by:

℘τ (z) =
1

z2
+

∑

γ∈Z+τZ

1

(z − γ)2
− 1

γ2
.

It is invariant under translation by an element of Z+ τZ and thus defines a function on E.

Then setting y = ℘′τ (z) and x = ℘τ (z), the elliptic curve E is isomorphic to the smooth plane
cubic given by y2 = 4x3 − g2(τ)x+ g3(τ).

Furthemore, two elliptic curves E(z) and E(z′) are isomorphic if and only if z and z′ are in the
same orbit under Γ. In particular the moduli space of elliptic curves is described by the quotient H/Γ
which is isomorphic to C thanks to the j function.

15.2 Functional identities with the Dedekin η-function

We will derive new identities from the denominator identity. Recall that for g(A) a Kac-Moody Lie
algebra with Weyl group W (A) and root system ∆(A) and simple roots Π(A) = {α1, · · · , αn} we have
the following identity in C[[e(−α1), · · · , e(−αn)]]:

∏

α∈∆+(A)

(1− e(−α))multα =
∑

w∈W (A)

ǫ(w)e(w(ρ) − ρ).

Let us also recall the Character formula for a dominant integrable weight λ:

χ(λ) := Ch(L(λ)) =

∑

w∈W (A)

ǫ(w)e(w(ρ + λ)− ρ)

∏

α∈∆+(A)

(1− e(−α))multα
.

15.2.1 Specialisation of character formulas

Let us fix s = (s1, · · · , sn) a sequence of integers and define a gradation on g(A) by setting deg(ei) =
− deg(fi) = si and deg(h) = 0. This yields a decomposition

g(A) =
⊕

j∈Z

gj(s).

Remark that if all the si are positive, the graded pieces gj(s) are finite dimensional. This condition is
always satisfied if A is of finite type.

Definition 15.2.1 A specialisation of type s is the data of the morphism

Fs : C[[e(−α1), · · · , e(−αn)]] → C[[q]]

sending e(−αi) to qsi . Let us denote by hs an element in h(A) such that 〈hs, αi〉 = si then we have
for any α ∈ Q:

Fs(e(−α)) = q〈hs,α〉.

Remark 15.2.2 If s = (1, · · · , 1) we may choose hs = ρ∨. We denote (1, · · · , 1) by 11.
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Proposition 15.2.3 Let g be a finite dimensional simple Lie algebra. Denote by ∆∨ its dual root
system and let λ be a dominant weight. Then we have

dim(L(λ)) =
∏

α∈∆∨
+

〈λ+ ρ, α〉
〈ρ, α〉 .

Proof : Let W be the Weyl group of g. We have the following formula (using the denominator
identity:

e(−λ)Ch(L(λ)) =

∑

w∈W

ǫ(w)e(w(ρ + λ)− (ρ+ λ))

∑

w∈W

ǫ(w)e(w(ρ) − ρ)
.

We define N(µ) =
∑

w∈W ǫ(w)e(w(ρ + λ)− (ρ+ λ)) and compute

F11(N(µ)) =
∑

w∈W

ǫ(w)q〈µ,ρ
∨〉−〈w(µ),ρ∨〉 =

∑

w∈W

ǫ(w)q〈µ,ρ
∨−w(ρ∨)〉 = Fs

(∑

w∈W

ǫ(w)e(−ρ∨ + w(ρ∨))

)

with s = (〈µ, α∨1 〉, · · · , 〈µ, α∨n〉) where α∨1 , · · · , α∨n are the simple coroots of g. Applying the denomi-
nator identity for gt, we get

F11(N(µ)) = Fr


 ∏

α∈∆∨
+

(1− e(−α))multα


 =

∏

α∈∆∨
+

(1− q〈α,µ〉).

Seting µ = ρ+ λ and µ = ρ we get

F11(e(−λ)χ(λ)) =

∏

α∈∆∨
+

(1− q〈α,ρ+λ〉)

∏

α∈∆∨
+

(1− q〈α,ρ〉)
.

On the other hand, recall that χ(λ) =
∑

µ dim(L(λ)µ)e(µ) thus

F11(e(−λ)χ(λ)) =
∑

µ

dim(L(λ)µ)q
〈λ−µ,ρ∨〉

and in particular for q → 1:

lim
q→1

F11(e(−λ)χ(λ)) = dim(L(λ)).

Taking the limit in the previous expression of F11(e(−λ)χ(λ)) gives the result. �

15.2.2 Macdonald identities

Let g be a simple finite dimensional Lie algebra and σ an automorphism of order r of its Dynkin
diagram. Let us take the notation of Chapters 13 and 14 and denote by g′ the invariant subalgebra
of g (g′ = g if r = 1). We denote by ĝ(σ) the associated twisted affine Lie algebra. We denote by ∆

(resp. ∆′ and ∆̂), W (resp. W ′ resp. Ŵ ) the root system and Weyl group of g (resp. g′ and ĝ(σ)).

Recalt that Ŵ is isomorphic to W ′ ⋉M where M = Q∨ (resp. Q) the coroot (resp. root) lattice if
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r = 1 (resp. r > 1). Let us denote by n the rank of g and by m the rank of g′ and let us set ℓ = n−m
r−1 .

Let us denote by Xr the type of ĝ(σ).
Let us define the following polynomials:

L(x) = (1− x)n
∏

α∈∆

(1− xe(−α)) for r = 1;

L(x) = (1− x)ℓ(1− xr)n−ℓ
∏

α∈∆′
s

(1− xe(−α))
∏

α∈∆′
l

(1− xre(−α)) for r > 1 and Xr 6= A2
2n;

L(x) = (1− x)m
∏

α∈∆′
s

(1− xe(−α))
∏

α∈∆′
l

(1− xe(
1

2
(δ′ − α))(1 − x2e(−α)) for Xr = A2

2n and let us set

R =
∏

α∈∆′
+

(1− e(−α)).

We have the following formula:

∏

α∈∆̂(σ)+

(1− e(−α))multα = R ·
∞∏

k=1

L(e(−kδ′)).

We now want to compute the oter part of the denominator identity. Let us denote by ρ, ρ′ and ρ̂ the
corresponding element appearing in the Character formula for g, g′ and ĝ(σ). We will we decompose

any element w ∈ Ŵ in a product w = utα with u ∈ W ′ and α ∈ M . We nee to compute w(ρ̂) − ρ̂
that is to say utα(ρ̂)− ρ̂. The element ρ̂ ∈ ĥ(σ)∗ is not well defined but we fix it by asking 〈ρ̂, α∨i 〉 = 1
and 〈ρ̂, d〉 = 0. Let us write ρ̂ = ρ̄+ aδ′ + bΛ′ where ρ̄ ∈ h′

∗. Define h∨ =
∑m

i=0 a
∨
i the dual Coxeter

number for g′, we have

ρ̂ = ρ̄+ h∨Λ′.

Remark that ρ̄ is ρ′.

Proposition 15.2.4 For any α ∈M , we have the formula

tα(ρ̂) = h∨Λ′ + (ρ′ + h∨α) +
1

2h∨
(|ρ′|2 − |ρ′ + h∨α|2)δ′.

in particular we obtain

utα(ρ̂)− ρ̂ = u(ρ′ + h∨α)− ρ′ +
1

2h∨
(|ρ′|2 − |ρ′ + h∨α|2)δ′.

Proof : Recall that the translation tα was defined by the operator

Tα(λ) = λ+ 〈λ, rc〉α − ((λ, α) +
1

2
|α|2〈λ, rc〉)δ′.

We compute this for ρ̂ to get the result (because 〈ρ̂, rc〉 = h∨). �

We may now compute

∑

utα∈Ŵ

ǫ(utα)e(utα(ρ̂)− ρ̂) = e

( |ρ′|2
2h∨

) ∑

α∈M

[(∑

u∈W

ǫ(u)e(u(ρ′ + h∨α)− ρ)

)
e

(
− 1

2h∨
|ρ′ + h∨α|2δ

)]
.
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Theorem 15.2.5 (First Macdonald identities)

e

(
−|ρ′|2
2h∨

)
R ·

∞∏

k=1

L(e(−kδ′)) =
∑

α∈M

[(∑

u∈W

ǫ(u)e(u(ρ′ + h∨α)− ρ)

)
e

(
− 1

2h∨
|ρ′ + h∨α|2δ

)]
.

Dividing both sides of this equality we get

Theorem 15.2.6 (Second Macdonald identities)

e

(
−|ρ′|2
2h∨

) ∞∏

k=1

L(e(−kδ′)) =
∑

α∈M

χ(h∨α)e

(
− 1

2h∨
|ρ′ + h∨α|2δ

)
.

15.2.3 Dedekin η-function identities

We now focus on the untwisted case, we have ρ′ = ρ. We will need the following (see [FdV69]):

Theorem 15.2.7 (Strange formula of Freudenthal-de Vries)

|ρ|2
2h∨

=
dim g

24
.

Setting e(−δ) = q we obtain

q
dim g

24

∞∏

k=1

(
(1− qk)n

∏

α∈∆

(1− qke(α))

)
=
∑

α∈M

χ(h∨α)q
|ρ+h∨α|2

2h∨ .

We now take the specialisation s = (1, 0, · · · , 0). Note that in this specialisation we have

Fs(e(−α)) = q〈d,α〉 and Fs(χ(λ)) =
∏

β∨∈∆∨
+

〈λ+ ρ, β∨〉
〈ρ, β∨〉 .

We obtain:

Theorem 15.2.8 (First Dedekin η-function identity)

η(q)dim g =
∑

α∈M




 ∏

β∨∈∆∨
+

〈h∨α+ ρ, β∨〉
〈ρ, β∨〉


 q

|ρ+h∨α|2

2h∨


 .

Taking ĝ(σ) of type A1
1 and setting

ϕ(q) =
∞∏

k=1

(1− qk)

gives the following formula:

Theorem 15.2.9 (Jacobi)

ϕ(q)3 =
∑

k∈Z

(4k + 1)q2k
2+k (Jacobi).
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Taking different specialisation for ĝ(σ) of type A1
1 gives the following

Theorem 15.2.10
ϕ(q)2

ϕ(q2)
=
∑

k∈Z

(−1)kqk
2

(Gauss).

ϕ(q) =
∑

k∈Z

(−1)kq
3k3+k

2 (Euler).

ϕ(q2)2

ϕ(q)
=
∑

k∈Z

q2k
2+k (Gauss).
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Part III

Kac-Moody groups
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Chapter 16

Introduction

After having defined the Kac-Moody Lie algebras as a generalisation of semi-simple Lie algebras, we
want to define the Kac-Moody groups whose Lie algebras will be Kac-Moody Lie algebras. In other
words, in this part, we want to generalise as much as possible of the theory of reductive algebraic
groups to a larger class of groups: Kac-Moody groups.

In particular, as for Lie algebras, these groups will be infinite dimensional which will cause a little
more trouble than in the case of Kac-Moody Lie algebras. Indeed, we will need to deal with infinite
dimensional groups and varieties. Before entering into these details and explaining what will be the
solutions for handling infinite dimensional groups and infinite dimensional varieties, let us recall what
are the main aspects of the finite dimensional theory we would like to generalise and discus what will
be the differences.

I will start with a review of the construction of Kac-Moody groups and try to emphasize the
difference with the finite dimensional theory.

The introduction of the second part is intended as a guide and a motivation for this part. In
particular, one should keep in mind the general overview when entering into the details of the proofs
on Tits systems, pro-groups, ind-varieties and the technicalities we will develop.

16.1 Relation between a group and its Lie algebra

16.1.1 Finite dimensional case

Recall the definition of an algebraic group and of its Lie algebra.

Definition 16.1.1 (ı) An algebraic group G is a variety and a group such that the multiplication
map µ : G×G→ G and the inverse map G→ G sending an element to its inverse are morphisms.

(ıı) We define the Lie algebra of G to be g = TeG where e is the unit element in G. It has a natural
Lie algebra structure.

For a semi-simple Lie algebra, there are few algebraic groups having the same Lie algebra. Recall
the following:

Theorem 16.1.2 Let G be a semisimple group with Lie algebra g, then

(ı) there is a unique simple group Gad with Lie algebra g. This group is the adjoint group Ad (G).

(ıı) There is a unique simply connected semisimple Lie group G̃ with Lie algebra g.

(ııı) The group Z(G̃) = G̃/Ad (G) is finite and is the center of G̃.

(ııı) The group G is a quotient of G̃ with kernel a subgroup of Z(G̃).

137
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There is a very strong link between the group G and its Lie algebra g. This is particularly clear
in characteristic zero when the exponential map is defined.

More precisely Chevalley proved the following result: let ∆ be a root data (this is just a Cartan
matrix if the ground field is algebraically closed but it is more complicated in general: you need to
specify for example if the torus is defined over the base field), then there exists a functor S 7→ G(S)
a functor in groups represented by a scheme: a group scheme.

16.1.2 Kac-Moody setting

Group functors

The problem for Kac-Moody Lie algebras and groups is very nicely explained in J. Tits exposé at
Bourbaki’s seminar [Ti89]. In particular, in comparison with the finite dimensional case, we would
like to construct a group scheme say G associated with the combinatorial datum of a generalised
Cartan matrix. This group scheme should represent a certain functor in groups and should behave
well with base change. However, this is not possible.

One big difference with this classical theory for Kac-Moody groups is the fact that there are several
groups associated with the same Kac-Moody Lie algebra or at least with a Lie algebra very close to
a fixed Kac-Moody Lie algebra. In fact it is not so easy, as in the finite dimensional case, to define a
group associated to the Lie algebra.

On the one hand, one may construct a ”minimal” functor in groups Gmin on the category of rings
but this functor is not a group scheme. For example, for a Cartan matrix (i.e. in the finite dimensional
case) we only have a morphism of functors: Gmin → G which is an isomorphisms only over fields (more
precisely over Euclidian rings) but we have Lie(Gmin) = g.

On the other hand, one may construct a ”completed” solution of the problem: it will be an ind-
scheme Ĝ but its Lie algebra is a completion of the Kac-Moody Lie algebra we started with. In the
finite dimensional case, this construction has the advantage to coincide with the group scheme G but
here we have Lie(Ĝ) = ĝ 6= g.

This generality (of groups scheme and behaviour under base change) is useful for arithmetic appli-
cations and when one wants to consider the groups in families. We will restrict ourselves to the task
of constructing such groups and associated homogeneous varieties over the complex numbers. Already
in that situation, there will be some work to be done... For this we will follow the approach of S.
Kumar [Ku02].

Patching subgroups

Both constructions use the same general idea: to (re)construct the group from some of its subgroups
as one does for varieties constructed as a patchwork of its local charts. This will be the role of
amalgamated products. This can be done in (at least) two different way leading to the minimal Gmin
and completed Ĝ solutions.

The first technique is to take a torus T associated to the Cartan subalgebra h of g and for each
simple root α to integrate the sl2 subalgebra associated to α in a group SL2(α). We the patch the
groups T and SL2(α) for all simple root α along their intersection. We end up with the group Gmin.

The second one starts with the same torus T associated to the Cartan subalgebra h of g. However,
for each simple root α we associate a parabolic group Pα. This parabolic group has to contain the
previous SL2(α) but also an unipotent part Û . Here to construct this unipotent par, we need to
complete the Lie algebra (this is for the exponential to converge). We then patch the groups T and

Pα for all simple root α along their intersection. We end up with the group Ĝ.
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To conclude on this first difference, let us give an example. For the affine Lie algebra g of type
A1
n, the groups GLn+1(C[t, t

−1]) and GLn+1(C((t))) are both Kac-Moody groups, the first one cor-

responding to the functor Gmin, the second one to the ind-group scheme Ĝ. Their Lie algebras are
respectively g and ĝ a completion of g.

We shall also mention here, that there is, at least, a third version to construct Kac-Moody groups
or at least groups associated to Kac-Moody Lie algebras. This construction comes from a more
differential geometric point of view. In the case of type A1

n for example, denote by K a maximal
compact sugbroup of G (here K = SUn+1) and consider the group of continuous maps from S1 to a
K. This is the loop group, see Presley and Segal [PS86], for example, the group GLn+1(C[t, t

−1]) is
the group of algebraic morphisms C× → GLn and the restriction of such a mao to S1 ⊂ C× gives an
invection into the loop group. Let me also mention the nice paper on twisted loop groups with an
algebraic geometric view point by G. Pappas and M. Rapoport [PR06]).

All these groups to however keep many common characteristics. In particular for geometric ap-
plications. Indeed, as in the finite dimensional case, the homogeneous varieties i.e. the quotients
G/P where P is a parabolic subgroup of G are the same for both groups. So that there are natural
geometric objects associated with the Lie algebra.

16.2 Subgroups of G, Tits systems

16.2.1 Subgroups of G

In the classical theory, we start from the groupG or its Lie algebra g and produce several subgroups and
combinatorial data in order to classify all semi-simple groups in terms of root systems. To construct
Kac-Moody groups, we will proceed in the reverse order, constructing the group from some of its
subgroups modeled by the combinatorial data. Let us recall some features of the finite dimensional
situation:

Definition 16.2.1 (ı) An algebraic group T is a Torus if it is isomorphic to the group of diagonal
matrices in GLn for some n.

(ıı) A character of an algebraic group G is a group morphism G → k×. The set of all characters
is a group denoted X(G).

(ııı) Let G be an algebraic group and T a torus in G. Then T acts by the adjoint representation
on g and this action induces a decomposition

g = gT ⊕
⊕

α∈X(T )

gα

where gα = {x ∈ g / Ad(t)(x) = α(t)x for all t ∈ T}. The set ∆(G,T ) of characters such that gα is
non zero is called the set of roots of G with respect to T .

Theorem 16.2.2 (ı) Let G be a semisimple algebraic group, then all maximal torus are conjugated.
The dimension of such maximal torus is called the rank of G.

(ıı) Let T be a maximal torus, then the group NG(T )/T is independent of T and is finite. It is
called the Weyl group of G.

(ııı) The set ∆(G,T ) does not depend on T and is a root system.

Definition 16.2.3 (ı) A Borel subgroup of an algebraic group G is a maximal closed connected
solvable subgroup of G.

(ıı) A parabolic subgroup of an algebraic group G is a closed subgroup P such that the quotient
G/P is a projective variety.
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Theorem 16.2.4 (ı) A Borel subgroup B is a parabolic subgroup.
(ıı) Any parabolic subgroup contains a Borel subgroup.
(ııı) Any maximal torus T is contained in a Borel subgroup.
(ıv) All Borel subgroups are conjugated and even all pairs T ⊂ B of a maximal torus contained in

a Borel subgroup are conjugated.
(ııı) Let T be a maximal torus contained in a Borel B, then T acts on b the Lie algebra of B by

the adjoint representation and we have the decomposition

b = h⊕
⊕

α∈∆(B)

gα

where ∆(B) is a set of positive roots in ∆ the root system of G. In particular B defines a basis Π(B)
of ∆ i.e. a set of simple roots.

(ıv) Conversely, any set of positive roots is obtained from a Borel subgroup containing T .
(v) There is a one to one correspondence between parabolic subgroups PX containing a fixed Borel

subgroup B and the subsets X of the set of simple roots Π(B): let ∆X the root subsystem generated
by X, the Lie algebra pX of PX is

pX = b⊕α∈∆X,+
g−α.

Finally a very important result on the structure of reductive groups is the Bruhat decomposition.
It makes a link between the group and the combinatorial data of the root systems and Weyl groups:

Theorem 16.2.5 (Bruhat decomposition) There is a decomposition G =
∐

w∈W

BwB.

This decomposition will lead to the description of Schubert varieties and of many geometric prop-
erties. One may first think of it as a way to replace an element in G by elements in the Weyl group
and in a Borel subgroup B.

16.2.2 Kac-Moody setting

One more time, all these result will not be true in full generality but the major part will. As an
example, let us say that all maximal torus of a Kac-Moody group as well as all Cartan subalgebras
of a Kac-Moody Lie algebra are conjugated (we need the theory of Kac-Moody groups to prove this
result on Kac-Moody Lie algebras and in particular the fact that the Kac-Moody Lie algebra does
only depend on the Cartan matrix comes from the construction of Kac-Moody groups). However, the
pairs (T,B) of a maximal torus and a Borel subgroup are not conjugated in general. In particular the

completion Ĝ does depend on the choice of a Borel subgroup B.
How do we generalise all this ? In particular we want to end up with a group G satisfying the

Bruhat decomposition. The Bruhat-Tits theory and the theory of Tits system is an axiomatisation
of the properties of a group G together with two subgroups B and N and a set S in N/(B ∩ N) in
order to be able to define a Weyl group a Bruhat decomposition and to extract the combinatorial data
from the group. This will be our starting point. In these lines the preceding discussion leads to the
following:

Definition 16.2.6 A Tits system (also called BN-pair) is a quadruple (G,B,N, S) with G a group,
with B and N subgroups of G and with S a finite subset of the quotient N/(B ∩N) satisfying

(T1) The set B ∪N generates G and B ∩N is normal in N .

(T2) The set S generates the group N/(B ∩N).



16.3. PRO-GROUPS AND EXPONENTIAL MAP 141

(T3) We have the inclusion sBw ⊂ BwB ∪BswB for s ∈ S and w ∈ N/(B ∩N).

(T4) For all s ∈ S, we have sBs−1 6⊂ B.

We will denote by T the group B ∩ N and by W the quotient N/T . This group is called the Weyl
group of the Tits system.

The existence of this definition take all its value with the

Theorem 16.2.7 (Bruhat decomposition) If (G,B,N, S) is a Tits system, then there is a decom-

position G =
∐

w∈W

BwB with W the group N/(N ∩B).

This is taylor made for the finite dimensional situation:

Theorem 16.2.8 (ı) For G a semi-simple algebraic group, B a Borel subgroup, N the normaliser of
a maximal torus contained in B and S the set of simple reflections in N/T = N/(B ∩ T ) defined by
B, the quadruple (G,B,N, S) is a Tits system.

(ıı) The group G can be recovered, as an amalgamated product, from its parabolics subgroups.

The theory of Tits systems will be the core of our first chapter. The second part of the theorem
gives us a way to generalise and define the Kac-Moody groups. We shall therefore also discuss some
notions on amalgamated products. A classical reference for Tits systems is [Bo54] for more involved
real-estate constructions on buildings, see for example [Br89] or [Ro89]. For amalgamated products,
see [Se80]

The next step in the construction of the Kac-Moody group G will be to produce a system of
parabolic groups from which we will define G as an amalgamated product. For this we need to give
an algebraic structure to our infinite dimensional group: a pro-group structure and we shall use the
exponential map on these groups. This will be the theme of our second chapter.

16.3 Pro-groups and Exponential map

16.3.1 The exponential map

Recall that for a Lie group G, there is a unique map exp : g → G taking 0 to e and whose differential
g = T0g → TeG = g is the identity. This map is called the exponential map.

To generalise this we first need to have some algebraic structure on the infinite dimensional groups
we want to work with. This shall be the notion of a pro-group (and associated pro-Lie-algebras).
Roughly speaking a pro-group is the group which is the inverse limit of algebraic groups.

We shall use the exponential only for unipotents pro-groups. In particular, in the finite dimensional
case, in a Borel subgroup, there is a distinguished unipotent subgroup U and the exponential map is
a bijection between the Lie algebra u of U and U :

Theorem 16.3.1 Assume the characteristic of the ground field is zero. Let u be a nilpotent Lie
algebra, then there exists a natural unipotent group structure on u such that the Lie algebra for this
group structure is u. This group structure is given by

X · Y = log(exp(X) exp(Y )).

The Lie algebra of u for this group structure is u for its natural Lie algebra structure and the exponential
map is the identity.
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There is an explicit formula for log(exp(X) exp(Y )) showing that this is well defined for nilpotent
Lie algebras: the Campbell-Hausdorff formula:

log(expX expY ) =
∑

n>0

(−1)n−1

n

∑

ri+si>0
1≤i≤n

(
∑n

i=1(ri + si))
−1

r1!s1! · · · rn!sn!
[Xr1Y s1Xr2Y s2 . . . XrnY sn ],

which uses the notation

[Xr1Y s1 . . . XrnY sn ] = [X, [X, . . . [X︸ ︷︷ ︸
r1

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn

, [Y, [Y, . . . Y︸ ︷︷ ︸
sn

]] . . .]].

16.3.2 The Kac-Moody setting

To generalise this in the infinite dimensional setting, we start from Lie algebras. We need to take
a completion of g in the positive direction i.e. to replace the unipotent algebra u = ⊕α>0gα by
û =

∏
α>0 gα. We then have a generalisation of the previous result:

Theorem 16.3.2 There is an equivalence between the category of pro-unipotent groups and pro-
nilpotent-Lie algebras given by U 7→ u = Lie(U) and such that exp : u → U is a bijection.

With this we construct an pro-unipotent group Û associated with the pro-Lie-algebra u =
∏
α>0 gα.

With this tool we may start the construction of the Kac-Moody group G: construct parabolic sub-
groups a make the amalgamated product of them.

16.4 The Kac-Moody group

With the pro-unipotent-group Û , we start constructing a Tits system (G,B,N, S). We may start
from the combinatorial level: we already have the Weyl group W together with its generating set S
so that S is already defined. The Cartan Lie algebra h is finite dimensional and it is easy to construct
a torus T whose Lie algebra is h. We define N by generators and relations, N being generated by T
and some lifts of W (we already met these lifts in Kac-Moody Lie algebras, see Proposition 5.2.6).
We may define by B = T Û .

In fact choosing finite type root subsystems ∆X of our Kac-Moody root system, we may define
in the same way (with a little more work on pro-groups) parabolic groups PX . This goes as follows,
the root system ∆X define the following parabolic Lie subalgebra p = b⊕α∈∆X,+

g−α in g. There is a
decomposition p = gX ⊕ uX where gX is a semi-simple Lie algebra of finite type and uX is unipotent.
We take the completion ûX of uX and the associated unipotent group ÛX . We define PX = GX ÛX
where GX is the semi-simple algebraic group associated to gX (all these are finite dimensional).

Definition 16.4.1 The Kac-Moody group G is an amalgamated product of the subgroups PX .

Theorem 16.4.2 The quadruple (G,B,N, S) is a Tits system.

The group G defined in this way is the completed Kac-Moody group Ĝ we discussed in the beginning
of the introduction. Using the Kac-Moody G, we may construct the minimal associated group Gmin

as a subgroup of G. This group can however be defined directly, see [KP85].
With the construction of Kac-Moody groups, we are is position to produce varieties with geometry

similar to the geometry of homogeneous varieties in the finite dimensional case and to study some
aspects of this geometry. This is one of the very motivations for constructing Kac-Moody group. This
will be the second part of the lectures where we will deal with more geometric properties.
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16.5 Homogeneous varieties

The first result you want to have with Kac-Moody groups is to give an algebraic structure to the
quotient G/P of the Kac-Moody group G by a parabolic subgroup P . This will be done thanks to the
notion of ind-schemes (i.e. inductive limits of schemes).

To realise the quotient G/P as an ind-scheme, we will proceed as in the finite dimensional case:
we want to realise the homogeneous varieties as embedded in a representation: the orbit of a highest
weightvector. For this we will consider the action of G on several representations. We will thus first
give a brief account of representations of G. If λ is a dominant weight for g vanishing on all simple
coroots defining P , the module V (λ) can be endowed with an action of G and there is an injective
map G/P → P(V (λ)).

The structure on P(V (λ)) is the structure of an ind-scheme (recall that V (λ) is infinite dimensional.
The difficulty is here to prove the following;

Theorem 16.5.1 The image of the injection G/P → P(V (λ)) is closed (in the category of ind-
schemes).

This is done using a generalisation to the infinite dimensional setting of the Bott-Samelson resolu-
tion and of Schubert varieties. The Schubert varieties are the B-orbits in G/P and because of the fact
that (G, ,N, S) is a Tits system, we have a Bruhat decomposition of G/P in terms of the Schubert
varieties. The next step is to compute the cohomology of line bundles on G/P .

16.6 Line bundles and Schubert varieties

Let us review the finite dimensional theory. Assume P = B is a Borel subgroup for simplicity and G
is a semi-simple algebraic group.

Let χ ∈ X(T ) be a character of a maximal torus contained in B a Borel subgroup. Then T acts
on C via the map T → C∗ and this induces an action of B on C.

Definition 16.6.1 We may define the line bundle Lχ associated to χ as the quotient of the product
G × C under the action of B on the right on G and on the left on C. This variety together with the
first projection map to G/B has a structure of line bundle on G/B.

Theorem 16.6.2 The map X(T ) → Pic(G/B) defined by χ 7→ Lχ is an isomorphism of abelian
groups.

Define the dominant chamber C = {x ∈ h∗ / (x, α) ≥ 0 for all α ∈ ∆(B)}.

Theorem 16.6.3 In characteristic zero, let us consider the following action w ∗ χ = w(χ + ρ) − ρ
where ρ is half the sum of all positive roots. Then for χ,

(ı) either the orbit W ∗χ does not meet C and in this case all the cohomology groups H i(G/B,Lχ)
vanish,

(ıı) or there exists a unique w ∈ W such that w ∗ χ ∈ C. In that case H i(G/B,Lχ) = 0 for
i 6= ℓ(w) the length of w and H i(G/B,Lχ) is the representation with highest weight w ∗ χ.

We will generalise this to the variety G/P for G a Kac-Moody group. Furthermore, the group G
being part of a Tits system, we derive a Bruhat decomposition

G =
∐

w∈W

BwB.
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Considering the left action of B on G/B we get a decomposition into B-orbits

G/B =
∐

w∈W

BwB/B.

These orbits are the Schubert cells, the Schubert varieties X(w) are their closure in G/B. These
definition can be extended to the variety G/P . As we shall see, the Kac-Moody setting is the natural
one to deal with the singularities of Schubert varieties and these results on cohomology of line bundles
will induce the following

Theorem 16.6.4 The Schubert varieties in G/P are normal.

The Schubert varieties are a very important tool in the study of the geometry of homogeneous
varieties (in the finite dimensional or infinite dimensional cases). In particular their classes define
basis of the homology and the cohomology of the homogeneous variety G/P .

If time permits, we should discuss the equivariant cohomology and homology of G/P for G a Kac-
Moody group and describe explicitly the cohomology ring as the nil-Hecke ring of Kostant and Kumar
[KK86]. This has also connections with the quantum cohomology of finite dimensional homogeneous
spaces.

16.7 Motivations

As a final comment, I would like to give some motivation for studying Kac-Moody groups appart
from the fact that the ubiquity of semi-simply algebraic groups should justify the definition of infinite
dimensional groups with very close properties. The so called loop groups that are associated with
affine Kac-Moody Lie algebras have the more striking applications.

16.7.1 Application of Kac-Moody Lie algebras

As we have already mentioned (for example for the proof that two Cartan subalgebras are conjugated
or for the character formula for non symmetrisable Kac-Moody Lie algebras), the theory of Kac-
Moody groups is already useful in the theory of Kac-Moody Lie algebras. And representations of Lie
algebras have show usefulness in several directions in particular in solving Hamiltonian systems like
KdV equations and other problems coming from theoretical physics.

16.7.2 Historical point of view, arithmetic

In an historical point of view, the introduction of these groups came from the study of classical groups
over local fields like GLn(Qp) and GLn(Fq((t))) (and even more recently of GLn(C((t)))). If you think
of Qp as the completion of Q at the place p (a local field) this is very close to the field C((t)) which
is the completion of C(t) (a field of functions). This is the starting point of the Iwahori theory and
later of the theory of Buildings by Tits and Bruhat. For example, the theory of Building developed
by Tits is used (in its very preliminary version) by Serre in [Se80] to prove the following result due to
Ihara on the structure of the group SL2(Qp).

Let Zp be the ring of p-adic integers and let B be the subgroup of SL2(Zp) defined by:

B =

{(
a b
c d

)
c ≡ 0 mod p

}
.

Theorem 16.7.1 The group SL2(Qp) is the amalgamated product SL2(Zp) ∗B SL2(Zp).

Let us give more examples of this theory.



16.7. MOTIVATIONS 145

The tree of SL2 over a valuation field

Take K a field with a discrete valuation v and denote by O its ring of integers (for example take
K = Qp, O = Zp or K = Fq((t)) and O = Fq[[t]]).

Let us consider lattices in K2 i.e. finitely generated O-submodules of K2 generating K2 (the
standard lattice O2 has PGL2(O) as stabiliser).

If L is a lattice, then xL is again a lattice for x ∈ K×. We consider the set

X = {L lattice of K2}/ ∼

of lattices modulo the equivalence relation defined by L ∼ L′ if there exists x ∈ K× with L′ = xL.
We then have Stab([O2]) = GL2(O).

If we take two lattices L and L′, then there exists a basis (e1, e2) of L such that (πae1, π
be2) is a

basis of L′ and the couple (a, b) does not depend on the choice of such a basis. If we multiply L by
x and L′ by y we change (a, b) into (a + c, b + c) where c = v(x/y). In particular |a − b| does only
depend on the classes [L] and [L′]. It is called the distance of L and L′ and denote d(L,L′).

Proposition 16.7.2 Take L alattice and Λ ∈ X, then there exists a unique maximal lattice [L′] such
that [L′] = Λ and L′ ⊂ L.

Furthermore, we have L/L′ = O?πnO where n = d(L,L′).

Corollary 16.7.3 (ı) d(L,L′) = 0 ⇔ [L] = [L′].

(ıı) d(L,L′) = 1 ⇔ there exists representatives L′ ⊂ L such that L/L′ = k.

Definition 16.7.4 Two elements in X are adjacent if there respective distance is one.

This defines a combinatorial graph in X which is in fact a tree. For the field F2 we get the following
(infinite!) picture:

• •

◦

⑦⑦⑦⑦⑦⑦⑦

❅❅❅❅❅❅❅

•

❅❅
❅❅

❅❅
❅

⑦⑦
⑦⑦
⑦⑦
⑦

• ◦ ◦ •

• •

The set X together with the simplicial structure defined by the tree is the Tits Building. Remark
that the points are in one to one correspondence with maximal parabolic subgroups: associate to [L] its
stabiliser. The edges are in one to one correspondence with incidence relations between the parabolics
i.e. parabolics such that there intersection is a Borel subgroup.

When one consider a Tits system (G,B,N, S), we fix a Chamber of the Tits system: in our picture,
we fix a pair of adjacent parabolic subgroups. This also explains the coloration of the edges according
to the type of parabolics we are considering.
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16.7.3 Geometric applications

Moduli space of bundles on a curve

In a more geometric point of view, let us consider the moduli (it is a stack) spaceMC of vector bundles
of rank n and determinant on an algebraic curve C. Let us fix a point p ∈ C and consider the moduli
space MC,p of pairs (E, s) where E ∈ MC and s is a trivialisation of E is a neighborhood of p. Then
MC,p can be realised as the homogeneous space under a Kac-Moody group as follows

MC,p = GLn(C((t)))/GLn(C[[t]])

Thi quotient is called the affine grassmannian and has many properties in common with classical
grassmannians. Quotienting on the left by GLn(Op,C) gives a description of MC as

MC = GLn(Op,C)\GLn(C((t)))/GLn(C[[t]]).

In particular, a natural generator of the Picard group Pic(MC) shows up and its pull-back on MC,p

is a line bundle whose cohomology is given by our Borel-Weil-Bott theorem. This study leads to the,
by now, well known Verlinde formulas.

Schubert varieties

Moreover, the Kac-Moody setting is the natural setting to study Schubert varieties (all the major
properties of Schubert varieties extend to this setting). For example, if you consider all ruled rational
smooth surfaces, also called Hirzebruch surfaces and denoted Σn, then these surfaces are exactly all
two dimensional Schubert surfaces. In the infinite dimensional setting you have only the Σn for n ≤ 3
and for n ≤ 4 in the affine setting.

Quantum cohomology

Finally, and this was my personal motivation in studying Kac-Moody groups, there is a closed re-
lationship between the homology of the affine Grassmannian (the quotient GLn(C((t)))/GLn(C[[t]])
in type A) and the quantum cohomology of homogeneous spaces (flag varieties under GLn). This is
something not really well understood for the moment and there should in particular be more deep
links between rational curves on homogeneous spaces and points in the affine Grassmannian.
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Tits systems

17.1 Definition and first properties

The basic reference for Tits system is [Bo54]. We give is a different definition: following [Ku02], we
don’t assume the element s ∈ S to be of order two. We prove in Proposition 17.1.4 that this agrees
with the definition in [Bo54]

Definition 17.1.1 A Tits system (also called BN-pair) is a quadruple (G,B,N, S) with G a group,
with B and N subgroups of G and with S a finite subset of the quotient N/(B ∩N) satisfying

(T1) The set B ∪N generates G and B ∩N is normal in N .

(T2) The set S generates the group N/(B ∩N).

(T3) We have the inclusion sBw ⊂ BwB ∪BswB for s ∈ S and w ∈ N/(B ∩N).

(T4) For all s ∈ S, we have sBs−1 6⊂ B.

We will denote by T the group B ∩ N and by W the quotient N/T . This group is called the Weyl
group of the Tits system.

Example 17.1.2 This definition is of course perfectly suited for reductive algebraic groups. Indeed,
let G be a reductive algebraic group, let B be a Borel subgroup of G, let T be a maximal torus in
G contained in B, let N be the normaliser of T in G and let S be the set of simple reflections in
W = N/T defined by B. Then (G,B,N, S) is a Tits system.

We will consider the double classes (BgB)g∈G under B in G. Recall that these double classes form
a partition of G, we denote by B\G/B the corresponding quotient. Note that the product of any two
double classes is an union of double classes: (BgB) · (Bg′B) = ∪x∈gBg′BxB.

For w ∈ W , we may define a double class C(w) as follows: take any element n ∈ N such that its
class is w in W and set C(w) = BnB. This definition does not depend on the choice of n, we also call
the double classes C(w) Schubert cells or cells. We first prove some simple results on the cells C(w).

Lemma 17.1.3 For s ∈ S and w,w′ ∈W , we have the following relations:

• C(1) = B,

• C(ww′) ⊂ C(w) · C(w′),

• C(w−1) = C(w)−1,

147
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• C(s)·C(w) = C(sw) if C(w) 6⊂ C(s)·C(w) and C(s)·C(w) = C(w)∪C(sw) if C(w) ⊂ C(s)·C(w).

Proof : The first three relations are direct consequences of the definition of the cells. For the last
one, remark that (T3) gives C(s) · C(w) ⊂ C(w) ∪C(sw). But we have C(sw) ⊂ C(s) · C(w) and the
result follows from the fact that a product of double classes is a union of double classes. �

We now prove that any element s ∈ S has order two in W . We describe some subgroups of G
containing B. For any subset X of S, we denote by WX the subgroup of W generated by X. We
define the subset PX of G by PX = BWXB.

Proposition 17.1.4 (ı) Any element s ∈ S is of order two in W .

(ıı) For any subset X of S, the subset PX of G is a subgroup.

Proof : (ı) By (T4), we have C(s) · C(s−1) 6⊂ B. Thus by the previous lemma, we have the equality
C(s) · C(s−1) = C(s−1) ∪ B. Taking inverses we get C(s) · C(s−1) = C(s) ∪ B. This implies the
equality C(s) = C(s−1).

By (T3) for w = s, we have C(s) ·C(s) ⊂ C(s)∪C(s2). But we proved the equalities C(s) = C(s−1)
and C(s) ·C(s−1) = C(s)∪B, thus C(s)∪B ⊂ C(s)∪C(s2). Because these are cells we get B = C(s2)
and s2 = 1.

(ıı) Consider PX = BWXB. We have the equality

PX =
⋃

w∈WX

C(w).

Now by (T3) and an easy induction on the numbers of generators in X we need to write w and w′ we
have the inclusion C(w) · C(w′) ⊂ PX proving the result. �

Remark 17.1.5 We shall see in particular that, for X = S, we have PX = G while for X = ∅, we
have PX = B. We will see that the subsets PX are always subgroups of G. They are called the
standard parabolic subgroups.

17.2 Double classes decomposition

In this section we prove a generalisation of the Bruhat decomposition. For this we need to define the
length ℓ(w) of an element w ∈W as for a Coxeter system i.e.:

ℓ(w) = min{n ∈ N / ∃(s1, · · · , sn) ∈ Snw = s1 · · · sn}.

Theorem 17.2.1 Let (G,B,N, S) be a Tits system, then we have the decomposition

G =
∐

w∈W

C(w).

In particular G = PS. More generally for any subset X and Y of S, we have the decomposition

G =
∐

w∈WX\W/WY

PXwPY .
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Proof : We know that PS is a subgroup of G. More over B and W are contained in PS thus B and
N are contained in PS and by (T1) we gave G = PS . To prove the first decomposition, we only need
to prove that the union is disjoint. i.e. that C(v) = C(w) implies that v = w.

We proceed by induction on min{ℓ(v), ℓ(w)}. We assume for example that ℓ(v) ≤ ℓ(w). If ℓ(v) = 0
then v = 1. We have C(w) = C(v) = B thus w = 1. Otherwise, assume v 6= w and take s ∈ S
such that ℓ(sv) < ℓ(v). We have ℓ(w) ≥ ℓ(v) > ℓ(sv) thus w 6= sv and sw 6= sv (because v 6= w).
We also have ℓ(sw) ≥ ℓ(w) − 1 ≥ ℓ(v) − 1 ≥ ℓ(sv). By induction, we have C(w) 6= C(sv) and
C(sw) 6= C(sv). In particular C(sv) does not meet the union C(sw)∪C(w) and thus the intersection
C(sv)∩ (C(s) ·C(w)) is empty. On the other hand we have the inclusion C(sv) ⊂ C(s) ·C(v) thus we
have C(v) 6= C(w).

For the second decomposition, first consider the union on the right hand side. This union is stable
under left and right multiplication. Moreover, it contains the union over w ∈ WX\W/WY of the sets
WXwWY . This union is W . Thus by the previous argument (using (T1)), the right hand side is G.
One more time we need to prove that the union is disjoint. But we have

PXwPY =
⋃

u∈WX , v∈WY

C(u)C(w)C(v).

For u ∈ WX and v ∈ WY , write u = s1 · · · sn and v = s′1 · · · s′r with si ∈ X and s′j ∈ Y . We have the
inclusions C(u)C(w)C(v) ⊂ C(s1) · · ·C(sn)C(w)C(s′1) · · ·C(s′r). By use of (T3), we get

C(s1) · · ·C(sn)C(w)C(s′1) · · ·C(s′r) ⊂
⋃

u′∈WX , v′∈WY

C(u′wv′).

In particular the union on the right hand side in the theorem is disjoint. �

Let us prove a length characterisation of the decomposition of the product C(s) · C(w).

Proposition 17.2.2 We have the following equality:

C(s) · C(w) =

{
C(sw) if ℓ(sw) ≥ ℓ(w)
C(sw) ∪ C(w) if ℓ(sw) ≤ ℓ(w).

Proof : We proceed by induction on the length of w. The result is true for w = 1. If ℓ(w) 6= 0, let
s′ ∈ S such that ℓ(ws′) < ℓ(w).

If ℓ(sw) ≥ ℓ(w), we have ℓ(sws′) ≥ ℓ(sw) − 1 ≥ ℓ(w) − 1 ≥ ℓ(ws′). By induction, we get
C(s)·C(ws′) = C(sws′). Assume that C(s)·C(w) 6= C(sw). This implies C(s)·C(w) = C(sw)∪C(w).
In particular C(w)∩(C(s)·C(w)) 6= ∅, thus sBw∩C(w) 6= ∅. Multiplying by s′ gives sBws′∩C(w)s′ 6=
∅. But C(w)s′ ⊂ C(w)C(s′) ⊂ C(w)∪C(ws′) (the last inclusion comes form taking the inverse in (T3)).
We thus have sBws′ ∩ (C(w)∪C(ws′)) 6= ∅ and by B-invariance: C(s)C(ws′)∩ (C(w)∪C(ws′)) 6= ∅.
The induction gave C(s)C(ws′) = C(sws′) and by the previous theorem, we have sws′ = w or
sws′ = ws′. The last equality is impossible. The first one leads to sw = ws′ but ℓ(sw) ≥ ℓ(w) > ℓ(ws′)
a contradiction.

If ℓ(sw) ≤ ℓ(w), replacing w by sw gives C(s)C(sw) = C(w) (use the previous case). Now compute:

C(s) · C(w) = C(s) · C(s) · C(w) = (C(s) ∪B) · C(w) = C(sw) ∪ C(w).

This is want we wanted to prove. �
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17.3 The pair (W,S) is a Coxeter system

All the combinatoric features of the Weyl group W of the Tits system (G,B,N, S), together with its
generating set S remind Coxeter groups (see Chapter 6). We now prove the following:

Theorem 17.3.1 The pair (W,S) is a Coxeter system.

Proof : To prove this we use the characterisation given in Theorem 6.4.1 that a group W together
with a finite generating set S whose element are of order two and satisfying the exchange condition is
a Coxeter group.

Let us recall the exchange condition: let s ∈ S and w ∈W be such that ℓ(sw) < ℓ(w) then for any
reduced expression w = s1 · · · sr with sk ∈ S, we have sw = s1 · · · ŝi · · · sr for some i

Let us compute the following products thanks to Proposition 17.2.2:

C(s)C(w) = C(w) ∪ C(sw) and C(w) = C(s1) · · ·C(sr).

Now we mimic the situation of Coxeter groups: chose the smallest integer i ∈ [1, r] such that
ℓ(ss1 · · · si) ≤ ℓ(ss1 · · · si−1). We get by Proposition 17.2.2 (and taking the inverse) the following
equalities:

C(s)C(s1) · · ·C(si−1) · C(si) = C(ss1 · · · si−1) · C(si) = (C(ss1 · · · si−1si) ∪ C(ss1 · · · si−1)) .

Apply this in the following equalities

C(s)C(w) = C(s)C(s1) · · ·C(sr)
= (C(ss1 · · · si−1si) ∪C(ss1 · · · si−1)) · C(si+1) · · ·C(sr)

⊂
⋃

i+1≤i1<···<ip≤r

C(ss1 · · · si−1sisi1 · · · sip) ∪ C(ss1 · · · si−1si1 · · · sip).

Because C(s)C(w) equals C(w)∪C(sw), because the cells form a partition and because w is of length
r, we get that w = ss1 · · · si−1si+1 · · · sr or w = ss1 · · · sisi+1 · · · ŝi+k · · · sr and the result follows in
both cases. �

17.4 Reconstruction of G by amalgamated products

In this section, we shall see that the group G of a Tits system (G,B,N, S) can be recovered by
amalgamated product from its parabolics subgroups.

Definition 17.4.1 (ı) Let I be an indexing set and {Gi}i∈I a family of groups. Let also for any
pair {i, j} of elements in I a group G{i,j} (note that G{i,j} = G{j,i}) together with group morphisms
ϕ{i,j} : Gi,j → Gi and ϕj,i : G{i,j} → Gi.

The amalgamated product of the maps ϕi,j is a pair (G, (ϕi)i∈I) satisfying the following prop-
erties:

• G is a group and ϕi : Gi → G is a group morphism such that ϕi ◦ ϕi,j = ϕj ◦ ϕj,i.

• If G′ is a group and ψi : Gi → G′ are group morphisms such that ψi ◦ϕi,j = ψj ◦ϕj,i, then there
exists a unique group morphism ψ : G→ G′ such that ψi = ψ ◦ ϕi.
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ıı) When all the groups Gi are subgroups of a same set G and the intersection Gi∩Gj is a subgroup
of both Gi and Gj such that the two group structure coincide, we say that (Gi)i∈I is a system of groups.
Set G{i,j} = Gi ∩ Gj and ϕi,j : G{i,j} → Gi to be the inclusion, then the amalgamated product G of
the maps ϕi,j is called the amalgamated product of the system of groups (Gi)i∈I .

As a special case of system of groups, when all the groups Gi are subgroups of the same group G,
we have that the family (Gi)i∈I is a system of groups.

Proposition 17.4.2 The amalgamated product (G, (ϕi)i∈I) of a family ({Gi}i∈I , ϕi,j) exists and is
unique up to isomorphism.

Proof : The uniqueness comes from the universal property of from the fact that G represents the
functor H 7→ lim

←
(Hom(Gi,H)).

For the existence, we may for example define G by generators and relations. Take the disjoint
union of generating families of the groups Gi to be a generating family of G and for relations the
elements xyz−1 for x, y and z in a Gi with xy = z and xy−1 for x ∈ Gi, y ∈ Gj such that there exists
z ∈ G{i,j} with x = ϕi,j(z) and y = ϕj,i(z). �

Recall that for a subset X of S we defined a subgroup PX associated to X. For X = {s} with
s ∈ S we denote P{s} simply by Ps.

Theorem 17.4.3 Let (G,B,N, S) be a Tits system, then the group G is the amalgamated product of
its subgroups {N,Ps, s ∈ S}.

Proof : Let us first only assume that (G,B,N, S) satisfy the properties (T1), (T2), (T4) and that
(W,S) is a Coxeter sytem.

Lemma 17.4.4 The property (T3) is equivalent to the conjunction of the following two properties:

(T5) For each s ∈ S, we have C(s) · C(s) = B ∪ C(s).

(T6) If s ∈ S and w ∈W are such that ℓ(sw) > ℓ(w), then C(s) · C(w) = C(sw).

Proof : We already proved in Proposition 17.2.2 that property (T3) implies properties (T5) and (T6).
Conversely, suppose that (T5) and (T6) hold, we want to prove the inclusion

C(s) · C(w) ⊂ C(w) ∪ C(sw).

In view of (T6), we only need to prove this for ℓ(sw) < ℓ(w). Applying (T6) to sw gives the equality
C(s) ·C(sw) = C(w). Multiply this by C(s) and use (T5) first and then (T6) again to get the equality

C(s) · C(w) = C(s) · C(s) · C(sw) = B · C(sw) ∪C(s) · C(sw) = C(sw) ∪ C(w)

from which the result follows. �

For s ∈ S and w ∈W , define the following groups wB = wBw−1, Bw = wB ∩B and sBw = sBws.
Remark that the group wB does not depend on the choice of a representative of w in N . The same is
true for sBw (this comes from the fact that, because B ∩ N is normal in N , for x ∈ B ∩ N we have
the equalities xwBw−1x−1 = w(w−1xw)B(w−1x−1w)w−1 = wBw−1).

Lemma 17.4.5 Suppose that the property (T5) holds. Let s ∈ S and w ∈W be such that ℓ(sw) > ℓ(w).
Define the following properties:
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(T7) The equality Bs · Bw = B holds.

(T8) The equality Bsw = sBw ∩B holds.

Then the property (T6) is equivalent to the (T7) and implies (T8).

Proof : Let us first prove that (T6) implies (T8). If (T6) holds, we have C(s) · C(w) ∩ C(w) = ∅
and multiplying by w−1 on the right, we get C(s) · wB ∩ B · wB = ∅. But C(s) ⊂ C(s) · wB and
wB ⊂ B · wB thus C(s) ∩ wB = ∅.

By (T5), we have sB ⊂ B ∪ C(s) and we get sB ∩ wB ⊂ (B ∪ C(s)) ∩ wB = B ∩ wB = Bw.
Conjugating by s gives B ∩ swB ⊂ sBw that is to say

Bsw ⊂ sBw.

This implies the inclusion Bsw ⊂ sBw ∩ B. The converse inclusion is easy, we have the inclusions
sBw ∩B = s wBs ∩ sBs ∩B = swB ∩ sBs ∩B ⊂ Bsw.

We prove the fact that (T6) implies (T7). The formula C(s) ·C(w) = C(sw) gives by multiplication
on the left by s and on the right by w−1 the equality sB ·B · wB = sB · wB. This implies the inclusion
B ⊂ sB · wB. In particular, any element b in B can be writen as a product b = xy with x ∈ sBs and
y ∈ wBw−1. We have

y = x−1b ∈ sBs ·B ∩ wBw−1 ⊂ C(s) · C(s) ∩ wB = (B ∪ C(s)) ∩ wB = Bw.

This gives y ∈ B and hence x ∈ B and property (T7) follows.

Conversely, suppose (T7) holds, be have B = Bs · Bw ⊂ sB · wB hence B ⊂ sBs · wBw−1 thus
sBw ⊂ BswB and (T6) follows. �

Let G′ be the amalgamated product of the system of groups {N,Ps; s ∈ S}. Let ϕs : Ps → G′ and
ϕN : N → G′ the associated morphisms and denote by N ′ and P ′s their image in G′. The morphisms
ϕs and ϕN coincide on Ps ∩ N and ϕs|B does not depend on s ∈ S (this comes from the fact that
Ps ∩ Ps′ = B for any couple (s, s′) of elements in S). Let us denote by ϕ the restriction ϕs|B and B′

its image.

Furthermore, by the universal property of amalgamated products, there exists a group morphism
ψ : G′ → G such that ϕs ◦ψ and ϕN ◦ψ are the inclusions. This implies that ψ gives an isomorphism
of N ′ on N , of P ′s on Ps, of B

′ on B, of N ′ ∩ P ′s on N ∩ Ps and of W ′ = N ′/(B′ ∩N ′) on W .

Lemma 17.4.6 The quadruple (G′, B′, N ′, S) is a Tits system.

Proof : We have to check the axioms of a Tits system. By definition of an amalgamated product,
the group G′ is generated by N ′ and B′. Because N ′ and B′ ∩N ′ are isomorphic to N and B ∩N we
have that B′ ∩N ′ is normal in N ′ and that S generates W ′. Furthermore, we have sBs ⊂ BsBsB =
C(s) · C(s) = B ∪ C(s) = Ps. In particular condition (T4) is a condition in the group Ps and follows
for P ′s.

We are left to prove (T3) but this is equivalent by the two previous lemmas to properties (T5) and
(T7). But as for (T4) the property (T5) is a condition in the group Ps and follows at once for P ′s. It
remains to prove (T7) for s ∈ S and w ∈W such that ℓ(sw) > ℓ(w).

For this, we prove that ψ(B′w) = Bw by induction on ℓ(w). It is true for ℓ(w) = 1. Assume this
is true for w and let s ∈ S such that ℓ(sw) > ℓ(w). We have (property (T8) for (G,B,N, S) and
induction) the equality

Bsw = sBw ∩B = sψ(B′w) ∩ ψ(B′).
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But B′, B′w and s are in P ′s which is isomorphic to Ps thus we get sψ(B′w) ∩ ψ(B′) = ψ( sB′w ∩ B′).
Be have the easy inclusion sB′w ∩B′ ⊂ B′sw giving the inclusion

Bsw ⊂ ψ(B′sw).

Conversely we have the inclusions

ψ(B′sw) = ψ(swB′w−1s ∩B′) ⊂ ψ(swB′w−1s) ∩ ψ(B′) = Bsw.

We may now conclude by computing ψ(B′sB
′
w) = ψ(B′s)ψ(B

′
w) = BsBw = B by property (T7) in

(G,B,N, S). But since B′sB
′
w ⊂ B′ and ψ is an isomorphism from B′ to B we get the result. �

Let us now finish the proof of the theorem. Because (G′, B′, N ′, S) is a Tits system, the group
G′ is the disjoint union of the cells C ′(w) = B′wB′ and ψ(C ′(w)) = BwB = C(w). In particular, if
g′ ∈ G′ is in the kernel of ψ and g′ ∈ C ′(w), then 1 = ψ(g′) ∈ C(w). But 1 ∈ C(1) thus w = 1 and
g′ ∈ B′. But we have seen that ψ is injective on B′ thus ψ is injective. Because G is generated by B
and N ,the morphism ψ is surjective. �

The last result of this chapter is a way to recover the group G of a Tits system abstractly from
the system of groups (B,N,Ps; s ∈ S). For this we will need several axioms to be satisfied. Let S be
a finite set and let (B,N,Ps; s ∈ S) be a system of groups. Let us define the following groups, sets or
maps: Y = N ∪⋃s∈S Ps, T = B ∩N , Ns = N ∩ Ps, W = N/T and π : N → W .

Assume that B is contained in all the groups Ps. Let n ∈ N such that there exists an expression
n = n1 · · ·nr with ni ∈ Nsi for some si ∈ S. We define a group B(n1, · · · , nr) by induction setting
B(t) = B for t ∈ T , B(n1) = B∩ (n−11 Bn1) (in Ps1) and B(n1, · · · , nr) = B∩ (n−1r B(n1, · · · , nr−1)nr)
(in Psr). We define the map

γ(n1, · · · , nr) : B(n1, · · · , nr) → B

by γ(n1, · · · , nr)(x) = n1 · · ·nrxn−1r · · ·n−11 (where the conjugation is taken first in Psr and finally in
Ps1 .

Theorem 17.4.7 Let (B,N,Ps; s ∈ S) be a system of groups and assume the following conditions are
satisfied:

(P1) For s 6= s′, Ps ∩ Ps′ = B.

(P2) The subgroup T is normal in N .

(P3) For any s ∈ S, the quotient group Ns/T is of order 2 denoted {1, s}.

(P4) Ps = B ∪BsB.

(P5) The pair (W,S) is a Coxeter system.

(P6) For any n and any decomposition n = n1 · · ·nr with ni ∈ Nsi for some si ∈ S such that
π(n) = π(n1) · · · π(nr) is a reduced expression, the subgroup B(n1, · · · , nr) of B depends only on
π(n) (and will be denoted Bπ(n)) and the map γ(n1, · · · , nr) : B(n1, · · · , nr) → B depends only
on n (and will be denoted γn).

(P7) For w ∈W and s ∈ S such that ℓ(ws) > ℓ(w), we have Bw ·Bs = B.

(P8) Let s and t in S and let w ∈W such that sw = wt and ℓ(sw) > ℓ(w). Then for any m ∈ π−1(s),
n ∈ π−1(w) and b ∈ B \ Bt, there exist elements y ∈ (bBt) ∩ Bw and y′, y′′ ∈ Bw such that,
setting m′ = n−1m−1n, we have:
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– (m′)−1ym′ = y′m′y′′ in Pt and

– mγn(y)m
−1 = γn(y

′)m−1γn(y
′′) in Ps.

(P9) The subgroup B is not normal in Ps for any s ∈ S.

Then the canonical map from Y to the amalgamated product G of the system of groups (B,N,Ps; s ∈ S)
is injective. If we again denote by B and N the image of these groups in G, then (G,B,N, S) is a
Tits system.

Furthermore, for any group G′ with an injective map ϕ : Y → G′ such that the restiction of ϕ to
N and Ps are group homomorphisms and such that the image of ϕ generates G′, then the canonical
group morphism G→ G′ is an isomorphism.

Proof : Let us make few comments: by (P2), the coset W is a group. By (P3), the union in (P4) is
disjoint (otherwise we would have s ∈ B i.e. s = 1). The condition (P7) is equivalent to the condition
(T7) (take the inverse).

Let us first prove the following:

Fact 17.4.8 (ı) For any n ∈ N , we have γn(Bπ(n)) ⊂ Bπ(n−1) and the map γn : Bπ(n) → Bπ(n−1) is
bijective with inverse γn−1.

(ıı) For any n ∈ N , the group Bπ(n) contains T . Furthermore, for w ∈ W and s ∈ S such that
ℓ(ws) > ℓ(w), take n ∈ π−1(w) and m ∈ π−1(s), we have in Ps:

Bws = B ∩m−1Bwm.

(ııı) For w ∈W and s ∈ S such that ℓ(ws) > ℓ(w), we have the inclusion Bsw−1 ⊂ Bw−1.

Proof : (ı) Let us write n = n1 · · ·nr, we have γn(x) = n1 · · ·nrxn−1r · · · n−11 (successive conjugation
in the Psi). If x lies in Bπ(n), then nrxn

−1
r lies in nrBn

−1
r ∩ B(n1 · · ·nr−1) and by induction we get

that γn(x) lies in Bπ(n−1). Furthermore we clearly have γ−1n = γn−1 .
(ıı) Remark that the last statement corresponds to axiom (T8). The fact that T is contained in

Bπ(n) follows by induction on the length of π(n) and the fact that T is normal in N . Now write
n = n1 · · ·nr, we have nm = n1 · · · nrm and Bws = B ∩m−1Bwm by definition.

(ııı) Let n ∈ π−1(w) and m ∈ π−1(s). Let b ∈ Bws and write b = m−1xm with x ∈ Bw by (ıı). We
have γnm(b) = γn(x) ∈ Bw−1 . This is true for any b ∈ Bws thus B(ws)−1 = γnm(Bws) ⊂ Bw−1 . �

Let us now define the product X̃ = B ×N ×B and consider the equivalent relation

(b1, n, b2) ∼ (b′1, n
′, b′2)

if there exist t ∈ T and b ∈ Bπ(n) such that n′ = tn, b′2 = bb2 and b′1 = b1γn(b
−1)t−1.

Fact 17.4.9 (ı) The relation ∼ is an equivalence relation.
(ıı) The action of B on the left and on the right on X̃ respects the classes for this relation and

induces an action on the quotient.

Proof : (ı) Remark that this equivalent relation is made such that the product b1nb2 — if it exists,
i.e. if all elements live in a big group G — remains constant. In particular, the quotient X = X̃/ ∼
would be the union of double classes BwB for w ∈W and thus equal to the group G if it satisfies the
axioms of a Tits system.

It is reflexive (take t = b = 1) and symmetric (take t−1 and b−1 and remark that Bπ(n′) =
Bπ(n) because π(n) = π(n′)). For the transitivity, let us express that (b1, n, b2) ∼ (b′1, n

′, b′2) and
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(b′1, n
′, b′2) ∼ (b′′1 , n

′′, b′′2): there exist t, u ∈ T , b ∈ Bπ(n) and c ∈ Bπ(n′) such that n′ = tn, n′′ = un′,
b′2 = bb2, b

′′
2 = cb′2, b

′
1 = b1γn(b

−1)t−1 and b′′1 = b′1γn′(c−1)u−1.

In particular π(n) = π(n′) and Bπ(n) = Bπ(n′). We have n′′ = utn with ut ∈ T and b′′2 = cbb2 with
cb ∈ Bπ(n). Furthermore, we have γn(x) = t−1γn′(x)t thus

b′′1 = b′1γn′(c−1)u−1 = b1γn(b
−1)t−1γn′(c−1)u−1 = b1γn(b

−1)γn(c
−1)t−1u−1 = b1γn((cb)

−1)(ut)−1

and the result follows.

(ıı) It suffices to show that if (b1, n, b2) ∼ (b′1, n
′, b′2) and b ∈ B, then (bb1, n, b2) ∼ (bb′1, n

′, b′2) and
(b1, n, b2b) ∼ (b′1, n

′, b′2b). This follows directly from the definition of ∼. �

Let us now define a right action of Ps on X extending the action of B. SetW s = {w ∈W / ℓ(ws) >
ℓ(w)} and N s = π−1(W s).

Fact 17.4.10 (ı) We have for any w ∈W s the equality Ps = Bw ·Ns · B.

(ıı) For any t ∈ T , n ∈ N and b ∈ Bπ(n), we have γn(bt) = γn(b)ntn
−1.

Proof : (ı) Indeed, by (P4), we have Ps = B ∪ BsB and by (P3) the quotient Ns/T = T/T ∪ N ∩
(BsB)/T has two elements. We deduce that N ∩ (BsB) = sT and Ns = T ∪ sT . This gives (apply
(P7) and (P4)):

Bw ·Ns ·B = Bw · (T ∪ sT ) · B = B ∪BwsB.
In particular because sB is contained in BsB we have the inclusion Bw ·Ns ·B ⊂ B∪BsB = Ps. Now
write

BwsB = BwsBssB ⊃ B ∪Bw ·BssB = B ∪BsB = Ps.

(ıı) Decompose n as a product n1 · · · nr. We proceed by induction on r = ℓ(π(n)), let m =
n1 · · ·nr−1. We have γn(bt) = γm(nrbtn

−1
r ) = γm(nrbn

−1
r nrtn

−1
r ) and nrbn

−1
r ∈ Bπ(m) and nrtn

−1
r ∈ T .

By induction we get γn(bt) = γm(nrbn
−1
r )mnrtn

−1
r m−1 and the result follows. �

Denote by θ : X̃ → X the quotient map of the equivalence relation ∼. Let us now define a map
ps : B ×N s × Ps → X by

ps(b, n, p) = θ(bγn(b1), nn1, b2)

where we write, using the previous fact, p = b1n1b2 with b1 ∈ Bπ(n), n1 ∈ Ns and b2 ∈ B.

Fact 17.4.11 (ı) The definition of ps does not depend on the choice of the writing p = b1n1b2.

(ıı) We have the equality ps(b, n, p) = ps(b
′, n′, p′) if and only if there exists some t ∈ T and

b′′ ∈ Bπ(n) such that n′ = tn, p′ = b′′p and b′ = bγn((b
′′)−1)t−1.

Proof : (ı) We easily see from the proof of (ı) in the previous fact that if p = b1n1b2 = b′1n
′
1b
′
2, then

π(n1) = π(n′1) ∈ {1, s}. In particular, there exists t ∈ T such that n′1 = tn1. Now consider the element
c ∈ Ps defined by:

c = b2(b
′
2)
−1 = n−11 b−11 b′1tn1.

We have c ∈ B ∩ n−11 Bπ(n)n1 and by the Fact 17.4.8 (ıı), we have c ∈ Bπ(nn1).

We want to compare (bγn(b1), nn1, b2) and (bγn(b
′
1), nn

′
1, b
′
2). Define b′′ = b′2b

−1
2 = c−1 ∈ Bπ(nn1),

we have nn′1 = ntn1 = γn(t)nn1 and b′2 = b′′b2. To prove the result it suffices to prove the equality:
bγn(b

′
1) = bγn(b1)γnn1(c)γn(t)

−1. But we compute

bγn(b
′
1) = bγn(b1n1b2(b

′
2)
−1(tn1)

−1) = bγn(b1n1cn
−1
1 t−1).
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Moreover, b1, n1cn
−1
1 and t lie in Bπ(n) (recall that c ∈ Bπ(nn1)). In particular because γn is a group

morphism we get

bγn(b
′
1) = bγn(b1)γn(n1cn

−1
1 )γn(t

−1) = bγn(b1)γnn1(c)γn(t)
−1

and the result follows.
(ıı) We know by definition of ∼ that there exists u ∈ T and c ∈ Bπ(nn1) such that n′n′1 = unn1,

b′2 = cb2 and b′γn′(b′1) = bγn(b1)γnn1(c
−1)u−1. In particular, we have π(nn1) = π(n′n′1) in W . But n1

and n′1 are in Ws = {1, s} and n and n′ are in W s. In particular ℓ(π(nn1)) = ℓ(π(n)) + ℓ(π(n1)) =
ℓ(π(n′))+ℓ(π(n′1)) = ℓ(π(n′n′1)). This implies that π(n) = π(n′) and π(n1) = π(n′1). Indeed, otherwise
we may assume that π(n1) = s and π(n′1) = 1. Then π(n)s = π(n′) and ℓ(π(n′)) + 1 = ℓ(π(n′)s) =
ℓ(π(n)) = ℓ(π(n)s) − 1 = ℓ(π(n′)) − 1 a contradiction. We thus have an element t ∈ T such that
n′ = tn.

Let us compute b−1b′ = γn(b1)γnn1(c
−1)u−1γn′((b′1)

−1). We have γn(b1) ∈ Bπ(n)−1 , γnn1(c
−1) ∈

B(π(n)π(n1))−1 ⊂ Bπ(n)−1 , u−1γn′((b′1)
−1) ∈ Bπ(n)−1 thus b−1b′ ∈ Bπ(n)−1 . We get

tγn(b
′
1)t
−1 = γtn(b

′
1) = γn′(b′1) = (b′)−1bγn(b1)γnn1(c

−1)u−1

and applying γn−1 which is possible because all the terms are in Bπ(n)−1 we get

b′1 = γn−1(t−1(b′)−1b)b1n1c
−1n−11 γn−1(u−1t).

Remark that n′n′1 = unn1 and n′ = tn give the formula n1 = n−1u−1tnn′1 = γn−1(u−1t)n′1 thus we
have

p′ = b′1n
′
1b
′
2 = γn−1(t−1(b′)−1b)b1n1c

−1n−11 γn−1(u−1t)n′1cb2 = γn−1(t−1(b′)−1b)p.

But we have t−1(b′)−1b ∈ Bπ(n)−1 thus we way define b′′ = γn−1(t−1(b′)−1b) ∈ Bπ(n) and p
′ = b′′p. We

need to verify that b′ = bγn((b
′′)−1)t−1 which follows from the definition of b′′. �

Remark that the map ps is surjective (any element in N can be written as nn1 with n ∈ N s and
n1 ∈ Ns). The group B (resp. Ps) acts on B ×Ns × Ps on the left (resp. right) by left (resp. right)
multiplication. So we may want to define an action of b ∈ B (resp. p ∈ Ps) on an element x ∈ X by
ps(by) (resp. ps(yp) for y ∈ B × N s × Ps such that ps(y) = x. The previous lemma shows that this
does not depend on the choice of y:

Corollary 17.4.12 (ı) The action of B and Ps descend via ps to an action of B and Ps on X.
(ıı) The left action of B coincide with the previously defined left action of B on X and the restriction

of the action of Ps coincide with the previously defined right action of B on X.

We may now define an inverse on X. For x = θ(b1, n, b2), define

x−1 = θ(b−12 , n−1, b−11 ).

Fact 17.4.13 The inverse is well defined on X.

Proof : Write (b1, n, b2) ∼ (b′1, n
′, b′2), there exist t ∈ T and b ∈ Bπ(n) such that n′ = tn, b′2 = bb2

and b′1 = b1γn(b
−1)t−1. We then have (n′)−1 = n−1t−1 = un−1 with u = n−1t−1n ∈ T . We also have

(b′1)
−1 = tγn(b)b

−1
1 = cb−11 with c = tγn(b). But b ∈ Bπ(n) thus γn(b) ∈ Bπ(n)−1 = Bπ((n′)−1) so we

have c ∈ Bπ((n′)−1). Finally we compute

b−12 γn−1(c−1)u−1 = (b′2)
−1bγn−1(γn(b

−1)t−1)u−1

= (b′2)
−1bb−1n−1t−1nu−1

= (b′2)
−1.



17.4. RECONSTRUCTION OF G BY AMALGAMATED PRODUCTS 157

�

We may now define a left action of Ps on X by setting

p · x = (x−1 · p)−1.

By the Fact 17.4.11 this action restricts to the left action of B on X.

Lemma 17.4.14 Let s and t in S, the left action of Ps on X commutes with the right action of Pt.

Proof : We start by commuting the action with B.

Fact 17.4.15 The left (resp. right) action of Ps (resp. Pt) commutes with the right (resp. left) action
of B on X.

Proof : We prove this for B and Pt the other case follows by application of the inverse. Let
θ(b1, n, b2) ∈ X, let b ∈ B and let p ∈ Pt. We have

(b · θ(b1, n, b2)) · p = θ(bb1, n, b2) · p = pt(bb1, n, b2p) = b · (pt(b1, n, b2p) = b · (θ(b1, n, b2) · p).

The result follows. �

Let X ′ = {x ∈ X / (px)p′ = p(xp′), for all p ∈ Ps and all p′ ∈ Pt}. We want to prove that
X ′ = X. Let us define the subsets of the Weyl group: W ′ = {w ∈ W / ℓ(swt) = ℓ(w) + 2} and
W ′′ = {w ∈ W / w−1sw = t and ℓ(sw) > ℓ(w)}. We choose any set of representatives N ′ (resp. N ′′)
of W ′ (resp. N ′′).

Fact 17.4.16 We have the equality N = Ns · (N ′ ∪N ′′) ·Nt.

Proof : Let n ∈ N set w = π(n). We may assume ℓ(sw) > ℓ(w). Indeed, if ℓ(sw) < ℓ(w), we may
multiply n by m with π(m) = s to get n′ ∈ N with ℓ(π(n′)s) > ℓ(π(n′)). For the same reason, we may
assume that ℓ(wt) > ℓ(w). If ℓ(swt) > ℓ(sw) = ℓ(wt) then w ∈ W ′ and multiplying by an element in
T yields an element in N ′.

If ℓ(swt) < ℓ(sw) i.e. ℓ(swt) = ℓ(w), we want to prove that w ∈ W ′′. Take a reduced expression
w = s1 · · · sn. Then wt = s1 · snt is a reduced expression. Write sn+1 = t. Because ℓ(swt) < ℓ(wt)
the exchange condition gives an index i ∈ [1, n+1] such that swt = s1 · · · ŝi · · · sn+1. If i < n+1, this
gives sw = s1 · · · ŝi · · · sn thus ℓ(sw) < ℓ(w) a contradiction. Thus swt = w and w ∈W ′′. �

The variety X ′ is stable under the left action of Ps and the right action of Pt. Assume that
θ(1, n, 1) ∈ X ′ for any n ∈ N ′∪N ′′. Then by these action and the previous fact; we have θ(1, n, 1) ∈ X ′

for all n ∈ N . Letting B act on the left and on the right we get the desired result. We are left to
prove that θ(1, n, 1) ∈ X ′ for any n ∈ N ′ ∪N ′′. We shall denote θ(1, n, 1) by µ(n).

Fix n ∈ N ′ ∪N ′′, let w = π(n) and let Qn = {p ∈ Ps / (pµ(n))p′ = p(µ(n)p′) for all p′ ∈ Pt}. By
Fact 17.4.15, the set Qn is stable under the left action of B.

Fact 17.4.17 The set Qn is stable under the right action of Bw−1.

Proof : Let b ∈ Bw−1 , p ∈ Q and let p′ ∈ Pt. We have:

(pb · µ(n)) · p′ = (p · θ(b, n, 1)) · p′ = (p · θ(1, n, γn−1(b−1)) · p′ = (p · (µ(n) · γn−1(b−1))) · p′
= ((p · µ(n)) · γn−1(b−1)) · p′ = (p · µ(n)) · γn−1(b−1)p′ = p · (µ(n) · γn−1(b−1)p′)
= p · (θ(b, n, 1) · p′) = p · ((b · µ(n)) · p′) = p · (b · (µ(n)) · p′))
= (pb) · (µ(n) · p′).
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The result follows. �

Chose m ∈ π−1(s) and m′ ∈ π−1(t). We have ℓ(sw) > ℓ(w) thus by (P4) and (P7) we have:

Ps = B ∪BmB = B ∪ (BmBsBw−1) = B ∪ (B · (mB ∩Bm) · Bw−1) = B ∪BmBw−1.

In particular, we only need to prove that m ∈ Qn.

Let Y ⊂ B such that Y Bt = B. We have for such a Y the equality

((Y m′) ∪ {1}) ·B = Pt.

Indeed, we only need to prove that BtB = Y m′B. Take b and b′ in B. There exists y ∈ Y and
b1 ∈ Bt = Bt−1 = m′B(m′)−1 ∩ B such that b = yb1. Write b1 = m′b2(m

′)−1 with m′ ∈ B and take
b′′ ∈ B such that b′′ = b2b

′. We have ym′b′′ = ym′b2b
′ = yb1m

′b′ = bm′b′.

In particular, we only need to prove that for all y ∈ Y , we have

(m · µ(n)) · (ym′) = m · (µ(n) · ym′).

Suppose that n ∈ N ′. Set n1 = mn, then by (P7), we may choose Y ⊂ Bsw. By Fact 17.4.8 (ııı)
we have Y ⊂ Bsw ⊂ Bw. Now compute on the one hand:

(m · µ(n)) · (ym′) = µ(n1) · (ym′) = γn1(y
−1) · µ(n1m′).

On the other hand

m · (µ(n) · ym′) = m · (γn(y−1) · µ(nm′)) = γn1(y
−1)m · µ(nm′) = γn1(y

−1) · µ(n1m′).

The result follows in that case.

Suppose now that n ∈ N ′′ and assume that m′ satisfies the equation m′ = n−1m−1n. If y ∈ Y ∩Bt,
then because BttB = tB we may replace (restricting Y ) y by 1 and the result follows. Assume that
y ∈ B \Bt. By (P8), we can choose Y such that Y ⊂ Bπ(n) and for all y ∈ Y there exist elements y′

and y′′ in Bπ(n) such that

(m′)−1ym′ = y′m′y′′ in Pt

mγn(y)m
−1 = γn(y

′)m−1γn(y
′′) in Ps.

We then get the equalities

(m · µ(n)) · (ym′) = µ(mn) · (m′y′my′′) = µ(n) · (y′m′y′′) = γn(y
′) · µ(nm′) · y′′

m(µ(n)ym′) = (mγn(y)) · µ(nm′) = (γn(y
′)m−1γn(y

′′)m) · µ(nm′) = γn(y
′) · µ(nm′) · y′′

and the result follows. �

Let us now compute the intersection of the kernel of the maps Ps → Aut(X) defined by left and
right action. For p in this kernel, we have p · θ(1, 1, 1) = θ(1, 1, 1) and (1, 1, 1) ∼ (1, 1, p) thus p = 1.
Let Gl (resp. Gr) the subgroups of Aut(X) generated by the groups (Ps)s∈S acting on the left (resp.
on the right).

Fact 17.4.18 The groups Gl and Gr act transitively on X.
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Proof : It follows from the definition of the action and an easy induction on ℓ(π(n)) that any element
θ(b1, n, b2) ∈ X is in the orbit of θ(1, 1, 1). �

We may now define a map tl : Gl → X by tl(g) = g · θ(1, 1, 1). This map is surjective by the
previous fact. Let g in the kernel i.e. g · θ(1, 1, 1) = θ(1, 1, 1). By Lemma 17.4.14, we have for all
g′ ∈ Gr the equalities

θ(1, 1, 1) · g′ = (g · θ(1, 1, 1)) · g′) = g · (θ(1, 1, 1) · g′)

and because Gr acts transitively g = 1. We can thus define a group structure on X such that tr is an
group isomorphism.

Let us define µ : N → X by µ(n) = θ(1, n, 1).

Fact 17.4.19 The map µ is an injective group morphism.

Proof : Take n and n′ such that µ(n) = µ(n′). We have (1, n, 1) ∼ (1, n′, 1) thus there exist t ∈ T
and b ∈ Bπ(n) such that n′ = tn, 1 = b · 1 and 1 = 1 · γn(b−1)t−1. This implies t = b = 1 and n′ = n.

To prove that µ is a group morphism, it suffices to prove that µ(n1n) = µ(n1)µ(n) for n ∈ N and
n1 ∈ Ns. But µ(n1)µ(n) = n1 · µ(n) = n1 · θ(1, n, 1) = (θ(1, n−1, 1) · n−11 )−1 = θ(1, n−1n−11 , 1)−1 thus
µ(n1)µ(n) = θ(1, n1n, 1) = µ(n1n). �

Let G be the amalgamated product of the system {B,N,Ps; s ∈ S}. Let Y = N ∪ ∪sPs. We
have a natural map ϕ : Y → G such that ϕ|N and ϕ|Ps are group homomorphisms (by the definition
of the amalgamated product). But we also have natural group homomorphisms µ : N → X and
tl|Ps : Ps → X. By the universal property of the amalgamated product, we get a map ψ : G → X
such that ψ ◦ ϕ|N = µ and ψ ◦ ϕ|Ps = tl|Ps .

Fact 17.4.20 (ı) The map ψ ◦ ϕ : Y → X is injective. In particular ϕ is injective.
(ıı) The map ψ is surjective.

Proof : (ı) This is true for the restriction of this map on N and any Ps. We thus need to prove that
ψ ◦ϕ(p) = ψ ◦ϕ(p′) for p ∈ Ps and p

′ ∈ Ps′ implies p = p′ and that ψ ◦ϕ(p) = ψ ◦ϕ(n) for p ∈ Ps and
n ∈ N implies p = n.

In the first case, this gives p · 1 = p′ · 1 and we proved that tl is injective so p = p′. In the second
case, we get p · 1 = θ(1, n, 1). Writing p = bn′b′ with b, b′ ∈ B and n′ ∈ Ns we have p · 1 = θ(b, n′, b′) =
θ(1, n, 1). This implies that n′ = tn for some t ∈ T , b′ = b′′ for some b′′ ∈ Bπ(n) and b = γn((b

′′)−1)t−1.
We thus have

p = γn((b
′′)−1)t−1tnb′′ = n(b′′)−1n−1nb′′ = n

and the result follows.
(ıı) This comes from the fact that X is generated by the images of B and N . �

Fact 17.4.21 The quadruple (G,B,N, S) is a Tits sytem.

Proof : The axiom (T1) follows from the definition of G (generated by B and N) and the condition
(P2). The axiom (T2) follows from (P5). For the axiom (T4): assume sBs = B for some s ∈ S. Then
let p ∈ Ps, we have the alternative p ∈ B or p ∈ BsB i.e. p = bsb′ for b and b′ in B. Compute pBp−1,
in the first case, this is B. In the second one, we get

pBp−1 = bsb′B(b′)−1sb−1 = bsBsb−1 = bBb−1 = B.

In particular we would have B normal in Ps a contradiction with (P9).
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Finally let us prove (T3). By Lemma 17.4.4 we have to prove (T5) and (T6) and by Lemma 17.4.5
we have to prove (T5) and (T7). Remark that (T7) (or at least the same property after taking the
inverse) is (P7). We are left to proving (T5). Compute C(s) ·C(s) = BsBsB. Because of (P4), we have
C(s) ⊂ Ps and C(s) · C(s) ⊂ Ps = B ∪ C(s). Furthermore, we have B ⊂ C(s) · C(s). We only have
to prove that B 6= C(s) · C(s). Otherwise this would give B = BsBsB or B = sBs in contradiction
with (T4). �

To complete the proof, we prove that ψ : G → X is injective and hence an isomorphism. The
same proof will work for any group G′ satisfying the conditions in Theorem 17.4.7. We consider an
element g ∈ G in the kernel of ψ. Because G is a Tits system and by Bruhat decomposition, there
exist elements b and b′ in B and n ∈ N such that bnb′ = g. Its conjugate b′(bnb′)(b′)−1 is again in the
kernel thus b′bn ∈ kerψ and ψ(b′b) = ψ(n−1). But both b′b and n are in Y and ϕ ◦ ψ is injective thus
b′b = n−1. We get p = bnb′ = bb−1(b′)−1b′ = 1 and the result follows. �



Chapter 18

Pro-groups

18.1 Algebraic groups

Let us first recall some results on algebraic groups that we shall need in the sequel.

18.1.1 Characteristic free results

Proposition 18.1.1 Let G be an algebraic group and let H be a closed subgroup of G, then the
quotient G/H has a natural structure of an algebraic variety such that the quotient map is a morphism
of varieties.

If furthermore H is normal in G, then the algebraic structure on G/H is compatible with the group
structure i.e. G/H is an algebraic group.

Proposition 18.1.2 Let ϕ : G→ G′ a morphism of algebraic groups, then the image of ϕ is a closed
subgroup of G′.

18.1.2 Characteristic zero results

Proposition 18.1.3 Assume the characteristic is zero. Let ϕ : G → G′ a bijective morphism of
algebraic groups, then ϕ is an isomorphism¿

Proposition 18.1.4 Assume the characteristic is zero. Let g be a finite dimensional nilpotent Lie
algebra, then the Campbell-Hausdorff formula:

log(expX expY ) =
∑

n>0

(−1)n−1

n

∑

ri+si>0
1≤i≤n

(
∑n

i=1(ri + si))
−1

r1!s1! · · · rn!sn!
[Xr1Y s1Xr2Y s2 . . . XrnY sn ],

which uses the notation

[Xr1Y s1 . . . XrnY sn ] = [X, [X, . . . [X︸ ︷︷ ︸
r1

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn

, [Y, [Y, . . . Y︸ ︷︷ ︸
sn

]] . . .]],

defines a group structure on g making it into a unipotent algebraic group (denoted G).

We have Lie(G) = g and the exponential map exp : g → G is the identity.

Furthermore, for any Lie algebra morphism f : g → g′, the same map f : G → G′ is an algebraic
group morphism and its derivative ḟ is f .

161
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18.2 Definition and first properties of pro-groups

Apart from the book of Kumar, a good reference for pro-groups (in the commutative setting but many
properties generalise readily) is the paper of Serre [Se60].

Definition 18.2.1 A structure of pro-group on a group G is the datum of a family F of normal
subgroups of G such that

• the quotient G/N for N ∈ F has a structure of algebraic group,

• for N and N ′ in F, then N ∩N ′ is in F,

• for N in F and N ′ with N ⊂ N ′, then (N ′ ∈ F) ⇔ (N ′/N is a closed normal subgroup in G/N),

• for N ⊂ N ′ two elements in F, the quotient map G/N → G/N ′ is a morphism of algebraic
groups,

• the group morphism G→ lim
←
G/N is bijective where the set F is given the reverse order of the

inclusion.

The set F is called the defining set of the pro-group.

Example 18.2.2 (ı) An algebraic group is a pro-group for the defining set of all its closed normal
subgroups.

(ıı) An infinite product of algebraic groups (Gi)i∈N:

G =

∞∏

i=0

Gi

is a pro-group with defining set given by all the normal subgroups N of G such that there exists an
index i ∈ N with Gj ⊂ N for j ≥ i and such that N seen as a subgroup of

∏
j≤iGj is closed.

(ııı) More generally an inverse limit (in the category of groups) of algebraic groups is a pro-group.

Definition 18.2.3 (ı) Let G and G′ be two pro-groups with defining sets F and F′, then a group
morphism ϕ : G → G′ is a pro-group morphism if for all N ′ ∈ F′ we have ϕ−1(N ′) ∈ F and the
induced map G/ϕ−1(N ′) → G′/N ′ is a morphism of algebraic groups.

(ıı) Define the pro-topology as the inverse limit topology where G/N for N ∈ F is endowed with
the Zariski topology (recall that the inverse limit topology is the induced topology for the inclusion
of lim
←
Gi in the product of the groups Gi for the product topology).

(ııı) A subset of G is called a pro-subset if it is closed under the pro-topology.
(ıv) A pro-subgroup is a subgroup of G closed under the pro-topology.
(v) We denote by γN the projection G→ G/N .

Proposition 18.2.4 (ı) The composition of two morphisms of pro-groups is again a morphism of
pro-groups.

(ıı) The pro-topology is the smallest topology such that each map G → G/N is continuous. The
inverse images of open subsets by these maps form a base for the pro-topology.

(ııı) For A ⊂ G, the closure Ā of A is given by

Ā =
⋂

N∈F

γ−1N (γN (A)).

(ııı) We have
⋂

N∈F

N = {1}.
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Proof : (ı) This comes directly from the definition and the fact that the composition of two morphisms
between algebraic groups is again a morphism of algebraic groups.

(ıı) The smallest topology such that each map γN : G → G/N is continuous as a base of open
subsets given by the inverse image by γN of the open subsets in G/N .

Let us also remark that γN is given by the composition map

G→ lim
←
G/N →

∏

N

G/N → G/N.

The inverse image of an open subset O ⊂ G/N in
∏
N G/N is open for the product topology and

hence its restriction to G is an open subset for the pro-topology.

Conversely, a base for the pro-topology is given by the restriction of a product
∏
N ON of open

subspaces ON in G/N with ON = G/N for all except a finite number of N ∈ F. This open subset is
open for the smallest topology making the maps γN continuous.

The inclusion Ā = ∩γ−1N (γN (A)) is clear. Conversely, let x in the intersection. Assume there exists
a closed subset (for the pro-topology) F containing A but not x. Then x ∈ U = F c and U is open and
does not meet A. There must therefore exists an open subset of the form γ−1N (UN ) for some N (where
UN is open in G/N) such that UN ∩ A = ∅ and x ∈ γ−1N (UN ). In particular we get that γN (x) ∈ UN
but γN (A) ⊂ U cN . This is not possible since γN (x) ∈ γN (A).

(ııı) This condition is equivalent to the fact that the map from G to the inverse limit of the groups
G/N is injective. �

We shall need the following general result on morphisms of inverse limits of groups:

Lemma 18.2.5 A pro-group G is connected if and only if all the quotients G/N for N ∈ F are
connected.

Proof : For this, take G′ the connected component of the identity. It is a pro-subgroup of G and
is open and closed in G. Then by definition of the pro-topology, we have that γN (G

′) = G′N/N is
open in G/N and because G′ is closed we have that G′N/N is closed in G/N . This last group being
connected, G′N/N = G/N for all N and the result follows. �

Corollary 18.2.6 A pro-unipotent group is connected.

Proof : Because algebraic unipotent groups are connected, we need to prove that if for all N ∈ F we
have G/N connected, then G is connected. This follows from the previous Lemma.

For this, take G′ the connected component of the identity. It is a pro-subgroup of G and is open
and closed in G. Then by definition of the pro-topology, we have that γN (G

′) = G′N/N is open in
G/N and because G′ is closed we have that G′N/N is closed in G/N . This last group being connected,
G′N/N = G/N for all N and the result follows. �

Lemma 18.2.7 Let (Xi, fi,j) be a projective system such that for Xi is, for any i, a principal homo-
geneous spaces under an algebraic group Gi and such that the maps fi,j are morphisms of principal
homogeneous spaces. Let X = lim

←
Xi and fi : X → Xi the canonical map. Then

(ı) X is non empty.

(ıı) We have fi(X) =
⋂

j≥i

fi,j(Xj).
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Proof : (ı) Consider the set S of the families (Yi) where Yi is an orbit in Xi under a closed subgroup
of Gi and such that fi,j(Yj) ⊂ Yi. Let us prove that S with reverse inclusion as ordering is inductive.
Indeed for any increasing sequence (Yi,n) in S we get a decreasing sequence of subspaces in Xi and
because this space is noetherian (principal homogeneous space under an algebraic group) we have a
minimal element Yi for the sequence Yi,n with i fixed. We have (Yi) ∈ S. Indeed, Yi is an orbit
under a closed subgroup of Gi because Yi = Yi,n for n ≥ ni for some ni. Furthermore, for j ≥ i, take
n ≥ max(ni, nj), then Yj = Yj,n and Yi = Yi,n and fj(Yj) ⊂ Yi because the same hold for Yj,n and Yj,n.

By Zorn’s lemma, we may choose a maximal element (Yi) in S. Define the family (Y ′i ) by

Y ′i =
⋂

j≥i

fi,j(Yj).

Then Y ′i is the orbit of a close subgroup of Gi and fi,j(Y
′
j ) ⊂ Y ′i thus (Y ′i ) ∈ S and (Y ′i ) ≥ (Yi), by

maximality, we have Y ′i = Yi i.e. Yi =
⋂

j≥i

fi,j(Yj).

Take xi ∈ Yi (this is possible because Yi is an orbit) and consider the family (Y ′′i ) ∈ S defined by
Y ′′i = f−1i,j (xi). By maximality Yi = Y ′′i and all the Yi are reduced to one point xi. The system ({xi})
is an element in X.

(ıı) For the second assertion, remark that the inclusion of the left hand side in the right and side

comes from the fact that fi factors through fi,j ◦ fj. Take xi ∈
⋂

j≥i

fi,j(Xj) and replace Xj by f
−1
i,j (xi).

Apply the first property to this inverse system and the result follows. �

Corollary 18.2.8 Let (ϕi) : (Gi, fi,j) → (G′i, f
′
i,j) be a morphism of inverse systems of groups such

that for all i the map ϕi : Gi → G′i is surjective. Then the induced map ϕ : lim←Gi → lim←G
′
i is

surjective.

Proof : Let (g′i) be an element in lim
←
G′i and consider the family (ϕ−1i (g′i)). It is an inverse system of

principal homogeneous spaces under the groups (Gi). By the previous lemma, its inverse limit is non
empty and the result follows. �

18.3 Pro-subgroups

Proposition 18.3.1 Let H be a pro-subgroup of G, then the family

FH =

{
normal subgroups N ′ of H such that N ′ ⊃ H ∩N for some N ∈ F and

N ′/(N ∩H)is a closed subgroup in G/N

}

defines a structure of pro-group on H. The inclusion is a morphism of pro-groups and the pro-topology
on H coincide with the induced topology from the pro-topology on G.

Proof : We shall first need the following useful lemma:

Lemma 18.3.2 Let H be a pro-subgroup of a pro-group G, then for any N ∈ F, the set γN (H) is
closed in G/N . In particular we have the equality:

H =
⋂

N∈F

γ−1N (γN (H)).
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Proof : We already know that the equality H = ∩Nγ−1N (γN (H)) holds. For N ′ ⊂ N denote by γN,N ′

the map G/N → G/N ′. Because the image of a closed subgroup under an algebraic group morphism
is again a closed subgroup, we get that γN,N ′(γN ′(H)) = γN (H).

Define H ′ as the inverse limit of the system (γN (H)). Then H ′ is contained in G and we have by
Corollary 18.2.8 that γN : H ′ → γN (H) is surjective i.e. γN (H

′) = γN (H).
We clearly have H ⊂ H ′. Conversely, take h′ ∈ H ′, then γN (h

′) ∈ γN (H) and thus h′ ∈
γ−1N (γN (H)) and is in H. We thus have H = H ′ and γN (H) = γN (H

′) = γN (H). �

In particular, for any N ∈ F, we have H/(H ∩ N) closed in G/N . It has a natural algebraic
structure. Furthermore, for any N ′ ∈ F such that N ′ ∩H = N ∩H, the algebraic structures inherited
from G/N and G/N ′ coincide: consider the morphisms G/N ∩ N ′ → G/N and G/N ∩ N ′ → G/N ′.
This induces bijective morphisms H/H ∩N ∩N ′ → H/H ∩N and H/H ∩N ∩N ′ → H/H ∩N ′. But
these must be isomorphisms.

For any normal subgroup N ′ of H containing H ∩N and such that N ′/N ∩H is closed in G/N ,
the group H/N ′ is a quotient group of H/H ∩N and hence is an algebraic group.

Let us prove the axioms of a pro-group for the family FH . If N
′
1 and N ′2 are in FH , let N1 and N2

the elements in F such that Ni ∩H ⊂ N ′i and N
′
i/Ni ∩H is closed in G/Ni. Then we may consider

the inverse image of N ′i/Ni ∩H in G/N1 ∩ N2¿ These are closed subgroups and their intersection is
N ′1 ∩N ′2/N1 ∩N2 ∩H which is still closed.

Let N ′1 ∈ FH and N ′2 a normal subgroup of H containing N ′1 and such that N ′2/N
′
1 is a closed

subgroup in H/N ′1. There exists N ∈ F such that N ′1 ⊃ N ∩H and this implies N ′2 ⊃ N ∩H. Now
the image N ′2/H ∩ N of the closed subgroup N ′2/N

′
1 ⊂ H/N ′1 in H/H ∩ N is closed (as image of a

closed algebraic group). Furthermore, by the previous lemma H/H ∩ N = γn(H) is closed in G/N
thus N ′2/H ∩N is closed in G/N .

With the same notation but N ′1 and N ′2 both in FH , then we have a commutative diagram

H/H ∩N p
//

q

%%❑
❑❑

❑❑
❑❑

❑❑
❑

H/N ′1

r

��

H/N ′2

where the maps p and q are morphisms of algebraic groups, this implies that it is the case of r.
Let us now denote by H ′ the inverse limit of H/N ′ for N ′ ∈ FH . We define a map i : H ′ → G

by sending (hN ′N ′)N ′∈FH
to (gNN)N∈F where gN = hH∩N . The map i is clearly injective: if (hN ′N ′)

and h′N ′N ′) have the same image then hH∩NN = h′H∩NN for all N ∈ F. But now for N ′ ∈ FH , take
N ∈ F such that N ∩ H ⊂ N ′ and N ′/N ∩ H is closed in G/N . Then hN ′N ′ and h′N ′N ′ are the
image under the map H/H ∩N → H/N ′ of hN∩HN and h′N∩HN respectively. As these two elements
coincide, the result follows.

We easily have H ⊂ i(H ′). Furthermore, by the previous lemma, we have

H =
⋂

N∈F

γ−1N (γN (H)) =
⋂

N∈F

HN/N

which contains the image of i.
The pro-topology coincide with the subspace topology by the characterisation of continuous maps

f : Y → G (all the composed maps γN ◦ f are continuous). �

Let us now characterise the normal pro-subgroups.

Lemma 18.3.3 Let H be a pro-subgroup of a pro-group G. Then H is normal in G if and only if
γN (H) is normal in G/N for all N ∈ F.
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Proof : Assume that H is normal. Then for any gN ∈ G/N , and because N is normal we have
gN · (HN) · (gN)−1 = NgHg−1N = NHN = HN . This implies that HN/N = H/H ∩N is normal.

Conversely, assume that H/H ∩ N is normal for all N ∈ F. Then because H = ∩(HN) (see.
the proof of the previous proposition), we get for g = (gNN) the equality gHg−1 = g(∩HN)g−1 =
∩(gHNg−1) = H. �

Proposition 18.3.4 (ı) Let H be a normal pro-subgroup of a pro-group G, then G/H is a pro-group
with the defining set F′ = {N/H / N ∈ F and N ⊃ H}.

(ıı) The quotient map is a pro-group morphism.

Proof : For H ⊂ N ∈ F, we have a bijection (G/H)/(N/H) ≃ G/N giving a structure of algebraic
group to the group (G/H)/(N/H). The first three axioms of a pro-algebraic group are easily satisfied.
Let us prove the last one. Let us denote by K the inverse limit of the system (G/H)/(N/H) for
N ∈ F′.

There is a canonical map ϕ : G/H → K. Let gH in the kernel of this map, then

gH ⊂
⋂

H⊂N∈F

N.

But for any N ∈ F, the group HN is normal contains N and by Lemma 18.3.2 its image HN/N in
G/N is closed. This implies that HN ∈ F. In particular we have the inclusion

⋂

H⊂N∈F

N ⊂
⋂

N∈F

HN.

But, as we already saw, Lemma 18.3.2 implies the equality

H =
⋂

N∈F

HN

and we get that gH ⊂ H thus gH = H and ϕ is injective.
To prove the surjectivity, consider the canonical map from G to L the inverse limit of the system

G/HN for N ∈ F induced by the maps G/N → G/HN . Because all these maps are surjective, this
map is surjective. To conclude, we only need to prove that K and L are in bijection. But take N ∈ F,
such that N contains H. We have N = HN . Conversely we proved that for any N ∈ F, we have
HN ∈ F and thus H ⊂ HN ∈ F. We thus have {N ∈ F / H ⊂ N} = {HN / N ∈ F}. The two
inverse systems are equal because we take the limit over isomorphic indexing sets of isomorphic groups
(G/H)/(N/H) ≃ G/N .

The fact that this map is a pro-group morphism is clear. �

Corollary 18.3.5 Let H be a normal pro-subgroup of a pro-group G, then H ∈ F if and only if the
pro-group G/H is an algebraic group.

Proof : If H ∈ F this is by definition. Conversely, assume that G/H is an algebraic group. Then the
trivial group is in F′ the defining set of G/H. Indeed, for the fourth property of pro-groups to be true
we need that ⋂

N ′∈F′

N ′ = {1}

but the group G/H being algebraic, we only need a finite intersection and thus {1} ∈ F′. Because
G→ G/H is a pro-group morphism we have H ∈ F. �
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Proposition 18.3.6 Let ϕ : G → G′ be a pro-group morphism. Then imϕ is a pro-subgroup of G′

and moreover we have the following isomorphism of pro-groups:

G/ kerϕ ≃ imϕ.

In particular, if ϕ is bijective, then it is a pro-group isomorphism (i.e. its inverse is a pro-group
morphism).

Proof : Let F resp. F′ the defining sets of G and G′.

Fact 18.3.7 For any N ′ ∈ F′, the subgroup γN ′(imϕ) of G′/N ′ is closed.

Proof : Because ϕ is a pro-group morphism, then ϕ−1(N ′) ∈ F. Consider the diagram

G
ϕ

//

γ
ϕ−1(N′)

��

G′

γN′

��

G/ϕ−1(N ′)
ϕN′

//❴❴❴ G′/N ′

which can be completed by a map ϕN
′
of algebraic groups. We have γN ′(imϕ) = imϕN ′ and this last

image is closed. �

Consider the subset F̂ of F × F′ defined by

F̂ = {(N,N ′) ∈ F × F′ / N ⊂ ϕ−1(N ′)}.

Define the order (N1, N
′
1) ≤ (N2, N

′
2) by N1 ≤ N2 and N ′1 ≤ N ′2. Define the following three inverse

systems of algebraic groups indexed by F̂: (G(N,N ′)), (G
′
(N,N ′)) and (H(N,N ′)) by G(N,N ′) = G/N ,

G′(N,N ′) = G′/N ′ and H(N,N ′) is the image of the canonical map ϕN,N ′ : G/N → G/N ′. Because the
maps ϕN,N ′ are surjective, we get a surjection

lim
←
G(N,N ′) → lim

←
H(N,N ′).

We also have a natural injection:

lim
←
H(N,N ′) → lim

←
G′(N,N ′).

The image of this last injection is closed under the inverse limit topology. Indeed, this image is given
by 

 ∏

(N,N ′)∈F̂

H(N,N ′)


 ∩ lim

←
G′(N,N ′).

But H(N,N ′) is closed in G′(N,N ′) (as the image of a algebraic group morphism) proving that the image
is closed.

We have the following isomorphisms of groups:

G = lim
←
G/N → lim

←
G(N,N ′) and G′ = lim

←
G′/N ′ → lim

←
G′(N,N ′)

which are homoemorphisms for the inverse limit topology. Putting all these maps together we get

G։ lim
←
H(N,N ′) →֒ G′.
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As imϕ coincide with the image of this composition, it is closed and thus a pro-subgroup.
For the second part, observe that kerϕ is a normal pro-subgroup. The induced map G/ kerϕ →

imϕ is an isomorphisms of group and a pro-group morphism.
We thus need to prove that a group isomorphism which is a pro-group morphism ϕ : G → G′ is

a pro-group isomorphism. Take N ∈ F, then from the first part of the proposition ϕ(N) is closed
and normal because ϕ is surjective. The induced map G/N → G′/ϕ(N) is a bijective morphism of
pro-groups and in fact of algebraic groups. Then it is an isomorphism. We deduce that ϕ−1 is a
morphism of pro-groups. �

18.4 Definition and first properties of pro-Lie-algebras

The theory of pro-Lie-algebras is very similar to the theory of pro-groups. It is a little bit more
simple because the finite dimensional situation is the one of a finite dimensional Lie algebra istead of
a algebraic group. We only deal with vector spaces in place of varietes.

Definition 18.4.1 Let g be a Lie algebra over a field k. A structure of pro-Lie-algebra on g is the
datum of a family F of ideals in g of finite codimension such that

• for a and a′ in F, then a ∩ a′ is in F,

• for a in F and a′ an ideal with a ⊂ a′, then (a′ ∈ F).

• the canonical Lie algebra morphism g → lim
←

g/a is an isomorphism where the set F is given the

reverse order of the inclusion.

The set F is called the defining set of the pro-Lie-algebra.

Example 18.4.2 (ı) A finite dimensional Lie algebra is a pro-Lie-algebra for F the set of all its ideals.
(ıı) An inverse limit (in the category of Lie algebras) of finite dimensional Lie algebras is a pro-

Lie-algebra.
(ııı) Let V be an infinite vector space with a filtration by a family of finite dimensional vectors

spaces Vi with V0 = {0} and Vi ⊂ Vi+1. Let EndV be the Lie algebra of all k linear maps from V to
itself and define the following sub-Lie-algebra of EndV :

u((Vi)) = {f ∈ EndV / f(Vi) ⊂ Vi−1 for all i}.

Define αi = {f ∈ u((Vi)) / f |Vi = 0}, then ai is an ideal in u of finite codimension. The Lie algebra
u((Vi)) is a pro-Lie-algebra for the defining set F = {a ideal in u((Vi)) / ∃i, ai ⊂ a}. This pro-Lie-
algebra u((Vi)) is pro-nilpotent (see Definition 18.6.1).

In the same spirit, let AutV the group of k-linear automorphisms of V . There exists a pro-group

U((Vi)) = {f ∈ AutV / (f − I)(Vi) ⊂ Vi−1 for all i}.

Define Ni = {f ∈ U((Vi)) / f |Vi = I}, then Ni is a normal subgroup of U((Vi)) such that the quotient
is algebraic. The group U((Vi)) is a pro-group for the defining set

F = {N normal subgroup in U((Vi)) / ∃i, Ni ⊂ N and N/Ni closed in AutVi}.

This pro-group is pro-unipotent (see Definition 18.6.1) and its Lie algebra (see Definition 18.5.3) is
u((Vi)).
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Definition 18.4.3 (ı) Let g and g′ be two pro-groups with defining sets F and F′, then a Lie algebra
morphism ϕ : g → g′ is a pro-Lie-algebra morphism if for all a′ ∈ F′ we have ϕ−1(a′) ∈ F.

(ıı) Define the pro-topology as the inverse limit topology where g/a for a ∈ F is endowed with the
discrete topology.

(ııı) A pro-Lie-subalgebra h of a pro-Lie-algebra g is a Lie subalgebra of g closed under the pro-
topology. It is a pro-ideal if h is an ideal in g.

(ıv) We denote by γa the projection g → g/a.

Proposition 18.4.4 (ı) The composition of two morphisms of pro-Lie-algebras is again a morphism
of pro-Lie-algebras.

(ıı) The pro-topology is the smallest topology such that each map g → g/a is continuous. The
inverse images of open subsets by these maps form a base for the pro-topology. As a consequence, for
A ⊂ g, the closure Ā of A is given by

Ā =
⋂

a∈F

A+ a.

(ııı) We have
⋂

a∈F

a = {0}.

(ıı) A morphism between pro-Lie-algebras is a pro-morphism if and only if it is continuous for the
pro-topology.

(v) A pro-Lie-subalgebra h in g is a pro-ideal if and only if for all α ∈ F, the Lie subalgebra h/h∩a

is an ideal in g/a.

Proof : For (ı), (ıı) and (ıı), the same proof as in the case of pro-groups works.

(ııı) This condition is equivalent to the fact that the map from G to the inverse limit of the groups
G/N is injective.

(ıı) A pro-Lie-algebra morphism is clearly continuous. Conversely, if the map f : g → g′ is
continuous, then the inverse image f−1(a′) of any element a′ ∈ F′ is closed in g. In particular we have

f−1(a′) =
⋂

a∈F

f−1(a′) + a.

But g/f−1(a′) is contained in g′/a′ and thus finite dimensional. In particular the previous intersection
is finite. But all its terms are in F thus the intersection is an element in F.

(v) If h is an ideal then h/h ∩ a is an ideal for all a ∈ F. Conversely, if h ∩ a is an ideal, let X ∈ g

and Y ∈ h. We compute for all a ∈ F the Lie bracket [γa(X), γa(Y )] is in γa(h) thus [X,Y ] is in
h+ a = γ−1a (γa(h)). By (ıı) the result follows. �

Proposition 18.4.5 (ı) A Lie subalgebra h of a pro-Lie-algebra g is a pro-Lie-subalgebra if and only
if the canonical map

h → lim
←

h/a′

is an isomorphism, where F′ = {a′ ideal of h with a′ ⊃ a ∩ h for some a ∈ F}. In this case it is a
pro-Lie-algebra for F′ and the pro-topology is the subspace topology.

(ıı) Let h be a pro-ideal in g then the Lie algebra g/h is a pro-Lie-algebra with defining set Fh =
{a/h, with a ∈ F such that h ⊂ a}. The map π : g → g/h is a pro-Lie-algebra morphism.

(ııı) Given a pro-Lie-algebra morphism f : g → g′, then the image imf is a pro-Lie-subalgebra of
g′ and we have an isomorphism of pro-Lie-algebras g/ ker f ≃ imf . In particular a bijective pro-Lie-
algebra morphism is a pro-Lie-algebra isomorphism.
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Proof : (ı) Define ĥ as the inverse limit of the system h/a′ for a′ ∈ F′. We have a natural map
ĥ → h/a′ ⊂ g/a for a ∈ F such that a ∩ h ⊂ a′ and this induces a map ĥ → g. This map is given by

(ha′ + a′) 7→ (ga + a)

where ga = ha∩h. This map is injective: if for all a we have ga ∈ a, then because ga = ha∩h we have
ha∩h ∈ a ∩ h. But ha′ + a′ = (ha∩h + a+ h) + a′ for a such that a ∩ h ⊂ a′ and the injectivity follows.

By definition of ĥ we have that the image of this map is

⋂

a

(h+ a).

In particular, by the previous proposition, ĥ = h if and only if h is closed in g.
(ıı) We only need to prove that g/h is the inverse limit of the system g/a for a ∈ Fh. There is a

natural map given by g 7→ (g + a). If g is in the kernel, then for all a ∈ Fh we have g ∈ a. However, h
being an ideal, h+ a is an ideal of g containing a thus h+ a ∈ Fh. In particular g ∈ h+ a for all a ∈ F.
By the previous proposition g ∈ h and the map is injective.

To prove the surjectivity, we only need to apply Lemma 18.2.7 to the situation (the group is a
vector space in this case).

(ııı) It suffices here to prove that the image of f is closed in g′. Here the same proof as in Proposition
18.3.6. �

18.5 Pro-Lie-algebra of a pro-group

Definition 18.5.1 Let G be a pro-group with defining set F. For any N ∈ F, let gN be the Lie
algebra of the algebraic group G/N . For N ⊂ N ′ two elements in F, the derivation of the map of
algebraic groups γN,N ′ : G/N → G/N ′ gives a map γ̇N,N ′ : gN → gN ′ . These maps form an inverse
system of Lie algebras and we set

g = lim
←

gN .

Let πN : g → gN be the natural projection. We also define Ḟ = {ideals a of g / a ⊃ ker πN for someN ∈
F}

Proposition 18.5.2 For G a pro-group, the Lie algebra g is a pro-Lie-algebra for the defining set Ḟ.

Proof : We only need to prove that g is the inverse limit of the system g/a with a ∈ Ḟ. We have a
natural map

g → lim
←

g/a ≃ lim
←

g/ ker πN .

Furthermore, by definition, g is the inverse limit of the system gN . We have a natural map πN : g → gN
and thus an injective map g/ ker πN → gN . This induces an injective map

lim
←

g/ ker πN → lim
←

gN .

But the composition
g = lim

←
gN → lim

←
g/ ker πN → lim

←
gN = g

is the identity and the surjectivity follows. �

Definition 18.5.3 We call g the pro-Lie-algebra of the pro-group G and denote it by Lie(G).
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Lemma 18.5.4 Let g be the Lie algebra of a pro-group G and let N ∈ F. Then the map πN : g → gN
is surjective.

Proof : Consider FN = {M ∈ F / M ≥ N} and define gMN = gN . For allM ∈ FN we have a surjective
map gM → gN (because the same is true on the groups) and by Corollary 18.2.8 we get a surjective
map g → gN . �

Proposition 18.5.5 (ı) Let f : G→ G′ be a pro-group morphism, then there exists a pro-Lie algebra
morphism ḟ : Lie(G) → Lie(G′).

(ıı) In characteristic 0, assume that G is connected and that for two maps f and g from G to G′

satisfy ḟ = ġ, then f = g.

Proof : (ı) Let F and F′ the defining sets of G and G′. Let N ′ ∈ F′ and N ∈ F such that f(N) ⊂ N ′.
We have a group morphism fN,N ′ : G/N → G′/N ′. This induces a Lie algebra morphism ḟN,N ′gN →
g′N ′ . We have in particular a morphism of inverse systems and thus a map ḟ : Lie(G) → Lie(G′) such
that π′N ′ ◦ ḟ = ḟN ′,N ◦ πN for all N ∈ F and N ′ ∈ F′. This morphism is clearly a pro-Lie-algebra
morphism.

(ıı) Let N such that f(N) ⊂ N ′ and g(N) ⊂ N ′ (for example take N = f−1(N ′) ∩ g−1(N ′)). We
have, as maps from gN to g′N ′ the equality ḟN,N ′ = ġN,N ′ . In particular, this implies from the classical
theory that fN,N ′ = gN,N ′ and the result follows. �

Proposition 18.5.6 (ı) Assume the characteristic is zero, then for G a pro-group and g its Lie
algebra, there exists a continuous map exp : g → G.

(ıı) Let N ∈ F for F the defining set of G, then exp is the unique map such that the following
diagram is commutative:

g
πN //

exp

��

gN

exp

��
G

γN // G/N.

(ııı) For any pro-group morphism f : G→ G′, we have a commutative diagram

g
ḟ

//

exp

��

g′

exp

��

G
f

// G′.

Proof : (ı) Let N ∈ F, we have a map expN : gN → G/N . Furthermore, this gives a map of inverse
systems exp : g → G. Because expN is continuous, this map is also continuous.

(ıı) By definition, the diagram is commutative and defines the exponential.
(ııı) For N ′ ∈ F′ and N ∈ F such that f(N) ⊂ N ′, we have a commutative diagram

gN
ḟ

//

expN
��

g′N ′

expN′

��

G/N
fN,N′

// G′/N ′

and the result follows. �



172 CHAPTER 18. PRO-GROUPS

18.6 Pro-unipotent groups and pro-nilpotent Lie algebras

Definition 18.6.1 (ı) A pro-group G is called pro-unipotent if for all N ∈ F, where F is the defining
set of G, the group G/N is an unipotent algebraic group.

(ıı) A pro-Lie-algebra g is called pro-nilpotent if for all a ∈ F, where F is the defining set of g,
the Lie algebra g/a is a nilpotent Lie algebra.

(ııı) Let us denote by ProUni (resp. ProNil) the category of pro-unipotent groups (resp. pro-
nilpotent Lie algebras), here the morphisms are the pro-group (resp. pro-Lie-algebra) morphisms.

Theorem 18.6.2 (ı) The category ProUni is equivalent to the category ProNil under the functor
taking G to Lie(G) and a pro-group morphism f to its derivative ḟ .

(ıı) The exponential map exp : Lie(G) → G is bijective for any object G in ProUni.

Proof : (ı) Let us define a functor from ProNil to ProUni as follows: let g be a pro-unipotent Lie
algebra with defining set F. For any a ∈ F, consider the nilpotent Lie algebra g/a. Let Ga be the
associated unipotent group structure on g/a given by Proposition 18.1.4. For any pair a ⊂ a′ of
elements in F, the map g/a → g/a′ induces a map Ga → Ga′ . In particular the family (Ga) is a
projective system of algebraic groups. Let us set

G = lim
←
Ga.

Let us denote by γa the natural map from G to Ga. Let us define the family of normal subgroups F′

in G:
F′ = {N / ∃a ∈ F and Na ⊂ Ga a closed normal subgroup with N = γ−1a (Na)}.

Fact 18.6.3 The group G is a pro-group for the defining set F′.

Proof : A direct application of Corollary 18.2.8 gives that the map γa is surjective for all a ∈ F. It is
then easy to check that G is a pro-group: the quotients are algebraic groups. For N = γ−1a (Na) and
N ′ = γ−1a′ (Na′) we have

N ∩N ′ = γ−1a∩a′(γ
−1
a,a∩a′(Na) ∩ γ−1a′,a∩a′(Na′)).

The last two conditions follow by definition. �

Because as sets we have Ga = g/a we get that G = g as sets.

Fact 18.6.4 The functors G 7→ Lie(G) and g 7→ G are inverse to each other.

Proof : We have
Lie(G) = lim

←
Lie(Ga) = lim

←
g/a = g.

For the converse, we need the following results on algebraic unipotent groups. For U and U ′ two
unipotent algebraic groups, the exponential map exp : Lie(U) → U is an isomorphism of varieties and
the natural map

Hom(U,U ′) → Hom(Lie(U),Lie(U ′))

sending f to ḟ is an isomorphism. We also have the following commuting diagramm:

Lie(U)

exp

��

ḟ
// Lie(U ′)

exp

��

U
f

// U ′.
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In particular, if G is a pro-unipotent group, then G/N is a unipotent group and Lie(G/N) is a
nilpotent Lie algebra. We have that G/N (via the exponential map) is the group structure defined on
Lie(G/N) thanks to the Campbell-Hausdorff formula. Furthermore the induced maps G/N → G/N ′

are the natural maps and the group constructed above is the group G.
Furthermore, because of Proposition 18.6.2, we have that for any Lie algebra morphism f : g → g′

the same map f : G→ G′ is a pro-group morphism. and ḟ = f . �

The result on the exponential follows easily. �

18.7 Pro-representations

Definition 18.7.1 (ı) Let G be a pro-group with defining set F. A representation V of G is called a
pro-representation if for all v ∈ V there exists a finite dimensional sub-representation W of V such
that

• v ∈W ;

• there exists N ∈ F such that N acts trivially on W ;

• the induced representation of G/N on W is algebraic.

(ıı) Let g be a pro-group with defining set F. A g-module V is called a pro-representation if for
all v ∈ V there exists a finite dimensional sub-representation W of V such that

• v ∈W ;

• there exists a ∈ F such that a acts trivially on W .

Definition 18.7.2 (ı) A morphism of representations f : V → V ′ between pro-representations of the
pro-group G is called a pro-representation morphism.

(ıı) A morphism of representations f : V → V ′ between pro-representations of the pro-Lie-algebra
g is called a pro-representation morphism.

Lemma 18.7.3 Let V be a pro-representation, then any finite dimensional sub-representation W of
V is a pro-representation.

Proof : Let v ∈W , becauseW ⊂ V , there exists U a finite dimensional G-stable subspace containing
v and such that there exists N ∈ F such that N acts trivially on U and G/N acts algebraically on U .
Let W ′ = U ∩W , it is a finite dimensional stable subspace acted trivially by N . Its centraliser N ′

contains N and is normal thus N ′ ∈ F. The action of the group G/N ′ is the quotient action of the
group G/N and is therefore algebraic. �

Proposition 18.7.4 Let G be a pro-group and g = Lie(G) its pro-Lie-algebra. Let V be a pro-
representation of G, then there exists a natural structure of pro-representation of g on V such that the
map ψ : g → End(V ) is given by ψ = ϕ̇ with ϕ : G → Aut(V ) defined by the pro-representation V of
G.

Proof : Let V be a pro-representation of G and let W be any finite dimensional sub-representation
of G. There exists N ∈ F such that N acts trivially on W and such that the action of G/N on W is
algebraic. We thus have an algebraic group morphism G/N → Aut(W ) and we may differentiate this
map to get a map gN → End(W ) where gN = Lie(G/N).
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Because of the definition of g = Lie(G) we have a map g → gN and thus a map g → End(W ).
We claim that this map does not depend on the choice of N . Indeed, let N ′ be another element in
F such that N ′ acts trivially on W . Then N ∩N ′ is in F and acts trivially on W . Furthermore, the
actions of G/N and G/N ′ on W are induced by the map G/(N ∩N ′) → Aut(W ) given by the action
of G/(N ∩N ′) on W . By differentiating the same is true for the Lie algebras.

Because V is generated by its finite dimensional sub-G-pro-representation, we deduce an action of
g on V and this map is given by the differentiation. �

Lemma 18.7.5 Assume that the base field is C. Let π and ρ be two pro-representations of a connected
pro-group G in V . Then we have the following equivalence:

π = ρ⇔ π̇ = ρ̇.

Proof : One implication is trivial. Assume that π̇ = ρ̇ and let W be a finite dimensional pro-
sub-representation of g. There exist two finite dimensional subspaces W1 and W2 of V such that
W ⊂ W1 ∩ W2 and W1 is stable under (G,π) and W2 is stable under (G, ρ). There are also two
elements N1 and N2 in F such that N1 act trivially (via π) on W1 and N2 acts trivially (via ρ) on W2.
Set N = N1 ∩N2, then the action of N via π (resp. via ρ) on W1 (resp. on W2) is trivial and we have
an action of G/N1 (resp. G/N2) and even an action of G/N . Differentiating this action, we have an
action of gN = Lie(G/N) on W1 and W2 and these two action coincide on W and leave W invariant.

Since G is connected (and thus since the image of gN by the exponential generated G/N), this
implies that the actions of G/N on W1 and W2 leave W invariant and coincide on W . The result
follows. �

Proposition 18.7.6 Assume that the base field is C.
(ı) Let G be a pro-group and g its pro-Lie-algebra, there exists a unique representation

Ad : G→ Aut(g)

such that Ȧd = ad .
(ıı) Furthermore, if g ∈ G, denote by Intg : G→ G the conjugation by g, then Ad (g) = ˙Intg.
(ııı) For g ∈ G and X ∈ g, we have

exp(Ad (g)(X)) = g exp(X)g−1.

(ıv) For any pro-representation π : G→ Aut(V ), any g ∈ G and X ∈ g, we have

π̇(Ad (g)(X)) = π(g)π̇(X)π(g)−1.

Proof : (ı) Let N ∈ F and consider the adjoint representation G/N → Aut(gN ). For N ′ ∈ F

containing N , we have natural morphisms and a commutative diagram:

G/N ′

Ad

��

γN,N′
// G/N

Ad

��
gN γ̇N,N ′ // gN ′ .

In particular, the maps Ad : G/N → Aut(gN ) induce a projective system morphism and thus a map
Ad : G→ Aut(g). By definition, we have Ȧd = ad .



18.7. PRO-REPRESENTATIONS 175

Remark that the point (ıı) will imply that the group of connected components of G acts trivially
by Ad and thus the representation Ad is determined by the action of the connected component of
the identity and by the previous Lemma by its derived action. It is unique.

(ıı) This comes from the same fact in the finite dimensional case.
(ııı) Recall the commutative diagam:

g
ḟ

//

exp

��

g′

exp

��

G
f

// G′

for f a morphism of pro-groups. Apply this to Intg to get the result.
(ıv) Recall that for V an infinite dimensional vector space we may define the exponential on locally

finite endomorphisms. Let us denote by Endlf (V ) the set of such elements. For a pro-representation
π : G→ End(V ), we have a commutative diagram:

g
π̇ //

exp

��

Endlf (V )

exp

��
G

π // Aut(V ).

Indeed, the map π̇ factorises through finite dimensional representation where the images of elements in
g acts as locally finite endomorphisms. We thus have for X ∈ g the equality π(exp(X)) = exp(π̇(X)).
Let us compute (using (ııı) above):

exp(π̇(Ad (g)(X))) = π(exp(Ad (g)(X))) = π(g exp(X)g−1) = π(g)π(exp(X))π(g)−1

= π(g) exp(π̇(X))π(g)−1 = exp(π(g)π̇(X)π(g)−1)

and the result follows. �

Example 18.7.7 The adjoint representation is not always a pro-representation. Indeed, consider
the group G = GL2(C[[t]]). It is a pro-group thanks to the sub-groups GL2(t

nC[[t]]). The adjoint
representation is not a pro-representation. Indeed, consider the elements

g =

(
1 + t 0
0 1

1+t

)
and X =

(
0 1
1 0

)

of GL2(C[[t]]). The element Ad n(X) has for matrix
(

0 (1 + t)2n
1

(1+t)2n 0

)

and these elements generate an infinite dimensional subspace. In particular g does not act as a locally
nilpotent element.

Let G be a pro-group and g a pro-Lie-algebra, we denote by Rep(G), Rep(g) and Replf (g) the
categories of pro-representations of G, g and the full subcategory of Rep(g) of representations given
by locally finite elements.

Proposition 18.7.8 Ldet G be a pro-unipotent group and let g be its Lie algebra. Then the functor
Rep(G) → Replf (g) sending π : G→ Aut(V ) to π̇ : g → End(V ) is an equivalence of category.
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Proof : Let us prove that the functor is essentially surjective. For this take π : g → End(V ) a
pro-representation. Let W be any finite dimensional sub-representation of V . There exists N ∈ F the
defining set for G such that gN acts trivially on W . Because G is unipotent, it is the case of G/N
and gN acts nilpotently. There exists thus a morphism ρW : G/N → Aut(W ) such that ˙ρW = π|W .
This induces a map G → Aut(W ) and as before this does not depend on the choice of N . As finite
dimensional subspaces generate V we get a representation ρ : G→ Aut(V ) such that ρ̇ = π.

The functor is defined on the morphisms by the identity: if f : V → V ′ is a morphism between
pro-representation of G, the same map induces a map of pro-representations of g. We conclude thanks
to Lemma 18.7.5. �



Chapter 19

Kac-Moody groups

Let g be any Kac-Moody Lie algebra associated to a generalised Cartan matrix A of size n as con-
structed and studied in the first part. In this chapter we construct the so called (completed) Kac-
Moody group G associated to g.

19.1 The groups T and N

Recall that in g, we have the Cartan subalgebra h. Let us define an integral Cartan subalgebra as
follows:

Definition 19.1.1 An integral Cartan subalgebra hZ of g is a finitely Z-submodule of h such that

• the natural map hZ ⊗Z C → h is an isomorphism;

• all the simple coroots α∨i are in hZ;

• setting h∗Z = homZ(hZ,Z) which is contained in h∗, we have that all simple roots αi are in h∗Z;

• the quotient hZ/(
∑

i α
∨
i ) is torsion free.

Such an integral Cartan subalgebra always exists. Let us choose hZ an integral Cartan subalgebra.
We have the following easy fact coming from the definition of the Weyl group and of its action on h

and h∗:

Fact 19.1.2 The submodule hZ (resp. h∗Z) of h (resp. of h∗) is stable under the action of W .

Definition 19.1.3 We define the integral dominant chamber CZ associated to hZ to be the in-
tersectin CR ∩ hZ where CR is the dominant chamber of Definition 6.5.1.

Definition 19.1.4 Define the maximal torus T associated to hZ by

T = homZ(h
∗
Z,C

∗).

It is a torus of dimension dim h = n+Corank(A).

Fact 19.1.5 (ı) The action of W on h∗Z induces an action of W on T .
(ıı) The Lie algebra Lie(T ) can be identified with homZ(h

∗
Z,C) ≃ h.

(ııı) The exponential map h → T is given by h 7→ eh where eh(λ) = e〈h,λ〉 for λ ∈ h∗Z.

177
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Definition 19.1.6 For λ ∈ h∗Z, define the character of T associated to λ by eλ : T → C∗ with
eλ(t) = t(λ).

Let X(T ) be the group of characters of T (algebraic group morphisms T → C∗). The classical
study of diagonalisable algebraic groups gives us the following:

Fact 19.1.7 The map h∗Z → X(T ) defined by λ 7→ eλ is an isomorphism of Z-modules.

Lemma 19.1.8 Let π : h → End(V ) be a representation which is a weight module (i.e. direct sum
of eigenspaces Vλ for λ ∈ h∗) such that its weights are in h∗Z. Then the action of h integrates to an
action of T on V .

Proof : Define an action of T as follows:

t · vλ = t(λ)vλ for t ∈ T and vλ ∈ Vλ.

Derivating this action gives back the action of h (by derivating the exponential). �

Definition 19.1.9 Let N be the group generated by the set T ∪ {s̃i}i∈[1,n] for some variables s̃i
modulo the relations

• t′t′′t−1 for t = t′t′′ in T ;

• s̃its̃
−1
i = si(t);

• s̃2i = (−1)α
∨
i = eiπα

∨
i ∈ T ;

• s̃is̃j s̃i · · · = s̃j s̃is̃j · · · for i 6= j with mi,j factors on both side where mi,j is the order of sisj ∈W .

Lemma 19.1.10 Let π : g → End(V ) be an integrable representation such that all weigths lie in h∗Z.
Then there exists an action of N extending the action of T such that s̃i acts as

si(π) = (exp fi)(exp(−ei)(exp(fi)).

Proof : This comes directly from Proposition 5.2.6 because the si(π) satisfy the relations of the
s̃i above on any integrable representation π : g → End(V ). For the second relation, we have by
Proposition 5.2.6 the fact that s̃i(Vλ) = Vsi(λ) thus for vλ ∈ Vλ we have

s̃its̃
−1
i · vλ = s̃i · (t(si(λ))s̃−1i (vλ)) = t(si(λ))vλ = si(t)(λ)vλ = si(t) · vλ.

�

Corollary 19.1.11 (ı) The canonical map θ : T∪{s̃i} → N is injective and we have an exact sequence
of groups:

1 → T
θ|T→ N

π→W → 1.

(ıı) The conjugation of N on T descend to an action of W on T which coincide with the previously
defined action of W on T .
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Proof : The second part is clear: since T is abelian the action of N descend to an action of W which
is the previously defined action.

For (ı), the injectivity follows from the action of the elements s̃i on the weights, the existence of
the integrable representations L(λ) for λ ∈ CZ and the fact that the Weyl group is a subgroup of
automorphism of h.

The map defined by π(s̃i) = si and T ⊂ ker π extends to a group morphism π : N →W because of
the defining relations of N (these are the defining relations of W except for the squares). But now the
quotient N/T has the elements s̃iT a generators with relations (s̃iT )

2 = 1 and ((s̃iT )s̃jT ))
m(i,j) = 1

which are send to the si. But the si satisfy these relation and π̄ : N/T → W is an isomorphism. �

19.2 The group U

19.2.1 Completion

Let g be the Kac-Moody Lie algebra associated to a generalised Cartan matrix A. Recall that we have
a decomposition of g as follows: g = n− ⊕ h⊕ n+ and that n+ (as well as n−) has a decomposition in
terms of eigenspaces for the action of h given by

n+ =
⊕

α∈∆+

gα

where ∆ is the set of roots and ∆+ the set of positive roots. We shall denote in the sequel n+ by n.
We may consider the completion n̂ of n defined by

n̂ =
∏

α∈∆+

gα.

We may also define a completion ĝ of g by:

ĝ = n− ⊕ h⊕ n̂.

Recall the following

Fact 19.2.1 The Lie bracket

 ∑

α∈∆+

xα,
∑

α∈∆+

yα


 =

∑

γ∈∆+

∑

α+β=γ, (α,β)∈∆2
+

[xα, yβ]

defines a Lie bracket on n̂. Furthermore, for y ∈ n− ⊕ h, define

 ∑

α∈∆+

xα, y


 =

∑

α∈∆+

[xα, y].

These two formulas are well defined and define Lie algebra structures on n̂ and ĝ.

Proof : The sum inside the left hand side sum in the first formula is well defined because it is finite.
For the second formula, we only need to define it for y ∈ h or y ∈ gβ with β < 0. For y ∈ h, then for
all α ∈ ∆+, the bracket [xα, y] ∈ gα and the sum may be infinite but is an element of n+. For y ∈ gβ
with β ∈ ∆−, then only finitely many α ∈ ∆+ are such that [xα, y] 6= 0 and the sum is well defined.

These formula define Lie algebra structures, the anti-symmetry and the Jacobi formula follow from
the same formulas for g. �
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Lemma 19.2.2 The Lie algebra n̂ is a pro-nilpotent Lie algebrafor the defining set

Fn̂ = {a ideal of n̂ such that n̂ ⊃ n̂(k) for some k > 0}

where we set

n̂(k) =
∏

α∈∆+,ht(α)≥k

gα.

Proof : Let us first remark that n̂(k) is an ideal of n̂. Furthermore, the quotient of n̂ by n̂(k) is finite
dimensional (isomorphic as vector space to the direct sum of the gα for α ∈ ∆+ with ht(α) < k).

The other axioms follow easily. The fact that it is nilpotent comes from the same fact for n. �

Remark 19.2.3 We could do the same for ĝ but it would not be a pro-Lie-algebra because the
quotients ĝ/n̂(k) = g/n(k) are not finite dimensional (with n(k) defined by the direct sum instead of
the product). However, we still have the equality

ĝ = lim
←

ĝ/n̂(k).

In particular, we may define the pro-topology on g.

Definition 19.2.4 We define the group U as the pro-unipotent group structure on the pro-nilpotent
Lie algebra n̂.

Definition 19.2.5 (ı) A subset Θ of ∆+ is called bracket closed if for any two elements α and β in
Θ, we have α+ β in Θ.

(ıı) A subset Θ of ∆+ is called bracket coclosed if Θc is bracket closed.

Fact 19.2.6 (ı) For any x ∈ n̂, the vector space generated by x is a pro-Lie-subalgebra of n̂.

(ıı) Let Θ be a bracket closed subset of ∆+, then the subspace

n̂Θ =
∏

α∈Θ

gα

of n̂ is a pro-Lie-subalgebra of n̂.

Proof : Because Θ is bracket closed, this subspaces is a sub-Lie-algebra. Furthermore, we clearly
have an isomorphism

n̂Θ ≃ lim
←

n̂Θ/(n̂Θ ∩ n̂(k))

proving (by Proposition 18.4.5) that n̂Θ is a pro-subalgebra. �

Definition 19.2.7 (ı) For x ∈ n̂, define Ux to be the pro-unipotent group structure on the pro-
nilpotent Lie subalgebra generated by x in n̂.

(ıı) For Θ a bracket closed set, defined UΘ to be the pro-unipotent group structure on the pro-
nilpotent Lie algebra n̂Θ.

Fact 19.2.8 We may define Ux and UΘ in U via the exponential map:

Ux = exp(Cx) and UΘ = exp(n̂Θ).
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Proof : Let U′Θ be the subgroup of U defined as the image of n̂Θ by the exponential map. Because
the exponential map is the identity, we have a bijection between UΘ and U′Θ as sets. Furthermore, the
natural inclusion n̂Θ → n̂ induces a pro-group inclusion UΘ → U whose image is U′Θ. We thus have a
pro-group morphism which is bijective, it is a pro-group isomorphism. �

Lemma 19.2.9 (ı) Assume that for all α ∈ ∆+ and all β ∈ Θ, we have (α+ β ∈ ∆+ ⇒ α+ β ∈ Θ).
Then UΘ is normal in U.

(ıı) Assume that Θ is also bracket coclosed, then the multiplication map

UΘ × U∆+\Θ → U

is a bijection.

Proof : (ı) The condition tells that n̂Θ is an ideal. Its image by the exponential map is therefore
normal.

(ıı) Because exp is bijective and n̂Θ ∩ n̂∆+\Θ = {0} we get that UΘ ∩ U∆+\Θ = {1} and the
multiplication is injective.

To prove the surjectivity, we proceed by induction on the height of the elements. Remark that
the multiplication is given by the Campbell-Hausdorff formula: x · y = H(x, y). Let x ∈ n̂ and write
x =

∑
α xα with xα ∈ gα. We prove by induction on k the existence of elements yk ∈ n̂Θ and zk ∈ n̂∆\Θ

such that

• (yk)β = (zk)β = 0 for ht(β) > k;

• H(yk, zk)β = xβ for ht(β) ≤ k;

• (yk)β = (yk−1)β and (zk)β = (zk−1)β for ht(β) < k.

We may start the induction with y0 = z0 = 0. Set

yk+1 = yk +
∑

β∈Θ, ht(β)=k+1

(xβ −H(yk, zk)β)

zk+1 = zk +
∑

β∈∆+\Θ, ht(β)=k+1

(xβ −H(yk, zk)β).

Let us now one more time recall the Campell-Hausdorff formula:

H(X,Y ) = log(expX expY ) =
∑

n>0

(−1)n−1

n

∑

ri+si>0
1≤i≤n

(
∑n

i=1(ri + si))
−1

r1!s1! · · · rn!sn!
[Xr1Y s1Xr2Y s2 . . . XrnY sn ],

which uses the notation

[Xr1Y s1 . . . XrnY sn ] = [X, [X, . . . [X︸ ︷︷ ︸
r1

, [Y, [Y, . . . [Y︸ ︷︷ ︸
s1

, . . . [X, [X, . . . [X︸ ︷︷ ︸
rn

, [Y, [Y, . . . Y︸ ︷︷ ︸
sn

]] . . .]].

Let us prove our induction: the first and last conditions are easily satisfied. To prove our induction,
let us compute H(yk+1, zk+1). We obtain the following types of terms:

• terms with only yk and zk, the sum of these terms is H(yk, zk);

• the linear part which is yk+1 + zk+1 (and contains the linear part of H(yk, zk));
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• other terms involving yk or zk and terms of the form (xβ −H(yk, zk)β).

For the last type of terms, the height of the roots is at least k+2 so they do not enter in the induction
hypothesis. We need only to care of the formula

H(yk+1, zk+1) = H(yk, zk) +
∑

β∈∆+

(xβ −H(yk, zk)β) + terms of higher height.

The induction follows. We have the formula

H(
∞∑

k=0

(yk+1 − yk) +
∞∑

k=0

(zk+1 − zk)) = x

and the surjectivity follows. �

Example 19.2.10 (ı) Let α ∈ ∆+ be a real root, then {α} is bracket closed and in this case we have
for x ∈ gα the equality Ux = U{α} and is denoted Uα.

(ıı) If α is a simple root, then ∆+ \ {α} is bracket closed and coclosed. Moreover, for any β ∈
∆+ \ {α} and any γ ∈ ∆+, we have β + γ ∈ ∆+ \ {α}. The group U is the semi-direct product of the
normal subgroup U∆+\{α} and the group Uα.

(ııı) Let ∆w = {α ∈ ∆+ / w−1(α) < 0}. We saw that ∆w is of cardinality ℓ(w). Furthermore, we
easily have that ∆w is bracket closed and coclosed. In particular n̂∆w is a finite dimensional nilpotent
Lie algebra and U∆w is an algebraic unipotent group.

19.3 Parabolic subgroups

19.3.1 Parabolic subalgebra associated to a subset of the simple roots

Definition 19.3.1 (ı) LetX be a subset of Π the set of simple roots, we denote by ∆X the intersection
of the root system ∆ with the sublattice ⊕α∈ΠZα. We define the positive and negative roots of ∆X

by intersection with the set of positive and negative roots:

∆X,+ = ∆X ∩∆+ and ∆X,− = ∆X ∩∆−.

(ıı) We define the following Lie subalgebras of g:

gX = h⊕ (⊕α∈∆X
gα),

uX = u+X = h⊕ (⊕α∈∆+\∆X,+
gα),

u−X = h⊕ (⊕α∈∆−\∆X,−
gα),

pX = gX ⊕ uX , and
p−X = gX ⊕ u−X .

Remark 19.3.2 It is easy to check that ∆X is bracket closed so that gX is a subalgebra. Furthermore,
the same is true for ∆+ \∆X,+ so that uX is a Lie subalgebra. Furthermore, we easily check that gX
normalises uX so that pX is also a Lie subalgebra (this means that uX is normal in pX or that the
sets of roots Θ = ∆+ \∆X,+ satisfies the hypothesis of Lemma 19.2.9 (ı)).

Definition 19.3.3 We say that X is of finite type if gX is finite dimensional.

We may easily check the following fact:

Fact 19.3.4 The subset X of Π is of finite type if and only if the subdiagram it generates in the
Dynkin diaram of g is a union of Dynkin diagrams of finite type.
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19.3.2 Completed parabolic subalgebra

Let X be a subset of Π. We define as for the nilpotent subalgebra n a completion ûX of uX as follows

ûX =
∏

α∈∆+\∆X,+

gα = n̂∆+\∆X,+
.

It is a Lie subalgebra because ∆+ \∆X,+ is bracket closed. Let us further define

p̂X = gX ⊕ ûX .

Which is a Lie subalgebra of ĝ (the sets of roots Θ = ∆+ \∆X,+ satisfies the hypothesis of Lemma
19.2.9 (ı)) and ûX is a normal subalgebra.

We want to define a pro-Lie-algebra structure on pX . For this let us define a slightly modified
height denoted by htX as follows: let us write an element β ∈ Q = ⊕α∈ΠZα as β =

∑
α nαα, then

htX(β) =
∑

α6∈X

nα.

In particular, for β ∈ ∆X , we have htX(β) = 0. Now as for n̂ define the ideal

ûX(k) =
∏

β∈∆X,+, htX(β)≥k

gβ

and the family FX of ideal in ûX by

FX = {a ideal of p̂X / ∃k > 0, with a ⊃ ûX(k)}.

Lemma 19.3.5 Let X be of finite type.

(ı) The vector space ûX(k) is an ideal of p̂X . Furthermore, the quotient space ûX(k)/ûX (k + 1) is
finite dimensional

(ıı) Then FX defines a pro-Lie-algebra structure on p̂X .

(ııı) Then n̂ is a pro-Lie-subalgebra of p̂X and ûX a pro-Lie-subideal.

Proof : (ı) The fact that it is an ideal is clear. Furthermore, if (xj) is a base for ûX(k − 1)/ûX(k),
then the brackets ([xj , eα]) for α 6∈ X form a basis for ûX(k)/ûX (k+1) (because n is generated by the
eα for α a simple root).

(ıı) The finitness condition is necessary for the quotient p̂X/ûX(k) to be finite. The condition of a
pro-Lie-algebra structure follow easily.

(ııı) The fact that n̂ is contained in p̂X comes from the fact that X is of finite type: the part of n̂
not contained in ûX is contained in gX (because X is of finite type, the completion has no effect on
this part). The fact that these subalgebras are closed is easily checked on the projections under the
ideal ûX(k). �

19.3.3 Parabolic subgroups

Let X a subset of Π of finite type. Because it is of finite type, all its root are real and we may define
the set ∆∨X as the set of the coroots of ∆X . The classical theory of algebraic groups tells us that there
exists a unique connected reductive algebraic group GX associated to the quadruple (hZ,∆X , h

∗
Z,∆

∨
X).

For this group GX , the following conditions are satisfied
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Fact 19.3.6 (ı) The torus T = homZ(h
∗
Z,C

∗) is a maximal torus of GX .

(ıı) We have the equalities Lie(GX ) = gX and Lie(T ) = h.

(ııı) For any finite dimensional (gX , T )-module V defined by the maps ρ : gX → End(V ) and
ǫ : T → Aut(V ), there exists a respresentation π : GX → Aut(V ) such that π̇ = ρ and π|T = ǫ.

As a consequence, the finite dimensional space

ûX(k)/ûX (k + 1) =
⊕

β∈∆X,+, htX(β)=k

gβ

being a (gX , T )-module (the action of T is defined by integration as in Lemma 19.1.8), it is also a
GX -module. But we have

ûX =
⊕

k≥1

ûX(k)/ûX (k + 1)

and uX has therefore also a GX -module structure.

Fact 19.3.7 For any g ∈ GX , the element g acts on ûX as a pro-Lie-algebra automorphism.

Proof : Let x ∈ gX and u ∈ ûX(k)/ûX (k + 1) and v ∈ ûX(l)/ûX(l + 1). Consider the function
f : R → ûX(k + l)/ûX(k + l + 1) defined by

f(t) = [exp(tx) · u, exp(tx) · v]− exp(tx) · [u, v].

We may compute

df
dt (t) = [[x, exp(tx) · u], exp(tx) · v] + [exp(tx) · u, [x, exp(tx) · v]]− [x, exp(tx) · [u, v]]

= [x, [exp(tx) · u, exp(tx) · v]]− [x, exp(tx) · [u, v]]
= [x, f(t)].

Furthermore, we have f(0) = 0 and by unicity of the solution of this differential equation, we obtain
f(t) = 0 for all t and the result follows for the image of the exponential. We conclude by the fact that
the image of the exponential generates the group GX .

The fact that the action is continuous for the pro-topology is clear, it is algebraic on each quotient
ûX(k)/ûX (k + 1). �

By virtue of Theorem 18.6.2, any element g ∈ GX defines an element in Aut(ûX) and thus of
Aut(UX) where UX is the pro-unipotent group associated to ûX . We thus have a group morphism

φX : GX → Aut(UX).

Definition 19.3.8 Let X be a subset of finite type in Π, we define the standard parabolic group QX
as the semi-direct product

QX = UX ⋊GX

with the product given by

(u1, g1) · (u2, g2) = (u1φ(g1) · u2, g1g2).

Let us denote by UX(k) the pro-unipotent group associated to the pro-nilpotent Lie algebra uX(k),
it is a pro-subgroup of UX . It is a subgroup in QX which is normal and stable under the action of
GX .
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Lemma 19.3.9 (ı) The group QX is a pro-group with defining set

FX = {N ⊂ QX normal /∃ k with N ⊃ UX(k) and N/UX(k) is closed in (UX/UX(k)) ⋊GX}.

(ıı) The subgroup UX is a normal pro-subgroup of QX and the pro-group structure coincide with
the previously defined structure on UX .

(ııı) We have Lie(QX) = p̂X .

Proof : (ı) The quotients are clearly algebraic groups and QX is the projective limit of these quotients.

(ıı) The subgroup UX is clearly normal. Furthermore, its induced pro-group structure is defined
by the subgroups UX(k) as was defined its previously defined pro-group structure (as exponentiation
of the Lie algebra n̂X).

(ııı) We only need to compute the Lie algebras of the groups (UX/UX(k))⋊GX . Their Lie algebras
are the direct sum ûX/ûX(k)⊕ gX and the result follows by definition of p̂X . �

Lemma 19.3.10 Let X1 ⊂ X2 be two subsets of Π of finite type. Then there is a canonical inclusion
QX1 ⊂ QX2 giving on the Lie algebra level the inclusion p̂X1 ⊂ p̂X2 .

Proof : Consider the nilpotent Lie subalgebra a = u∆X2,+
\∆X1,+

of gX2 . Denote by A = U∆X2,+
\∆X1,+

the associated unipotent subgroup of GX2 . Consider the pro-subgroup UX2 ⋊ A of QX2 . Since it has
the same Lie algebra as UX1 in QX1 , we identify UX2⋊A with UX1 . But now GX1 is a subgroup of GX2

acting on UX2 ⋊A as it acts on UX1 and the semi-direct product (UX2 ⋊A)⋊GX1 is a pro-subgroup
of QX2 . We have the inclusions:

QX1 = UX1 ⋊GX1 = (UX2 ⋊A)⋊GX1 = UX2 ⋊ (A⋊GX1) ⊂ QX2 .

�

In particular, let us denote by B the group Q∅, the B is contained in all the groups QX for X ⊂ Π
of finite type. As a special case, let us denote by Qα the group Q{α} for α ∈ Π, then B is contained
in Qα for all α ∈ Π.

19.4 The Kac-Moody group

19.4.1 Definition

We produced the group B and the groups Qα for any α ∈ Π. Let us denote by γα the inclusion of B
in Qα. Let us now define for any α ∈ Π the group Nα by

Nα = T ∪ s̃αT.

It is the subgroup of N generated by T ans s̃α. Set Gα = G{α}. We may define an embedding

θα : Nα → Gα ⊂ Qα

as follows: define θα|T = Id and θα(s̃α) = exp(fα) exp(−eα) exp(fα) ∈ Gα where exp : gα → Gα. From
Proposition 5.2.6 (ııı) we get that this defines a group morphism. Furthermore, by Proposition 5.2.6
(ı) we see that the weights of elements of Nα on representations of Gα are all distinct and thus θα is
injective.
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Definition 19.4.1 We define the set Z as the quotient of the disjoint union

N
∐

α∈Π

Qα

by the equivalence relation ∼ generated by the following conditions:

• γα(b) ∼ γβ(b) for all α and β in Π and b ∈ B;

• n ∼ θα(n) for all α ∈ Π and n ∈ Nα.

We have that B and N injects in Z. Furthermore, for any α ∈ Π the group Qα injects in Z.

Fact 19.4.2 In Z, we have B ∩N = T .

Proof : The inclusion of T in the intersection is clear. To prove the converse, we only need to prove
the inclusion θα(Nα \ T ) ⊂ Qα \B. This follows from Proposition 5.2.6 (ı). �

Definition 19.4.3 The Kac-Moody group G associated to the generalised Cartan matrix A is the
amalgamated product of the system of groups (N,Qα, α ∈ Π) in Z.

19.4.2 Bruhat decomposition

Theorem 19.4.4 (ı) The canonical map Z → G is injective. In particular, the canonical group
morphisms Qα → G and N → G are injective.

(ıı) Let S = {s̃αT ∈ N/T}, the quadruple (G,B,N, S) is a Tits system.

Proof : We want to apply Theorem 17.4.7. Let us check the hypothesis (Pi) for i ∈ [1, 9]. Let us
recall these hypothesis:

(P1) For s 6= s′, Qs ∩Qs′ = B.

(P2) The subgroup T is normal in N .

(P3) For any s ∈ S, the quotient group Ns/T is of order 2 denoted {1, s}.

(P4) Qs = B ∪BsB.

(P5) The pair (W,S) is a Coxeter system.

(P6) For any n and any decomposition n = n1 · · · nr with ni ∈ Nsi for some si ∈ S such that
π(n) = π(n1) · · · π(nr) is a reduced expression, the subgroup B(n1, · · · , nr) of B depends only
on π(n) (and will be denoted Bπ(n)) and the map γ(n1, · · · , nr) : B(n1, · · · , nr) → B depends
only on n (and will be denoted γn).

(P7) For w ∈W and s ∈ S such that ℓ(ws) > ℓ(w), we have Bw · Bs = B.

(P8) Let s and t in S and let w ∈W such that sw = wt and ℓ(sw) > ℓ(w). Then for any m ∈ π−1(s),
n ∈ π−1(w) and b ∈ B \ Bt, there exist elements y ∈ (bBt) ∩ Bw and y′, y′′ ∈ Bw such that,
setting m′ = n−1m−1n, we have:

– (m′)−1ym′ = y′m′y′′ in Qt and

– mγn(y)m
−1 = γn(y

′)m−1γn(y
′′) in Qs.
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(P9) The subgroup B is not normal in Qs for any s ∈ S.

The condition (P1) is satisfied thanks to the definition of Z. The condition (P2) is satisfied by definition
of N as well as the condition (P3) (see above). The condition (P5) follows from Corollary 19.1.11.

For (P4) let us first remark that we have the Bruhat decomposition for Gα which is of rank one.
It is given by

Gα = (T exp(Ceα)) ∪ (exp(Ceα) · s̃αT exp(Ceα)).

The group Qα being the semi-direct product of Gα with U∆+\{α} and the group B being the semi-direct
product of U∆+\{α} with Uα = exp(Ceα), the condition (P4) follows.

Let us prove (P6). First take n ∈ T s̃α with α ∈ Π and Θ a bracket closed subset in ∆+. We have
the following equality in Qα:

U ∩ (n−1UΘn) = Usα(Θ)∩∆+
.

This comes from the fact that T stabilises all the subspaces gβ and that the element s̃α acts on T as
sα.

Now write n = n1 · · ·nk such that for all i ∈ [1, k] there exists a simple root αi with ni ∈ T s̃αi
. By

successive application of the previous equality and because for ℓ(ws) > ℓ(w) we have ws(∆+)∩∆+ ⊂
w(∆+) ∩∆+ (see the proof of Proposition 6.2.9), we obtain:

B(n1, · · · , nr) = T · Uπ(n)−1∆+∩∆+
.

This proves that B(n1, · · · , nr) does only depend on π(n).
By Lemma 19.1.8, we have that g has a T -module structure and by Proposition 5.2.6 it extends to

an action of N . For n ∈ T s̃α with α ∈ Π and Θ a bracket closed subset of ∆+ such that sα(Θ) ⊂ ∆+,
we have the commutative diagram:

n̂Θ
n //

exp

��

n̂sα(Θ)

exp

��
UΘ

γn // Usα(Θ)

where γn is the conjugation by n in Qα. Now write n = n1 · · ·nr as before. The map γn is the
composition of the maps γni

and they correpond in the Lie algebra level to the action of the element
n which is well defined because N acts on g. This finishes the proof of (P6).

To prove (P7), it is enough, thanks to the formula

Bw = T · Uw−1∆+∩∆+

and Lemma 19.2.9 (ıı) to prove that (w−1(∆+) ∩∆+) ∪ (s(∆+) ∩∆+) = ∆+. Let us write s = sα for
some α ∈ Π. If this equality fails, then there exists β ∈ ∆+ with sα(β) < 0 and w(β) < 0. The first
condition imposes β = α and the second gives ℓ(ws) < ℓ(w) a contradiction.

For (P8), let s = sα and t = sβ be in S for α and β in Π. By the formula for Bπ(n) we obtain the
equality

Bt = TU∆+\{β}.

Let b ∈ B \Bt (this means that the coefficient bβ of b in the component Uβ is different from 1). We
look for an element y ∈ bBt ∩Bw. But the only condition for y to be in bBt is to ask yβ = bβ . There
exists z ∈ C such that y = exp(zeβ) = bβ ∈ bBt. We have y ∈ Uβ. Furthermore, because ℓ(wt) > ℓ(w)
we have w(β) > 0 and because

Bw = TUw−1(∆+)∩∆+
.

we have y ∈ Uβ ⊂ Bw.
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Now use the Bruhat decomposition in Gβ to obtain y′ and y′′ in TUβ ⊂ Bw such that

(m′)−1ym′ = y′m′y′′.

Now consider the isomorphism γn : Bw → Bw−1 . Then we have, because w(β) = α (because
wtw−1 = s), the inclusion:

γn(TUβ) ⊂ TUα.

Now it is a classical result that such a morphism extends to a group isomorphism γ′n : Gβ → Gα.
Furthermore, we have for x ∈ Nβ:

γ′n(x) = nxn−1.

Applying this to the previous equation we get

mγn(y)m
−1 = γn(y

′)m−1γn(y
′′)

where m = n(m′)−1n−1.
For (P9), we only need to compute in Gα the following equality s̃αUαs̃α = U−α. In particular B is

not normal in Qα. �

Definition 19.4.5 For any subset X of Π, define the standard parabolic subgroup PX of G by
PX = BWXB. We denote by Pα the group P{α} for α ∈ Π.

By construction, we have Pα = Qα.

Proposition 19.4.6 For any subset X of Π of finite type, there exists a unique isomorphism f :
QX → PX such that f |Qα = Id.

Proof : By definition we have QX = UX ⋊ GX . Furthermore, the group GX is a finite dimensional
reductive algebraic group and in particular for BX a Borel subgroup, NX the normaliser of T , we have
that (GX , BX , NX ,X) is a Tits system.

Fact 19.4.7 The quadruple (QX ,UX ⋊BX , NX ,X) is a Tits system.

Proof : We need to check the axioms of a Tits system but QX is generated by UX ⋊ BX and NX

because BX and NX generate GX . Furthermore UX ⋊ BX ∩ NX = BX ∩ NX = T and is normal
in NX . The quotient WX = NX/T is generated by X and for s ∈ X and w ∈ WX , we have
sBXw ⊂ BXswBX ∪BXwBX thus because for any w ∈WX we have wUXw

−1 = UX we get

sUX ⋊BXw ⊂ UX ⋊BXswUX ⋊BX ∪ UX ⋊BXwUX ⋊BX .

Finally because sBXs
−1 6⊂ BX we get sUX ⋊BXs

−1 6⊂ UX ⋊BX . �

The group QX is in particular the amalgamated product of NX and its parabolic subgroups Qα
for α ∈ X. The group NX is isomorphic to the subgroup N ′X of N generated by the classes s̃α for
α ∈ X. This implies that there exists a group morphism f : QX → G such that f |Qα = IdQα and
sends NX isomorphically on the subgroup N ′X of N (by sending the simple reflections nα in NX to
s̃α).

Since QX and PX are generated by the groups NX (resp. N ′X) and Qα for α ∈ X we have
imf = PX . Let g ∈ ker f . By the Bruhat decomposition, there exists elements b and b′ in UX ⋊ BX
and an element n ∈ NX such that g = bnb′. We thus have f(bb′) = f(n−1). This element is in B ∩ T
thus f(n) ∈ T i.e. n ∈ T . This implies that g = bnb′ ∈ UX ⋊ BX ⊂ Qα (for any α ∈ X). But f is
injective on Qα and g = 1. �
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Corollary 19.4.8 For any subsets X and Y of Π, we have the decomposition:

G =
∐

w∈WX\W/WY

PXwPY .

In particular, we have

G =
∐

w∈W

BwB.

Definition 19.4.9 (ı) For any real root β, let us write β = w(αi) with w ∈ W and αi simple. Let
n ∈ π−1(w), we define

Uα = nUαi
n−1 ⊂ G.

It is easily checked that this does not depend on the writing β = w(αi) and on the choice of the
element n.

(ıı) Let us define U− to be the subgroup of G generated by the groups Uα for α a negative real
root. The group T normalises U− and we set B− = T · U−.

By defining the refined Tits systems, we could even be more precise and prove a Birkhoff type
decomposition:

Theorem 19.4.10 We have a decomposition

G =
∐

n∈N

U−nU

and more generally for any X ⊂ Π:

G =
∐

w∈W/WX

U−wPX .

19.5 Representations

In this section we give a brief overview of representation theory of Kac-Moody groups. We shall in
particular use some of these representations to construct the homogeneous spaces under the Kac-
Moody groups.

Definition 19.5.1 (ı) A representation π : G → Aut(V ) (resp. π : ĝ → End(V )) is called a pro-
representation of G (resp. of ĝ) if, for all index i, the representation π|Pi

(resp. π|p̂i) is a pro-
representation of the pro-group Pi (resp. the pro-Lie-algebra p̂i).

(ıı) We denote by M(G) (resp. M(ĝ)) the category of pro-representations of G (resp. ĝ) where the
morphisms are representation morphisms.

(ııı) A ĝ-representation is called a (ĝ, T )-representation if the action of h integrates in a locally
finite action of T (and hence has a weight decomposition with respect to h).

(ıv) We denote by MT (ĝ) the full subcategory of M(ĝ) of (ĝ, T )-representations.

Remark 19.5.2 The categories M(G), M(ĝ) and MT (ĝ) are closed under taking direct sums, tensor
products, sub-representations and quotient representations.

Lemma 19.5.3 (ı) Let (V, π) be a pro-representation of the group G, then there exists a unique pro-
representation (V, π̇) of ĝ such that for any index i, we have (π̇)|p̂i = ˙π|Pi

.
(ıı) The representation π is uniquely determined by π̇.
The representation π̇ is called the derivative of π and π is called the integral of π̇.
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Proof : (ı) Let us set πi = π|Pi
. Then for any indices i, j and k we have π̇i|b = π̇j|b and π̇i(ek) = π̇j(ek).

We may also define
π̇(fi) = π̇i(fi)

which defines π̇.
(ıı) For this point we need to remark that the groups Pi are connected thus π̇i determines πi and

the result follows from the fact that the Pi generate G. �

Theorem 19.5.4 (ı) The category M(G) is equivalent to the category MT (ĝ) under the functor
(V, π) 7→ (V, π̇).

(ıı) The category MT (ĝ) consists of the (ĝ, T )-representations (V, π) such that V is an integrable
g-representation and (V, π|n̂) is a pro-representation of n̂.

Proof : First remark that the image of this functor is indeed contained in MT (ĝ)). Then starting
from (V, π) ∈ MT (ĝ) we need to construct a representation (V, ρ) with ρ̇ = π. By the previous Lemma,
we only need to do so for the groups Pi (and the representation π|p̂i on their Lie algebras).

Because the representation of p̂i is a pro-representation, for any v ∈ V , their exists a finite dimen-
sional sub-representation W containing v and with ûi(k) vanishing on W for some k. The quotient
p̂i/ûi(k) is gi ⊕ ûi/ûi(k) and in particular we have an action of gi. Because the action of h integrates
in an action of T , we get an action of Gi on W . On the other hand, we have a pro-action of ûi and
by the equivalence of categories between pro-nilpotent Lie algebras and pro-unipotent groups, we get
a pro-representation of Ui on W . These actions (of Gi and Ui) give an action of Pi on W . Because V
is spanned by such finite dimensional W (and by uniqueness of integration of representations of Pi)
we get an action of Pi on V .

Finally because (V, π) is a pro-representation of ĝ, it is locally finite for gi and hence the action
of ei and fi are locally nilpotent. The induced g-representation is thus integrable. But we have seen
that this implies that N acts on V and as a consequence G acts on V . By construction this is the
inverse functor of derivation.

(ıı) We already proved one direction. Assume (V, π) is an integrable g-representation and a pro-
n̂-representation. Then we know that for an integrable representation V , any element v ∈ V and any
finite dimensional subalgebra gi of g, the element v lives in a finite dimensional sub-representation. In
particular this gives a pro-representation structure for any p̂i and the result follows. �

Remark 19.5.5 It is not known if a (ĝ, T )-representation which is an integrable g-representation is
necessarily a pro-n̂-representation.

Corollary 19.5.6 Any integrable highest weight g-module L(λ) with highest weight λ ∈ CZ is in
MT (ĝ) and has a G-representation structure.

Proof : Such an highest weight module has a T -module structure integrating the h action (because it
has integral weights). Because the highest weight is killed by n is has obviously a ĝ-module structure
extending the g-structure. It is thus a (ĝ, T )-module which is g-integrable and such that the action of
n̂ is a pro-action. �

Now we want to define the adjoint representation. Let us first define a T -module structure on ĝ

by

t ·
(∑

α

xα

)
=
∑

α

t(α)xα

where t ∈ T and xα ∈ gα. Furthermore, because g is an integrable g-module (by the adjoint action),
we get an action of N on g.
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Fact 19.5.7 The action of N on g extends to an action of N on ĝ.

Proof : We need to extend the action of si(ad ) = exp(ad (fi)) exp(−ad (ei)) exp(ad (fi)) from g to ĝ.
But si(ad )(gα) ⊂ gsi(α) thus we want that the set si(∆+) ∩∆− is finite. It is the case (it is only one
root −αi). �

Fact 19.5.8 The space ĝ has a Pi-pro-representation structure extending the action of Ni for all i.
These actions coincide on B.

Proof : Recall that we have a filtration of p̂i by the ideals ûi(k). Setting ĝi(u) = ĝ/ûi(k) we have
by adjoint action a pro-representation of p̂i on that space. Furthermore, we have a T action on that
space thus we may integrate the action of gi into an action of Gi. Because it is a pro-representation
of p̂i we have a pro-representation of ûi and thus of Ui. These action define a pro-representation of Pi
on ĝi(k) for all k. This action extends the action of Ni.

Now we have
ĝ = lim

←
ĝi(k)

and taking the inverse limit of these representations gives the desired representation. The action being
the integration of the adjoint action of ûi on itself, we easily get that the restrictions on B coincide.
�

Definition 19.5.9 We define the adjoint representation Ad : G→ Aut(ĝ) to be the representation
of G induced by the above defined representations of Pi and N on ĝ.

By the same argument as before we get

Fact 19.5.10 (ı) The action of G on ĝ preserves the Lie algebra structure.
(ıı) For any g ∈ G the map Ad (g) : ĝ → ĝ is continuous and we have

π̇(Ad (g) · x) = π(g)π̇(x)π(g)−1.

Proof : (ı) The fact that the action preserves the Lie algebra structure is proved as in Fact 19.3.7.
(ıı) We prove this formula in several steps. Let us first start with g = exp(y) for y ∈ gi and x ∈ g.

By Corollary 5.1.3 we have

Ad (g) · x = Ad (exp y) · x = exp(ad (y)) · x.
The map π̇ being a Lie algebra morphism, we obtain

π̇(Ad (g) · x) = exp(ad (π̇(y)))π̇(x)

and again by Corollary 5.1.3

π̇(Ad (g) · x) = exp(π̇(y))π̇(x) exp(−π̇(y)) = π(g)π̇(x)π(g−1).

Now for g ∈ Pi and x ∈ p̂i, we proved (for pro-groups) that the formula holds. This implies in
particular that the formula holds for g = exp(y) with y ∈ gi and x ∈ ĝ.

Let us now define the following set:

ĝg = {x ∈ ĝ / π̇(Ad (g) · x) = π(g)π̇π(g−1)}.
It is a Lie subalgebra of ĝ since Ad(g) acts has a Lie algebra automorphism and because B is contained
in all Pi we have that for g ∈ B the algebra ĝg contains all the p̂i hence is equal to ĝ. In particular
the formula holds for g ∈ B and x ∈ ĝ.

The group G being generated by B and the elements exp(y) for y ∈ gi, the result follows. �
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Definition 19.5.11 (ı) For V a vector space, we denote by Endlf (V ) the set of locally finite endo-
morphisms of V .

(ıı) We define the following subset of ĝ:

ĝfin =
⋃

X⊂Π

⋃

g∈G

(Ad g)(p̂X )

where the first union runs over subsets X is of finite type.

Proposition 19.5.12 (ı) Let (V, π) be a pro-representation of G, then the map π̇ : ĝ → End(V ) sends
ĝfin to Endlf (V ).

(ıı) There exists a unique map exp : ĝfin → G such that for any pro-representation (V, π) of G,
the following diagram is commutative:

ĝfin
π̇ //

exp

��

Endlf (V )

exp

��
G

π // Aut(V ).

(ııı) For any g ∈ G and X ∈ gfin we have

g(exp(X))g−1 = exp(Ad (g(X))).

Proof : (ı) Let us first remark that π̇(p̂X) is in Endlf (V ) for any X of finite type. Indeed, because V
is a pro-representation, any vector v in V is contained in a finite dimensional sub-representation W
such that for some k the ideal ûX(k) acts trivially on W . In particular the action is locally finite.

Take x ∈ gfin, then there exist g ∈ G, X of finite type and y ∈ p̂X such that x = Ad (g(y)) and
π̇(x) = π̇(Ad (g · y)) = π(g)π̇(y)π(g)−1 is thus locally finite.

(ıı) For such an x ∈ gfin, we define

exp(x) = g(exp(y))g−1

where we took the pro-exponential map on p̂X to PX . Assume we have two different writing: x =
Ad (g(y)) = Ad (g′(y′)) with g′ ∈ G and y′ ∈ PX′ for X ′ of finite type. Then we compute for any
representation π : G→ Aut(V ) in M(G):

exp(π(g)π̇(y)π(g)−1) = exp(π̇(Ad (g(y)))) = exp(π̇(Ad (g′(y′)))) = exp(π(g′)π̇(y′)π(g′)−1)

Recall that for the pro-exponential map we have π(exp(x)) = exp(π̇(x)). We obtain

π(g)π(exp(y))π(g)−1 = π(g′)π(exp(y′))π(g′)−1.

We shall now need the following fact (relying on the Birkhoff decomposition and some easy con-
structions on representations of g, see [Ku02, Lemma 6.2.9 (a)]

Fact 19.5.13 For any g ∈ G such that g 6= 1, there exists a representation V ∈ M(G) such that g
acts non trivially on V .

In particular we obtain that
g exp(y)g−1 = g′ exp(y′)g′−1.

The exponential map is well defined. The commutativity of the diagram follows from the same property
for pro-groups. The uniqueness follows from the previous Fact.

(ııı) This formula is a direct consequence of the definition. �



Chapter 20

Ind-varieties

In this chapter we define and quickly study the notion of Ind-varieties i.e. direct limit of varieties. We
shall need this do define an algebraic structure on the quotients G/PX for X a subset of any type in
Π.

In this chapter, we shall sometimes assert some facts without proofs. For a detailed treatment of
ind-varieties, see [Sh94] and also [Ku02, Chapter 4].

20.1 Definition and first properties

Definition 20.1.1 (ı) A set X together with a filtration X0 ⊂ X1 ⊂ · · · is an ind-variety if the
following two conditions hold:

• X is the union of the (Xn)n∈N

• for all n ∈ N , the set Xn is a finite dimensional algebraic variety over a base field k such that
the inclusion Xn → Xn+1 is a closed embedding.

(ıı) We define the ring k[X] of regular functions of an ind-variety X by the inverse limit of
the rings k[Xn]. It is a topological ring with the inverse limit topology.

(ııı) We define the Zariski topology on an ind-variety by letting a subset U be open if all the
intersections U ∩Xn are open in the Zariski topology of Xn for all n ∈ N.

(ıv) A morphism f : X → Y of ind-varieties is an application such that for all n ∈ N, there exists
m(n) ∈ N such that f(Xn) ⊂ Ym(n) and the map f |Xn : Xn → Ym(n) is a morphism of algebraic
varieties.

(v) A morphism of ind-varieties is said to be an isomorphism of ind-varieties if it is bijective and
its inverse is again a morphism of ind-varieties.

(vı) An ind-variety is said to be affine if for all n ∈ N the varieties Xn are affine.
(vıı) A map f : X → Y is called a closed embedding if

• for any n ∈ N there exists m(n) such that f(Xn) ⊂ Ym(n) and f |Xn : Xn → Ym(n) is a closed
embedding.

• f(X) is closed in Y

• f : X → f(X) is an homeomorphism for the subspace topology.

(vııı) An ind-variety is called irreducible (resp. connected) if the underlying topological space is.
(ıx) Let X be an ind-variety, we define the pre-sheaf OX by U 7→ k[U ] for any open subset U .
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Example 20.1.2 An algebraic variety is an ind-variety for the trivial filtration Xn = X for all n ∈ N.

Remark 20.1.3 (ı) A subset F in an ind-variety X is closed if and only if the intersection F ∩Xn is
closed in Xn for the Zariski topology.

(ıı) A morphism f : X → Y of ind-varieties is continuous and induces a continuous morphism of
k-algebras f∗ : k[Y ] → k[X].

(ııı) The composition of two morphisms of ind-varieties is again a morphism of ind-varieties.

(ıv) The algebra k[X] is canonically isomorphic to the algebra of ind-variety morphisms from X
to k.

(v) A morphism f : X → Y between affine ind-varieties is an isomorphism if and only if f∗ :
k[Y ] → k[X] is an isomorphism of topological k-algebras.

(vı) The pre-sheaf OX is a sheaf.

Fact 20.1.4 (ı) An open (resp. closed) subset Z of an ind-variety X has a natural structure of an
ind-variety given by the induced filtration Zn = Z ∩Xn.

(ıı) The inclusion Z ⊂ X of a closed subset in an ind-variety X is a closed embedding of ind-
varieties.

Example 20.1.5 (ı) If X and Y are ind-varieties, then there product is again an ind-variety with
defining filtration Xn × Yn.

(ıı) Let k be a field. The set

A∞ = {(ai)i∈N / ai ∈ k finitely many ai are non vanishing}

has a natural ind-variety structure described by the filtration A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · where An is
the subset of A∞ such that ai = 0 for i > n and has the n-dimensional affine space structure.

(ııı) With the notation of the previous example, we have a map k[An+1] → k[An] i.e. a map
S(Cn+1) → S(Cn). In particular these map form an inverse system and we consider the ring

Ŝ(A∞) = lim
←
S(Cn).

We have k[A∞] = Ŝ(A∞). For P ∈ k[A∞], we may write P = (Pn) with Pn ∈ S(Cn). Define the
following subset of A∞:

V (P ) = {(ai)i∈N ∈ A∞ / Pn(a) = 0 for all n}.

It is easy to see that V (P ) is a closed subset of A∞ and is thus a closed ind-subvariety on A∞. It is
an affine subvariety.

(ıv) Any vector space of countable dimension is an ind-variety.

(v) Define the set

P∞ = {lines in A∞}.

It has a natural ind-variety structure described by the filtration P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ · · · where Pn
is the subset of A∞ such that ai = 0 for i n+ 1 and has the n-dimensional projective space structure.

(vı) As in example (ııı) consider the polynomials k[A∞] but restrict yourself to homogeneous
polynomials. Then we may define a closed subset V (P ) of P∞ and thus an ind-variety.

(vıı) Any countable set X = {(xi)i∈N} has a structure of an ind-variety, simply define Xn =
{x0, · · · , xn} with the finite set algebraic structure.
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Lemma 20.1.6 (ı) Let f : Z → X be a continuous map between ind-varieties, then there exists, for
any n ∈ N, an integer m(n) such that f(Zn) ⊂ Xm(n).

(ıı) For a closed embedding g : X → Y , the map f : Z → X is a morphism (resp. a closed
immersion) if and only if the composition g ◦ f : Z → Y is.

Proof : (ı) Fix n and assume that there does not exist any m such that f(Zn) ⊂ Xm. Then there
exists an infinite sequence of points xmi

in g(Zn) ∩ (Xmi
⊂ Xmi−1 with the sequence mi increasing.

The set S = {xmi
} is closed (its intersection with the Xn is finite). Let us denote by fn the restriction

of f to Zn. Because f is continuous, the same is true of fn and we get that f−1n (S) is closed. It is an
algebraic variety. Consider the map fS : f−1n (S) → S. It is continuous. The points xmi

are open and
closed in S and the same is true for f−1S (xmi

) in f−1n (S). But these sets are non empty thus f−1n (S)
has infinitely many connected components which is absurd being an algebraic variety.

(ıı) It follows from the same properties for algebraic varieties and the point (ı). �

Corollary 20.1.7 (ı) Let X be an ind-variety and Z a closed subset of X. The only ind-variety
structure on Z making the inclusion a closed embedding is the induced ind-variety structure.

(ıı) For a closed embedding f : Z → X the ind-variety Z is isomorphic to the closed subvariety
f(Z) in X.

(ııı) Let Z be a closed subset in an ind-variety X and U an open subset in X. Then there is a
canonical ind-variety structure on Z ∩ U . Such a sub-ind-variety of X in called a locally closed
ind-subvariety of X.

Definition 20.1.8 Let H be an algebraic group and X an ind-variety together with an action of H
on X. If the action morphism H × X → X is an ind-variety morphism then we say that X is an
ind-H-variety.

Definition 20.1.9 (ı) Let X be an ind-variety. For any x ∈ X we define the Zariski tangent space
Tx,X of X at x by

Tx,X = lim
→
Tx,Xn .

This is well defined because x ∈ Xn for n large enough.

(ıı) A morphism f : X → Y induces a linear map dfx : Tx,X → Tf(x),Y called the derivative of f
at x.

Fact 20.1.10 (ı) Let f : X → Y and g : Y → Z be two morphisms of ind-varieties, then we have
d(g ◦ f)x = dgf(x) ◦ dfx.

(ıı) An isomorphism of ind-varieties induces an isomorphism on the tangent spaces.

20.2 Vector bundles on ind-varieties

Definition 20.2.1 (ı) Let X be an ind-variety, an ind-vector bundle of rank r on X is an ind-
variety E together with an ind-morphism π : E → X such that the maps πn : En → Xm(n) are vector
bundles of rank r. If the rank is one, the E is called an ind-line bundle.

(ıı) Morphism of ind-vector bundles between π : E → X and π′ : E′ → X is a morphism of
ind-varieties f : E → E′ such that π = π′ ◦f and the map on the fibers is linear. This defines a notion
of isomorphisms of vector bundles.

(ııı) We denote by Pic(X) and call it the Picard group of X the group of ind-line bundles on X
modulo isomorphism. It is an abelian group under the tensor product.
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(ıv) Let P be an algebraic group. A principal P -ind-bundle over X is an ind-variety E together
with an ind-morphism π : E → X such that the maps πn : En → Xm(n) are P -principal bundles.

(v) Let H an algebraic group and X an ind-H-variety, then an ind-vector bundle π : E → X is
H-equivariant if E is also an ind-H-variety and the diagram

H × E //

��

E

��
H × Y // Y

and for h ∈ H the induced map on the fibers is linear.
(vı) For an ind-vector bundle π : E → X over an ind-variety X, we define

H i(X,E) = lim
←
H i(Xn, E|Xn)

where the inverse system is defined by the pull-back along the canonical inclusion Xn → Xn+1. It is
easily checked that H0(X,E) identifies with the space of algebraic sections of π.

(vıı) Assume that E is an ind-H-equivariant vector bundle, then the group H i(X,E) is naturally
an H-module for all i.

(vııı) More generally, let π : E → X be a vector bundle and let H be a group acting on E and X
such that π is H equivariant. Assume that

• for all h ∈ H, the action of h on E and X is algebraic;

• for all x ∈ X and h ∈ H, the map π1(x) → π−1(h · x) defined by h is linear;

then the cohomology group H i(X,E) has a natural structure of H-module defined explicitly for
H0(X,E) by:

(h · σ)x = h · σ(h−1x), for x ∈ X and σ ∈ H0(X,E).

Example 20.2.2 (ı) As for algebraic variety, the product X × V of an ind-variety X with a vector
space V is called a trivial ind-vector bundle on X of rank r = dimV .

(ıı) Let π : E → X be an ind-vector bundle and f : Y → X be a morphism of ind-varieties, then
we may define

f∗E = {(y, e) ∈ Y × E / f(y) = π(e)}.
It is a closed subset of the product Y × E and thus has a natural ind-variety structure. We have
a natural ind-variety morphism f∗π : f∗E → Y defined by the projection on the first factor. This
endows f∗E with an ind-vector bundle structure on Y .

(ııı) Let V be a countable dimension vector space, and define

LV = {(x, v) ∈ P(V )× V / v ∈ x} ⊂ P(V )× V.

It is an ind-variety and there is a natural ind-variety morphism LV → P(V ). This is an ind-line bundle
on P(V ) called the tautological line bundle on P(V ).

(ıv) The product of two ind-vector bundles π : E → X and π′ : E′ → X ′ is again an ind-vector
bundle E × E′ → X ×X ′. If X = X ′ and ∆ : X → X ×X is the diagonal embedding, then the pull
back ∆∗(E × E′) → X is called the Withney sum or direct sum of E and E′ and denoted by
E ⊕E′.

(v) If E → X and E′ → X are two ind-vector bundles, then we may define the tensor product
of ind-vector bundles E ⊗ E′ → X simply by taking the tensor products En ⊗ E′n of algebraic vector
bundles on the algebraic variety Xn and then take the direct limit.

(vı) Let X be an ind-variety with filtration (Xn)n∈N and assume there exists for all n ∈ N an ind-
vector bundle En → Zn together with an isomorphism En → En+1|Zn , then there exists an ind-vector
bundle E whose defining filtration is given by the En (take the direct limit of the En).
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20.3 Regular action of a pro-group and construction of fibrations

Definition 20.3.1 (ı) Let (H,F) be a pro-group acting on an ind-variety X. We say that the action
is regular if for all n ∈ N, there exists m ∈ N and N ∈ F such that

• H ·Xn ⊂ Xm,

• the action of N on Xn is trivial and

• the induced action H/N ×Xn → Xm is algebraic.

In this situation we call X an ind-H-variety.
(ıı) An ind-vector bundle π : E → X over X is called H-equivariant if E is an ind-H-variety

such that π is H-equivariant and for any x ∈ X and h ∈ H the induced map π−1(x) → π−1(h · x) is
linear.

Lemma 20.3.2 Let (H,F) be a pro-group and (H ′,F′) a pro-subgroup of H such that

for all N ′ ∈ F′, there exists N ∈ F such that N ⊂ N ′. (‡)

(ı) Then for any regular action of H ′ on a (quasi-projective) variety X, the set X ′ = H ×H′
X

carries a structure of variety such that the left action of H on X ′ is regular.
In particular H/H ′ is a variety such that the action of H is regular.
(ıı) The canonical map p : X ′ → H/H ′ is an H-equivariant isotrivial (i.e. trivial in the étale

topology) fibration with fiber X. In particular X ′ is smooth as soon as X is.

Proof : Choose N ′ ∈ F′ such that the action of H ′ factors through an action of H ′/N ′. Then choose
N ∈ F with N ⊂ N ′. We have X ′ = H/N ×H′/N ′

X and the result follows from the same result on
algebraic groups. We easily check that the structure of variety does not depend on the choices of N ′

and N . �

Example 20.3.3 Let X be a subset in Π of finite type and X ′ ⊂ X. Then H = PX and H ′ = PX′

satisfy the condition (‡) because of the following fact:

Fact 20.3.4 Let X ⊂ Π and X ′ ⊂ Π with X ′ of finite type. Let k′ be a non negative integer, then
there exists a non negative integer k such that

UPX
(k) ⊂ UPX′ (k

′).

Proof : Assume this is not true, then there exists an infinite sequence of roots (βr)r∈N ∈ ∆+ \∆X

such that htX(βr) ≥ r but htX′(βr) ≤ k′ − 1. This gives an infinite sequence of weights for the finite
dimensional space ⊕

htX′(α)≤k′−1

gα.

This is a contradiction. �

In particular, the quotient PX/PX′ is a variety, in particular PX/B is a variety. It is even a
projective variety because it is isomorphic to GX/PX′,X where PX′,X = PX′ ∩ GX is a parabolic
subgroup of GX .

Corollary 20.3.5 For any simple root α ∈ Π, the quotient Pα/B ≃ Gα/Bα is isomorphic to P1.
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Chapter 21

Bott-Samelson and Schubert varieties

In this chapter, we define an ind-variety structure on the quotient G/P for any parabolic subgroup P
of the Kac-Moody group G.

21.1 Injection as an orbit

Definition 21.1.1 (ı) Let λ be a weight in CZ and let V be an integrable highest weight module
of highest weight λ and highest weight vector vλ. Then we define the map iV : G → P(V ) by
iV (g) = [g · vλ].

(ıı) For X a subset of Π, we define the set C0
X of X-regular dominant totally integral weights

or regular X-weights by

C0
X = {λ ∈ CZ / 〈λ, α∨i 〉 = 0 iff i ∈ X}.

Lemma 21.1.2 For λ ∈ C0
X , and V an integrable highest weight module of highest weight λ, the map

iV : G→ P(V ) factors through G/PX and the induced map is injective.

Proof : It suffices to prove that the stabiliser is PX . Because V is integrable, we get that B and
all the elements s̃i for i ∈ X have a trivial action thus PX is contained in the stabiliser. Because λ
is X-regular, we obtain that s̃j is not in this stabiliser for j 6∈ X. Now we conclude thanks to the
following classical lemma on Tits systems. �

Lemma 21.1.3 Let (G,B,N, S) be a Tits system, then
(ı) for any reduced decomposition w = s1 · · · sp with si ∈ S, we have that C(si) for i ∈ [1, p] is

contained in the group < C(w) > generated by C(w) in G and < B,wBw−1 >=< C(w) >.
(ıı) For X and X ′ be two subsets of S, we have PX = PX′ if and only if X = X ′. Furthermore,

for any group P containing B, there exists X such that P = PX .

Proof : (ı) We will abuse notation and denote by v an element in W and any of its representative
in N . We have < B,wBw−1 >⊂< C(w) > since w ∈ C(w) and wB ⊂ C(w). Furthermore, we have
< C(w) >⊂< C(s1), · · · , C(sp) >. To prove (ı) we only have to prove the inclusion

< C(s1), · · · , C(sp) >⊂< B,wBw−1 > .

We prove this by induction on the length. It is clear for ℓ(w) = 0. We have ℓ(s1w) < ℓ(w)
implying the inclusion C(w) ⊂ C(s1) · C(w). In particular, we have w = b1s1b2wb3 for bi ∈ B and we
get s1 ∈< B,wBw−1 >. This implies the inclusion

< B, s1wBw
−1s1 >⊂< B,wBw−1 > .
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But by induction we have < C(s2), · · · , C(sp) >⊂< B, s1wBw
−1s1 > and the proof follows (s1 and

B are also in the right hand side).
(ıı) Because of the Bruhat decomposition, PX = PX′ if and only if WX = WX′ . To prove that

WX =WX′ if and only if X = X ′, we only need to prove that X ∩WX′ ⊂ X ′.
Let s ∈ X ∩WX′ and write s = s1 · · · sp for si ∈ X ′. We thus have ss1 · · · sp = 1. But any relation

containing s contain it twice (from the definition of Coxeter systems) hence there exists i with s = si
and s ∈ X ′.

Let P be a subgroup containing B, it is left and right B-invariant and we may write

P =
∐

w∈W ′

BwB

for some subsetW ′ of W . Let us prove thatW ′ =< W ′∩S >. Indeed, write w = s1 · · · sp with si ∈ S.
By (ı) we have < C(w) >⊃ C(si) thus C(si) ⊂ P and si ∈W ′. In particular we haveW ′ ⊂< W ′∩S >.
Conversely P being a group we have s ∈ P for s ∈ S∩W ′ thus w ∈ P for w ∈< W ′∩S > and w ∈W ′.
�

21.2 Bott-Samelson resolution

Let W be the set of all the ordered sequences w = (sα1 , · · · , sαn) of simple reflections for any n ∈ N

(the roots αi are simple roots i.e. elements in Π).

Definition 21.2.1 For any w ∈ W, with w = (sα1 , · · · , sαn), we define the Bott-Samelson variety
Zw by:

Zw = (Pα1 × · · · × Pαn)/(B × · · · ×B)︸ ︷︷ ︸
n factors

,

where the right action of Bn on Pα1 × · · · × Pαn is given by

(p1, · · · , pn) · (b1, · · · , bn) 7→ (p1b1, b
−1
1 p2b2, · · · , b−1n−1pnbn).

We shall denote the Bn-orbit of (p1, · · · , pn) by [p1, · · · , pn]. For n = 0, we set Zw = {pt}.

Remark 21.2.2 For the moment the Bott-Samelson “variety” is only a set, we shall give it a structure
of variety later on.

Definition 21.2.3 (ı) We define a partial order on W by setting v ≤ w if v can be obtained from w

by removing elements in the sequence. In other words, if w = (sα1 , · · · , sαn), then v = (sαj1
, · · · , sαjr

)
where 1 ≤ j1 < · · · < jr ≤ n. Note that there may be different subsequences of w defining the same
element v.

(ıı) The length of a word w = (sα1 , · · · , san) is n and denoted ℓ(w). We have a natural map
π : W →W sending w to w = sα1 · · · sαn . The word w is called reduced if ℓ(w) = ℓ(w).

(ııı) For two words w = (sα1 , · · · , sαn) and v = (sαn+1 , · · · , sαm) we define their concoction w ∗ v
by w ∗ v = (sα1 , · · · , sαm).

(ıv) For w ∈ W of the form w = (sα1 , · · · , sαn) and J a subset of [1, n], we denote by wJ the
subword of w obtained by wJ = (sαi

)i∈J .

We have the following easy fact:

Fact 21.2.4 For a subword v = wJ of w, there is a natural inclusion iv,w : Zv → Zw defined by
iv,w([(pj)j∈J ]) = [p1, · · · , pn] where pi = 1 for i 6∈ J .



21.2. BOTT-SAMELSON RESOLUTION 201

Definition 21.2.5 We define the subset Z0
w in Zw by

Zw0 = {[p1, · · · , pn] ∈ Zw / pi ∈ Bsαi
B}.

A direct application of the Bruhat decomposition yields the following:

Fact 21.2.6 We have the following decomposition

Zw =
∐

iv,w(Z
0
v )

where v runs over all the subwords of w.

To put a variety structure on Zw we need the following lemma which is a direct consequence of
Fact 20.3.4:

Lemma 21.2.7 Let w = (sα1 , · · · , sαn) be a word and let kn be a non negative integer, then there
exist non negative integers k1, · · · kn−1 such that the following holds:

UPα1
(k1) ⊂ UPα2

(k2) ⊂ · · · ⊂ UPαn
(kn). (†)

Let k = (k1, · · · , kn) be a sequence of integers satisfying the condition (†) of the previous lemma,
we define the quotient

Pw/Uw(k) = Pα1/Uα1(k1)× · · ·Pαn/Uαn(kn).

Fact 21.2.8 (ı) There exists a map θw,k : Pw/Uw(k) → Zw defined by θw,k(p̄1, · · · , p̄n) = [p1, · · · , pn].
(ıı) The group Bn/Uw(k) = B/Uα1(k1)× · · · ×B/Uαn(kn), acts on Pw/Uw(k) via

(p̄1, · · · , p̄n) · (b̄1, · · · , b̄n) 7→ (p1b1, b
−1
1 p2b2, · · · , b−1n−1pnbn).

(ııı) Any fiber of the map θw,k is an orbit under Bn/Uw(k) and the action of Bn/Uw(k) on Pw/Uw(k)
is free.

Proof : (ı) The map is well defined because of the definition of Zw, of the fact that U is contained in
B and because of condition (†).

(ıı) Because UPαi
is normal in Pαi

for all i, the action is well defined.
(ııı) The fact that the fiber is an orbit is clear from the definition. The second assertion follows by

an easy induction. �

Proposition 21.2.9 (ı) The set Zw has a natural structure of variety. For this structure, it is irre-
ducible, smooth and the left action of Pα1 given by multiplication on the first factor is regular.

(ıı) For any sequence k satisfying (†), the map θw,k : Pw/Uw(k) → Zw is a Zariski locally trivial
Bn/Uw(k)-bundle.

Proof : (ı) We prove this by induction on ℓ(w). For ℓ(w) = 0, then Zw is a point and the variety
structure is clear. Take w = (sα1 , · · · , sαn) and set v = (sα2 , · · · , sαn). Then we have a natural map

Pα1 ×B Zv → Zw

defined by (p1, [p2, · · · , pn]) 7→ [p1, · · · , pn]. This is well defined and it is easy to see that it is a
bijection. By induction, we have a variety structure on Zv such that the action of Pα2 and hence of
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B is regular. We deduce, by Lemma 20.3.2, that Zw has a variety structure such that it is smooth
irreducible with a regular action of Pα1 .

(ıı) We prove by induction that the map is a mophism. For this let w and v as before and set
k′ = (k2, · · · , kn) for k(k1, · · · , kn) satisfying (†). Remark that k′ satisfies (†). By induction, the map
θv,k′ : Pv/Uv(k

′) → Zv is a morphism. Remark also that θw,k is given by the composition

Pw/Uw(k) = Pα1/Uα1(k1)× Pv/Uv(k
′) → Pα1/Uα1(k1)× Zv → Zw.

The first map is a morphism. The last one is obtained as restriction to Zv of the natural action of
Pα1/Uα1(k1) on Zw. But by (ı) this action is regular thus there exists k′1 ≥ k1 (i.e. Uα1(k

′
1) ⊂ Uα1(k1))

such that Uα1(k
′
1) acts trivially on Zw and the induced action Pα1/Uα1(k

′
1) is algebraic. But by

condition (†), the action of Uα1(k1) is already trivial and we have the commutative diagram:

Pα1/Uα1(k
′
1)× Zw

//

����

Zw

Pα1/Uα1(k1)× Zw

77♦♦♦♦♦♦♦♦♦♦♦♦♦

implying that the action is a morphism and thus θw,k is a morphism.
Remark that Pw/Uw(k) = Pα1/Uα1(k1) × Pv/Uv(k

′). Let us consider the following sequence of
morphisms:

Pw/Uw(k) → Pα1 ×Uα1 (k1) Pv/Uv(k
′) → Pα1 ×B Pv/Uv(k

′) → Pα1 ×B Zv = Zw.

where the first morphism is defined by (p̄1, · · · , p̄n) 7→ (p1, p̄2, · · · , p̄n) and is an isomorphism because
Uα1(k1) is normal in Pα2 . The second map is isotrivial because Pα1/Uα1(k1) → Pα1/B is Zariski
locally trivial (we only need to check this in the finite dimensional group Gα1 ⋉ Uα1/Uα1(k1)) and
because the fibration above them are isotrivial. By induction the last map is an isotrivial fibration
and the fibers are the product of the fibers of these two maps.

Let us prove that the fibration is trivial for the Zariski topology. For this we first prove that the
sets Zw(a) are open. We do this by induction, for a = (a1, · · · , an) set a′ = (a2, · · · , an). Then consider
the map:

f : a1U−α1B/Uα1(k1)× Pw′/Uw′(k′) → Pw′/Uw′(k′)

defined by f(a1ub, p̄2, · · · , p̄n) 7→ (bp2, p̄3, · · · p̄n) with u ∈ U−α1 , b ∈ B and pi ∈ Pαi
for i ∈ [2, n].

Denote by θ′ the map Pw′/Uw′(k′) → Zw′ , then we have θ−1(Zw(a)) = f−1(θ′−1(Zw′(a′)) and by
induction we get that θ−1(Zw(a)) is open. But θ is locally trivial in the étale topology with smooth
fibers, thus θ is smooth and thus open and Zw(a) is open.

Now consider the map θa : (a1Uα1) × · · · × (anUαn) → Zw defined as the restriction of θ. This
map is injective with image Zw(a). But Zw(a) is open in Zw which is smooth thus it is smooth and
a bijective morphism is an isomorphism thus θa is an isomorphism and its inverse is a section of θ on
Zw(a).

Let us prove the local triviality of θ on Zw(a). The multiplication

(a1Uα1)× · · · × (anUαn)×Bn/Uw(k) → θ−1(Zw(a))

is an isomorphism and the following commutative diagram

(a1Uα1)× · · · × (anUαn)×Bn/Uw(k) //

**❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱

θ−1(Zw(a))

θ
��

Zw(a)
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concludes the proof. �

Corollary 21.2.10 Let w ∈ W with w = (sα1 , · · · , sαn), v = (sα2 , · · · , sαn) and u = (sα1 , · · · , sαn−1).
(ı) The canonical projection Zw → Pα1/B ≃ P1 is a Zariski locally trivial fibration in Zv.
(ıı) The map ψ : Zw → Zu defined by ψ([p1, · · · , pn]) = [p1, · · · , pn−1] is a Zariski locally trivial

P1-fibration. The map σ : Zu → Zw defined by σ([p1, · · · , pn−1]) = [p1, · · · , pn−1, 1] is a section of this
fibration.

(ııı) The variety Zw is projective.
(ıv) For any subword t of w, the inclusion it,w : Zt → Zw is a closed immersion.

Proof : Let r ∈ [1, n] and define wr = (sα1 , · · · , sαr) and w
r = (sαr+1 , · · · , sαn). We first prove that

the natural maps ψr : Zw → Zwr and ψr : Zw → Zwr are morphisms. Let k = (k1, · · · , kn) satisfying
(†) and set kr = (k1, · · · , kr) and kr = (kr+1, · · · , kn). Consider the commutative diagrams

Pw/Uw(k) //

��

Pwr/Uwr (kr)

��
Zw

// Zwr

Pw/Uw(k)(k
r) //

��

Pwr/Uwr

��
Zw

// Zwr .

In these diagrams, the first line horizontal arrows are clearly morphisms while the vertical arrows are
Zariski locally trivial. The horizontal maps of the second line are thus morphisms by first taking a
section of the first column, composing with the horizontal map of the first line and and then composing
by the second column projection.

(ı) To prove that this map (which is now a morphism) is a Zariski locally trivial fibration in Zv,
we consider the first commutative diagram with k = 1. We have Zw1 = Pα1/B and the morphism is
ψ1. But now locally, the vertical maps and the composed map Pw/Uw(k) → Zv are respectively locally
trivial fibrations in Bn/Uw(k), in B/Uw1(k1) and in B/Uw1(k1)× Pwr/Uwr (kr). This implies that the
horizontal map is a Zariski locally trivial fibration with fibre (B/Uw1(k1)×Pwr/Uwr(kr))/(Bn/Uw(k)).
This last quotient is (Pwr/Uwr(kr))/(Bn−1/Uwr (kr)) ≃ Zwr = Zv.

(ıı) The same method as in (ı) gives the result.
(ııı) The variety Zw is a sequence of P1-fibrations and hence is projective.
(ıv) The same method as in the beginning of the proof shows that it,w is a morphism. Indeed, we

have the following commutative diagram

Pt/Ut(kt) //

��

Pw/Uw(k)

��
Zwt

// Zw

where kt is the restriction of the sequence k to the indices in t. We define the morphism structure by
taking sections of the left hand side vertical map. Furthermore, by (ııı), its image Z is closed in Zw

and we need to prove that the inverse (defined on Z) is a morphism. However, the restriction to Z of
the previous diagram is

Pt/Ut(kt)

��

Z ′

��

oo❴ ❴ ❴

Zwt
// Z

where Z ′ is the inverse image of Z. In particular Z ′ is the product of the quotient Pαi
/Uαi

(ki) for i
an index in t and B/Uαi

(ki) otherwise. In particular on the first line we may define a horizontal map
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(morphism) from the right to the left by sending B/Uαi
(ki) to the point {e} for i not an index in t.

By taking sections of the second vertical map, this defines the desired inverse morphism. �

Definition 21.2.11 (ı) Define the map mw : Zw → G/B by mw([p1, · · · , pn]) = p1 · · · pnB.

(ıı) For X ⊂ Π, we define the map mX
w by composing mw with the projection G/B → G/PX .

21.3 Schubert varieties

Let us recall some fact on Coxeter groups.

Definition 21.3.1 Let (W,S) be a Coxeter group and recall the definition of T given by

T =
⋃

w∈W

wSw−1.

We define the following order on W by setting v ≤ w if there exists a sequence (t1, · · · , tp) of elements
in T such that

• v = tp · · · t1w

• ℓ(tj · · · t1w) ≤ ℓ(tj−1 · · · t1w) for all j ∈ [1, p].

This is the order generated by the relation v < w with ℓ(w) = ℓ(v) + 1 and vw−1 ∈ T . This order is
called the Bruhat-order of (W,S).

Let us also state some general facts on Coxeter systems that we shall need. Those can be found
in [Bo54], in [BB05] or in [Ku02].

Lemma 21.3.2 Let (W,S) be a Coxeter system, fix w = s1 · · · sn a reduced expression, then v ≤ w
(for the Bruhat order) if and only if there exists a sequence 1 ≤ j1 ≤ · · · ≤ jr ≤ n with v = sj1 · · · sjr .

Definition 21.3.3 For X ⊂ S we define the subset WX of w BY

WX = {w ∈W / ℓ(wv) ≥ ℓ(w) for all v ∈WX}.

This is the set of minimal length representatives in the coset wWX .

Lemma 21.3.4 (ı) Let w ∈WX, then for any v ∈WX we have ℓ(wv) = ℓ(w) + ℓ(v).

(ıı) For w ∈ W , there exists a unique element in wWX ∩WX , in words, there exists a unique
minimal length representative of wWX in WX .

(ııı) For w ∈W , let w′ be the unique minimal length representative of wWX in WX . The for any
v ∈W we have

v ≤ w ⇔ v′ ≤ w′.

(ıv) Let v ≤ w in W and s ∈ S, then we have the two alternatives

• either sv ≤ w or sv ≤ sw;

• either v ≤ sw or sv ≤ sw.
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Proposition 21.3.5 Let w ∈ W and set w = π(w) ∈W . We have the following decompositions:

im(mw) =
∐

v≤w

BvB/B.

If furthermore w ∈WX for X ⊂ Π, then we have

im(mX
w ) =

∐

v≤w, v∈WX

BvPX/PX .

Proof : This is a result on Tits systems.

Lemma 21.3.6 Let (G,B,N, S) be a Tits system, let X ⊂ S and let w = w1 · · ·wk such that ℓ(w) =∑
i ℓ(wi).
(ı) Let Ai be a subset in C(wi) such that Ai → C(wi)/B is bijective (resp. surjective) for all i,

then the map
A1 × · · · ×Ak → BwPX/PX

defined by (a1, · · · , ak) 7→ a1 · · · ak (mod P ) is bijective (resp. surjective).
(ıı) Assume wi ∈ S and let Zi ⊂ Pwi

be a subset containing e and such that the map Zi → Pwi
/B

is surjective for all i, then the image of the map Z1 × · · · × Zk → G/PX is
⋃

v≤w

BvPX/PX .

Proof : (ı) The image of this map is C(w1) · · ·C(wk) (mod PX). But because the length are additive,
we have C(w) = C(w1) · · ·C(wk) and the surjectivity follows.

Assume we have elements ai, a
′
i ∈ Ai with a1 · · · ak = a′1 · · · a′k (mod PX). Then there exists p ∈ PX

with a1 · · · ak = a′1 · · · a′kp. But p ∈ C(v) with v ∈ WX and the left hand side is in C(w) while the
right hand side is in C(wv) (by the previous lemma). This is possible only if v = 1 i.e. p ∈ B.

Take a reduced decomposition w1 = s1 · · · sn and choose Dj ⊂ C(sj) such that the induced map
Dj → C(sj)/B is bijective. There exist elements di and d

′
i in Di and b, b

′ in B such that

a1 = d1 · · · dnb and a′1 = d′1 · · · d′nb′.
We get

(d′1)
−1d1 · · · dnba1 · · · ak = d′2 · · · d′nb′a′2 · · · a′kp.

Now (d′1)
−1d1 lies in C(c1) ·C(s1) ⊂ C(s1)∪B. In this element is in C(s1), then the left hand side of

the previous equality lies in C(s1) · · ·C(sn)C(w2) · · ·C(wk) = C(w) while the right hqnd side lies in
C(s1w) a contradiction. Hence (d′1)

−1d1 ∈ B and thus d1 = d′1 by our hypothesis on D1. By induction
we get that di = d′i for all i and aj = a′j for all j.

(ıı) We can assume that Zi = {e} ∪ Ai where Ai ⊂ C(wi) with Ai → C(wi)/B surjective. Then
the image of the map is ⋃

C(wi1) · · ·C(wir)PX (modPX)

where the union runs over all 1 ≤ i1 < · · · ir ≤ k. But we have (use the characterisation of the Bruhat
order for the last inclusion)

⋃
C(wi1 · · ·wir) ⊂

⋃
C(wi1) · · ·C(wir) ⊂

⋃

v≤w

C(v).

Using again the characterisation of the Bruhat order, we have equality and the result follows. �

The image of mX
w is the same as the image of the multiplication from Pw/Uw(k) and we apply the

previous lemma. �
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Proposition 21.3.7 Let V be a countable dimensional pro-representation of G. Let [v] be a B-fixed
line in P(V ), then the map mw(v) : Zw → P(V ) defined by x 7→ mw(x) · [v] is a morphism of ind-
varieties.

Proof : Let Pi be a minimal parabolic subgroup and W a finite dimensional subspace of V . Then
there exists a Pi-stable finite dimensional subspace W ′ of V and an integer k such that Ui(k) acts
trivially on W ′ and the action of Pi/Ui(k) on W ′ is algebraic. An easy induction gives that there
exists a finite dimensional subspace W ′′ stable under Pw, such that the subgroup Uw(k) acts trivially
and such that the action of Pw/Uw(k) is algebraic. We thus proved that the map defined by the action
of Pw/Uw(k) is an ind-variety morphism and the result follows from the fact that θ is Zariski-locally
trivial. �

Definition 21.3.8 (ı) For X ⊂ Π and w ∈WX , we define the Schubert variety XX
w ⊂ G/PX by

XX
w =

∐

v≤w, v∈WX

BvPX/PX .

(ıı) For w ∈ W , we define XX
w = XX

w′ where w′ ∈ WX is the minimal length representative of w.
We have

XX
w =

⋃

v≤w

BvPX/PX .

(ııı) We define XX = G/PX .
(ıv) For n ∈ N, we define the set XX

n in XX by:

XX
n =

⋃

w∈WX , ℓ(w)≤n

XX
w =

∐

v∈WX , ℓ(v)≤n

BvPX/PX .

(v) When X = ∅ we omit X in the notation.

Remark 21.3.9 For the moment the Schubert varieties are only defined as sets.

Fact 21.3.10 We have the inclusion XX
v ⊂ XX

w for v ≤ w.

Let us fix λ ∈ C0
X and take V to be the maximal irreducible highest weight module of weight λ.

Denote by vλ its highest weight and by mλ
w the map mw(vλ).

Fact 21.3.11 We have mλ
w = mX

w ◦ iλ where iλ is the inclusion of G/PX in P(V ).

In particular, we have that im(mλ
w) = iλ(X

X
w ), thus by the previous proposition (and the fact that

Zw is projective) the set iλ(X
X
w ) is closed in P(V ) and even closed in a subspace P(W ) with W of

finite dimension. The same is true for iλ(X
X
n ). We put the induced reduced structure of algebraic

variety on iλ(X
X
w ) and iλ(X

X
n ).

Definition 21.3.12 We denote by XX
w (λ) and XX

n (λ) the associated structures of algebraic varieties
on the sets XX

w and XX
n .

Fact 21.3.13 These varieties are projective and irreducible.

Definition 21.3.14 We define the ind-variety structure XX(λ) on the set XX as the one defined by
the filtration (XX

n (λ))n∈N.
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Fact 21.3.15 The inclusion iλ is a closed embedding.

We now want to prove that these algebraic variety structures defined on XX
w and depending a

priori on λ do not depend on it, at least for λ big enough (for an appropriate order). Let us first
consider a generalisation of the Segre embedding. The proof of the following lemma is straightforward.

Lemma 21.3.16 Let V and W be two countable-dimensional vector spaces. Then the Segre map
P(V )× P(W ) → P(V ⊗W ) defined by ([v], [w]) 7→ [v ⊗w] is a ind-varieties closed embedding.

Let us now prove the following:

Proposition 21.3.17 Fix w a reduced word and set w = π(w). Assume that w ∈WX .
(ı) The morphism mX

w : Zw → XX
w (λ) is a surjective birational map for all λ ∈ C0

X . More precisely,
m0

w is an isomorphism between the open subsets Z0
w and mX

w (Z0
w).

(ıı) We have mw(Z
0
w) = BwPX/PX and XX

w (λ) = BwPX/PX where the closure is taken with
respect to the Zariski topology in P(V (λ)).

(ııı) For any n ≥ 0, the Zariski topology on XX
n (λ) (and hence on Xw(λ)) does not depend on λ.

(ıv) For λ ∈ C0
X and µ ∈ CZ such that 〈µ, α∨〉 = 0 for α ∈ X, the identity map Xn(λ+µ) → Xn(λ)

(and in particular the identity map Xw(λµ) → Xw(λ) is a morphism).
(v) The composition

XX(λ+ µ) → XXµ(µ) → P(Lmax(µ))

where Xµ = {α ∈ Π, 〈µ, α∨〉 = 0} and Lmax(µ) is the maximal highest weight module of highest
weight µ is a morphism.

(v) If g is symmetrisable, the morphisms in point (ıv) are isomorphisms.

Proof : Write w = (sα1 , · · · , sαn) which is reduced.
(ı) For any subword v = wJ of w, the map iv,w is a closed embedding. In particular, the set Z0

w,
which is the complementary of all these closed embedding, is open. Furthermore, let us prove that

mX
w (Zw \ Z0

w) ∩mX
w (Z0

w) = ∅.

Indeed, let [p1, · · · , pn] ∈ Z0
w, then for all i, we have pi ∈ C(sαi

). Because w is reduced, we get
that mX

w [p1, · · · , pn] = p1 · · · pn ∈ C(sα1) · · ·C(sαn) = C(w). For [q1, · · · , qn] ∈ Zw \ Z0
w, we get that

mX
w [q1, · · · , qn] ∈ C(u) for some u < w and the result follows. This intersection proves that mX

w (Z0
w)

is open in XX
w (λ).

Furthermore, the restriction Z0
w → BwPX/PX of the map mX

w is bijective by Lemma 21.3.6. But
because the action of B on XX

w (λ) is regular and because BwPX/PX is an orbit under B, we have
that BwPX/PX is smooth. This bijection (which is a morphism) is thus an isomorphism.

(ıı) Let us denote V = Lmax(λ), W = Lmax(µ) and U = Lmax(λ + µ). Consider the g-module
morphism f : U → V ⊗W defined by vλ+µ 7→ vλ ⊗ vµ where vλ, vµ and vλ+µ are highest weight
vectors for V , W and U . The morphism f is also a G-morphism. Let K be the kernel of f , we get a
morphism P(U) \P(K) → P(V ⊗W ). We may consider the injection iλ+µ : XX → P(U). Let us prove
that its image is contained in P(U) \ P(K). Indeed, the vector vλ+µ is not contained in the kernel K
and since the map is G-equivariant and the image is the orbit of that vector, the result follows. We
thus have the following commutative diagram:

XX(λ+ µ)
iλ+µ //

(fλ,fµ◦σ)

��

P(U) \ P(K)

f

��
P(V )× P(W ) // P(V ⊗W ),
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where σ : G/PX → G/PXµ is the natural projection. Since f and iλ+µ are morphisms and since the
Segre embedding is a closed immersion, we get by Lemma 20.1.6 that (fλ, fµ ◦ σ) is also a morphism.
In particular, fλ : XX(λ+µ) → P(V ) is a morphism but it is given as the composition of the identity
XX(λ+ µ) → XX(λ) with iλ which is a closed immersion. Again by Lemma 20.1.6, we get that the
identity XX(λ + µ) → XX(λ) is a morphism. By restriction we obtain the result for XX

n (λ) and
XX
w (λ).

(ııı) In the symmetrisable case, the modules Lmax(λ) are irreducible. In particular f is injective and
K is the trivial module. We get that the induced map f : P(U) → P(V ⊗W ) is a closed embedding.
Let us consider the previous diagram with µ = λ. In that case we get:

XX(λ)
gλ //

(iλ,iλ)

��

P(U) \ P(K)

f

��
P(V )× P(W ) // P(V ⊗W ),

where gλ is defined set theoretically by the map XX(2λ) → P(U) i.e. by i2λ. Since now f is a closed
embedding, Lemma 20.1.6 implies that gλ is a morphism. Thus the identity map XX(λ) → XX(2λ)
is a morphism and hence an isomorphism (by (ıı)). Now for µ as in the proposition, take k large
enough such that (2k − 1)λ−µ ∈ CZ. We have the maps XX(2kλ) → XX(λ+µ) → XX(λ) which are
morphisms are the composed map is an isomorphism. The result follows. �

Remark 21.3.18 In fact it is true that the morphisms in the point (ıv) in the previous theorem are
isomorphisms in the general situation. Indeed Kumar proved in [Ku89] that the map f : U → V ⊗W
is always injective even if the modules are not irreducible.

Definition 21.3.19 Let us define the partial order 4 on CZ by λ 4 µ if µ− λ ∈ CZ.

We get easily the following:

Corollary 21.3.20 (ı) For w ∈ WX fixed, there exists λ ∈ CZ such that for any µ < λ, the identity
XX
w (µ) → XX

w (λ) is an isomorphism.

(ıı) For n ≥ 0 fixed, there exists λ ∈ CZ such that for any µ < λ, the identity XX
n (µ) → XX

n (λ) is
an isomorphism.

We define an algebraic structure on Schubert varieties and on homogeneous spaces under G:

Definition 21.3.21 (ı) For w ∈ WX , choose λ ∈ C0
X large enough such that the identity map

XX(µ) → XX(λ) is an isomorphism for all µ < λ. We define the stable variety structure on XX
w

and denote it simply by XX
w to be the algebraic variety structure of XX

w (λ). In the same way we
define the stable variety structure on XX

n and denote it simply by XX
n .

(ıı) For all n the inclusion XX
n → XX

n+1 is a closed embedding and we may thus define the stable
ind-variety structure on XX to be the direct limit structure on XX .

Fact 21.3.22 (ı) For X ⊂ X ′ the natural map XX → XX′
is a morphism of ind-varieties.

(ıı) The action on XX of Pi induced by the action of G is regular for all i. We shall say that the
action of G is regular.
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Definition 21.3.23 For w ∈WX we define the opposite Schubert cell by Bw
X = U−wPX/PX and

the opposite Schubert variety by

Xw
X =

∐

v≥w, v∈WX

Bv
X .

We have the following results on the opposite Schubert varieties (which are infinite dimensional
but of finite codimension):

Proposition 21.3.24 (ı) For any w ∈WX , we have Bw
X = Xw

X .
(ıı) The T -fixed points (G/PX )T under the action of T via left multiplication are {ẇ}w∈WX where

ẇ = wPX .
(ııı) For v and w in WX , we have the equivalence:

XX
w ∩Xv

X 6= ∅ ⇔ v ≤ w.
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Chapter 22

Vector bundles on homogeneous spaces

22.1 Construction of some line bundles

Definition 22.1.1 (ı) Let λ ∈ C0
X , we define an algebraic line bundle L(−λ) on XX by pulling back

along iλ the tautological line bundle on P(Lmax(λ)).
(ıı) Let us define h∗X = {λ ∈ h∗Z / 〈λ, α〉 = 0 for α ∈ X}. We define LX(λ) for any λnh∗Z,X by

LX(λ) = LX(−λ1)∗ ⊗ LX(−λ2)

where λ = λ1 − λ2 with λ1 nd λ2 in C0
X . Because Pic(X) is an abelian group, this does not depend

on the decomposition of λ.
(ııı) For w ∈W , we denote by LXw (λ) the pull back of L(λ) to XX

w (λ).

Lemma 22.1.2 For λ and µ in C0
X , the line bundle LX(−λ)⊗LX(−µ) is isomorphic to LX(−λ−µ).

Proof : This follows from the first commutative diagram in the proof of Proposition 21.3.17 �

Fact 22.1.3 (ı) The group G acts on Lmax(λ). In particular it acts regularly on P(Lmax(λ)) and thus
on XX .

(ıı) Furthermore, G also acts on the tautological bundle over P(Lmax(λ)) and thus also on the line
bundle LX(λ) over XX . These action are regular.

(ııı) We may thus define a regular action of G on any line
bundle LX(λ) by tensor product of the actions.

Definition 22.1.4 For w ∈ W, we have a morphism mw : Zw → G/B = X. For any λ ∈ h∗Z we define
Lw(λ) to be the pull-back of L(λ) by mw.

22.2 Cohomology of certain line bundles

We need more notation on words.

Definition 22.2.1 Let w ∈ W be a word of length n with w = (sα1 , · · · , sαn) and let i be any integer
in [1, n]. Then we define w(i) = (sαi

, · · · , sai−1 , σαi+1 , · · · , sαn) and w[i] = sα1 , · · · , sαi).

We now that iw(i),w is a closed embedding whose image is an irreducible divisor on Zw. We
also know that the map Zw → Zw[i] is a smooth morphism (locally trivial with fiber Zv with v =
(sαi+1 , · · · , sαn)) and with a section iw[i],w.

211
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Proposition 22.2.2 For any w ∈ W of length n, the canonical line bundle KZw
of Zw is isomorphic

with the line bundle

Lw(−ρ)⊗ OZw

(
−

n∑

i=1

Zw(i)

)
,

where ρ is any element in h∗Z such that 〈ρ, α∨〉 = 1 for all simple coroots α∨.

Proof : We prove this by induction on ℓ(w). We shall use the following classical lemma:

Lemma 22.2.3 Let f : X → Y be a P1-fibration with a section σ. Denote by D the divisor σ(Y ).

(ı) We have the formula KX = f∗KY ⊗ OX(−2D)⊗ f∗σ∗OX(D).

(ıı) Assume there is a line bundle L on X of degree one on the fibers of f . Then we have

KX = f∗KY ⊗ OX(−D)⊗ L⊗ f∗σ∗L.

Proof : (ı) From the normal bundle exact sequence ) → TD → σ∗TX → ND,X →), we get that
the restriction of the relative canonical sheaf KX/Y to D is the conormal bundle N∨D,X . But this
conormal bundle in OX(D)|D = σ∗OX(D). We thus have σ∗KX/Y = σ∗OX(D). Let us tensor with
σ∗OX(2D). We get σ∗(KX/Y ⊗ OX(2D) = σ∗OX(D). But KX/Y is of degree −2 on the fibers of f
while OX(D) is of degree 1. In particular KX/Y ⊗ OX(2D) is of degree 0 on the fibers and comes
from Y . We thus have KX/Y ⊗OX(2D) = f∗σ∗(KX/Y ⊗OX(2D)). With the previous relation we get
KX/Y ⊗ OX(2D) = f∗σ∗OX(D) and the result follows.

(ıı) This follows from the fact that if L and L′ are two line bundles with the same degree on the
fibers of f , then L−1 ⊗ f∗σ∗L = (L′)−1 ⊗ f∗σ∗L′. Indeed, this is true because L′ ⊗L−1 is of degree 0
on the fibres thus L′ ⊗L−1 = f∗σ∗(L′ ⊗ L−1). �

Now look at the P1-fibration f : Zw → Zw(n) together with its section σ. Remark that the line
bundle Lw(ρ) is of degree one on the fibers so that we may apply the Lemma. Furthermore, we have
mw(n) = mw ◦ σ thus σ∗Lw(ρ) = Lw(n)(ρ) and the result follows. �

Definition 22.2.4 Let V be a B-module, then we can view V as a Bn module by projecting on the
last factor. Moreover, if the action of B is regular, then the same is true for the action of Bn. For
such a regular B-module, we define the vector bundle Lw(V ) on Zw by

Lw(V ) = Pw/Uw(k)×Bn/Uw(k) V.

We denote by Cλ the one dimensional representation of B such that U acts trivially and T acts by λ.

Proposition 22.2.5 Assume V to be finite dimensional.

(ı) The definition of Lw(V ) does not depend on the choice of k and is functorial in V . It is a vector
bundle over Zw. Moreover, Lw(•) is an exact functor.

(ıı) The vector bundle Lw(V ) has a regular action of Pα1 , in particular, for all i the cohomology
group H i(Zw,Lw(V )) is a finite-dimensional pro-representation of Pα1 .

(ııı) We have an isomorphism of line bundles Lw(Cλ) = Lw(−λ).

Proof : (ı) Because V is finite dimensional, we may assume that Uw(k) acts trivially on V and the
action of Bn/Uw(k) is algebraic. We get that this is a vector bundle over Zw (because Pw/Uw(k) → Zw

is locally trivial it is the case of Lw(V )). Furthermore, we have a Pα1-regular action. The exactness
of the functor is clear.
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To prove that this does not depend on k, we take another such sequence k′. Of course we may
assume that k′ ≥ k and denote by L′w(V ) the corresponding vector bundle. We have a commutative
diagram:

Pw/Uw(k
′) //

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

Pw/Uw(k)

��
Zw

from which we get a Pα1-equivariant commutative diagram:

L′w(V ) //

%%❏
❏❏

❏❏
❏❏

❏❏
❏

Lw(V )

��
Zw

which is an isomorphism on the fibers and the result follows.
(ıı) Follows from the previous proof.
(ııı) We start with λ ∈ CZ. We take k such that Uw(k) acts trivially on vλ and such that the action

of Pw/Uw(k) on vλ is algebraic with value in a finite dimensional sub-representation W of Lmax(λ).
We define a map

Lw(Cλ) → P(Lmax(λ))× Lmax(λ)

by (p̄1, · · · , p̄n, z) (modBn/Uw(k)) 7→ (mλ
w[p1, · · · , pn], p1 · · · pnzvλ). This induces a commutative dia-

gram:
Lw(Cλ) //

%%▲
▲▲

▲▲
▲▲

▲▲
▲

Lw(−λ)

��
Zw.

This gives an isomorphism of vector bundle for λ ∈ CZ. The result for general λ ∈ h∗Z follows from
the canonical isomorphism of vector bundles Lw(V ⊗W ) ≃ Lw(V )⊗ Lw(W ). �

We now need a Lemma on algebraic varieties:

Lemma 22.2.6 (ı) Let E be an H-equivariant vector bundle on a left H-variety Z and let π : X → Y
be a principal H-bundle. Then the H-equivariant vector bundle OX ⊗ E on X × Z descends uniquely
to a vector bundle Lπ(E) on X ×H Z.

(ıı) Assume furthermore that Z is projective and denote by p the projection X ×H Z → Y . Then
there is a canonical isomorphism of OY modules Rip∗(Lπ(E)) ≃ Lπ(H

i(Z,E)).

Proof : (ı) This is a descent argument. For a principal H-bundle f , the map f∗ from the set of
isomorphism classes of vector bundles on the base to H-equivariant vector bundles on the principal
bundle is a bijection. Applying this to p which is a principal H-bundle we get that Lπ(E) = (p∗)−1(E).
The construction of this bundle is simply given by the quotient E/H, the action being free because is
is already free on X.

(ıı) All the fibers of the map p are isomorphic to Z and the restriction of the vector bundle Lπ(E)
on any fiber is isomorphic to E. In particular the sheaf Rip∗Lπ(E) is locally free on Y . We have the
following commutative diagram

X × Z q
//

p1
��

X

π

��
X ×H Z

p
// Y
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where p is flat. By flat base chase we get π∗Rip∗Lπ(E) = Ri(p1)∗q
∗Lπ(E) = Ri(p1)∗(E). This sheaf

is the trivial sheaf H i(Z,E) ⊗ OX . By definition of Lπ(H
i(Z,E)) the result follows. �

By — by now classical — methods using the map Pw/Uw(k) → Zw we may using the previous
Lemma prove the following:

Lemma 22.2.7 Let w ∈ W and i ∈ [1, n], denote by ψ the morphism Zw → Zw[i] and let V be a
regular representation of B. For any j ≥ 0, the sheaf Rjψ∗Lw(V ) is canonically isomorphic to the
vector bundle Lw[i](H

j(Zv,Lv(V ))) where v = (sαi+1 , · · · , sαn).

Proof : Set H = B/Uαi
(ki). Set also L1 = Bi−1/Uw[i](i)(k[i](i)) and L2 = Bn−i/Uv(k

′). Set L =
L1 × {1} × L2. We consider the locally trivial H-bundle (Pw/Uw(k))/L → Zw (this follows from the
fact that Pw/Uw(k) → Zw is a locally trivial Bn/Uw(k)-bundle. Let Z ′w[i] = Pw[j]/L1 × {1}. Then
(Pw/Uw(k))/L ≃ Z ′w[i] × Zv.We have the following commutative diagram:

Z ′w[i] × Zv
π //

��

Zw

ψ

��
Z ′w[i]

// Zw[i].

The horizontal maps are locally trivial principal H-bundles and furthermore we have Zw = Z ′w[i]×HZv.

Now the pull-back of Lw(V ) to Z ′w[i] × Zv is OZ′
w[i]

⊗ Lv(V ) thus Lw(V ) = Lπ(OZ′
w[i]

⊗ Lv(V )) with

the notation of Lemma 22.2.6 (ı). The result follows by Lemma 22.2.6 (ıı). �

Definition 22.2.8 (ı) Let w be any word (non necessarily reduced). The image of the map mw :
Zw → G/B is contained in Xn. Because Zw is irreducible and projective, this image is a closed
irreducible B-stable subvariety of Xn thus it is of the form Xw (we do not have w = π(w) in general
since w is not reduced).

(ıı) Let X̃w be the normalisation of Xw. Because Zw, the map mw lifts to a unique B-equivariant
morphism m̃w : Zw → X̃w such that the following diagram is commutative:

Zw
m̃w //

mw
!!❈

❈❈
❈❈

❈❈
❈

X̃w

��
Xw.

Proposition 22.2.9 Let w = (sα1 , · · · , sαn) be a reduced word and set w = π(w). Assume that we
have H i(Zw,Lw(pλ)) = 0, for all p and i positive and some λ ∈ C0

∅ (⋆).
(ı) Then for any finite dimensional pro-representation V of B, we have

Ri(m̃w)∗(Lw(V )) = 0 for all i > 0

and (m̃w)∗(Lw(V )) is a B-equivariant vector bundle on X̃w or rank dimV .
(ıı) The canonical OZw

-module map m̃∗w(m̃w)∗(Lw(V )) → Lw(V ) is an isomorphism.
(ııı) If v is another reduced word with π(v) = w, then there is a canonical isomorphism

(m̃v)∗(Lv(V )) ≃ (m̃w)∗(Lw(V ))

of B-equivariant OX̃w
-modules.
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(ıv) If furthermore (⋆) holds for v, then we have an isomorphism of B-modules:

H i(Zw,Lw(V )) ≃ H i(Zv,Lv(V ))

for all i. We denote the B-equivariant vector bundle (m̃w)∗(Lw(V )) on X̃w (which is independent of

w) by L̃w(V ).

Proof : We prove (ı) and (ıı) by induction on dimV . If V is of dimension one, then V = Cµ for some
µ. But we have Lw(V ) = Lw(Cµ) = m∗wLw(−µ) = m̃∗ν∗Lw(−µ) where ν is the normalisation. By

projection formula we have Ri(m̃w)∗Lw(Cµ) = Ri(m̃w)∗OZw
⊗ ν∗Lw(−µ). By normality of X̃w we get

that (m̃w)∗OZw
= OX̃w

. The fact that Ri(m̃w)∗Lw(OZw
) = 0 follows from the fact that for λ ∈ C0

∅ the

line bundle Lw(λ) is ample on Xw and thus (because ν is finite) that ν∗Lw(λ) is ample on X̃w.

Lemma 22.2.10 Let f : X → Y be a morphism between projective schemes and let L be an ample
invertible sheaf on Y . Assume that H i(X, f∗Ln) = 0 for i > 0 and n large enough, then Rif∗OX = 0
for all i > 0.

Proof : Consider the Leray spectral sequence

Hj(Y,Rif∗f
∗Ln) ⇒ H i+j(X, f∗Ln).

By the projection formula we have Rif∗f
∗Ln = Rif∗OX ⊗ Ln and because L is ample on Y we have

the vanishing of Hj(Y,Rif∗f
∗Ln) for j > 0 and n large enough. In particular we get the equality

H i(X, f∗Ln) = H0(Y, (Rif∗OX ⊗ Ln)). For n large enough this group also vanishes. But because
L is ample, for n large enough the sheaf Rif∗OX ⊗ Ln is generated by its sections. This implies
Rif∗OX ⊗ Ln = 0 and the result follows. �

We will need the dimension one case in the proof. Let V be of higher dimension. Then we may
assume, because the action is regular that there exists an integer k with U(k) acting trivially on V
and B/U(k) acting algebraically. In particular, by Lie’s theorem, there exists a non trivial B/U(k)-
subspace W of V . We thus have an exact sequence of B-regular modules

0 →W → V → Q → 0.

By induction and applying the long exact sequence of cohomology we get the result.
(ııı) Follows also by induction with the same ideas. For dimV = 1 we have already seen that this

is true because Ri(m̃w)∗Lw(Cµ) = Ri(m̃w)∗OZw
⊗ν∗Lw(−µ). We have the commutative diagram with

exact rows

0 // m̃∗w(m̃w)∗Lw(W ) //

��

m̃∗w(m̃w)∗Lw(V ) //

��

m̃∗w(m̃w)∗Lw(Q) //

��

0

0 // Lw(W ) // Lw(V ) // Lw(Q) // 0

and the result follows by induction.
As the proof will show and by elementary relations in the Coxeter group, we only need to deal

with the case where w = (u,w0, t) and v = (u, v0, t) where w0 = (s, t, s, t, · · · ) and v0 = (t, s, t, s, · · · )
with w0 and v0 of the same length m and st of order m in W . Let us denote the rank two parabolic
subgroup of G associated to {s, t} by P0 and by U0 its unipotent subgroup. We then consider Uw(k)
and Uv(k

′) such that Uw0(k0) = Uv0(k
′
0) = Um0 . Let us also set

C = Pu/Uu(ku)× P0/U0 × Pt/Ut(kt) and H = Bℓ(u)/Uu(ku)×B/U0 ×Bℓ(t)/Ut(kt).
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We define Z = C/H and the map θZ : C → Z which is a locally trivial H-principal bundle.

TheB-module structure on V induces anH-module structure and we may define LZ(V ) by C×HV .
We have the following commuting diagram:

Lw(V ) //

��

LZ(V )

��

Lv(V )oo

��
Zw

f
//

$$❏
❏❏

❏❏
❏❏

❏❏
❏

��✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
Z //

m
��

Zv

zztt
tt
tt
tt
tt

g
oo

��✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞

X̃w

ν

��
Xw,

where the maps from Zw and Zv to Z are given by the multiplications Pw0 → P0 and Pv0 → P0 and
the map from Z to Xw is given by the multiplications Pu × P0 × Pt → G. The maps to Xw can we
lifted to X̃w because all the starting varieties are smooth hence normal. By construction, we have the
equalities

f∗LZ(V ) = Lw(V ) and g∗LZ(V ) = Lv(V ).

We get the formulas

(m̃w)∗(Lw(V )) = m∗LZ(V ) = (m̃v)∗Lv(V ).

The last result of the Proposition follows from the previous one and Leray spectral sequence. In-
deed, we have with the hypothesis of the Proposition the following equalities of cohomology groups
H i(Zw,Lw(V )) = H i(X̃w, (m̃w)∗Lw(V )) = H i(X̃w, (m̃v)∗Lv(V )) = H i(Zv,Lv(V )). �

To prove the main result of this section, we will use the following general vanishing result (see
[GR70]):

Theorem 22.2.11 Assume the base field is of characteristic 0. Let X be a smooth irreducible projec-
tive variety and L a line bundle on X such that there exists an integer N and a birational morphism
f : X → Y ⊂ PM such that f∗O(1) = Ln. Then we have for 0 ≤ i < dimX the vanishing

H i(X,L−1) = 0.

Theorem 22.2.12 Let w = (sα1 , · · · , sαn) be a word and let 1 ≤ j ≤ k ≤ n be such that the subword
v = (sαj

, · · · , sαk
) is reduced. Then for any λ ∈ CZ

(ı) we have

H i


Zw,Lw(λ)⊗ OZw


−

k∑

q=j

Zw(q)




 = 0 for all i > 0;

(ıı) the equality H i(Zw,Lw(λ)) = 0 for all i > 0;

(ııı) if k < n and the word (v, sαk+1
) is not reduced, then we have

H i


Zw,Lw(λ)⊗ OZw


−

k∑

q=j

Zw(q)




 = 0 for all i ≥ 0.
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Proof : The theorem is true for n = 1 because then Zw = P1 and H1(P1,OP1(−k)) = 0 for k ≤ 1.

We proceed by induction on ℓ(w) = n. We will denote by ∂Zj,kw the sum

k∑

q=j

Zw(q).

We first prove that if the result holds for some 1 ≤ j < k ≤ n, then it holds if we replace k by
k− 1. Indeed, consider the exact sequence 0 → OZw

(−Zw(k)) → OZw
→ i∗OZw(k) → 0. Tensoring with

Lw(λ)⊗ OZw
(−∂Zj,k−1w ) gives the exact sequence

0 → Lw(λ)⊗ OZw
(−∂Zj,kw ) → Lw(λ)⊗ OZw

(−∂Zj,k−1w ) → i∗OZw(k) ⊗ Lw(λ)⊗ OZw
(−∂Zj,k−1w ) → 0.

But Zw(k) and Zw(q) meet transversaly for q 6= k (consider this in Pw/Uw(k) and descend the result
via θ). This implies the equality

i∗OZw(k) ⊗ Lw(λ)⊗ OZw
(−∂Zj,k−1w ) = i∗


Lw(k)(λ)⊗ OZw(k)

(−
k−1∑

q=j

Zw(q) ∩ Zw(k))


 .

The assertion follows by induction and from the long exact sequence in cohomology. Remark also that
by the same argument (even simpler) we get the result for v empty from the case v = (sαk

).
We are thus left with the following two different situations:

(a) k = n;

(b) k < n and the sequence (v, sαk+1
) is not reduced.

We start with case (a). By the same argument as above, we can assume that one of the following
situations occur: j = 1 or j > 1 and (sαj−1 , v) is not reduced.

In the first case, the result follows from Theorem 22.2.11. Indeed, we have the equality

Lw(λ)⊗ OZw
(−∂1,nZw

) = Lw(λ+ ρ)⊗KZw
.

By Serre duality we get H i(Zw,Lw(λ+ ρ)⊗KZw
) = Hn−i(Zw,Lw(−λ− ρ))∗ and the result follows.

In the second case, we proceed as follows. We define the word u = (sα1 , · · · , sαj−1) and we consider
the projection ψ : Zw → Zu. It is locally trivial with fiber Zv. Furthermore, by induction hypothesis
we have H i(Zv,Lv(λ) ⊗ OZv

(−∂Z1,n−j+1
v )) = 0 for i > 0. By Leray spectral sequence and Lemma

22.2.7 we obtain

H i(Zw,Lw(λ)⊗ OZw
(−∂Zj,nw )) = H i(Zu, ψ∗(Lw(λ)⊗ OZw

(−∂Zj,nw ))

= H i(Zu,Lu(H
0(Zv,Lv(λ)⊗ OZv

(−∂Z1,n−j+1
v ))))

= H i(Zu,Lu(H
0(Zv,Lv(λ+ ρ)⊗KZv

))).

Assume (we will prove this in the next Fact) that the B-module H0(Zv,Lv(λ+ρ)⊗KZv
) has a Pαj−1-

module structure extending the B-module structure. Then if we consider the fibration Zu → Zu[j−2]

which is a P1-bundle, then the sheaf Lu(H
0(Zv,Lv(λ+ρ)⊗KZv

)) is trivial on the fibers and we deduce
the equalities

H i(Zu,Lu(H
0(Zv,Lv(λ+ ρ)⊗KZv

))) = H i(Zu(j−1),Lu(j−1)(H
0(Zv,Lv(λ+ ρ)⊗KZv

)))

= H i(Zu(j−1),Lu(j−1)(H
0(Zv,Lv(λ)⊗ OZv

(−∂Z1,n−j+1
v ))))

= H i(Zw(j−1),Lw(j−1)(λ)⊗ OZw(j−1)
(−∂Zj,n

w(j−1))).

The result follows by induction.
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Fact 22.2.13 The B-module H0(Zv,Lv(λ + ρ) ⊗ KZv
) has a Pαj−1-module structure extending the

B-module structure.

Proof : By Serre duality, we have H0(Zv,Lv(λ+ ρ)⊗KZv
) = Hℓ(v)(Zv,Lv(−(λ+ ρ)))∗.

Since v is reduced but (sαj−1 , v) is not, we can write v = π(v) = sαj−1rj+1 · · · rn for some simple
reflections ri. We define the word v′ = (sαj−1 , rj+1, · · · , rn). By induction and part (ıı) of the Theorem,
we have that v and v′ satisfy condition (⋆) in Proposition 22.2.9. In particular we obtain the equality

H0(Zv,Lv(λ+ ρ)⊗KZv
) = Hℓ(v)(Zv,Lv(−(λ+ ρ)))∗ = Hℓ(v′)(Zv′ ,Lv′(−(λ+ ρ)))∗.

But by Proposition 22.2.5 the later has a Pαj−1-action. �

We are left with case (b). We start as in the last case but with the additional following remark:
consider the map ϕ : Zw → Zw[k], it is a locally trivial fibration with fiber Zt where t = (sαk+1

, · · · , sαn).

By induction using (ıı), we have H i(Zt,Lt(λ)) = 0 for i > 0 and we have ϕ∗OZw[k]
(−∂Zj,k

w[k]) =

OZw
(−∂Zj,kw ). This implies by Leray spectral sequence that the following equality holds:

H i(Zw,Lw(λ)⊗ OZw
(−∂Zj,kw )) = H i(Zw,Lw(λ)⊗ ϕ∗(OZw[k]

(−∂Zj,k
w[k])))

= H i(Zw[k],Lw[k](H
0(Zt,Lt(λ))) ⊗ OZw[k]

(−∂Zj,k
w[k])).

We will denote by V the B-module H0(Zt,Lt(λ)). Remark that it is a Pαk+1
-module. Now with

the same notation as before, consider the map ψ′ : Zw[k] → Zu. It is a locally trivial fibration
with fiber Zv. As before, we want to compare, using Leray spectral sequence the cohomology on
Zw[k] of the sheaf Lw[k](V ) ⊗ OZw[k]

(−∂Zj,k
w[k]) with the cohomology on Zu of its higher direct images

Riϕ′∗(Lw[k](V )⊗ OZw[k]
(−∂Zj,k

w[k])). For this we compute by Serre duality the cohomology groups

H i(Zv,Lv(V )⊗ OZv
(−∂Z1,k+1−j

v )) = H i(Zv,Lv(V )⊗KZv
⊗ Lv(ρ)) = H i(Zv,Lv(V

∗)⊗ Lv(−ρ)).

Because v is reduced but (v, sαk+1
) is not, we can write v = π(v) = rj · · · rk−1sαk+1

for ri simple
reflections. Write v′ = (rj , · · · , rk−1, sαk+1

), then we have for all i ≥ 0 the equality

H i(Zv,Lv(V
∗)⊗ Lv(−ρ)) = H i(Zv′ ,Lv′(V

∗)⊗ Lv′(−ρ)).

Now consider the projection Zv′ → Zv′(k+1−j) which is a P1-fibration. Because V and hence V ∗ is a
Pαk+1

-module, the sheaf Lv′(V
∗) is trivial on the fibers of that morphism. Furthermore Lv′(−ρ) is of

degree −1 on that fiber thus the sheaf Lv′(−ρ)⊗Lv′(V
∗) has no cohomology on the fibers of the map

Zv′ → Zv′(k+1−j). This implies by Leray spectral sequence again, that this sheaf has no cohomology
on Zv′ and hence

H i(Zv,Lv(−ρ)⊗ Lv(V
∗)) = 0 for all i ≥ 0.

As a consequence for all i ≥ 0 we have the vanishing Riϕ′∗(Lw[k](V )⊗OZw[k]
(−∂Zj,k

w[k])) = 0 and again
by Leray spectral sequence the result follows. �

Let us now prove some consequence of this result.

Corollary 22.2.14 Let w be any word of length n, let j ∈ [1, n] and let λ ∈ CZ. Then the restriction
map H0(Zw,Lw(λ)) → H0(Zw(j),Lw(j)(λ)) is surjective.

Proof : Consider the exact sequence 0 → OZw
(−Zw(j)) → OZw

→ OZw(j)
→ 0. Tensoring with Lw(λ)

which is locally free, the sequence remains exact and by the long exact sequence of cohomology and
the preceding Theorem, the result follows. �
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Corollary 22.2.15 Let w be any word and denote by w the element of W such that Xw = mw(Zw).
Then there exists a maximal reduced subword v of w such that mw(Zv) = Xw and the restriction map
H0(Zw,Lw(λ)) → H0(Zv,Lv(λ)) is an isomorphism for all λ
inCZ.

Proof : Let us first prove that if u is reduced and t = (sα, u) is not reduced, then the restriction
map H0(Zt,Lt(λ)) → H0(Zu,Lu(λ)) is an isomorphism. Consider ψ : Zt → Zsα which is a locally
trivial fibration with fibers Zu. By the Leray spectral sequence and part (ıı) of the Theorem, we get
H0(Zt,Lt(t)) = H0(Zsα ,Lsα(H

0(Zu,Lu(λ)))). But t being non reduced we argue as in Fact 22.2.13
to get that H0(Zu,Lu(λ)) as a Pα-module structure. Thus Lsα(H

0(Zu,Lu(λ))) is trivial on Zsα . The
assertion follows.

We prove the result by induction on n. Write w = (sα1 , · · · , sαn). Take v′ a maximal subword of
w′ = (sα2 , · · · , san) satisfying the conclusions of the corollary. We have the alternative

• (sα1 , v
′) is reduced or

• (sα1 , v
′) is not reduced.

In the first case, we easily see that v = (sα1 , v
′) is a maximal reduced subword of w. Consider the

map Zw → Zsα which is locally trivial with fiber Zw′ . In parallel we have the map Zv → Zsα which is
locally trivial with fiber Zv′ . By the Leray spectral sequence and the Theorem, we have

H0(Zw,Lw(λ)) = H0(Zsα ,Lsα(H
0(Zw′ ,Lw′(λ))))

= H0(Zsα ,Lsα(H
0(Zv′ ,Lv′(λ))))

= H0(Zv,Lv(λ)).

In the second case, we easily see that v = v′ is a maximal reduced subword of w. By the beginning
of the proof and the induction hypothesis, we have

H0(Zw,Lw(λ)) = H0(Zw′ ,Lw′(λ)) = H0(Zv,Lv(λ)).

The fact that mw(Zv) = Xw follows by induction and the fact that for ℓ(sw) < ℓ(w), then sw ≤ w
in the Bruhat order and C(s)C(w) ⊂ C(sw) ∪C(w). �

Proposition 22.2.16 Let w ∈ W and let V be a pro-representation of B. Denote by w the element
in W with mw(Zw) = Xw and by X̃w the normalisation of Xw.

(ı) The canonical map O
X̃w

→ (m̃w)∗OZw
is an isomorphism.

(ıı) we have Ri(m̃w)∗Lw(V ) = 0 for i > 0 and (m̃w)∗Lw(V ) is locally free.

(ııı) We have an isomorphism of B-vector bundles (m̃w)
∗L̃w(V ) ≃ Lw(V ). In particular we have

an isomorphism
H i(X̃w, L̃w(V )) ≃ H i(Zw,Lw(V )).

(ıv) If u is any subword such that (m̃w)|Zu
is surjective onto Xw, then the map i∗u,w is an isomor-

phism in cohomology:
H i(Zw,Lw(V )) ≃ H i(Zu,Lu(V )) for all i ≥ 0.

Proof : (ı) To prove this result we need the following:

Lemma 22.2.17 Let f : X → Y be a surjective morphism between projective varieties. Assume that
there exists an ample line bundle L on Y such that the canonical map H0(Y,Ln) → H0(X, f∗Ln) is
an isomorphism for large n, then f∗OX = OY .
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Proof : We have an exact sequence 0 → OY → f∗OX → Q → 0. Tensoring by Ln this sequence
remains exact and taking cohomology we get an exact sequence:

0 → H0(Y,Ln) → H0(X, f∗Ln) → H0(X,Q⊗ Ln) → H1(Y,Ln).

Because L is ample, we have the vanishing of the rightmost group for large n. By hypothesis, the first
map is an isomorphism for large n. We deduce the vanishing of the group H0(X,Q ⊗ Ln) for large
n. But L being ample (and Q coherent) for large n the sheaf Q⊗Ln is globally generated, the result
follows. �

To prove the result, we only need to prove that the map H0(X̃w, ν
∗Lw(λ)) → H0(Zw,Lw(λ)) is

an isomorphism where ν : X̃w → Xw is the normalisation map. For this we take v a maximal reduced
element with mw(Zv) = Xw and H0(Zw,Lw(λ)) ≃ H0(Zv,Lv(λ)). We have a commutative diagram

H0(X̃w, ν
∗Lw(λ))

m̃∗
w //

m̃∗
v ))❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

H0(Zw,Lw(λ))

��

H0(Zv,Lv(λ)),

where the vertical map is an isomorphism. We are thus reduced to prove the same result with v. But
now m̃v being birational, we have (m̃v)∗OZv

= OX̃w
and the result follows.

(ıı) By Lemma 22.2.10 and Theorem 22.2.12, we get that Ri(m̃w)∗Lw(V ) = 0 for i > 0. Now by
induction on the dimension on V and by using Lie’s Theorem, we may assume that V is of dimension
one and thus of the form Cµ and Lw(V ) = Lw(−µ) = m∗wLw(−µ) = m̃∗wν

∗Lw(−µ). We obtain that
(m̃w)∗Lw(V ) is locally free from the projection formula.

(ııı) The above argument also proves that we have an isomorphism m̃∗w(m̃w)∗Lw(V ) ≃ Lw(V ). We

are thus left to prove that (m̃w)∗Lw(V ) = L̃w(V ). This is true (by definition of L̃w(V )) for w reduced.
Let us take the same v as in Corollary 22.2.15 and we compare (m̃w)∗Lw(V ) with (m̃v)∗Lv(V ).

We again do this by induction on dimV and we need to prove it for dimension one V = Cµ. In that
case we have Lw(V ) = m̃∗wν

∗Lw(−µ) and by projection formula and (ı):

(m̃w)∗Lw(V ) = ν∗Lw(−µ) = (m̃v)∗Lv(V ).

But for v reduced, by definition we have L̃w(V ) = (m̃v)∗Lv(V ) and the first part of (ııı) follows.

By what we just proved, by (ı) and by the projection formula we have (m̃w)∗Lw(V ) = L̃w(V ).
The second part of (ııı) follows from Leray spectral sequence and (ıı).

(ıv) This follows from the last part of (ııı) for w and u. �

The same techniques using the Leray spectral sequence imply the following

Lemma 22.2.18 Let v and w be two words and consider two different embeddings of v in w leading
to two different embedding i and i′ of Zv in Zw. Then the induced following module maps are equal:

i∗, (i′)∗ : H i(Zw,Lw(V )) → H i(Zv,Lv(V )) for all i ≥ 0.

Definition 22.2.19 These maps i∗v,w : H i(Zw,Lw(V )) → H i(Zv,Lv(V )) define a projective system
and we define the pro-B-representation:

H i(Z∞,L∞(V )) = lim
←
H i(Zw,Lw(V )).

In the same way, define the pro-B-representation:

H i(Z∞,L∞(V ))∨ = lim
←
H i(Zw,Lw(V ))∗.
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Lemma 22.2.20 For all index i, the pro-B-representation H i(Z∞,L∞(V )) has a natural structure
of pro-Pi-representation.

Proof : Consider the subsetWi of words starting with sαi
. It is a cofinal set inW thusH i(Z∞,L∞(V ))

is also the inverse limit over this set. But all the B-modules H i(Zw,Lw(V )) have a pro-Pi-module
structure for w ∈ Wi this induces the desired pro-module structure. �

Using these pro-Pi-module structure, the following result on the modules H i(Z∞,L∞(λ)) for λ ∈
CZ can be proven (see [Ku02, Proposition 8.1.17 and Lemma 8.1.19]):

Proposition 22.2.21 (ı) The module H0(Z∞,L∞(λ)) has at most one vector vλ of weight λ and the
other weights are of the form λ−∑i aiαi for ai non negative integers.

(ıı) For w reduced, the module H i(Zw,Lw(λ))
∗ is a U(b)-module generated by an element of weight

w(λ) with w = π(w).

22.3 Normality of Schubert varieties

With this we will be able to identify the module H i(Z∞,L∞(V )). Let us recall the definition of the
following map for V any countable dimensional vector space:

sV : V ∗ → H0(P(V ),L∗V )

defined by f 7→ sV (f) where sV (f) : P(V ) → L∗V = {([v], g) ∈ P(V )× V ∗ / g ∈ V ∗/v⊥} is the section
defined by sV (f([v])) = ([v], f̄).

For λ ∈ CZ we may consider the composition map (with s = sLmax(λ), L(λ) = Lmax(λ)):

s(λ) : L(λ)∗
s // H0(PL(λ),L∗L(λ))

i∗λ // H0(X,L(λ)).

Using the inclusion of Schubert varieties in X we define:

sw(λ) : L(λ)∗
i(λ)

// H0(X,L(λ)) // H0(Xw,Lw(λ)).

Let us also give the following:

Definition 22.3.1 Let V be an integrable highest weight module of highest weight λ. We define the
vector space Vw(λ) to be the U(b)-submodule of V generated by a non zero vector vw(λ) (unique up to
scalar because V is integrable) of weight w(λ) for w ∈W .

It is not difficult to see that Vw is the B-submodule of V generated by vw(λ).

Lemma 22.3.2 For λ ∈ CZ, w ∈ W and si a simple reflection such that siw < w, the Pi-module
map:

sw(λ) : L
max(λ)∗ → H0(Xw,Lw(λ))

has kernel equal to the subspace [Lmax(λ)/Lmax
w (λ)]∗. This induces an injective map

s̄w(λ) : L
max
w (λ)∗ → H0(Xw,Lw(λ)).

Proof : Since the orbit BwB/B is an open and dense subset in Xw, the restriction on sections
H0(Xw,Lw(λ)) → H0(BwB/B,Lw(λ)|BwB/B) is injective. In particular, we get:

ker sw(λ) = {f ∈ Lmax(λ)∗ / f |BwBvλ ≡ 0} = {f ∈ Lmax(λ)∗ / f |Lmax
w (λ) ≡ 0}

the result follows. �

We now define a map from H0(Z∞,L∞(λ))∨ to Lmax(λ).
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Definition 22.3.3 (ı) For w ∈ W, the surjective morphism mw : Zw → Xw induces an injective map
H0(Xw,Lw(λ)) → H0(Zw,Lw(λ)) and by duality a surjective map

H0(Zw,Lw(λ))
∗ → H0(Xw,Lw(λ))

∗.

(ıı) The composition of the previous map with the dual (s̄w(λ))
∗ of the injective map defined in

Lemma 22.3.2 give a surjective map

φw(λ) : H
0(Zw,Lw(λ)) → Lmax

w (λ) ⊂ Lmax(λ).

(ııı) Taking the direct limit of the maps φw(λ) we obtain the map

φ(λ) : H0(Z∞,L∞(λ))∨ → Lmax(λ).

Theorem 22.3.4 For any λ ∈ CZ, the map φ(λ) is an isomorphism. In particular, the weight spaces
of H0(Z∞,L∞(λ))∨ are finite dimensional.

Proof : The vector space H0(Z∞,L∞(λ))∨ has structures of pro-Pi-modules for all i, thus is has
structures of pi-modules that are equal on b. Furthermore, being a direct limit of finite dimensional
representation, it is a locally finite T module and hence it is a weight module. This implies that there
is an integrable g-module structure and the map φ(λ) is a g-module map.

Let us now prove that H0(Z∞,L∞(λ))∨ is a highest weight module of weight λ. By Proposition
22.2.21, there is at most one weight vector. But Corollary 22.2.14, for any subword v of w, the map

H0(Zv,Lv(λ))
∗ → H0(Zw,Lw(λ))

∗

are injective, in particular for v = ∅ we get a vector vλ of weight λ.

Now we want to prove that this vector generates the module as a U(b)-module. Let V = U(g) · vλ,
it is an integrable g-module and because H0(Z∞,L∞(λ))∨ is also integrable, their weight spaces of
weight w(λ) are of dimension 1 and thus equal for all w ∈W . Let w be a reduced word with π(w) = w.
By Proposition 22.2.21, the module H0(Zw,Lw(λ))

∗ is cyclic generated by an element of weight w(λ).
In particular it is contained in V . Take now w a non reduced word with π(w) = w. There exists by
Corollary 22.2.15 a reduced word v, with π(v) = w and H0(Zw,Lw(λ)) ≃ H0(Zv,Lv(λ)) thus for non
reduced w we again have an inclusion H0(Zw,Lw(λ))

∗ ⊂ V . By taking the direct limit we get that
V = H0(Z∞,L∞(λ))∨.

The image of φ(λ) contains thus an highest weight vector and is thus surjective. But H0(Z∞,L∞)∨

being an integrable highest weight module, it is a quotient of Lmax(λ) and the result follows from the
fact that dimEnd(Lmax(λ), Lmax(λ)) = 1. �

Corollary 22.3.5 For any λ ∈ CZ and for any w ∈ W, the maps

m∗w : H0(Xw,Lw(λ)) → H0(Zw,Lw(λ)) and s̄w(λ) : L
max(λ)∗ → H0(Xw,Lw(λ))

are isomorphisms.

Proof : Consider the composition of the dual of two map

φw(λ) : H
0(Zw,Lw(λ))

∗ → Lmax(λ).
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We already know (see Definition 22.3.3) that this map is surjective. We only need to prove its
injectivity. By Corollary 22.2.14, the natural map H0(Zw,Lw(λ))

∗ → H0(Z∞,L∞(λ))∗ is injective.
In the following commutative diagram, the vertical maps are thus injections:

H0(Zw,Lw(λ))
∗ φw(λ)

//

��

Lmax
w (λ)

��
H0(Z∞,L∞(λ))∗

φ(λ)
// Lmax(λ).

The result follows from the injectivity of φ(λ) by the previous Theorem. �

Corollary 22.3.6 The Schubert varieties Xw and XX
w are normal.

Proof : For X a subset of Π and λ ∈ CX , we may define as in Lemma 22.3.2 an application
s̄Xw (λ) : Lmax

w (λ) → H0(XX
w ,L

X
w (λ)) which is also injective. By composition, we get a commutative

diagram

Lmaxw (λ) //

s̄w(λ) ''PP
PPP

PPP
PPP

P
H0(XX

w ,L
X
w (λ))

��

H0(Xw,Lw(λ))

where the vertical map is the pull-back for the projection X → XX . This pull-back is of course
injective. By the previous Theorem, the composed map s̄w(λ) is an isomorphism thus we get that
s̄Xw (λ) is also an isomorphism as well as the pull back.

Now take w′ ∈ WX the unique element with w′WX = wWX and choose w a reduced word
with π(w) = w′. The map mX

w : Zw → XX
w is birational. By the previous argument and the previous

Corollary we have an isomorphism H0(XX
w ,L

X
w (λ)) ≃ H0(Zw,Lw(λ)). We conclude by Lemma 22.2.17

and the fact that LXw (λ) is ample on XX
w . �

As an application of the vanishing Theorem, on can also prove a Boreil-Weil-Bott type formula.
Let w ∗ λ = w(λ+ ρ)− ρ for λ ∈ h∗.

Theorem 22.3.7 Let G be a Kac-Moody group with Borel subgroup B and Weyl group W . Then
for any λ ∈ h∗Z, such that λ + ρ ∈ C for any w ∈ W and any integer i we have an isomorphism of
G-modules:

H i(G/B,L(λ))∨ ≃ H i+ℓ(w)(G/B,L(w ∗ λ))∨.
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Part IV

Equivariant and quantum cohomology
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Chapter 23

Introduction

In this part we want to explain the relationship between the Nil-Hecke ring, a combinatorial object
depending on the Weyl group W of a Kac-Moody group G and the equivariant cohomology H∗T (G/B)
of the homogeneous space G/B. This part will be different from the last two parts in the sense that
we will give very few proof but only explain the general results on this subject. On the contrary to the
other chapter we will try to provide more references on these chapter (even if the first two chapters of
this part are covered by the book of Kumar it is not the case of the last ones).

We will start by a general definition of the equivariant cohomology and its first properties. We will
try to give some examples especially in the situation of homogeneous varieties. We will also describe
in detail the classical cohomology of grassmannians. This shall be a model for all the theory: in this
situation, there is an explicit presentation of the ring as well as a description of the Schubert classes
(a natural Z-basis of the cohomology) in terms of the generators (Giambelli formulas). There is also
a general formula for the Littlewood-Richardson coefficients in this situation. We then give the first
properties of the equivariant cohomology of G/B for G a Kac-Moody group.

In the second chapter, we describe the combinatorial invariant: the Nil-Hecke ring. We prove
some of its basic properties to give a flavour of what is the combinatoric in this situation. We then
realise the equivariant cohomology as the dual of this ring. We also give a smoothness criterion for
T -invariants points in Schubert varieties using the Nil-Hecke ring.

In the third chapter, we briefly introduce the quantum cohomology of a quotient G/P where G
is a finite dimensional algebraic group. The quantum cohomology is a deformation of the classical
cohomology ring taking into account the enumerative properties of rational curves on the variety.

In the fourth chapter, we explain how, in the case of grassmannians we can explicitely compute
the quantum cohomology by elementary methods.

In the final chapter, we specialise to affine Kac-Moody groups. Let G be a finite dimensional
algebraic group and le Ĝ be the associated untwisted affine Kac-Moody group associated to G. We
explain a relationship between the Nil-Hecke ring, more precisely between the equivariant homology
of the affine grassmannian, and the quantum cohomology of G/B. We deduce from this relationship
the existence of symmetries in the quantum cohomology ring.
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Chapter 24

Equivariant cohomology

In this section, we give a quick review of equivariant cohomology that will shall need. We will not
give any proof.

24.1 General definitions and first properties

Definition 24.1.1 Let K be a real Lie group.
(ı) We call a K-space any variety (differentiable) with an action of K.
(ıı) A universal principal K-bundle is a morphism of differentiable varieties π : E(K) → B(K)

such that

• K acts differentiably and freely on E(K);

• the map π is K-equivariant with the trivial action of K on B(K) and the fibers are principal K
spaces;

• the space E(K) is contractible.

(ııı) For X a K-space, we define the fiber bundle πX : XK → B(K) by

XK = E(K)×K X → B(K).

Here as usual E(K) ×K X is the quotient of the product E(K) × X by the action of K given by
k · (e, x) = (ek−1, kx).

(ıv) We define the K-equivariant cohomology of X to be

H∗K(X) = H∗(XK ,Z).

Definition 24.1.2 As in the classical case (non equivariant), we may also define the equivariant
homology by

HK
∗ (X) = HomH∗

K(pt)(H
∗
K(X),H∗K(pt)).

Fact 24.1.3 (ı) For X a K-space, the equivariant cohomology H∗K(X) does not depend on the choice
of the principal K-bundle chosen to construct it.

(ıı) The group H∗K(X) is a Z-graded algebra and

π∗ : H∗(B(K)) → H∗(XK)

defines a H∗(B(K))-algebra structure on the equivariant cohomology of X.

229



230 CHAPTER 24. EQUIVARIANT COHOMOLOGY

(ııı) For any K-equivariant morphism f : X → Y , there exists a canonical B(K)-graded-algebra
morphism

f∗H∗K(Y ) → H∗K(X).

Definition 24.1.4 Let e be any point of E(K). Because the action on E(K) is free, the natural map
i : {e} × X → XK defined by x 7→ (e, x) is an inclusion. This induces, by pull-back, a Z-algebra
morphism (the evaluation map)

η : H∗K(X) → H∗(X).

Fact 24.1.5 This definition does not depend on the choice of e.

Example 24.1.6 (ı) Let T be a closed subgroup of K, then E(K) → E(K)/T is a universal principal
T -bundle.

(ıı) Let X be a K-variety with a free action of K on X, then H∗K(X) = H∗(X/K). Indeed, if we
consider E(K)×K X → X/K we get a fibre bundle with fiber E(K) which is contractible.

(ııı) Let T = S1, then we may take E(T ) = S∞ where S∞ is the unit sphere in C∞ with the
ℓ2-metric. The principal T -bundle is in this case S∞ → P∞. More generally, if T = (S1)n, then we
may take E(T ) = (S∞)nind and B(T ) = (P∞)nind where the subscript ind means that we take a set of
n independent vectors.

(ıv) If K = Un the group of unitary matrices (this is the maximal compact subgroup of GLn) then
we can also take E(K) = (S∞)nind. Indeed, we have a free action of K on that space (which is still
contractible). The quotient E(K)/K = B(K) is G(n,∞) the space of n-dimensional subspaces in an
infinite dimensional vector space.

(v) If we consider now K = SUn and T is maximal torus (which is a codimension 1 subtorus
of (S1)n), we can still take E(T ) = (S∞)n but the quotient B(T ) is in that case the tautological
S1 bundle (associated to the tautological line bundle O(1, · · · , 1)) over (P∞)n. In the same way, the
quotient E(K)/K = (S∞)n/K is isomorphic to the tautological S1-bundle on G(n,∞) associated to
O(1) = ΛnT ∗ where T is the tautological rank n vector bundle on the infinite grassmannian.

24.2 Case of a Torus

Lemma 24.2.1 Assume now that K is compact or a torus.
(ı) Then H∗(B(K)) is torsion free.
(ıı) Let X be a K-space for the trivial action, then we have an isomorphism of H∗(B(K)) algebras:

H∗K(X) ≃ H∗(B(K))⊗Z H
∗(X).

Let T be a compact torus. Let X be a T -space with fixed T -points set XT = {w}w∈W . Let X(T )
be the group of characters of T and let λ ∈ X(T ).

Definition 24.2.2 (ı) We define the line bundle LB(T )(λ) on B(T ) by E(T )×T Cλ = (Cλ)T .
(ıı) We define a map

c1 : X(T ) → H2(B(T ))

by λ 7→ c1(LB(T )(λ)).
(ııı) We extend the map c1 as a graded algebra morphism

c : S∗(X(T )) → H∗(B(T )).

Proposition 24.2.3 The morphism c is an isomorphism of Z-graded algebras.
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Corollary 24.2.4 The inclusion XT → X induces an S(X(T ))-graded morphism

H∗T (X) → H∗T (X
T ) ≃ S(X(T )) ⊗Z H

∗(X).

Theorem 24.2.5 Let T be a compact torus and let X be a locally contractible compact T -space. Then
the restriction map induces an isomorphism of Q-algebras

Q⊗H∗(B(T )) H
∗
T (X) ≃ Q⊗H∗(B(T )) H

∗
T (X

T )

where Q is the quotient field of the integral domain H∗(B(T )) = S(X(T )).

Example 24.2.6 (ı) In the case where T ′ = (S1)n is a maximal torus of K ′ = Un; we get H∗T (pt) =
Z[x1, · · · , xn] or more canonically if Lie(T ) = h′, then H∗T (pt) = S(h′∗Z). For T the subtorus obtained
as the maximal torus of K = SUn, we have hZ ⊂ h′Z the subalgebra and H∗T (pt) = Z[x1, · · · , xn]/(x1+
· · ·+ xn) = S(h∗Z).

For the equivariant cohomology of the point for K, we have the following

Proposition 24.2.7 We have an isomorphism over Q:

H∗K(pt,Q) ≃ H∗T (pt,Q)W = S(h∗Q)
W .

This comes from the fact that the space B(K) has the same rational (but not integral) cohomology
as the finite quotient B(T )/W where W = Sn acts on B(T ) = (P∞)n by permutation of the factors.

(ıı) We want to describe the equivariant cohomology of the flag variety GLn/B or K/T with the
notations of (ı). Because K ⊂ GLn, we have a natural map K/T → GLn/B which is an homotopy
equivalence. To compute the equivariant cohomology of the flag variety, we do it for K/T .

Lemma 24.2.8 We have a homeomophism: E(T )×T K/T ≃ B(T )×B(K) B(T ).

Proof : Define the map ((v1, · · · , vn), k̄) 7→ (([v1], · · · , [vn]) · k, ([v1], · · · , [vn]). This is the desired
homeomorphism. �

Corollary 24.2.9 We have an isomorphism: H∗T (K/T ) ≃ S(h∗Q)⊗S(h∗
Q
)W S(h∗Q).

Proof : This a consequence of the Lemma and of Kunneth formula. �

Corollary 24.2.10 Specialising we get an isomorphism H∗(K/T ) ≃ S(h∗)/S(h∗)W+ where S(h∗)W+
denotes the ideal of positive degree invariant polynomials in the variables x1, · · · , xn.

Example 24.2.11 As an example, for n = 2, we get H∗(P1) = Q[x1+x2]/(x1+x2, x1x2) = Q[x]/(x2).
For n = 3 we have

H∗(K/T ) = Q[x1, x2, x3]/(x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3).

More genrally the cohomology group H∗(K/T ) is the quotient of the polynomial ring by the symmetric
polynomials. It is a finite quotient of dimension |W | = n!.

24.3 The grassmannian case

In the finite dimension case, the homology and cohomology are strictly dual to each other and there
is a multiplication in homology. In many cases one computes the ring structure on the homology
rather than on cohomology. Let us descrbe in more details but with elementary methods the case of
Grassmannians. The basic reference for this section is L. Manivel [Man98].
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24.3.1 Partitions and Schubert subvarieties

Let us fix a complete flag in CN that is to say a sequence

0 ⊂W1 ⊂ · · · ⊂WN−1 ⊂ CN

such that Wi is an i-dimensional subvector space of CN . The stabiliser B of this partial flag in
GLN is conjugated to the subgroup of triangulated matrices. We want to describe the orbits of B in
G(p,N) or equivalently the different relative positions of a element V ∈ G(p,N) with the complete
flag (Wi)i∈[1,N−1]. These relative positions are described by partitions.

Definition 24.3.1 (ı) A partition is a sequence λ1 ≥ · · · ≥ λk ≥ 0 of non increasing non negative
integers. The λi’s are the parts of the partition λ.

(ıı) The length of a partition l(λ) is the number of non zero λi’s in the partition. The weight |λ|
is defined by

|λ| =
∑

λi.

(ııı) A partition µ is included in a partition λ if for all i we have µi ≤ λi. We note it µ ≤ λ.
(ıv) We will say that a partition is in the p× (N − p) rectangle if k ≤ p and λ1 ≤ N − p. One can

always complete such a partition by λk+1 = λp = 0 to get a partition with exactely p parts.

One can make a picture of a partition. A partition is in the p× (N − p) rectangle if and only if it
is the case of its picture. Inclusion of partitions is equivalent to the inclusion of their pictures.

Example 24.3.2 Let N = 15, p = 6 and the partition λ be given by: λ1 = 10, λ2 = λ3 = λ4 = 6,
λ5 = 5, λ6 = λ7 = 4, λ8 = 2 and λ9 = 1. Let the partition µ given by: µ1 = 5, µ2 = µ3 = 4 µ4 = 2
and µ5 = 1. The partition µ is a subpartition of λ. Its is contained in the p × (N − p) rectangle but
λ is not.

p

n− p

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

µ1

µ2

µ3

µ4

µ5

Let us define some special subvarieties in G(p,N): the Schubert cells. Fix λ = (λi)i∈[1,p] a partition
in the p× (N − p) rectangle, the associated Schubert cell is

Ω(λ) = {V ∈ G(p,N) / dim(V ∩Wj) = i for all i, j with N − p+ i− λi ≤ j ≤ N − p+ i− λi+1} .
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We also define the Schubert variety

X(λ) = {V ∈ G(p,N) / dim(V ∩WN−p+i−λi) ≥ i for all i ∈ [1, p]} .

Example 24.3.3 If the partition is the biggest one: λi = N − p for all i ∈ [1, p] then we have

Ω(λ) = X(λ) = {Wp}.

Theorem 24.3.4 (ı) The varieties Ω(λ) for λ a partition in the p× (N − p) rectangle are the orbits
of B in G(p,N).

(ıı) These varieties are in codimension |λ| and isomorphic to an affine space. We have

Ω(λ) ≃ Cp(N−p)−|λ|.

(ııı) The Schubert variety X(λ) is the closure of the Schubert cell Ω(λ). In symbols:

Ω(λ) = X(λ).

(ıv) The Schubert variety X(λ) is the union of the Schubert cells Ω(µ) for µ ⊃ λ. In symbols:

X(λ) =
⋃

µ≥λ

Ω(µ).

(v) Finally we have the equivalence X(µ) ⊂ X(λ) ⇔ µ ≥ λ.

24.3.2 Cohomology

For homogeneous varieties and in particular for grassmannians, the existence of the stratification of
G(p,N) by affine spaces (the Schubert cells) and classical results on homology and cohomology (see
the appendix in [Man98]) imply the following result

Theorem 24.3.5 The homology, cohomology and Chow groups of G(p,N) are isomorphic as abelian
groups. They are free and a basis for these groups are given by the classes [X(λ)] of Schubert varieties
and is therefore indexed by partitions λ in the p× (N − p) rectangle.

Let us first give the poincaré duality:

Definition 24.3.6 If λ is a partition in the p× (N −p) rectangle, then the dual partition λ̂ is defined
by λ̂i = N − p − λp+1−i for all i ∈ [1, p]. This partition is given by the complementary of λ in the
p× (N − p) rectangle. In particular we have

|λ|+ |λ̂| = p(N − p).

Theorem 24.3.7 Let λ and µ be two partitions in the p × (N − p) rectangle such that |λ| + |µ| =
p(N − p). Then we have

σλ ∪ σµ = δµ,λ̂

where δ is the Kronecker symbol. In particular, the class σλ̂ is Poincaré dual to the class σλ.

Remark 24.3.8 In particular we proved that σλ ∪ σµ 6= 0 implies that µ ⊂ λ̂.

The classes σλ with λ having only one part will generate the cohomology ring. We call them special
Schubert classes. Let us give some definitions.
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Definition 24.3.9 (ı) If k is an integer, we also denote by k the partition having one part λ1 = k
and by σk the corresponding special Schubert class.

(ıı) If λ is any partition in the p × (N − p) rectangle, we denote by λ⊗ k the set of all partitions
obtained from λ by adding k boxes with no two in the same colomn.

In other words, λ⊗k is the set of all partitions µ in the p×(N−p) rectangle such that |µ| = |λ|+k
and λi+1 ≤ µi+1 ≤ λi for all i.

Example 24.3.10 If p = 3, N = 7, λ = (2, 1) and k = 2 then λ ⊗ k contains the following four
partitions: (4, 1), (3, 2), (3, 1, 1) and (2, 2, 1). If however N = 6 then the partition (4, 1) is not in the
rectangle.

⊗
=



 ; ; ;





We can now give an intersection formula between Schubert classes.

Theorem 24.3.11 Pieri Formula.
If λ is a partition in the p× (N − p) rectangle, and k an integer in [1, N − p], then we have

σλ ∪ σk =
∑

µ∈λ⊗k

σµ.

We calculated the intersection with some particular classes of Schubert varieties, those with only
one part, the special Schubert classes. They generated the Chow ring.

Theorem 24.3.12 We have the Giambelli formula

σλ = det(σλi−i+j)1≤i,j≤p.

We can then give a presentation of the cohomology ring in the following form

Theorem 24.3.13 We have ring isomorphisms

A∗(X,Z) ≃ H∗(X,Z) ≃ Z[σ1, · · · , σN−p]/(Yp+1, · · · , YN )

where Yu = det(σ1−i+j)1≤i,j≤u.

The constant in the cohomology ring are the Littlewood-Richardson coefficients cνλµ and defined
by:

σλ ∪ σµ =
∑

ν

cνλµσν .

There exist some combinatorial descriptions of these numbers (see for example [Man98]).

Example 24.3.14 For X = P2, the Schubert classes are σ0, σ1 and σ2 corresponding to the class of
P2, a line and a point. The preceding presentation od the ring is the following:

H∗(X,Z) ≃ Z[σ1, σ2]/(σ2 − σ21 , σ
3
1 − 2σ1σ2) = Z[σ1, σ2]/(σ2 − σ21 , σ

3
1)

that is to say
H∗(X,Z) ≃ Z[σ1]/(σ

3
1).
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24.3.3 Link with the previous study

Recall that we gave a presentation of the cohomology ring for the complete flag variety GLN/B as
the quotient k[x1, · · · , xN ]/I where I is the ideal generated by the Sn-invariant polynomials with no
constant term. We have the following result:

Theorem 24.3.15 Let P be a parabolic subgroup of GLN , then the natural projection p : GLN/B →
GLN/B induces an injection p∗ : H∗(GLN/P,Z) → H∗(GLN/B,Z) whose image is generated by the
polynomials invariant under the subgroup WP of W .

Remark 24.3.16 For the grassmannian one can easily recover theorem 24.3.13 from this result.

24.4 Equivariant cohomology of homogeneous spaces

We now want to give the first properties of the equivariant cohomology of the homogeneous spaces
XX for X a subset of the set Π of simple roots.

Proposition 24.4.1 Let X be a subset of the set of simple root. Let w ∈W .
(ı) We have

H2i+1(X
X
w ) = 0 and H2i(X

X
w ) =

⊕

v≤w, ℓ(v)=i

Z[XX
v ] for all i ≥ 0.

(ıı) We have

H2i+1(XX
w ) = 0 and H2i(XX

w ) =
⊕

v≤w, ℓ(v)=i

ZεXw for all i ≥ 0

where εXw is defined by ∫

[XX
v ]
εXw = δv,w.

(ııı) The restriction map H∗(XX) → H∗(XX
w ) is surjective.

(ıv) If πX,Y : G/PX → G/PY is the natural projection, then we have

(πX,Y )∗[X
X
w ] =

{
[XY

w ] if w ∈W Y

0 otherwise
and π∗X,Y ε

Y
w = εXw .

Proof : (ı) and (ıı) This comes from the Bruhat decomposition, indeed, the Schubert cells form a
Cellular decomposition of the Schubert varieties. Furthermore, the Schubert cells are affine spaces
thus their cohomology and homology is trivial except in higher degree.

(ııı) This comes from the corresponding inclusion in homology (and the natural injections coming
from the ind-variety structure.

(ıv) Comes directly from the fact that the map XX
w → XY

w is birational if and only if w ∈W Y . �

We now want to define an action of the Weyl group on the equivariant cohomology. This action
is not an algebraic action, even in the finite dimensional case. To construct it, we need to pass to the
topology category.

Proposition 24.4.2 There is a natural action of the Weyl group W on H∗T (G/B) as well as on
H∗(G/B) such that the canonical map η : H∗T (G/B) → H∗(G/B) is W -equivariant.
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Proof : Let us just give some ideas of the construction of this action.
Consider the subgroup N of G (recall that N is the semi-direct product of T by W ). As a

subgroup it acts on the right on G (here we need in fact more: that the action is topological, this
comes from the study of the minimal group Gmin associated to a generalised Cartan matrix and that
we briefly discussed in the introduction). This action descend to a right action of W on G/T and we
thus for any w ∈ W , have a morphism Rw : G/T → G/T given by right multiplication and thus a
map R∗w : H∗(G/T ) → H∗(G/T ). Furthermore, because the right action of W commutes with the
left action of T , we also get a map R∗w : H∗T (G/T ) → H∗T (G/T ) and thus a left action of w on the
cohomology and the equivariant cohomology. All this together gives a left action of the Weyl group on
the cohomology and the equivariant chomology and the natural map between them is W -equivariant.

Now consider the quotient map G/T → G/B. It is a principal B/T = U-bundle. However U

is contractible (here again we need to use the minimal group Gmin and the corresponding unipotent
group Umin to give sense to this sentence). In particular, by Leray spectral sequence, the cohomology
and equivariant cohomology groups of G/T and G/B are isomorphic. The result follows. �

We may now apply Corollary 24.2.4 to get a W -equivariant ring morphism

H∗T (X) → S(X(T )) ⊗Z H
∗
T (X

T ) = S(X(T )) ⊗Z H
0(W ).

But for all k, the Z-module Sk(X(T )) ⊗ H0(W ) can be identified as the space of function W →
Sk(X(T )). Let us denote by S the ring S(h∗), the ring S(X(T )) is a subring of S. We denote by Q
the fraction field of S. We have a natural ring morphism:

H∗T (X) → ΩW

where ΩW = {f : W → Q} the set of functions from W to Q.
The main point of the theory is to prove that this ring morphism is injective and to explicitly

identify its image as a subring of ΩW . For this we shall need to define some special operators on
the cohomology called Demazure operators and we shall start by constructing the ring of Demazure
operators and then the cohomology ring.

Definition 24.4.3 (ı) Let αi be a simple root and let Pi the associated minimal parabolic subgroup.
The quotient map

πi : G/B → G/Pi

is a P1-fibration. Take ω an element in H∗(G/B) and view it as a differential form. Then we may
define

ωi =

∫

fiber of πi

ω.

This is a cohomology class in H∗−2(G/Pi) (i.e. of degree deg(ω)−2). We define the Demazure operator
Dsi by

Dsi(ω) = π∗i ωi.

(ıı) For the equivariant cohomology, we use the same map G/B ×T B(T ) → G/Pi ×T B(T ) to
define the operators

D̂si : H
∗
T (G/B) → H∗−2(G/B).

Remark 24.4.4 One can also define the Demazure operators in a more algebraic way. Consider the
locally trivial P1-fibration πi : G/B → G/Pi and take σ a section of the surjection H∗T (G/B) →
H∗T (Pi/B). We have a natural isomorphism

H∗T (G/Pi)⊗Z H
∗
T (Pi/B) → H∗T (G/B)
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defined by u⊗v 7→ (π∗i u)∪σ(v). But the equivariant cohomology ring H∗T (Pi/B) is free over S(X(T ))
genrated by two elements: 1 and [pt] in degree 0 and 2 respectively. In particular for ω ∈ H∗T (G/B)
we may write

ω = π∗i α+ [pt]π∗i β.

We may thus define
D̂si(ω) = π∗i β.

This definition does not depend on the choice of the section σ and coincide with the previous definition.

Proposition 24.4.5 We have the following commuting diagram:

H∗T (G/B)
D̂si //

η

��

H∗−2T (G/B)

η

��

H∗(G/B)
Dsi // H∗−2(G/B).
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Chapter 25

The Nil-Hecke ring

In this chapter we define a combinatorial invariant associated to any generalised Cartan matrix and
thus to any Kac-Moody Lie algebra and any Kac-Moody groups. We shall then see that this invariants
has several applications on the geometry of homogeneous varieties under Kac-Moody groups and even
on homogeneous spaces of finite dimension.

25.1 The ring

Let g be any Kac-Moody Lie algebra and h its associated Cartan subalgebra. The spaces h and h∗ are
W -modules where W is the Weyl group associated to the situation.

We shall use the following notation: Q is the quotient field of the symmetric algebra S = S(h∗).
The action of W extends to an action on S and on Q.

Definition 25.1.1 We denote by QW the Q-vector space with basis {δw}w∈W . We define a product
on QW by (∑

v∈W

qvδv

)
·
(∑

w∈W

q′wδw

)
=
∑

v,w

qv(vq
′
w)δvw .

Remark that the underlying vector space is the same as the one of the ring algebra of W but the
product is not the same.

Fact 25.1.2 (ı) This defines an associative non commutative ring with unit 1 = δe.
(ıı) The ring QW is a Q vector space but is not a Q-algebra, this comes from the fact that Qδe is

not a central element. However, it is an algebra over the subfield QW of W -invariants of Q.
(ııı) There is an anti-involution t of QW defined

(qδw)
t = (w−1q)δw1 , for w ∈W and q ∈ Q.

Let us recall the following from [Sp81]:

Definition 25.1.3 Let R be a ring. (ı) A coproduct on a R-module A is a map d : A→ A⊗A such
that the product is associative: (d⊗ 1)d = (1⊗ d)d.

(ıı) A coproduct d is that to be commutative if Td = d where T : A ⊗ A → A ⊗ A is defined by
T (x⊗ y) = y ⊗ x.

(ııı) A counit for the coproduct d is a map ǫ : A→ R such that we have (ǫ⊗ 1) ◦ d = (1⊗ ǫ) ◦ d.
(ıv) Define a product ⊙ on QW ⊗QW by

(qvδv ⊗ qwδw)⊙ (qv′δv′ ⊗ qw′δw′v) = (qvqw)(v(qv′qw′))δvv′ ⊗ δvw′v−1w.

239
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Fact 25.1.4 (ı) There is a Q-linear coproduct ∆ : QW → QW ⊗Q QW defined by:

∆(qδw) = (qδw)⊗ δw = δw ⊗ (qδw), for w ∈W and q ∈ Q.

(ıı) This coproduct is associative, commutative and has a counit given by ε : QW → Q defined by
ε(qδw) = q for all q ∈ Q and w ∈W .

(ııı) This coproduct defines a ring morphism (QW , ·) → (QW ⊗QW ,⊙).

We now define some very important elements xα in QW for any simple root α by

xα =
1

α
(δsα − δe).

We also set xe = δe. We denote by Q[α] the polynomials over Q in the simple roots and by Z[α]
and Z+[α] the same polynomials over Z or Z+. We have the following Theorem resuming the basic
properties of the ring Qw:

Theorem 25.1.5 (ı) We have x2α = 0 for all simple roots α.

(ıı) Let w = (sα1 , · · · , sαn) be a reduced word. Then the element

xw = xα1 · · · xαn

does not depend on the word w but only on w = π(w). We shall denote it by xw.

(ııı) For any λ ∈ h∗ and any w ∈W , we have

λxw = xw(w
−1λ)−

∑

v
β
→w

〈λ, β∨〉xv

where v
β→ w stands for v ≤ w, ℓ(w) = ℓ(v) + 1, w = sβv and β ∈ ∆re

+.

(ıv) For any elements v and w in W , we have

xvxw =

{
xvw if ℓ(vw) = ℓ(v) + ℓ(w)
0 otherwise.

(v) If we write the elements xw in the basis (δv)v∈W in the form

xw =
∑

v∈W

cw,vδv

with cw,v ∈ Q, then we have:

• cw,v = 0 unless v ≤ w;

• cw,w =
∏

β∈∆+∩w(∆−)

β−1.

(vı) For a fixed reduced decomposition w = sα1 · · · sαn and for v ≤ w we have

cw,v = (−1)n
∑((

sε1α1
(α1)

)
· · ·
(
sε1α1

· · · sεnαn
(αn)

))−1

where the sum runs over all sequences (ε1, · · · , ǫn) ∈ {0, 1}n such that sε1α1
· · · sεnαn

= v.
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(vıı) For w ∈W and any simple reflection s = sα associated to a simple root α we have

xwδs =

{
−xw if ws < w
(w(α))xws − xw +

∑
v

β
→ws

〈w(α), β∨〉xv otherwise.

(vııı) For any w ∈W , we have

∆(xw) =
∑

u,v≤w

pwu,v · xu ⊗ xv

for some homogeneous polynomial pwu,v ∈ S of degree ℓ(u) + ℓ(v)− ℓ(w). In particular pwu,v = 0 unless
ℓ(u) + ℓ(v) ≥ ℓ(w). We even have pwu,v ∈ Z[α] and these polynomials are unique.

Proof : (ı) We compute:

x2α =
1

α
(δsα − δe)

1

α
(δsα − δe) =

1

α2
(−δsα − δe)(δsα − δe) = 0.

We prove (ıı), (ııı) and (v) simultaneously by induction. Assume w of length one i.e. w = s a
simple reflection. Then (ıı) and (v) are clear. Let us prove (ııı). We compute:

λxα =
λ

α
(δsα − δe)

while the right hand side of (ııı) is

xαsα(λ)− 〈λ, α∨〉xe =
1

α
(δsα − δe)sα(λ)− 〈λ, α∨〉δe =

λ

α
δsα − sα(λ)

α
δe − 〈λ, α∨〉δe

and the result follows in this case.
Let us assume (ıı), (ııı) and (v) are true for any element of length n and take w of length n + 1.

Take w = usα with ℓ(w) ≥ 2 and u < w. We compute

λxuxα = (xu(u
−1(λ)−

∑

u0
β0→u

〈λ, β∨0 〉xu0)xα = xuxα(w
−1(λ)) − 〈u−1(λ), α∨〉xu −

∑

u0
β0→u

〈λ, β∨0 〉xu0xα.

Take u0 and β0 such that u0
β0→ u. Then we have u = u0sβ0 and usα = w > u. Now we have the

alternative u0sα ≤ u or u0sα ≤ usα = w. In the first case, the two elements have the same length and
are such equal: u0sα = u = u0sβ0 i.e. β0 = α which is not possible because in that case u0 = w. We
thus have u0sα ≤ w. Let us define the map:

{u0 / u0 β0→ u and u0sα > u0} → {v / v β→ w and v 6= w}

by u0 7→ v = u0sα and β = sα(β0). The same argument defines a map in the other direction thus these
to sets are in bijection. Furthermore, by (ıı) and the induction hypothesis, we have xu0xα = xu0sα for
u0sα > u0. Furthermore, by (ı), (ıı) and induction we have xu0xα = 0 for u0sα < u0. We get in the
previous formula:

(†) λxuxα = xuxα(w
−1(λ))−

∑

v
β
→w

〈λ, β∨〉xv.

Now we want to compare for w = u′sβ with ℓ(u′) = ℓ(w)− 1 the expressions xuxα and xu′xβ. We
write:

xuxα =
∑

v∈W

qvδv and xu′xβ =
∑

v′∈W

qv′δv′ .
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By (v) and the induction hypothesis, we have that xu (resp. xu′) has non vanishing coefficients only on
elements δv for v ≤ u (resp. v ≤ u′). This implies that qv = 0 and qv′ = 0 unless v ≤ w. Furthermore,
we also obtain that

qw =
cu,u

u−1(α)
=

∏

γ∈∆+∩w(∆−)

β−1 = qw′.

Now we use equation (†) for the expressions wusα and w = u′sβ to obtain the equation

λxuxα − xuxα(w
−1(λ)) = λxu′xβ − xu′xβ(w

−1(λ)).

Replacing xuxα and xu′xβ by their expressions in terms of the δv we obtain for all v ∈W :

(λ− v(w−1(λ)))qv = (λ− v(w−1(λ)))q′v .

But the representation of W in h∗ being faithful, we have the equality qv = q′v for all v 6= w and (ıı)
follows as well as (ııı). Furthermore now we have cw,v = qv = q′v and (v) follows also.

For (ıv) remark that the first part follows from (ıı). For the second part, take v and w in W
such that ℓ(vw) < ℓ(v) + ℓ(w). Take a reduced decomposition w = s1 · · · sn and choose k such that
ℓ(vs1 · · · sk) = ℓ(v) + k but ℓ(vs1 · · · sk+1) < ℓ(v) + k + 1 (i.e. ℓ(vs1 · · · sk+1 = ℓ(v) + k − 1). Set
wk = s1 · · · sk. Set u = vwksk+1, we have ℓ(u) = ℓ(v) + k − 1 and usk+1 = vwk. In particular if
s′1 · · · s′ℓ(v)+k−1 is a reduced expression for u, then s′1 · · · s′ℓ(v)+k−1sk+1 is a reduced expression for vwk.
We obtain:

xvxw = xvxwk
xsk+1

· · · xsn = xs′1 · · · xs′ℓ(v)+k−1
xsk+1

xsk+1
· · · xsn

and the vanishing follows by (ı).
(vı) Follows from (ıı) and (ıv) by an easy induction. Indeed, write w = w′sα with α a simple root.

Write xw′ =
∑
cw′,vδv. We compute xw = xw′xa. First we have he easy formula:

δvxα =
1

v(α)
(δvsα − δv).

This gives
xw =

∑
v∈W

cw′,v

v(α) (δvsα − δv)

=
∑

u∈W
cw′,usα
u(−α) δu −

∑
v∈W

cw′,v

v(α) δv

= −∑v∈W

[
cw′,vsα
v(α) +

cw′,v

v(α)

]
δv.

We now want to compute these values. The first term will correspond to expressions v = sε1α1
· · · sεn−1

αn−1sα
and the second one to expressions v = sε1α1

· · · sεn−1
αn−1 . Indeed, we have

cw′,vsα = (−1)n−1
∑((

sε1α1
(α1)

)
· · ·
(
sε1α1

· · · sεn−1
αn−1

(αn−1)
))−1

where the sum runs over all sequences (ε1, · · · , ǫn−1) ∈ {0, 1}n such that sε1α1
· · · sεn−1

αn−1 = vsα. The first
remark is that the sign will agree. We now want to compare this with the following sum runs over all
sequences (ε1, · · · , ǫn−1) ∈ {0, 1}n such that sε1α1

· · · sεn−1
αn−1 = vsα.

∑((
sε1α1

(α1)
)
· · ·
(
sε1α1

· · · sεn−1
αn−1

(αn−1)
)(

sε1α1
· · · sεn−1

αn−1
(αn−1)sα(α)

))−1

=
∑((

sε1α1
(α1)

)
· · ·
(
sε1α1

· · · sεn−1
αn−1

(αn−1)
)
v(α)

)−1
=
cw′,v

v(α
).

The same kind of computation gives the result.
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(vıı) We compute

xwδs = −xw(xsα+ δe) =

{
−xw if ws < w
−xwsα− xw if ws > w.

The result follows by (ııı).
(vııı) We prove this by induction on ℓ(w). It is true for ℓ(w) = 0. For w = sα with α simple, we

have
∆(xα) = 1

α(δsα ⊗ δsα − δe ⊗ δe)
= (δsα − δe)⊗ 1

α(δsα − δe) + δe ⊗ 1
α(δsα − δe) +

1
α(δsα − δe)⊗ δe

= αxα ⊗ xα + xe ⊗ xα + xα ⊗ xe.

For w ∈ W , we write w = sw′ with s = sα a simple reflection and ℓ(w) > ℓ(w′). By induction and
the fact that ∆ is a ring morphism, we get the existence of a homogeneous polynomial pw

′

u′,v′ of degree
ℓ(u′) + ℓ(v′)− ℓ(w′) such that

∆(xw) = ∆(xα)⊙∆(xw′) =
1

α
(δs ⊗ δs − δe ⊗ δe)⊙


 ∑

u′,v′≤w′

pw
′

u′,v′xu′ ⊗ xv′


 .

From the definition of ⊙ we have:

(δw ⊗ δw)⊙ (x⊗ y) = qδwx⊗ δwy.

We get

∆(xw) =
∑

u′,v′≤w′

[
1
α(sαp

w′

u′,v′)δαxu′ ⊗ δαxv′ − 1
αp

w′

u′,v′xu′ ⊗ xv′
]

=
∑

u′,v′≤w′

[
α(sαp

w′

u′,v′)
1
α(δα − δe)xu′ ⊗ 1

α(δα − δe)xv′

+(sαp
w′

u′′,v′)xu′ ⊗ 1
α(δα − δe)xv′ + (sαp

w′

u′,v′)
1
α(δα − δe)xu′ ⊗ xv′ +

sαpw
′

u′,v′
−pw

′

u′,v′

α xu′ ⊗ xv′

]

=
∑

u′,v′≤w′

[
α(sαp

w′

u′,v′)xαxu′ ⊗ xαxv′ + (sαp
w′

u′,v′)xu′ ⊗ xαxv′ + (sαp
w′

u′,v′)xαxu′ ⊗ xv′

+
sαpw

′

u′,v′
−pw

′

u′,v′

α xu′ ⊗ xv′ .

]

This gives the result. The fact that the polynomial are in Z[α] comes from the fact that the operator
p 7→ sαp−p

α send Z[α] to itself. �

Definition 25.1.6 (ı) Let us define D the space of all matrices A = (av,w)v,w∈W with entries in
W ×W and values in Q such that there exists an integer n (depending on A) such that av,w = 0 unless
ℓ(v)− ell(w) ≤ n.

The matrix multiplication in then well defined nd this gives a ring structure on D.
(ıı) We define the change of basis matrix

C = (cv,w)v,w∈W .

It is a lower triangular matrix and is in D It is even invertible because its diagonal elements are non
zero. We shall the that the matrix D =t C−1 (as well as C) play an important role.

For the moment we did not define any integral structure (i.e. a ring over S nd not only Q). Let
us first define a structure of QW -module on Q:
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Definition 25.1.7 (ı) Define the action

(qδw) • q′ = qw(q′).

(ıı) Now we may define a sub-ring RW of QW by

Rw = {a ∈ QW / a • S ⊂ S}.

Fact 25.1.8 The elements (xw)w∈W are in RW . They form a sub-ring R of RW .

Proof : Compute the action of xα on a weight λ:

xα • λ =
1

α
(δα − δe) • λ =

sα(λ)− λ

α
= 〈α∨, λ〉 ∈ Z.

Because xα and λ generate the xw and S, the result follows. The fact that they from a sub-ring comes
from the previous Theorem. �

A more difficult result that we won’t prove here is the following

Theorem 25.1.9 We have the equality RW = R.

This ring is called the Nil-Hecke ring because its relations are similar to the relation of a classical
Hecke ring. This ring will be a ring of operators on the equivariant cohomology H∗T (G/B). We may
realise this cohomology as a ”dual” of the nil-Hecke ring.

25.2 The dual ring

Recall the definition of the space ΩW of all functions f : W → Q. Of course this space may be
identified with the space homQ(QW , Q) by defining for h ∈ homQ(QW , Q) the function f :W → Q as
f(w) = h(δw). We will identify these two spaces.

The commutative comultiplication in QW induces a commutative product in homQ(QW , Q) and
this product is simply the product of functions in ΩW . The counit induces a unit for this product and
in ΩW the unit is the constant function 1(w) = 1. Remark that we obtain in this way a commutative
Q-algebra structure on ΩW .

From the identification of ΩW with homQ(QW , Q), we have a QW -action on ΩW given by

(x ⋆ f)(y) = f(yx)

for x, y ∈ QW and f ∈ ΩW . The action of the following elements are very important:

(δw ⋆ f)(v) = f(δvδw) = f(vw)

this is called the Weyl group action. Indeed,looking at the equivariant cohomology ring H∗T (G/B) as a
sub-ring of ΩW (for the moment we only have a map), the action of the Weyl group on the equivariant
cohomoogy is given by this action (recall that it is give by right multiplication). We also have

(xα ⋆ f)(v) = f(δvxα) =
f(vsα)− f(v)

v(α)
.

These operators will coincide with the Demazure operators D̂α. Finally we have the action:

((qδe) ⋆ f)(v) = f(vqδe) = f(v(q)δvδe) = v(q)f(v).

In particular we have the equality
(qδe) ⋆ f = qf

if and only if q ∈ QW .
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Definition 25.2.1 We define the restricted dual Λ of R by

Λ = {f ∈ ΩW / f(R) ⊂ S and f(xw) = 0 for all but finitely many w ∈W}.

Lemma 25.2.2 The set Λ is an S-subalgebra of the Q-algebra ΩW and is free as S-module with basis
(ξw)w∈W such that

ξw(xv) = δw,v.

Furthermore, the ring Λ is stable under the left action ⋆ of R.

Definition 25.2.3 We define the matrix D = (du,v)u,v∈W ∈ D by

du,v = ξu(xv).

Theorem 25.2.4 (ı) We have D−1 =t C in particular du,v = 0 unless u ≤ v and

du,u =
∏

β∈∆+∩w∆−

β.

(ıı) We have for α a simple root:

xα ⋆ ξ
w =

{
ξwsα if wsα < w
0 otherwise.

(ııı) ξe is a unit.
(ıv) We have the general multiplication formula:

ξuξv =
∑

w≥u,v

pwu,v.

(v) More precisely we have the Equivariant Chevaley formula:

ξsαξw = dsα,wξw +
∑

w
β
→v

〈w(ωα), β∨〉ξv.

Remark that this describes the Littlewood-Richardson coefficients which are pwu,v. However these
are far from being explicit. In the next result we relate these coefficients with the matrix D:

Theorem 25.2.5 Define the matrix P u by P uv,w = pwu,v and Du by Du
v,w = δv,wdu,v then we have

Pw = D ·Dw ·D−1.

We now come to our main result. For this we need some preliminary notation. First let us denote
by SZ = S∗(h∗Z) and by ΛZ the SZ-subalgebra of Λ by

ΛZ =
⊕

w∈W

SZξ
w.

We define a grading on ΛZ by

Λ2d
Z =

⊕

w∈W

S
d−ℓ(w)
Z ξw.

Finally, denote by ν the natural SZ-algebra homomorphism H∗T (G/B) → ΩW described in the last
Chapter.
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Theorem 25.2.6 The map ν is injective and satisfies the relations:

ν(w · x) = δw ⋆ ν(x) and ν(D̂α(x)) = xα ⋆ ν(x).

Furthermore imν = ΛZ.

Proof : let us give a sketch of proof. First consider the filtration Xn defining the ind-variety structure
on G/B. For these varieties we have an isomorphism

Q⊗SZ
H∗T (G/B) ≃ Q⊗Z H

0(XT
n )

and we also know that H∗T (Xn) is torsion free thus included in the first and hence in the second terms.
But this last inclusion factors through the map

H∗T (Xn) → SZ ⊗Z H
0(XT

n )

which has to be injective. Now for a fixed cohomology degree i we have H i
T (G/B) = H i

T (Xn) for large
n and the injectivity follws.

The first formula is also easy to prove, consider the commutative diagram given by localisation at
T -fixed points:

H∗T (G/T )
R∗

w //

��

H∗T (G/T )

��
H∗T (W )

r∗w // H∗T (W )

where the maps Rw are the right multiplication by w. This gives the first formula.
We will not prove the second formula which uses the P1-fibration G/B → G/Pα where Pα is the

minimal parabolic subgroup associated to α.
For the last statement, we first prove the inclusion of the image in Λ. Let X ∈ H2n

T (G/B) and let
w ∈W . We want to see that ν(x)(xw) ∈ S and that this is zero except for a finite number of w ∈W .
Let w = s1 · · · sn be a reduced expression. Then by the second formula we get:

ν(D̂α1 · · · D̂α1(x)) = xw ⋆ ν(x).

Consider these elements as functions on W (these elements are in ΩW ) and evaluate them at e ∈W :

ν(D̂α1 · · · D̂α1(x))(e) = xw ⋆ ν(x)(e) = ν(x)(exw) = ν(x)(xw).

But D̂α1 · · · D̂α1(x) is an element in the equivariant cohomology ring H∗T (G/B), in particular its
evaluation at any T -fixed point has value in SZ thus ν(x)(xw) ∈ SZ. Furthermore, the class x being
of degree 2n and the Demazure operators decreasing the degree by 2 we get D̂α1 · · · D̂α1(x) = 0 for
ℓ(w) > n. This proves the inclusion in Λ. For the inclusion in ΛZ, recall that the ξ

w form a basis of
Λ thus we can write ν(x) =

∑
w awξ

w. But aw = ν(x)(xw) ∈ SZ and the result follows.
The surjectivity comes from the existence of classes in the equivariant cohomology that are mapped

to the Schubert classes in the classical cohomology and on ξw in ΩW . �

As an example of other geometric meaning of the Nil-Hecke ring, let us mention the following
result:

Theorem 25.2.7 Consider the Schubert variety Xw in G/B and the fixed point v corresponding to
v ∈W in Xw (with v ≤ w). Define:

S(w, v) = {β∆+ / sβv ≤ w and β is a real root}.
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Then v is a smooth point if and only if

cw,v = (−1)ℓ(w)−ℓ(v)
∏

β∈S(w,v)

β−1.
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Chapter 26

Quantum cohomology for finite

dimensional homogeneous spaces

Let G be a semisimple algebraic group and let P be a parabolic subgroup. We denote by X the
quotient G/P and call it a finite dimensional homogeneous space. In this chapter we quickly review
the theory of quantum cohomology for these spaces. The basis reference is [FP97]. We also refer to
the fundamental articles [Ko95] and [KM98].

26.1 The space of stable maps

We will not construct the moduli space M̄g,n(X,α) of stable maps of class α from a genus g curve
to the variety X. We will admit its existence and basic properties. We will only deal with curves of
genus 0.

26.1.1 Stable maps

We collect in this subsection the general definitions of stable curves and stable maps, the theorem on
existence of a coarse moduli space of stable maps to any projective algebraic scheme and the definition
of evaluations maps and the maps forgeting some of the marked points.

Definition 26.1.1 (ı) An n-pointed, quasi-stable map from a rational curve to a variety X is the data
(C, p1, · · · , pn, f) where C is a projective, connected, reduced curve of arithmetic genus 0 having at
most nodal points, with n distinct nonsingular marked points (p1, · · · , pn) and where f is a morphism
f : C → X.

(ıı) If E is an irreducible component of C, the special points of E in (C, p1, · · · , pn, f) are the
marked points lying on E and the singular points on E in C.

The quasi-stable rational map (C, p1, · · · , pn, f) is called stable if for any component E of C
contracted by f the automorphism group of E fixing the special points is finite.

(ııı) A family of n-pointed, stable map from a rational curve to a variety X over a base S is
the data (π : C → S, p1, · · · , pn, f) where π is a flat projective map with n sections pi : S → C for
i ∈ [1, n] and f is a morphism f : C → X such that for each geometric point s ∈ S the induced data
(Cs, p1(s), · · · , pn(s), f) is a stable map from a rational curve to X.

Remark 26.1.2 A n-pointed rational quasi-stable map (C, p1, · · · , pn, f) is stable if and only if for
any irreducible component E of C contracted by f , there are at least three special points on E.

249
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Definition 26.1.3 (ı) Let α ∈ H2(X) be a class of 1-cycle on an algebraic scheme X. A map
f : C → X from a curve C to X is said of class α if f∗[C] = α.

(ıı) Let n be an integer, X be an algebraic variety and α ∈ H2(X). We denote by M̄0,n(X,α) the
following functor:

M̄0,n(X,α)(S) =

{
isomorphism classes of stable families over S
of rational n-pointed maps of class α to X.

}

The fundamental result on stable maps is the following theorem: there exists a coarse moduli space
for stable maps to any projective algebraic scheme X.

Theorem 26.1.4 There exists a projective scheme M̄0,n(X,α) which is coarse moduli space for the
functor M̄0,n(X,α). This means that there is a natural morphism of functors:

F : M̄0,n(X,α) → homSch(•, M̄0,n(X,α))

such that F is a bijection over Spec(C) and for any scheme Z with a morphism of functors G :
M̄0,n(X,α) → homSch(•, Z) there is a unique morphism of schemes

f : M̄0,n(X,α) → Z

such that G = f ◦ F where we still denoted f the induced functor

homSch(•, M̄g,n(X,α)) → homSch(•, Z).

Remark 26.1.5 In fact the functor M̄0,n(X,α) defines a smooth Deligne-Mumford stack but we do
not want to deal with stacks here.

26.1.2 Morphisms

Evaluation morphisms

Let (π : C → S, p1, · · · , pn, f) be a family over S of stable n-pointed rational maps to an algebraic
scheme X. For any i ∈ [1, n] there exists a natural morphism f ◦ pi : S → X. This gives a morphism
of functors

M̄0,n(X,α) → homSch(•,X).

The universal property of M̄0,n(X,α) gives a morphism called ith evaluation morphism

ρi : M̄0,n(X,α) → X.

On the level of points it is simply given by ρi(C, p1, · · · , pn, f) = f(pi).

Forgetting the map

In the same vein, define the moduli space M̄0,n = M̄0,n({pt}, 0) of n-pointed, rational stable curves.
Any element (π : C → S, p1, · · · , pn, f) ∈ M̄0,n(X,α)(S) i.e. any stable map defines an element, a
stable curve, (π : C → S, p1, · · · , pn, cst) ∈ M̄0,n and by composition a morphism of functors:

M̄0,n(X,α) → homSch(•, M̄0,n)

so that there exist a forgetful map

η : M̄0,n(X,α) → M̄0,n.
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Forgetting points

Let us use the following notation: if A is a finite set, we denote by M̄0,A(X,α) (resp. M̄0,A) the moduli
space of stable rational maps (resp. curves) with marked points labeeled by A. It is isomorphic to
M̄0,n(X,α) (resp. M̄0,n) with n = Card(A).

If A is a subset of [1, n] one can also construct forgetfull morphisms

µA : M̄0,n(X,α) → M̄0,A(X,α) and νA : M̄0,n(X,α) → M̄0,A

respectively given on a general curve (C, p1, · · · , pn, f) by µA(C, p1, · · · , pn, f) = (C, (pi)i∈A, f) and
by νA(C, p1, · · · , pn) = (C, (pi)i∈A). Remark that this is not obviously defined since forgeting points
can destabilise the curve C as in the following examples.

Example 26.1.6 In the following pictures, each irreducible component of the curve are represented
by lines with points on them. The left pictures represents the (n + 1)-stable curve, the middle one
represents this curve with the points pn+1 ommited and the right one represents the stabilisation of
the curve.

•
•

•
•

•
pn+1 •

•
•
•

•
•

•
•

•
•

•
•+1

pi • •
•

pi •
•

•pi

However F. Knudsen [Kn83] proved that the curves (C, (pi)i∈A) can be stabilised in families. For
maps (C, (pi)i∈A, f) a similar result is true (see for example [KV06] for the case of Pn). The maps µA
and νA are then well defined.

26.1.3 Irreducibility and dimension

Let us denote by M̄0,n(X,α)
∗
the open set of stable maps with no non-trivial automorphism and by

M0,n(X,α) the open set of stable maps from an irreducible curve. The boundary of M̄g,n(X,α) is the
locus of morphisms from reduced rational curves to X.

We have the following result:

Theorem 26.1.7 (ı) The variety M̄0,n(X,α) is a normal irreductible projective variety of the expected
dimension

∫
α c1(X)+dimX+n−3. It is locally a quotient of a non singular variety by a finite group.

(ıı) The open set M̄0,n(X,α)
∗
is non singular and a represents the restricted functor of auto-

morphism-free stable maps.
(ııı) The boundary of M̄0,n(X,α) is a union of subvarieties of pure codimension 1. It is a divisor

with normal crossing over the automorphism-free locus. In general the boundary is a divisor with
normal crossing up to a finite group quotient.

Remark 26.1.8 (ı) For a proof, see [FP97] and [Th98] for irreducibility.
(ıı) If a morphism f : P1 → X is birational onto its image, then the map (C, f) does not have any

automorphism. This in particular implies that the complementary of M̄0,n(X, d)
∗
in M̄0,n(X, d) is of
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codimension at least 2 except if X = P2 and (deg(α), n) 6= (2, 0) (simple dimension count thanks to
the fact that the dimension is the expected one).

(ııı) Over the automorphism-free locus, the boundary of M̄0,n(X,α) shares the properties of the
boundary of M̄0,n.

Description of the boundary

The boundary component are indexed by the data (A,B,α1, α2) where

• A ∪B is a partition of [1, n];

• α1 and α2 are effective 1-cycle classes and α1 + α2 = α;

• if α1 = 0 (resp. α2 = 0) then Card(A) ≥ 2 (resp. Card(B) ≥ 2)).

Let us denote by D(A,B,α1, α2) the divisor of the boundary indexed by (A,B,α1, α2). The general
curve (C, p1, · · · , pn), f) in D(A,B,α1, α2) is such that

• C is the union of two rational pointed quasi-stable maps (CA, (pi)i∈A, f |A) and (CB , (pi)i∈B , f |B)
meeting in one non singular point of each of them and disctint from the pi’s;

• we have f∗[CA] = α1 and f∗[CB ] = α2.

There is a nice description of the boundary D(A,B,α1, α2) is terms of smaller moduli spaces.
Indeed, let M̄0,A∪{•}(X,α1) and M̄0,B∪{•}(X,α2) be the moduli spaces of genus 0 stable maps with
marked points in A ∪ {•} and class α1 (resp. B ∪ {•} and class α2). The evaluation map ρ• gives
morphisms M̄0,A∪{•}(X,α1) → X and M̄0,B∪{•}(X,α2) → X and we may consider the fiber product

M̄0,A∪{•}(X,α1)×X M̄0,B∪{•}(X,α2).

We have the following theorem (see [FP97]):

Theorem 26.1.9 The natural morphism

ψ : M̄0,A∪{•}(X,α1)×X M̄0,B∪{•}(X,α2) → D(A,B,α1, α2)

is an isomorphism as soon as A and B are empty.

An equivalence relation on the boundary divisors

Here we describe an equivalence relation on the boundary divisor that enables to use induction on
the degree deg(α) of the 1-cycle class α. This result is essential in the proof of associativity of the
quantum product or of Kontsevich’s formula.

Let us set

D(i, j|k, l) =
∑

[D(A,B,α1, α2)]

where the sum runs over all boundary components of M̄0,n(X,α) such that {i, j} ⊂ A, {k, l} ⊂ B and
α1 + α2 = α.

Theorem 26.1.10 We have the following equality in A1(M̄0,n(X,α)):

D(i, j|k, l) = D(i, l|j, k).
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26.2 Quantum cohomology for homogeneous spaces

In this section we will define the Gromov-Witten invariants and the associated Quantum cohomology
ring for X. The associativity of this ring will give a proof of Kontsevich’s celebrated formula.

26.2.1 Gromov-Witten invariants

Definition

The evaluation morphisms ρi : M̄0,n(X,α) → X are flat (because X is homogeneous all fibers are
isomorphic) and there is a flat pull back ρ∗i : A∗(X) → A∗(M̄0,n(X,α)). If (γi)i∈[1,n] are in A∗(X)
such that

n∑

i=1

codim(γi) = dim(M̄0,n(X,α)) =

∫

α
c1 + dimX + n− 3. (26.1)

then classical intersection theory (see [Fu98]) enables to give the following

Definition 26.2.1 For cohomology classes (γi)i∈[1,n] on X verifying equation 26.1 one can define the
following number (Gromov-Witten invariant)

〈γ1, · · · , γn〉α =

∫

M̄0,n(X,α)
ρ∗1(γ1) ∪ · · · ∪ ρ∗n(γn) = deg

(
ρ∗1(γ1) ∪ · · · ∪ ρ∗n(γn) ∩ [M̄0,n(X,α)]

)
.

We will use the following simplification notation:

〈γ1, · · · , γ1, γ2, · · · , γ2, · · · , γk, · · · , γk〉α = 〈γn1
1 , · · · , γnk

k 〉α

where each γi appears ni times for i ∈ [1, k].

Remark 26.2.2 In the case where α = 0 we recover the classical invariant of the cohomology ring:

〈γ1, · · · , γn〉α = deg (γ1 ∪ · · · ∪ γn) .

Enumeration properties

As a consequence of Bertini’s theorem we obtain that the Gromov-Witten invariants are enumerative.

Let X1, · · · ,Xn be irreducible subvarieties of X such that

n∑

i=1

codim(Xi) = dim(M̄0,n(X,α)).

Theorem 26.2.3 Let g1, · · · , gn be general elements in G, then the scheme theoretic intersection in
M̄0,n(X,α)

ρ−11 (g1X1) ∩ · · · ∩ ρ−1n (gnXn)

is a finite number of reduced points reprensenting automorphism free stable maps from an irreducible
source. Furthermore we have

〈[X1], · · · , [Xn]〉d = Card(ρ−11 (g1X1) ∩ · · · ∩ ρ−1n (gnXn)).

The Gromov-Witten invariants count a number of stable maps. Actually, if none of the Schubert
varieties Xi is a divisor, they also count rational curves (see [KV06] section 3.5 for a precise discussion
on this fact). Furthermore, basic properties of Gromov-Witten invariants enable to restrict oneself to
the case where none of the Schubert varieties Xi is a divisor (see the next subsection) so that these
invariants are well suited for enumeration of rational curves.
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First calculations with Gromov-Witten invariants

We give here three basic properties of Gromov-Witten invariants:

Lemma 26.2.4 Mapping to a point. If α = 0 and 〈γ1, · · · , γn〉α 6= 0, then n = 3 and

〈γ1, γ2, γ3〉0 =
∫

X
γ1 ∪ γ2 ∪ γ3.

Lemma 26.2.5 Trivial class. If γ1 = 1 and 〈γ1, · · · , γn〉α 6= 0, then α = 0, n = 3 and

〈γ1, γ2, γ3〉0 =
∫

X
γ2 ∪ γ3.

Lemma 26.2.6 Divisor equation. If γ1 is a non trivial divisor class then we have:

〈γ1, · · · , γn〉α =

(∫

α
γ1

)
· 〈γ2, · · · , γn〉α.

Let A and B be two non empty subsets of [1, n]. In this case D(A,B,α1, α2) is isomorphic to the
fiber product M̄0,A∪{•}(X,α1)×X M̄0,B∪{•}(X,α2). We have the following:

Lemma 26.2.7 Splitting equation. Let i be the inclusion of D(A,B,α1, α2) in the product
M̄0,A∪{•}(X,α1) × M̄0,B∪{•}(X,α2) and σ be the inclusion of D(A,B,α1, α2) in M̄0,n(X,α) with
α = α1 + α2. Then if γ1, · · · , γn are in A∗(X), we have:

i∗σ
∗(ρ∗1(γ1) ∪ · · · ∪ ρ∗n(γn)) =

∑

λ⊂p×(N−p)

(
ρ∗•([Xλ]) ·

∏

a∈A

ρ∗a(γa)

)
×
(
ρ∗•([Xλ̂

]) ·
∏

b∈B

ρ∗b(γb)

)
.

26.2.2 Big quantum cohomology

In this section we define the big quantum cohomology ring. We will prove, thanks to the results on
M̄0,n(X,α), that this ring is commutative (this is easy) and associative. The associativity of the ring
gives relations between Gromov-Witten invariants and one recovers Kontsevich’s formula in this way.

Definition

Denote by σw the cohomology class dual to [Xw]. Denote by σα the classes σsα . The schubert classes
(σα)α∈Π form a Z-basis of H2(X). The classes (σw)w∈W is a Z-basis of H∗(X). For each w ∈W , one
defines a formal variable yw.

Definition 26.2.8 The quantum cohomology group QH∗(X) is H∗X ⊗Z Q[[(yw)w∈W ]].

In order to define a product on this group, one defines a potential, that is to say a formal power
serie in the variables (yw)w∈W . For γ ∈ H∗(X) define

Φ(γ) =
∑

n≥3

∑

α∈H2(X)

〈γn〉α
n!

.

If we write γ =
∑

w∈W

ywσw then the potential is a formal power serie:

Φ((yw)w) =
∑

∑
w nw≥3

∑

α

〈(σnw
w )w〉α

∏

w

ynw
w

nw!
.

For this formal serie to be well defined we need the following
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Lemma 26.2.9 For a familly (nw)w of integers, there are finitely many classes α ∈ H2(X) with
〈(σnw

w )w〉α 6= 0.

Since the potential Φ is well defined one can define its partial derivatives:

Φuvw =
∂3Φ

∂yu∂yv∂yw
, for u, v and w in W

and we have

Φuvw =
∑

n≥0

∑

α

〈γn, σu, σv, σw〉α
n!

=
∑

nκ

∑

α

〈(σnκ
κ )κ, σu, σv, σw〉α

∏

κ

ynκ
κ

nκ!
.

Definition 26.2.10 The quantum product onQH∗(X) isQ[[(yw)w]]-linear and defined by the formula

σu ∗ σv =
∑

w

Φuvw · σw∨ ,

where σ∨w is the Poincaré dual of σw.

Remark 26.2.11 This product is commutative since the partial derivatives do not depend on the
order of the subscripts.

The main result is the following:

Theorem 26.2.12 This product makes QH∗(X) into an associative Q[[(yw)w]]-algebra with unit σ0 =
1 ∈ H0(X).

As a consequence of this result applied to the plane we get the following enumerative result (the
numbers Nd where known only up to N5 before this result):

Theorem 26.2.13 (Kontsevich’s formula) Let Nd be the number of rational plane curves passing
through 3d− 1 general points, then the following formula holds:

Nd =
∑

d1+d2=d

Nd1Nd2

(
d21d

2
2

(
3d− 4

3d1 − 2

)
− d31d2

(
3d− 4

3d1 − 1

))
.

Remark 26.2.14 We already know that N1 = 1 since it is the number of lines passing through two
points. We then get all Nd’s reccursively. In particular one gets for example N2 = 1, N3 = 12 and
N4 = 620.

Proof : Set n = 3d and consider the moduli space M̄0,n(P
2, d) of rational degree d stable maps to the

plane. Fix L1 and L2 two lines in P2 and n − 2 points P1, · · ·Pn−2 in P2 all in general position. Let
us consider the following variety

Y =

(
n−2⋂

i=1

ν−1i (Pi)

)
∩ ν−1n−1(L1) ∩ ν−1n (L2).

Let us count the codimensions: the points Pi are of codimension 2 and the lines of codimension 1 so
that the codimension of Y has to be 2(n− 2) + 2 = 6d− 2. The dimension of M̄0,n(p

2, d) is 6d− 1 so
that Y has to be a curve. Because of Bertini’s theorem and the fact that the locus of stable maps with
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automorphisms is in codimension at least 2 (see remark 26.1.8) we may assume that Y in contained
in M̄0,n(P

2, d)
∗
the locus of automorphism free stable maps.

The relation on divisors on M̄0,n(P
2, d) given in theorem 26.1.10 induces the following relation:

[Y ∩D(1, 2|n − 1, n)] = [Y ∩D(1, n− 1|2, n)]

and in particular with equality of the degrees. Bertini’s theorem proves that these two classes are
represented by a finite number of reduced points. Let us calculate these numbers.

Let us study the left hand term. A curve (CA ∪ CB , (pi)i∈[1,n], f) in Y ∩ D(1, 2|n − 1, n) must
be such that dA = deg(f |CA

) ≥ 1 because f(CA) has to pass through two general points P1 and P2.
However, the degree dB = deg(f |CB

) can be 0. In this case, the image of CB is the point P = L1 ∩L2

and the curve CA has to pass through all the (Pi)i∈[1,n−1] and through P so that there are exactly Nd

such curves. If dB ≥ 1 then there must be 3dA−1 points Pi on f(CA) including P1 and P2 and 3dB−1
points on f(CB) to get a finite number NdANdB of such curves. We have

( n−4
3dA−3

)
=
( 3d−4
3dA−3

)
=
( 3d−4
3dB−1

)

such choices. We then have d2B choices for the points pn−1 and pn and dAdB choices for the intersection
point CA ∩CB .

For the right hand term, we see that neither dA nor dB can be 0. In the same way, there must be
3dA − 1 points Pi on f(CA) including P1 and 3dB − 1 points on f(CB) including P2 to get a finite
number NdANdB of such curves. We have

( n−2
3dA−2

)
=
( 3d−4
3dA−2

)
=
( 3d−4
3dB−2

)
such choices. We then have

dA choices for the point pn−1, dB choices for the point pn and dAdB choices for the intersection point
CA ∩ CB .

We get the expected formula. �

26.2.3 Small Quantum cohomology

In this section we define the small quantum cohomology ring. This ring is a deformation of the classical
cohomology ring and is easier to calculate. Moreover a general result states that one can recover all
genus g and n points Gromov-Witten invariants using this smaller ring.

Definition

We keep the preceding notation. In order to define a new product on this group, one defines a restricted
potential defined for γ ∈ H2(X). As we have seen for the big quantum cohomology ring the third
partial derivatives are enough so that we only define these partial derivatives by

Ψuvw(γ) =
∑

n≥0

∑

α

〈γn, σu, σv , σw〉α
n!

.

As before this formal series is well defined thanks to the following

Lemma 26.2.15 For an integer n, there is at most one class α with 〈γn, σu, σv, σw〉α 6= 0.

We now make a change of variable. If we write

γ =
∑

β∈Π

yβ · σβ

then we get, using the divisor equation, a formal power series:

Ψuvw((yβ)β∈Π) =
∑

n≥0

∑

α

∑
∑
kβ=n

〈σu, σvσw〉α
∏

β∈Π

degσβ (α)y
kβ
β

kβ!
.
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We get

Ψuvw((yβ)β∈Π) =
∑

α

〈σu, σv , σw〉α
∏

β∈Π

e
degσβ

(α)yβ .

so that this formal serie only depend on the exponentials eyβ . Set qβ = eyβ then

Ψuvw((qβ)β∈Π) =
∑

α

〈σu, σvσw〉α
∏

β∈Π

q
degσβ

(α)

β .

Definition 26.2.16 (ı) The small quantum cohomology group QH∗s (X) is H∗X ⊗Z Z[(qβ)β∈Π].
(ıı) The quantum product on QHs∗(X) is Z[(qβ)β∈Π]-linear and defined by the formula

σu ∗ σv =
∑

ν

Ψuvw((qβ)β∈Π) · σ∨w.

Associativity

Let us prove the following

Theorem 26.2.17 This product makes QH∗s (X) into an associative and commutative Z[((qβ)β∈Π)]-
algebra with unit σ0 = 1 ∈ A0(X).

Proof : This will be a direct consequence of theorem 26.2.12. Indeed, we have the following formula

Ψuvw((yβ)β∈Π) = Φuvw((yβ)β∈Π, 0, · · · , 0)

that is to say that ψ is obtained from Ψ by specialising all the variables qu with ℓ(u) ≥ 2 to 0. The
associativity condition comes then directly from the associativity of the big quantum cohomology. �

This cohomology specialises to the classical cohomology. However this cohomology is not functorial.
We will see in the next chapter how to calculate it by for grassmannians.
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Chapter 27

Quantum cohomology of the

grassmannian

In this chapter, we will use a technique of A.S. Buch [Bu03] to compute the small quantum cohomology
ring of a Grassmannian variety X. We will not need any moduli space and we will only need the fact
that the small quantum cohomology is an associative ring.

By the very definition of QH∗s (X), the Schubert classes form a basis as a Z[q]-module. We are
going to prove quantum Pieri and Giambelli formulae. This will be enough to give a presentation of
QH∗s (X). Recall that we have

σλ ∗ σµ =
∑

ν

∑

α

〈σλ, σµ, σν〉ασν̂ .

27.1 Pieri formula

Recall that we proved in theorem 26.2.3 that the invariant 〈σλ, σµ, σν〉α is the number of maps f :
P1 → X with three marked points x1, x2 and x3 such that f(x1) ∈ Xg1(λ), f(x2) ∈ Xg2(µ) and
f(x3) ∈ Xg3(ν) where g1, g2 and g3 are three general points in GLN . In particular we only need to
study the morphisms f : P1 → X.

Span of a morphism

To each curve of degree d ≤ N − p we associate a pair of subvector spaces.

Definition 27.1.1 Let f : P1 → X be a morphism from P1 to X. For x ∈ P1, we consider f(x) as a
p-dimensional subvector space of CN .

(ı) The kernel of f , denoted by ker(f) is the following subvector space of CN :

ker(f) =
⋂

x∈P1

f(x).

(ıı) The span of f , denoted by span(f), is the subvector space of CN generated by all f(x) for
x ∈ P1.

Proposition 27.1.2 Let f : P1 → X be a morphism of degree d, then ker(f) resp. span(f) is of
dimension at least p− d (resp. at most p+ d).

259
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Proof : A way to prove this is to use the irreducibility of the space of degree d maps. Then a simple
dimension count shows that the dimension of the closed subset of morphisms f : P1 → X such that
dim(ker(f)) ≤ p− d and dim(span(f)) ≥ p+ d is Nd+ p(N − p) which is the dimension of the whole
moduli space.

Let us give a more direct proof. We begin with the span. Denote by Q the tautological quotient
bundle of rank N −p. We have a surjective map ONX → Q and pulling back by f this gives a surjection
OP1

N → f∗Q. But any vector bundle on P1 is a direct sum of line bundles (see [Gr57]) so we have a
decomposition

f∗Q ≃
N−p⊕

i=1

OP1(ai)

where ai ≥ 0 and
∑
ai = d. The number of vanishing ai’s is at least N−p−d (when ai = 0 or 1 for all

i). The tautological bundle f∗Q has a trivial factor N ⊗ OP1 where N is a quotient of CN of rank at
least N − p− d. In particular, for all x ∈ P1, the vector space f(x) is contained in K = ker(CN → N)
that is to say in a vector space of dimension at most p+ d.

For the kernel, denote by K the tautological subbundle of rank p. We have a surjective map
ONX → K∨ and pulling back by f this gives a surjection OP1

N → f∗K∨. But any vector bundle on P1

is a direct sum of line bundle so we have a decomposition

f∗K∨ ≃
p⊕

i=1

OP1(bi)

where bi ≥ 0 and
∑
bi = d. The number of vanishing bi’s is at least p− d (when bi = 0 or 1 for all i).

Therefore, the tautological bundle f∗K has a trivial factor M ⊗ OP1 where M is a subspace of CN of
dimension at least p− d. This means that for all x ∈ P1, the vector space f(x) contains M that is to
say contains a vector space of dimension at least p− d. �

Remark 27.1.3 If f : P1 → X is non constant of degree 1, then its kernel is of dimension p− 1 and
its span of dimension d+ 1. In other words, the lines in X are exactly of the form

P(W/U) = {V ∈ X / U ⊂ V ⊂W}

where (U,W ) is an element of the partial flag F(p − 1, p + 1;N).

Let us explain why P(W/U) is indeed a line in X. It is isomorphic to P1 and for a general g ∈ GLN ,
we have dim(gWN−p ∩W ) = 1 and dim(gWN−p ∩ U) = 0. Therefore, there is a unique V such that
U ⊂ V ⊂W and V ∈ Xg(1), namely U + (gWN−p ∩W ). We thus have [P(W/U)] · σ1 = 1.

27.1.1 The partition λ̃

We compute some restrictions on span(f) for a morphism f to meet a given Schubert variety.

Definition 27.1.4 (ı) Let λ be a partition in the p × (N − p) rectangle. We denote by λ̃(d) the
partition obtained by removing the first d columns of λ. In other words, λ̃(d)i = max(0, λi − d).

(ıı) If d = 1 we denote simply by λ̃ the partition λ̃(1)

Proposition 27.1.5 Assume that the image of a morphism f : P1 → X meets the Schubert variety
X(λ), then any element W ∈ G(p+ d,N) containing span(f) is in X(λ̃(d)).
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Proof : Denote by W• the complete flag defining the Schubert varieties. Let x be a point in P1 such
that f(x) ∈ X(λ) and let W ∈ G(p + d,N) containing span(f). Then we have for all i ∈ [1, p], the
inequality dim(f(x)∩WN−p+i−λi) ≥ i. In particular dim(W ∩WN−p+i−λi) ≥ i so that W ∈ X(λ̃(d)).
�

Remark 27.1.6 In particular, if f : P1 → X is a morphism and x1, x2 and x3 are points on P1 such
that f(x1) ∈ Xg1(λ), f(x2) ∈ Xg2(µ) and f(x3) ∈ Xg3(ν), then any p + d-dimensional subspace W
containing span(f) is such that

W ∈ Xg1(λ̃(d)) ∩Xg1(µ̃(d)) ∩Xg1(ν̃(d)).

As span(f) is of dimension at most p+ d such a W always exist.

Corollary 27.1.7 Let d be an integer, λ, µ and ν be three partitions such that µ has length 1 and
〈σλ, σµ, σν〉dσ1̂ 6= 0, then we have the alternative

• d = 0 and 〈σλ, σµ, σν〉0 6= 0

• or d = 1, 〈σ
λ̃
, σµ̃, σν̃〉0 6= 0, λ and ν are of length p and µ 6= 0.

Proof : As the invariant is non zero, there exist a morphism f : P1 → X and x1, x2 and x3 three
points on P1 such that f(x1) ∈ Xg1(λ), f(x2) ∈ Xg2(µ) and f(x3) ∈ Xg3(ν). Therefore, the intersection

W ∈ Xg1(λ̃(d)) ∩Xg1(µ̃(d)) ∩Xg1(ν̃(d)) is non empty.

Because this intersection is non empty the sum of the codimensions of these varieties has to be
smaller than dim(G(p + d,N)) so that:

(p+d)(N−p−d) ≥ |λ̃(d)|+ |µ̃(d)|+ |ν̃(d)| ≥ |λ|−dp+max(µ1−d, 0)+ |ν|−dp ≥ |λ|+ |µ|+ |ν|−2dp−d

with equality only if λp ≥ d, νp ≥ d and µ1 ≥ d. But because the invariant is non zero we must have
|λ|+ |µ|+ |ν| = dN + p(N − p) so that

(p + d)(N − p− d) ≥ |λ̃(d)|+ |µ̃(d)| + |ν̃(d)| ≥ (d+ p)(N − p)− dp− d

and we get the inequality d2 − d ≤ 0, giving d = 0 or d = 1 and equality everywhere. In particular if
d = 1, we must have λ and ν of length p and µ 6= 0.

The last non vanishing result is a simple consequence of the fact that the intersection Xg1(λ̃(d))∩
Xg2(µ̃(d)) ∩Xg3(ν̃(d)) is non empty. �

27.1.2 Pieri formula

Let us now prove the following

Theorem 27.1.8 If λ is a partition contained in the p× (N − p) rectangle, then

σλ ∗ σk =
∑

µ∈λ⊗k

σµ + q
∑

σν

where the second sum is over all partitions ν such that |ν| = |λ|+ k −N and λ1 − 1 ≥ ν1 ≥ λ2 − 1 ≥
· · · ≥ λp − 1 ≥ νp ≥ 0.
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Remark 27.1.9 (ı) The term in q in the formula is zero as soon as the length of λ is not p (otherwise
we have λp = 0 and −1 ≥ νp ≥ 0 so the second sum is empty). This comes from the preceding
proposition.

(ıı) The set of indexes in the second sum is nearly the set λ̃ ⊗ k, the only change is that the
condition |ν| = |λ̃|+ k is replaced by |ν| = |λ| −N + k. These condition are the same if λ is of length
p.

Proof : We may assume that k ≥ 1 because the case k = 0 is clear: σ0 is the unit of the ring. The
first part is given by the classical Pieri formula. Furthermore, we have seen in corollary 27.1.7 that
the only qd term is for d = 1 and it is non zero only if λ is of length p so we may assume that λ is of
length p.

We also know that if qσν appears in σλ ∗ σk then ν̂ has to be of length p and 〈σ
λ̃
, σµ̃, σ˜̂ν〉0 is non

zero. In particular we have
̂̃̂
ν ∈ λ̃⊗ k̃.

Lemma 27.1.10 If ν̂ is of length p, then we have

̂̃̂
ν =

{
N − p− 1 for i = 1
νi−1 for i ∈ [2, p + 1].

In particular, we have |̂̃̂ν| = N − p− 1 + |ν| and if
̂̃̂
ν ∈ λ̃⊗ k̃, we have |ν| = |λ|+ k −N .

Proof : We have ν̂i = N − p− νp+1−i and because ν̂ is of length p, we have

˜̂ν =

{
N − p− νp+1−i − 1 for i ∈ [1, p]
0 for i = p+ 1.

Now
̂̃̂
νi = N − p− 1− ˜̂νp+2−i and the rest of the lemma follows directly. �

As a consequence, if qσν appears in σλ ∗ σk, we thus have that ν satisfies the conditions |ν| =
|λ| + k − N and N − p − 1 ≥ λ1 − 1 ≥ ν1 ≥ λ2 − 1 ≥ · · · ≥ λp − 1 ≥ νp ≥ 0 (the first inequality is
always satified).

We are left to prove that all these terms appear. Assume that λ, k and ν satisfy the preceding

conditions, then we have
̂̃̂
ν ∈ λ̃ ⊗ k̃. Because of the classical Pieri formula, there exist — for g1, g2

and g3 general in GLN — a unique p+ 1-dimensional vector space W in the intersection

Xg1(λ̃) ∩Xg2(k̃) ∩Xg3(
̂̃ν) = Xg1(λ̃) ∩Xg2(k̃) ∩Xg3(

˜̂ν).

By Bertini’s theorem, the subspace W is not contained is any Schubert subvariety of these three
varieties. In particular, we have dim(W ∩(g1Wn−λp)) = p, dim(W ∩(g2WN−p+1−k)) = 1 and dim(W ∩
(g3Wn−ν̂p)) = p. Let us define V1 = W ∩ (g1Wn−λp) and V3 = W ∩ (g3Wn−ν̂p). We have V1 ∈ Xg1(λ)
and V3 ∈ Xg3(ν̂). But because |λ|+ |ν̂| = N + p(N − p)− k we have |λ|+ |ν̂| > p(N − p) so that the
intersection Xg1(λ) ∩Xg3(ν̂) is empty and V1 6= V3. The subspace U = V1 ∩ V3 is then of dimension
p− 1. We may also assume (by genericity of the gi’s) that W ∩ (g2WN−p+1−k) is not contained in U .
Let us define the p-dimensional subspace V2 = U + (W ∩ (g2WN−p+1−k)), we have V2 ∈ Xg2(k). The
set P(W/U) of all elements V ∈ X such that U ⊂ V ⊂W is a degree one rational curve in X meeting
Xg1(λ), Xg2(k) and Xg3(ν̂) in V1, V2 and V3. In particular there exist a morphism f : P1 → X and
three points x1, x2 and x3 in P1 such that f(x1) ∈ Xg1(λ), f(x2) ∈ Xg2(µ) and f(x3) ∈ Xg3(ν̂).

Let us finaly prove that this morphism is the only one. Let f : P1 → X be such a morphism.
Then because f is not constant we must have dim(span(f)) = p + 1. But W is of dimension p + 1
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and contains span(f) thus span(f) =W . Furthermore, we know that dim(f(x1) ∩ g1Wn−λp) = p and
dim(f(x3) ∩ g1Wn−ν̂p) = p thus f(x1) = V1 and f(x3) = V3. But then ker(f) is of dimension p − 1
and is contained in U thus ker(f) = U . Finally, dim(f(x2) ∩ g2WN−p+1−k) = 1 thus f(x2) contains
W ∩ g2WN−p+1−k and is equal to V2. The morphism f : P1 → X factors through P(W/U) and sends
xi to Vi. There is a unique such morphism. �

27.2 Giambelli formula

A striking result for grassmannians is the fact that the quantum Giambelli formula is the same as the
classical one:

Theorem 27.2.1 For any partition λ in the p× (N − p) rectangle, we have

σλ = det(σλi−i+j)1≤i,j≤p.

Proof : Consider the formula

det(σλi−i+j)1≤i,j≤p =
∑

s∈Sp

ε(s)

p∏

i=1

σλi−i+s(i).

We will prove by induction on j that in the products

j∏

i=1

σλi−i+s(i)

no q term appears and all its terms are of the form σµ with µ of length at most j.
It is clear for j = 1. Assume that it is the case for j. Then by induction we have

j+1∏

i=1

σλi−i+s(i) =
∑

µ

aµσµ ∗ σλj+1−j−1+s(j+1)

where µ runs over all partitions of length at most j. But then by the quantum Pieri formula, if we set
k = λj+1 − j − 1 + s(j + 1), we have

σµ ∗ σλj+1−j−1+s(j+1) =
∑

ν∈µ⊗k

σν

and in particular there is no q term and for any ν ∈ µ⊗ k we have l(ν) ≤ l(µ) + 1 ≤ j + 1.
If no q term appears in this determinant, it means that its value is the classical one and we get

the result by the classical Giambelli formula. �

27.3 Presentation of the ring

Finally let us give the presentation of the small quantum cohomology ring for grassmannians (due
to B. Siebert and G. Tian [ST97]). Remark that it is a very simple deformation of the classical one.
Namely we have:

Theorem 27.3.1 We have ring isomorphisms

QH∗s (X,Z) ≃ Z[σ1, · · · , σN−p, q]/(Yp+1, · · · , YN + (−1)N−pq)

where Yu = det(σ1−i+j)1≤i,j≤u.
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Chapter 28

Equivariant homology of the affine

grassmannian

28.1 Affine Kac-Moody groups

Let G be a semisimple algebraic groups and let g be its Lie algebra. Recall that we constructed from
g an affine untwisted Kac-Moody Lie algebra ĝ. From this we may construct from the general theory
a group G which is the Kac-Moody group associated to the Kac-Moody Lie algebra ĝ (and the choice
of the integral realisation of the Cartan subalgebra given by ĥZ = ⊕iZα

∨
i ⊕ Zc ⊕ Zd. There is also

associated the minimal Kac-Moody group Gmin. In this section we explain how to — as for Lie algebras
— realise these groups explicitly.

The algebraic group G is a group functor and we may consider its value on any ring. Of particular
interest are the following two rings: O = C[t] and Ô = C[[t]] as well as their localisations K = C[t, t−1]
and K̂ = C((t)). We may define the loop group L(G) and the completed loop group L̂(G) as follows:

L(G) = G(K) and L̂(G) = G(K̂).

We now consider the group morphisms γ : C∗ → Aut(K) and γ̂ : C∗ → Aut(K̂) defined by the
assignation z 7→ (P (t) 7→ P (zt)). These morphisms induce group morphisms

γG : C∗ → Aut(L(G)) and γ̂G : C∗ → Aut(L̂(G)).

We may now define the extended loop group L(G) and the completed extended loop group L̂(G) as
semidirect products:

L(G) = C∗ ⋊ L(G) and L̂(G) = C∗ ⋊ L̂(G).

Remark that there are natural inclusions on the group G in the extended loop group L(G) and in the

completed extended loop group L̂(G).

We have the following result:

Theorem 28.1.1 (ı) Assume that G is simply connected and let us denote by Z(G) its center. There
exists a (unique) canonical group morphism

ψ : G → L̂(G)/Z(G)

such that the map ψ is surjective and its kernel is the center Z(G) of G.

265
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(ıı) In fact the group morphism ψ can be lifted in a surjective group morphism ϕ : G → L̂(G) such
that the kernel is precisely exp(Cc) ≃ C∗. In particular G is a central extension

1 → C∗ → G → L̂(G) → 1.

(ııı) The restriction of ψ to Gmin has L(G)/Z(G) for image.

28.2 The affine grassmannian

28.2.1 Algebraic realisation

There is a special parabolic subgroup in the affine Kac-Moody group. There a several ways to describe
this parabolic subgroup which will be a maximal parabolic subgroup. The first way is to consider the
subgroups

LO(G) ⊂ L(G) and L̂
Ô
(G) ⊂ L̂(G)

obtained from the same construction as for L(G) and L̂(G) by replacing K and K̂ by O and Ô.

We may also recall from the study of the affine Weyl group Ŵ that the finite Weyl group W of G
is a subgroup of the affine Weyl group (generated by all simple reflections except the one associated

to the added vertex). This define parabolic subgroups P and P̂ by

P = BWB and P̂ = B̂W B̂.

where B and B̂ are the Borel subgroups of Gmin and G.

Proposition 28.2.1 The map ψ maps the group P (resp. P̂) to LO(G)/Z(G) (resp. L̂
Ô
(G)/Z(G)).

Definition 28.2.2 The affine grassmannian is the homogeneous space G/P̂. It is isomorphic to Gmin/P

and also to L(G)/LO(G) and L̂(G)/L̂
Ô
(G) by ψ. We denote it by GrG.

28.2.2 Topological realisation

Definition 28.2.3 Let X be a compact real variety.
(ı) A loop is a continuous map f : S1 → X.
(ıı) A loop is said to be analytic if the map f : S1 → X can be extended to a meromorphic map

f : D → X where D is the closed unit disk and such that the only poles of f are located at 0.

Let K be a maximal compact subgroup in G. Denote by LK the group of analytic real loops
f : S1 → K. Considering S1 as contained in C∗, any loop f ∈ LK has a Laurent series and we may
thus embed LK in G(C((t))) and thus in L̂(G).

Let us now consider the normal subgroup ΩK of LK given by the based loops:

ΩK = {f ∈ LK / f(1) = 1K}.

There is a natural decomposition
L̂(G) = ΩK · L̂

Ô
(G)

in particular we get the

Theorem 28.2.4 The natural map ΩK → GrG is an isomorphism (in the topological category).

Remark that we also have the following description of the affine grassmannian:

ΩK ≃ LK/K.
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28.3 More structure on the homology of the affine grassmannian

To define the equivariant homology of the affine grassmannian, we may use the ind-variety structure
on it. We know that there exist algebraic subvarieties GrGn ⊂ GrG defining the algebraic structure
on GrG. Let us consider the induced varieties ΩKn = ΩK ∩GrGn. We have the following

HT
∗ (ΩK) = lim

→
HT
∗ (ΩKn).

The use of ΩK instead of the algebraic version GrG comes from the following fact: there exists a
product (and even two different products) on ΩK. There is a natural pointwise multiplication on LK

(f · g)(t) = f(t)g(t)

and this induces a multiplication on ΩK. Furthermore, there exists another product conc on ΩK
given by composition of loops:

conc(f, g)(e2iπx) =

{
f(e4iπx) for x ∈ [0, 12 ]
g(e4iπx) for x ∈ [12 , 1].

Theorem 28.3.1 The pointwise multiplication and the composition of loops define the same product

HT
∗ (ΩK)⊗HT

∗ (ΩK) → HT
∗ (ΩK)

on the equivariant homology. This product is called the Pontryagin product.

Proof : We construct a homotopy of loops: conc(f, g) ∼ (f · g) ∼ conc(g, f). For u ∈ [−1, 1], let
pu : [0, 1] → [0, 1] × [0, 1] be a path in the unit square such that

• for all u, the path pu starts at (0, 0) and ends at (1, 1)

• the path p−1 goes along the left and top boundaries of the square,

• the path p0 goes along the diagonal of the square,

• the path p1 goes along the bottom and right boundaries of the square.

Define H : [0, 1]× [0, 1] → K by H(x, y) = f(e2iπx)g(e2iπy). Then defining hu : S1 → K by hu(e
2iπx) =

H(pu(x)) gives a continuous family of loops with h−1 = conc(f, g), h0 = f · g and H1 = conc(g, f). �

Remark 28.3.2 This proves that the product on the homology HT
∗ (ΩK) is commutative. It also

proves that the fundamental group π1(K) for any Lie group K is abelian. Of course G being simply
connected here we have π1(G) = {1}.

28.4 Schubert varieties in the affine grassmannian

Let us recall that to construct the Schubert varieties for any Kac-Moody group we started with w a
reduced expression w = sα1 · · · sαn and constructed the Bott-Samelson variety

Zw = Pα1 × · · · × Pαn/B
n.

There is a topological version of this construction. Indeed, let us define the group LKαi
= LK ∩ Pαi

.
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Fact 28.4.1 The group LKαi
is again compact. Explicitly, it is generated by T ≃ (S1)rk(G) and a

copy of SU2 in the place of αi.

Example 28.4.2 For G = SL3(C), the simple root compact parabolic subgroups are the following:

LKα0 =




a 0 −b̄t−1
0 c 0
bt 0 ā


 , LKα1 =




a −b̄ 0
b ā 0
0 0 c


 and LKα2 =




c 0 0
0 a −b̄
0 b ā


 ,

where a, b and c are in C with (aā+ bb̄)c = 1.

Now the Schubert variety Xw in G/B is the image of the multiplication map mw : Zw → G/B. We
may define in the same way a topological Bott-Samelson resolution

ZLKw = LKα1 × · · · × LKαn/T
n = LKα1 ×T · · · ×T LKαn/T → LK/T ≃ G/B.

If we now want Schubert varieties in the affine grassmannian, we need to use the canonical projection
G/B → G/P. This map is given on the topological level by LK/T → LK/K ≃ ΩK. We then have the
Bott-Samelson resolution:

ΩKw = LKα1 ×T · · · ×T LKαn ·K/K → LK/K ≃ ΩK ≃ G/P.

Let us fix one more notation: we will denote by LKw the product LKα1 · · ·LKαn in LK. The
Schubert variety Xw in G/B is LKw/T in LK/T while the Schubert variety XP

w in G/P is denoted

ΩKw = LKw/K. Of course, two elements v and w in the same W -class in Ŵ give the same Schubert
variety ΩKv = ΩKw. The Schubert variety LKw/T and ΩKw = LKw/K are the image of the
Bott-Samelson resolution ZLKw and ΩKw in LK/T and ΩK = LK/K.

28.5 Identification of HT
∗ (ΩK) as a subring of the Nil-Hecke ring

In this section, we realise the homology ring HT
∗ (ΩK) of the affine grassmannian as a subring of the

Nil-Hecke ring. We first need some easy fact on the affine grassmannian.

The affine grassmannian GrG being a homogeneous space G/P for the affine Kac-Moody group G,
we have a nice description of its T fixed points. Indeed, the T -fixed points of GrG are in one to one
correspondence with the classes Ŵ/W where Ŵ is the affine Weyl group (or the Weyl group of G)
and W is the finite Weyl group (and also the Weyl group of P).

There are two different natural sets of representatives in Ŵ of the quotient Ŵ/W . The first set we
already discussed is the set of minimal length representative elements denoted byW aff . The second one
comes from the explicit description of the affine Weyl group Ŵ as a group of affine transformations of
h. Recall that we may consider the abelian group Q∨ which is the lattice generated by simple coroots
of the finite dimensional group G. The Weyl group W acts on Q∨ and we have

Ŵ =W ⋊Q∨.

The elements α in Q∨ seen as elements of the affine Weyl group are denoted by tα. Indeed, they act
on h by translation by α.

Fact 28.5.1 The group of translation Q∨ in Ŵ is a set of representatives for the quotient Ŵ/W .
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The advantage of this set of representatives is that is has a group structure and this group structure
is compatible with the group structure on the affine grassmannian GrG (seen as the space of loops
ΩK). Indeed, if we have a element α in Q∨ ⊂ h this defines a one parameter subgroup α : C∗ → G
and by restriction to S1 we get a loop fα ∈ LK and by quotienting by K we have an element in ΩK.
This is a fixed point under the action of the torus. We see that concatenation corresponds to the
group action in Q∨. For α ∈ Q∨ we denote by pα the corresponding fixed point.

The fixed points pα for α ∈ Q∨ induce elements in the equivariant homology as follows: consider
the injection iα : pα → ΩK. We have H∗T (pα) = H∗T (pt) = S thus the pull-back gives a map:

i∗α : H∗T (ΩK) → S.

This is an element in the equivariant homology ring and we denote it by ψtα ∈ HT
∗ (ΩK). We have

the following

Theorem 28.5.2 (ı) The classes ψtα for α ∈ Q∨ form a S-basis of HT
∗ (Ω).

(ıı) We have the formula

ψtαψtβ = ψtα+β
.

Proof : (ı) This comes the localisation principle.

(ıı) This comes easily from the fact that pα · pβ = pα+β . �

Definition 28.5.3 Define a map j : HT
∗ (ΩK) → R by j(ψtα) = δtα and extend it by S-linearity.

We have the following (see for example [La06]):

Proposition 28.5.4 We have imj = ZR(S) = {x ∈ R / xs = sx for all s ∈ S} and the map j is a
ring morphism.

Proof : We need to compute δtαq = tα(q)δtα where α ∈ Q∨ and q ∈ S. We only need to compute
this for λ ∈ h∗Z. Recall from the second part (description of the affine Weyl group) that the action is
given by (here λ is in the dual of the Cartan algebra of the finite dimensional group):

tα(λ) = λ− 〈α, λ〉δ.

But the image of δ in S vanishes thus the action is trivial.

The fact that it is a ring morphisms comes from the defining relations among the δtα . �

28.6 Localisations and the isomorphism

28.6.1 Localisation of the equivariant homology

As we have already seen there are two nice set of representatives for the quotient Ŵ/W . Of particular
interest are the elements in the intersection of these two set of representatives. Let us first describe
the set W aff of minimal length representatives of the quotient Ŵ/W :

Lemma 28.6.1 Let α ∈ Q∨ and w ∈ W , the element wtα is in W aff if and only if the following two
conditions hold:

• the element α is antidominant i.e. for all simple root β we have 〈α, β〉 ≤ 0
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• the element w is α-minimal i.e. for all simple root β with 〈α, β〉 = 0, we have w(β) > 0.

The elements wtα in W aff are of special interest because they parametrise a geometric basis of the
equivariant homology HT

∗ (ΩK). Indeed, the Schubert classes σw = [Xw] for X = G/B and w ∈ Ŵ
form a S-basis of the equivariant homology of G/B and the images (still denoted σw) of the Schubert
classes in G/P ≃ ΩK for w ∈W aff form a S-basis of HT

∗ (ΩK).
As a consequence of the previous characterisation, the elements in the intersection Q̃ = Q∨ ∩W aff

are described as follows:
Q̃ = {α ∈ Q∨ / α is antidominant}.

The Schubert classes corresponding to these elements have very special properties. In particular
we have the following

Proposition 28.6.2 For any wtα ∈W aff and any β ∈ Q̃, we have

σwtασtβ = σwtα+β
.

We shall see a generalisation of this result in the next chapter. As a consequence of this formula,
we see that the set of classes (σtβ )β∈Q̃ is multiplicative in HT

∗ (ΩK). We may thus localise with respect
to this set. Define:

HT
∗ (ΩK)loc = HT

∗ (ΩK)[σ−1tβ , β ∈ Q̃].

28.6.2 Localisation of the quantum cohomology

Recall that the small quantum cohomology was defined as a free Z[(qβ)β∈Π]-module by

QH∗s (G/B) = H∗(G/B,Z)⊗Z Z[(qβ)β∈Π].

There is an extended notion of equivariant quantum cohomology define as an free Z[(qβ)β∈Π]-module
by

QH∗s,T (G/B) = H∗T (G/B,Z)⊗Z Z[(qβ)β∈Π].

The multiplicative structure being S ⊗Z Z[(qβ)β∈Π] linear, we may localise the quantum cohomology
ring at all quantum parameters by setting:

QH∗s,T (G/B)loc = QH∗s,T (G/B)[q−1β , β ∈ Π].

We then have the following comparison theorem (see [LS07]):

Theorem 28.6.3 The application ψ : HT
∗ (ΩK)loc → QH∗s,T (G/B)loc defined by

σwtασ
−1
tβ

7→ qα−β · σw

where β ∈ Q̃, w ∈ W and σw is the cohomology class of degree ℓ(w) associated to w, is an S-algebra
isomorphism.



Chapter 29

Symmetries in the quantum

cohomology

In this chapter, we prove that the center Z(G) of the group G can be embedded in the group of
invertible elements of the localised quantum cohomology QH∗s,T (G/B)loc and that there are simple
formulas for multiplying by these classes. The results of this chapter are taken from [CMP07]. Some
more details on the topological version of the affine and extended affine grassmannian can be found
in [Ma07].

29.1 Different realisations of the center of the group

29.1.1 Fundamental group of the adjoint group

Let G be a semi-simple simply connected algebraic group. Its center Z(G) has several realisation. The
first simple realisation is given as follows. Consider the adjoint group Gad = G/Z(G). It is also the
image of the group G under the adjoint representation G→ GL(g). Then we have

Proposition 29.1.1 There is a natural isomorphism

Z(G) ≃ π1(G
ad).

Proof : This is simply realised as follows: the map G→ Gad is the universal covering and if we take
a loop in Gad and take a lifting of this loop in G we end up with a path (not necessary a loop) whose
end point is the element in the center corresponding to the class of the loop in π1(G

ad). �

29.1.2 Coweights modulo coroots

Let us denote by Q∨ the lattice of coroots i.e. the lattice generated by simple coroots. We may also
consider the lattice P∨ generated by the coweights (i.e. the weights of the dual root system). We have
an inclusion Q∨ ⊂ P∨ ad the following proposition holds:

Proposition 29.1.2 We have a natural isomorphism

Z(G) ≃ P∨/Q∨.

271
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Proof : We have the following geometric description of the coroot and coweight lattices. Consider H
a maximal torus in G and K a maximal compact subgroup in G. Let us denote by T the intersection
H ∩K. We have an isomorphism

T ≃ (S1)rk(G).

Let t be the Lie algebra of T and consider the exponential map exp : t → T . We have the following

Q∨ = ker(exp).

Now to realise the coweight lattice we only have to consider the inverse image of the center:

P∨ = exp−1(Z(G)).

The result follows from these identities. �

29.1.3 Cominuscule coweights and Dynkin diagram

There are distinguished representatives of the quotient P∨/Q∨: the cominuscule coweights. These
may be define as follows. Denote by I the set of vertices of the Dynkin diagram and consider the
extended Dynkin diagram of the group G. Define the set Ic of vertices of the diagram as the set of all
vertices in I that can be obtained from the added vertex (the vertex labeled 0 in our diagrams) by an
automorphism of the Dynkin graph. This set is called the set of cominuscule vertices.

Definition 29.1.3 Let i ∈ Ic and αi be the corresponding simple root. The minuscule coweight ̟∨i
associated to i is the element in P∨ such that for all j ∈ I we have 〈̟∨i , αj〉 = δi,j .

We have the following

Fact 29.1.4 The cominuscule coweights together with the trivial weight form a set of representatives
of the quotient P∨/Q∨.

In particular, if we define Îc = Ic∪{0}, the subset of the set of the vertices of the extended Dynkin
diagram formed by the cominuscule vertices and the added vertex, then we have

Fact 29.1.5 The set Îc is a principal space under the group Z(G).

29.1.4 Extended affine Weyl group

There is a natural group, slightly bigger that the affine Weyl group that we may define in the situation:
the extended affine Weyl group W̃ . It is the semi-direct product of the coweight lattice P∨ by the
Weyl group. In symbols:

W̃ = P∨ ⋊W.

Recall that we have Ŵ = Q∨ ⋊W so that we get another realisation of the center as follows:

Z(G) ≃ P∨/Q∨ ≃ W̃/Ŵ .

In fact the quotient W̃/Ŵ has a section defined as follows. Let us first define the fundamental alcove

A0 which is a fundamental domain for the action of Ŵ on h:

A0 = {h ∈ h / 〈αi, h〉 ≥ 0 for i ∈ I and 〈θ, h〉 ≤ 1}.
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Proposition 29.1.6 The stabiliser Z(A0) of the fundamental alcove in W̃ is isomorphic to the group
Z(G).

This gives a section of the quotient W̃/Ŵ and there is a natural semi-direct product structure

W̃ ≃ Z(G)⋊ Ŵ . We may now describe explicit representatives of the center in W̃ in the form wtλ for
λ a coweight.

Definition 29.1.7 Let i ∈ Ic a cominuscule vertex of the Dynkin diagram and let ̟∨i the associated
cominuscule coweight. We define the element vi ∈ W to be the smallest element such that vi̟

∨
i =

w0̟
∨
i .

Remark 29.1.8 The element vi is also the longuest element in the minimal coset representatives WPi

where Pi is the maximal parabolic subgroup associated to the simple root αi.

Proposition 29.1.9 The group Z(A0) (the stabiliser of the fundamental alcove) is described as fol-
lows:

Z(A0) = {Id} ∪ {vit−̟∨
i
, i ∈ Ic}.

The elements vi have very special properties we shall list in the following

Fact 29.1.10 (ı) We have v−1i = vf(i) where f is the Weyl involution of the Dynkin diagram.
(ıı) Let α be a positive root, then vi(α) is positive if and only if 〈̟∨i , α〉 = 0.

(ııı) The element τi = vit−̟∨
i
∈ Z(G) ⊂ W̃ acts on the simple roots by permutation as the elements

does on the vertices Ic.

Definition 29.1.11 The previous fact shows that the elements in Z(G) respect the sign of all roots:
positive roots and negative roots are preserved. In particular, we may extend the length function from
Ŵ to W̃ by ℓ(τi) = 0 for τi ∈ Z(G).

29.2 The extended affine grassmannian

One of the problem int the construction of the affine grassmannian and the combinatorics of the affine
Weyl group Ŵ is the fact that there is a choice (canonical when we look at the affine Kac-Moody group

in its realisation G = L̂(G)/Z(G)) of a marked 0-vertex in the extended Dynkin diagram. However,
on the level of the extended Dynkin diagram and thus on the level of the Kac-Moody group itself,
this choice is not given. In fact the choice of any such cominuscule vertex i in the extended Dynkin
diagram give rise to an algebraic subgroup G ⊂ G such that G = L̂(Gi)/Z(Gi), the case i = 0 giving
back G0 = G.

To avoid this problem, we shall look — instead of the semi-simple simply connected algebraic group
G — at the adjoint group Gad = G/Z(G) and its corresponding compact subgroup Kad = K/Z(G).
Consider the variety ΩKad of loops with values in Kad. By definition of π1(K

ad), the connected
components of ΩKad are indexed by π1(K

ad) ≃ Z(G). Furthermore, the natual map

ΩK → ΩKad

sending f : S1 → K to the map p ◦ f : S1 → Kad where p : K → Kad is the projection, realise ΩK as
a connected component of ΩKad. Furthermore, all the connected components are isomorphic: they
are permuted by the action of Z(G) = π1(K

ad) as follows. If f : S1 → K is a loop in K, then we may
define for α ∈ P∨ the loop fα : S1 → Kad by fα(x) = f(x) exp(2iπα). Because exp(2iπα) ∈ Z(G)
this gives a loop in Kad but not in general in K.
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29.3 Schubert varieties and Bott-Samelson varieties for the extended

affine grassmannian

As for the affine grassmannian, we may define Schubert varieties and Bott-Samelson varieties. Indeed a
reduced expression w has now the form w = τsα1 · · · sαn where the αi are simple roots and τ ∈ Z(G).
For vtα = τ ∈ Z(G), there is a natural lift of τ in LKad by lifting v in Kad and by lifting tα by
x 7→ exp(2iπαx). We define the group LKad

τ by τT = Tτ where we still denote by τ the lifting. We
also have the groups LKad

αi
= LKαi

/Z(G) and we may define:

ΩKad
w = LKad

τ ×T LKad
α1

×T · · · ×T LKad
αn

·Kad/Kad.

The image of this map is the Schubert variety ΩKad
w in ΩKad. These Schubert varieties are easily

described in terms of Schubert varieties in the classical affine grassmannian. Indeed, write w = τw′

where τ ∈ Z(G) and w′ ∈ Ŵ . Then we have

ΩKad
w = τ · ΩKw′ .

In particular, this Schubert variety is isomorphic to the Schubert variety ΩKw′ but is not in the same
connected component, it is in the connected component obtained by translation by τ .

We now prove a factorisation product of the Bott-Samelson resolution leading to a product formula
in the equivariant homology of the affine grassmannian.

Definition 29.3.1 We denote by P̃ the set

P̃ = {α ∈ P∨ / for all simple root β, we have 〈α, β〉 ≤ 0}
of antidominant coweights

Theorem 29.3.2 Let α ∈ P̃ be an antidominant coweight and let v ∈ W̃ . Let us write u = tα = τu′,
v = σv′ and w = uv = νw′ with τ , σ and ν in Z(G) and u′, v′ and w′ in Ŵ . Assume that
ℓ(w) = ℓ(u) + ℓ(v), then we have for the Pontryagin product:

[ΩKu′ ] · [ΩKv′ ] = [ΩKw′ ].

Proof : The fact that α ∈ P̃ implies that for any x ∈ W , we have ℓ(xtαW ) ≤ ℓ(tαW ). This implies
the following equality

Kad · LKad
tα ·Kad = LKad

tα ·Kad.

In particular we obtaint the following equality:

LKad
u ×T LKad

tα ·Kad/Kad ≃ (LKad
u ·Kad)×Kad

(LKad
tα ·Kad)/Kad.

We may now define an homeomorphism

(LKad
u ·Kad)×Kad

(LKad
tα ·Kad)/Kad F // (LKad

u ·Kad)/Kad × (LKad
tα ·Kad)/Kad.

G
oo

by the follows maps: F (f1(t), f2(t)) = (f1(t)f1(1)
−1, f1(1)f2(t)) and G(f1(t), f2(t)) = (f1(t), f2(t)).

Remark that the right hand term in the homeomorphism is ΩKad
u ×ΩKad

tα . This decomposition is not
true in the algebraic category. We thus have a commutative diagram:

(LKad
u ·Kad)×Kad

(LKad
tα ·Kad)/Kad //

m

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱

ΩKad
u × ΩKad

tα

mult
��

ΩKad
w
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where the vertical map is just multiplication in ΩKad and the diagonal map m factorises the Bott-
Samelson map: if u = s1 · · · sn and v = tα = sn+1 · · · sk then w = uv = s1 · · · snsn+1 · · · sk. Denote by
u, v and w these reduced expressions, we have a commutative diagram:

ΩKad
w = LKad

u ×T LKad
v ·Kad/Kad //

mw

++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲
LKad

w ×Kad
LKad

tα /K
ad

m

��

ΩKad
ν .

Looking at the homology classes of the images we get

[ΩKad
w ] · [ΩKad

tα ] = mult∗[ΩK
ad
w × ΩKad

tα ] = mw∗[ΩK
ad
w ] = [ΩKad

w ].

We thus have

ν[ΩKu′ ] · [ΩKv′ ] = τσ[ΩKu′ ] · [ΩKv′ ] = τ [ΩKu′ ]σ[ΩKv′ ] = ν[ΩKw′ ]

we deduce the result from this last formula. �

Remark 29.3.3 If u is a minimal length representative in the quotient W̃/W and α ∈ P̃ , then the
condition ℓ(utα) = ℓ(u) + ℓ(tα) is always satisfied.

29.4 Application to quantum cohomology

If we translate this formula in the equivariant quantum cohomology, we obtain the following:

Theorem 29.4.1 For any i ∈ Ic and for any w ∈W we have in QH∗s,T (G/B):

σvi ∗ σw = q̟∨
i −w

−1(̟∨
i )σviw.
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[KM98] Kontsevich, M. and Manin, Y. Relations between the correlators of the topological sigma-
model coupled to gravity. Comm. Math. Phys. 196 (1998), no. 2, 385–398.

[Ku89] Kumar, S. Existence of certain components in the tensor product of two integrable high-
est weight modules for Kac-Moody algebras, Infinite-dimensional Lie algebras and groups
(Luminy-Marseille, 1988), 25–38, Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ,
1989.

[Ku02] Kumar, S. Kac-Moody groups, their flag varieties and representation theory. Progress in
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