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Definition : d-web W, of codimension r on a domain U C CN is
Wy = (fl,...,fd)

Fi,...,Fq foliations of codimension r in general position

e Q); = ‘normal’ to F; : r-differential form such that

Tr = ker(2) = { ¢ € Tu| ie() =0}

General position assumption : (case N = nr)

1<in<---<iph<d = QN---NQ;,#0
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Definition : a d-web on a manifold M is ‘ Wy = U;W); with

Ui, =M and Wé:Wd|UI:(‘F177]:¢:jI)

Remark :

Definition : two webs W and W’ are equivalent if

3 local isomorphism such that W = @*(W')
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Geometry of webs

Main problem : to classify webs up to equivalence

Example :

a planar 2-web is locally trivial
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Examples of webs : in the theory of Lie groups

e G = Lie group of dim r

GxG

product

T ™
G/ \G

G

e Wi = W(m1, 2, product) : 3-web of codimension r on G x G

e Question :

Algebraic properties
of the Lie group G

Differential properties
of the 3-web Wg
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e Surface S Cc E3

-

eS¢ 5S> ~> 2-webWsonS
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e [Darboux 1880] : webs on a surface S C P3

xeS ~ Darboux’s 27 oscula- ~ Darboux’s 27 tangent
general ting conics to S at x directions to S at x

e~ Darboux’s 27-web DWgs on S

e Example : ¥ = cubic hypersurface in P3
—line L € ¥ ~ pencil of conics P, on *
— 27 lines Lq,...,Ly7; C X ~ 27 pencils of conics on *
— Darboux's web : DWs = (P, ..., PLy;)
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A

e Surface S C P° (with regular 2-osculation at x)

Hyperplane H Curve SN H Equation
Ho Ts. Node : x2 —y2 =0
C2 3 _
Hecxgpl ‘% Cusp. X =y =0
Definition : q Tacnode : x2 — v* =0
H ‘principal’ ~& N\ 4
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Webs in projective differential geometry

Let H = a principal
hyperplane of S at x

Definition : [;; € PTs . is a ‘principal direction’ of S at x

Proposition : [C. Segre] If x is not an umbilic :

there are 5 principal directions of S at x

Theorem : [C. Segre]
S is totally umbilic <= S C vp(P?) C P®

the ‘principal curves’ form

2
oS Z (P ~ Segre’s 5-web SWs on S



Webs in projective differential geometry

Example :



Webs in projective differential geometry

Example :

P - four points in
e P= { . . } C P? P ..
pa general position

P3



Webs in projective differential geometry

Example :

P - four points in
e P= { . . } C P? P ..
pa general position

P3

e ¥ =BIp(P2) —L P2 Del Pezzo's surface



Webs in projective differential geometry

Example :

P - four points in
e P= { . . } C P? P ..
pa general position

P3

e ¥ =BIp(P2) —L P2 Del Pezzo's surface

-1
e Ky very ample



Webs in projective differential geometry

Example :

P - four points in
e P= { . . } C P? P ..
pa general position

P3

e ¥ =BIp(P2) —L P2 Del Pezzo's surface

K—l
° {1 very ample ~> embedding ¢ : ZQPE’



Webs in projective differential geometry

Example :

P - four points in
e P= { . } C P? P ..
pa general position

e ¥ =BIp(P2) —L P2 Del Pezzo's surface

K—l
° {1 very ample ~> embedding ¢ : ZQPE’

o o(X) # wa(P?) ~> Segre's 5-web SW 5y on p(X)



Webs in projective differential geometry

Example :

P - four points in
e P= { . . } C P? P ..
pa general position

P3

Y = Blp(P2) ——= P2 Del Pezzo's surface

K1
K<! very ample ~~ embedding Y ZQPE’

@(X) # vo(P?) ~> Segre's 5-web SW ,(x) on ¢(X)

s © O (SWw(z)) : 5-web on P?



Webs in projective differential geometry

Example :

P - four points in
e P= { . . } C P? P ..
pa general position

P3

Y = Blp(P2) ——= P2 Del Pezzo's surface

K1
K<! very ample ~~ embedding Y ZQPE’

@(X) # vo(P?) ~> Segre's 5-web SW ,(x) on ¢(X)

s © O (SWw(z)) : 5-web on P2 = Bol's web B



Webs in projective differential geometry

Example :

P - four points in
e P= { . . } C P? P ..
pa general position

P3

o ¥ =BIp(P2) —X P2 Del Pezzo's surface

K—l
° {1 very ample ~> embedding ¢ : ZQPE’
o o(X) # wa(P?) ~> Segre's 5-web SW 5y on p(X)

o 110 0" (8Wy(x)) : 5-web on P2 = Bol's web B

Remark : ¥ = Blp(P?) ~ My
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e X = smooth cubic hypersurface in P*

H 36 lines C X through

. ~>  6-web by lines on X
a general point x € X

e Y = smooth degree 4 hypersurface in P°

H 364512P¥sCcinY

A ~ :
through y € Y general 64512-web by 2 p|anes onY

e 721 — smooth intersection of two hyperquadrics in P2"+3
322" P"s Cin Z

A 2n_ -
through z € Z general 2°"-web by n-planes on Z
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Webs in projective algebraic geometry

e C = algebraic curve of degree d in P?

C
P2 2
deg(C)=d =4 Class(C) = 4

(@

Definition : W = web formed by the lines tangent to C
= d-web by lines on P2\ C
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Webs in projective algebraic geometry

e V" = reduced algebraic subvariety of degree d in P"

T

(projective duality)

W,y = d-web of codimension r on G,_,(P")

Definitions : a web W is
1. algebraic if W =W,y with V C P” algebraic

2. algebraizable if W ~ W\, with W), algebraic
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Algebraic webs on grassmannian varieties

e V" = reduced algebraic subvariety of degree d in P71

o 1€ Gy (P™"1) generic

M-V =pi(M)+---+ py(M)

o~ d local submersions p; : (Gn_l(IP’”+’_1), ﬂ) — V

o~ W(p1,...,pd) loc Wy : d-web of codim r on G,_1(P"*"1)
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A quote by Chern

o V" CP™r1of degree d «— d-web Wy on G,,_l(IP’”*’—l)
Remark : codim (Wy)=r | nr=dimG, 1(P""1)

e Even restricting to the case of webs whose codimension divides
the dimension of the ambient space :

[Chern 1982] :

“the subject is a wide generalization of the geometry of projective
algebraic varieties. Just as intrinsic algebraic varieties are generalized
to Kahler manifolds and complex manifolds, such a generalization
to web geometry seems justifiable.”




Webs are everywhere...

e Algebra
e Topology
e Geometry

e Theory of dynamical systems

e Theory of DEs & PDEs

o Mathematical Physics

e Economy
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A classical theorem

e W3 =a 3-web on U C C?

e uy,up,u3: U—C = firstintegrals of W3

Thm : [Thomsen 1927] The following assertions are equivalent :

1. Ws is parallelizable =~ =W(x,y,x —y)

2. Ws is hexagonal
3. Ws is flat : KW3 =0

4. 4 Fl, Fg, F3 such that F1(u1) + F2(U2) + F3(U3) =0



Planar 3-webs : hexagonality




Planar 3-webs : hexagonality




Planar 3-webs : hexagonality




Planar 3-webs : hexagonality




Planar 3-webs : hexagonality




Planar 3-webs : hexagonality




Planar 3-webs : hexagonality




Planar 3-webs : hexagonality

Definition : W3 is hexagonal if all ‘hexagons' are closed



A classical theorem

e W3 = a 3-web on U C C?

e uy,up,uz: U— C = first integrals of Wj

Theorem : The following assertions are equivalent :

1. W is parallelizable =~ =W(x,y,x —y)

2. W3 is hexagonal %

3. Wsis flat : Ky, =0

4. 3F, F,, F3 such that F1(u1) + F2(U2) + F3(U3) =0
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Abelian relation and rank

Wy = W(u1, up,...,ug) first integrals u; : (C",0) — (C,0)

Definitions :

e ‘Abelian relation’ of W, = (Fl, ey Fd) € (O(Cﬂo))d s.t.
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Wy = W(u1, up,...,ug) first integrals u; : (C",0) — (C,0)

Definitions :

e ‘Abelian relation’ of W, = (Fl, ey Fd) € (O(Cﬂo))d s.t.

Fl(ul) + -+ Fd(ud) =0
e AW,) = {AR of Wy} = {Z, uf(dF;) = 0} +— C-vector space
e ‘Rank’ of Wy = rk(Wy) = dim¢ .A(Wd)

Example : log(x) + log(y) — log(xy) =0
o A(W(x,y,xy)) = <Iog(x) + log(y) — log(xy) = 0> rk =1
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Abelian relations and rank of algebraic webs

e degree d curve C C P" ~> d-web W by hypersurfaces on "

loc

We = W(p1,---,Pd)

e w — differential of the first
kind on C (i.e. w € H(wg))

e Abel's Theorem : Y, pf(w) =0 < (p}"(w))?zl e AWr)

e Isomorphism : H®(w}) = A(Wc) p.(C) = rk(Wc)

w — (p)L,
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Bound on the rank and webs of maximal rank

e W, = d-web of codimension 1 on U C C"

Theorem : [Bol (n=2), Chern]
rk(Wy) < m(d,2) = 3(d — 1)(d — 2) (n=2)

rk(Wy) < 7(d,n) = 3, max (o, d—o(n—1)— 1)

Corollary : for a degree d curve C CP" : p,(C) < x(d,n)

Definition : Wy has maximal rank if rk(Wy) = n(d, n) > 0

Example : rk(W(X,y,xy)) =7(3,2)=1
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Webs of maximal rank

Definition : Wy has maximal rank if rk(Wy) = n(d, n) > 0

Examples :

1. degree d reduced curve C C P2 ~» d-web W¢ on P?

HO (w](.:) ~ .A(WC) . PaEC) —— rk(lﬁ\ic)

(Abel's Theorem) W = 7(d,?2)

2. degree d ‘Castelnuovo’s curve’ C C P": g(C) = m(d, n)
HO(wl) ~ A(Wc) = pa(C) = rk(Wc) = 7(d, n)



Webs of maximal rank

Definition : Wy has maximal rank if rk(Wy) = n(d, n) > 0

Examples :

1. degree d reduced curve C C P2 ~» d-web W¢ on P?
HO(wl) ~ A(W, Pa(C) = rk(Wc)

(Abel's Theorem) W = 7(d,?2)

2. degree d ‘Castelnuovo’s curve’ C C P": g(C) = m(d, n)
HO(wl) ~ A(Wc) = pa(C) = rk(Wc) = 7(d, n)

Fact : V' c P! Castelnuovo = Wy has maximal rank
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Algebraization of maximal rank webs

e W is algebraizable if W ~ Wy with V algebraic

Fact : in many cases, maximal rank webs are algebraizable

Theorem : [Lie-Poincaré] Let W, be a planar 4-web :

rk(Ws) =7(4,2) =3 = W, s algebraizable

Theorem : [Blaschke-Howe 1932 (n = 2), Griffiths 1976]
Let Wy be a linear d-web on U C C" :

‘EI a complete AR ‘ = W, s algebraic

fr
rk(Wy) is maximal
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]P)n

e w; € Q" 1(V;) not trivial (for i =1,...,d)

Abel-Inverse Theorem :

H >ipf(wi) =0




e Vi,..., V4 : germs of hypersurfaces in P”

]P)n

e w; € Q" 1(V;) not trivial (for i =1,...,d)

Abel-Inverse Theorem :

” 3V C P" alg. hypersurface
H Yipfw) =0 = 3Jue HO(V,wl ! such that
VicVv, w,-:w|\/,. Vi=1,...,n
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Algebraization of webs of maximal rank

Theorem : [Bol (n = 3), (Chern-Griffiths), Trépreau]
Let W, be a d-web on U C C" with n> 3 :

rk(Wy) = (d, n) = Wy is algebraizable

Theorem : [Pirio-Trépreau 2013]
For a d-web W, of codimension r >1on U C C" :

W, has maximal r-rank . W, is ‘algebraizable’
(rk"(Wq) = n(d, n,r) ) (generalized sense if d = dp, , )
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Algebraic curves Webs of codim 1

degree d curve C C P d-web Wy on (C",0)

w € H(C,wi)

Pa(C) = h°(C,we)

Jc =Ho(wg)"/Hi(C, Z)

AJk . Ck = )¢

ecCJC

Torelli's theorem
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Algebraic curves Webs of codim 1
degree d curve C C P d-web Wy on (C",0)
w € HY(C,we) w = (W), € AWa)

p.(C) = hO(C,w§)

Jc =Ho(wg)"/Hi(C, Z)

AJk . Ck = )¢

ecCJC

Torelli's theorem

QD|QIC‘ :C— ]PHO(C,CU]C'-)V




Algebraic geometry of webs

Algebraic curves Webs of codim 1
degree d curve C C P d-web Wy on (C",0)
w € H(C,wi) w=(w)e, € AWy)
pa(C) = hO(C,w}) k(W) = dim A(W,) = p

Jc =Ho(wg)"/Hi(C, Z)

AJk . Ck = )¢

ecCJC

Torelli's theorem

QD|QIC‘ :C— ]PHO(C,CU]C'-)V
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Algebraic geometry of webs

Algebraic curves Webs of codim 1
degree d curve C C P d-web Wy on (C",0)
w e HO(C,wh) w = () € AWa)
Pa(C) = hO(C,wk) tk(Wq) = dim A(Wy) = p
Jc = Ho(w§)Y /H1(C,Z) Jw, = (AWq)Y,0) ~ (C*,0)
AJE  Ck— )¢ ARV (CV,0) — Jyy,
O©c C ¢ Ow, Clw, (p=d+1)
Torelli's theorem Torelli's theorem 7
¢iar) + € = PHY(C,we)" or : (C,0) = PAW,)"
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Exceptional webs

oBoI'swebB:W(X,y, R ;t—;, ;8:1%) = rk(B) <6

o A(B) = < log(x) — log(x) — log (;) =0 >AUt(B) ® < (Abel)>

e Abel’'s 5-terms relation :

D(x)—D(y)—D(%) —D(l_y> +D<X(1_”> ~0

1—x y(1—x)

2

where D(x) = Lia(x) + w — % (Rogers’ dilogarithm)

f

e [Bol 1936] : B is ‘exceptional’ == -

of maximal rank
non-algebraizable
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rk(Wy) = m(d, n)

Definition : W, on (C",0) exceptional if _
+ non-algebraizable

Remark : W, exceptional = n=2 and d=>5

Examples : o BB : D(X)_D(y)_o(z) —D(}—§)+D<X<”>> =0

y y(1-x)
e Wsyx = ‘Spence-Kummer web' :

0111120000 ) 12015 03
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rk(Wy) = m(d, n)

Definition : W, on (C",0) exceptional if _
+ non-algebraizable

Remark : W, exceptional = n=2 and d=>5

y y(1—x)

Examples : e B: D(x)-D(y) — D(i) _ DG%) 4 D(x(ly)> ~0
e Wsk = ‘Spence-Kummer web' :
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rk(Wy) = m(d, n)

Definition : W, on (C",0) exceptional if _
+ non-algebraizable

Remark : W, exceptional = n=2 and d=>5

y y(1—x)

Examples : e B: D(x)-D(y) — D(i) _ DG%) 4 D(x(ly)> ~0
e Wsk = ‘Spence-Kummer web' :

2Ds(x) +2s(y) - Da( ¥ ) +20s (1= ) +20a( X1

l—y y(1—=x)
_ — x(1l— 2
~D3(o9) 2052 )2y (L) (M)

Fact - Algebraic ] Exceptional | [ maximal rank
— " | d-webs W d-webs - d-webs
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Chern-Griffiths (1981) :

“(...) we cannot refrain from mentionning what we consider to be
the fundamental problem on the subject, which is to determine the
maximum rank non-linearizable webs. The strong conditions must
imply that there are not many. It may not be unreasonable to
compare the situation with the exceptional simple Lie groups.”
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Chern-Griffiths (1981) :

“(...) we cannot refrain from mentionning what we consider to be
the fundamental problem on the subject, which is to determine the
maximum rank non-linearizable webs. The strong conditions must
imply that there are not many. It may not be unreasonable to
compare the situation with the exceptional simple Lie groups.”

Chern (1985) :

“The determination of all webs of maximal rank will remain a
fundamental problem in web geometry and the non-algebraic ones,
if there are any, will be most interesting.”

Chern’s problem : to determine and classify the exceptional webs
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Theorem : [Pereira-Pirio 2010]
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Exceptional webs

Theorem : [Marin-Pereira-Pirio 2006]

There are planar exceptional d-webs for every d > 5

Theorem : [Pereira-Pirio 2010]

Up to projective equivalence, there are
4 infinite series and 13 sporadic examples
of exceptional CDQL webs on P?

e The 5-web W(x, Y, X+y,x—y,x? +y2) is exceptional
AR : 8(x)°+8(y)°+ (x + )+ (x—»)° =10 (x> +y?)* =0

e The exceptional webs remain mysterious...
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Some problems : in web geometry

e Determine all the exceptional planar 5-webs

. ? . . .
e Exceptional 5-webs <— analytic exceptional surfaces in P°

e Extend algebraic geometry to webs of maximal rank

( 3 Torelli theorem for webs ? )

e For a non-reduced curve C C P? :
— is there a web-theoretic object W corresponding to it ?

— what would be an abelian relation for such a ‘web’ W¢?
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Algebraic geometry

Web geometry

Variety V" c Prtr—1
degree d and dim r

Wy on (C"0)
d-web of codim r

wEHO(V,Q?/) g=1,...,r

w = (W), € AI(Wq)

h0(V) = ho(V, Q%)

rkI(Wg) = dim A9(Wq)

h?0(V) < 79(d,n, r)

KI(Wy) < 79(d, n, 1)




Some problems : in algebraic geometry

Algebraic geometry

Web geometry

Variety V" c Prtr—1
degree d and dim r

Wy on (C"0)
d-web of codim r

wEHO(V,Q?/) g=1,...,r

w = (W), € AI(Wq)

h0(V) = ho(V, Q%)

rkI(Wg) = dim A9(Wq)

h?0(V) < 79(d,n, r)

KI(Wy) < 79(d, n, 1)

e Forg<r:

determine the varieties V" C P™ "1 of ‘maximal g-rank’
i.e. such that h%%(V) = 79(d, n, r) where d = deg V
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