Geometry of webs: an introduction

Luc PIRIO

CNRS & Université de Versailles (프랑스)

KIAS - October 16th 2017

Plan

- 1. History
- 2. Webs
- 3. Examples
- 4. A classical theorem
- 5. Recent developments

• Origin: (19th century) Projective differential geometry of surfaces

- Origin: (19th century) Projective differential geometry of surfaces
- Hamburg school: (1927-1936) Blaschke, Bol, Chern...

- Origin: (19th century) Projective differential geometry of surfaces
- <u>Hamburg school</u>: (1927-1936) Blaschke, Bol, Chern...
 Kähler, Zariski, Reidemester, Burau...

- Origin: (19th century) Projective differential geometry of surfaces
- <u>Hamburg school</u>: (1927-1936) Blaschke, Bol, Chern...
 Kähler, Zariski, Reidemester, Burau...
- Russian school: (1950-2005) Akivis, Goldberg ...

- Origin: (19th century) Projective differential geometry of surfaces
- <u>Hamburg school</u>: (1927-1936) Blaschke, Bol, Chern... Kähler, Zariski, Reidemester, Burau...
- Russian school: (1950-2005) Akivis, Goldberg ...
- 'Princeton event': (1978) Chern and Griffiths...

- Origin: (19th century) Projective differential geometry of surfaces
- <u>Hamburg school</u>: (1927-1936) Blaschke, Bol, Chern...
 Kähler, Zariski, Reidemester, Burau...
- Russian school: (1950-2005) Akivis, Goldberg ...
- 'Princeton event': (1978) Chern and Griffiths...
- 'Modern times': (1990-...)

 $\underline{\text{\bf Definition}}$: locally, a foliation ${\cal F}$

 $\underline{\text{Definition}}$: locally, a foliation $\mathcal F$

<u>Definition</u>: locally a d-web \mathcal{W}_d is a collection of d foliations

$$\boldsymbol{\mathcal{W}_d} = \left(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_d\right)$$

$\underline{\mathsf{Definition}}$: locally, a foliation $\mathcal F$

<u>Definition</u>: locally a d-web \mathcal{W}_d is a collection of d foliations

$$\boldsymbol{\mathcal{W}_d} = \left(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_d\right)$$

Example:

a planar 3-web

<u>Definition</u> : d-web \mathcal{W}_d of codimension r on a domain $U\subset\mathbb{C}^N$ is

$$\mathcal{W}_d = (\mathcal{F}_1, \dots, \mathcal{F}_d)$$

 $\mathcal{F}_1,\ldots,\mathcal{F}_d$ foliations of codimension r in general position

 ${\color{red} {\color{blue} {\sf Definition}}}: d\text{-web} \,\,{\color{blue} {\cal W}_d}\,\, of\, codimension\,\, r\,\, {
m on}\,\, {
m a}\,\, {
m domain}\,\, U\subset \mathbb{C}^N\,\, {
m is}$

$$\mathcal{W}_d = ig(\mathcal{F}_1, \dots, \mathcal{F}_dig)$$

 $\mathcal{F}_1,\ldots,\mathcal{F}_d$ foliations of codimension r in general position

• $\Omega_i = 'normal'$ to \mathcal{F}_i : r-differential form such that

$$T_{\mathcal{F}_i} = \ker(\Omega_i) = \left\{ \ \xi \in T_U \ \middle| \ i_{\xi}(\Omega_i) = 0 \right\}$$

<u>Definition</u> : d-web \mathcal{W}_d of codimension r on a domain $U \subset \mathbb{C}^N$ is

$$\mathcal{W}_d = (\mathcal{F}_1, \dots, \mathcal{F}_d)$$

 $\mathcal{F}_1, \dots, \mathcal{F}_d$ foliations of codimension r in general position

• $\Omega_i = 'normal'$ to \mathcal{F}_i : r-differential form such that

$$T_{\mathcal{F}_i} = \ker(\Omega_i) = \left\{ \ \xi \in T_U \ \middle| \ i_{\xi}(\Omega_i) = 0 \right\}$$

General position assumption : (case N = nr)

$$1 \leq i_1 < \cdots < i_n \leq d \quad \Longrightarrow \quad \Omega_{i_1} \wedge \cdots \wedge \Omega_{i_n} \neq 0$$

 $\underline{ extbf{Definition}}$: a d-web on a manifold M is ' $\mathcal{W}_d = \cup_i \mathcal{W}_d^{i}$ ' with

$$oxdot_i U_i = M$$
 and $oldsymbol{\mathcal{W}}_d^i = oldsymbol{\mathcal{W}}_d|_{U_i} = \left(\mathcal{F}_1^i, \dots, \mathcal{F}_d^i
ight)$

 $\underline{ extbf{Definition}}$: a d-web on a manifold M is ' $\mathcal{W}_d = \cup_i \mathcal{W}_d^{i}$ ' with

$$oxdot_i U_i = M$$
 and $oldsymbol{\mathcal{W}}_d^i = oldsymbol{\mathcal{W}}_d|_{U_i} = \left(\mathcal{F}_1^i, \dots, \mathcal{F}_d^i
ight)$

Remark:

 $\underline{ extbf{Definition}}$: a d-web on a manifold M is ' $\mathcal{W}_d = \cup_i \mathcal{W}_d^{i}$ ' with

$$oxdot_i U_i = M$$
 and $oldsymbol{\mathcal{W}}_d^i = oldsymbol{\mathcal{W}}_d|_{U_i} = \left(\mathcal{F}_1^i, \dots, \mathcal{F}_d^i
ight)$

Remark:

Definition : two webs ${\mathcal W}$ and ${\mathcal W}'$ are **equivalent** if

 $\exists\, oldsymbol{arphi}$ local isomorphism such that $\,\,\, oldsymbol{\mathcal{W}} = oldsymbol{arphi}^*ig(oldsymbol{\mathcal{W}}'ig)$

Main problem: to classify webs up to equivalence

Main problem: to classify webs up to equivalence

Example:

a planar 2-web is locally trivial

Examples of webs

Examples of webs : in the theory of Lie groups

• G = Lie group of dim r

Examples of webs : in the theory of Lie groups

• G = Lie group of dim r

Examples of webs : in the theory of Lie groups

• G = Lie group of dim r

• $\mathcal{W}_{G} = \mathcal{W}(\pi_{1}, \pi_{2}, \textit{product})$: 3-web of codimension r on $G \times G$

Examples of webs: in the theory of Lie groups

• G = Lie group of dim r

- $\mathcal{W}_G = \mathcal{W}(\pi_1, \pi_2, product)$: 3-web of codimension r on $G \times G$
- Question :

Algebraic properties of the Lie group *G*

 $\stackrel{?}{\longleftrightarrow}$ Differential properties of the 3-web $\mathcal{W}_{\mathcal{G}}$

Example: Bol's web B

Example: Bol's web B

1.

 $M_{0,5}$

Example: Bol's web B

1.

$$M_{0,5} \stackrel{\longrightarrow}{\longrightarrow} M_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$$

Example: Bol's web B

1.

$$M_{0,5} \stackrel{\longrightarrow}{\longrightarrow} M_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$$

2.

Example: Bol's web \mathcal{B}

1.

$$M_{0,5} \stackrel{\longrightarrow}{\longrightarrow} M_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$$

2.

3.

$$\mathcal{B} = \mathcal{W}\left(x, y, \frac{x}{y}, \frac{1-x}{1-y}, \frac{x(1-y)}{y(1-x)}\right)$$

• Surface $S \subset \mathbb{E}^3$

• $S \not\subset S^2$ \longrightarrow 2-web \mathcal{W}_S on S

• [Darboux 1880] : webs on a surface $S \subset \mathbb{P}^3$

- [Darboux 1880] : webs on a surface $S \subset \mathbb{P}^3$
- $x \in S$ general

- [Darboux 1880] : webs on a surface $S \subset \mathbb{P}^3$
- $x \in S$ ageneral \longrightarrow Darboux's 27 osculating conics to S at x

• [Darboux 1880] : webs on a surface $S \subset \mathbb{P}^3$

 $\begin{array}{c} x \in S \\ \text{general} \end{array} \xrightarrow{\hspace{0.5cm} \text{Darboux's 27 oscula-} \\ \text{ting conics to } S \text{ at } x \end{array} \xrightarrow{\hspace{0.5cm} \text{Darboux's 27 tangent}} \begin{array}{c} \text{Darboux's 27 tangent} \\ \text{directions to } S \text{ at } x \end{array}$

• [Darboux 1880] : webs on a surface $S \subset \mathbb{P}^3$

 $x \in S$ and $x \in S$ Darboux's 27 osculating conics to S at x Darboux's 27 tangent directions to S at x

ullet Darboux's 27-web \mathcal{DW}_S on S

- ullet [Darboux 1880] : webs on a surface $S\subset \mathbb{P}^3$
- $\begin{array}{c} x \in S \\ \text{general} \end{array} \underset{\text{ting conics to } S \text{ at } x \end{array} \xrightarrow{\text{Darboux's 27 tangent}} \text{Darboux's 27 tangent}$

- $igwedge {}^{igwedge} Darboux's 27-web ~ \mathcal{DW}_S ~ ext{on} ~ S$
- Example : $\Sigma =$ cubic hypersurface in \mathbb{P}^3

- ullet [Darboux 1880] : webs on a surface $S\subset \mathbb{P}^3$
- $x \in S$ are S Darboux's 27 osculating conics to S at X Darboux's 27 tangent directions to S at X

- igwedge Darboux's 27-web \mathcal{DW}_S on S
- Example : $\Sigma =$ cubic hypersurface in \mathbb{P}^3 line $L \subset \Sigma \overset{\textstyle \sim}{\longrightarrow}$ pencil of conics \mathcal{P}_L on Σ

←□ ト ←□ ト ← □ ト ← □ ト → □ ← のへ()

- [Darboux 1880] : webs on a surface $S \subset \mathbb{P}^3$
- $x \in S$ are S Darboux's 27 osculating conics to S at X Darboux's 27 tangent directions to S at X

- \longrightarrow Darboux's 27-web \mathcal{DW}_S on S
- Example : $\Sigma =$ cubic hypersurface in \mathbb{P}^3
 - line $L \subset \Sigma \longrightarrow$ pencil of conics \mathcal{P}_L on Σ
 - − 27 lines $L_1, \ldots, L_{27} \subset \Sigma$

- [Darboux 1880] : webs on a surface $S \subset \mathbb{P}^3$
- $x \in S$ and $x \in S$ Darboux's 27 osculating conics to S at $x \in S$ Darboux's 27 tangent directions to S at $x \in S$

- igwedge Darboux's 27-web \mathcal{DW}_S on S
- Example: Σ = cubic hypersurface in \mathbb{P}^3
 - line $L \subset \Sigma \longrightarrow$ pencil of conics \mathcal{P}_L on Σ
 - 27 lines $L_1,\ldots,L_{27}\subset\Sigma$ \longrightarrow 27 pencils of conics on Σ

- ullet [Darboux 1880] : webs on a surface $S\subset \mathbb{P}^3$
- $x \in S$ are S Darboux's 27 osculating conics to S at X Darboux's 27 tangent directions to S at X

- \longrightarrow Darboux's 27-web \mathcal{DW}_S on S
- Example: Σ = cubic hypersurface in \mathbb{P}^3
 - line $L \subset \Sigma \longrightarrow$ pencil of conics \mathcal{P}_L on Σ
 - 27 lines $L_1, \ldots, L_{27} \subset \Sigma \longrightarrow$ 27 pencils of conics on Σ
 - Darboux's web : $\mathcal{DW}_{\Sigma} = ig(\mathcal{P}_{L_1}, \dots, \mathcal{P}_{L_{27}}ig)$

ullet Surface $S\subset \mathbb{P}^5$

ullet Surface $S\subset \mathbb{P}^5$ (with regular 2-osculation at x)

ullet Surface $S\subset \mathbb{P}^5$ (with regular 2-osculation at x)

Hyperplane H	Curve $S \cap H$	Equation
$H\supset T_{S,x}$		Node : $x^2 - y^2 = 0$
$H\in \mathcal{C}_{ imes}\simeq \mathbb{P}^1$		Cusp: $x^2 - y^3 = 0$
Definition : H 'principal'		Tacnode: $x^2 - y^4 = 0$

• Let H = a principal hyperplane of S at x

• Let H = a principal hyperplane of S at x

Let H = a principal hyperplane of S at x

<u>Definition</u>: $L_H \in \mathbb{P}T_{S,x}$ is a 'principal direction' of S at x

• Let H = a principal hyperplane of S at x

<u>Definition</u>: $L_H \in \mathbb{P}T_{S,x}$ is a 'principal direction' of S at x

Proposition: [C. Segre] If x is not an umbilic: there are 5 principal directions of S at x

• Let H = a principal hyperplane of S at x

<u>Definition</u>: $L_H \in \mathbb{P}T_{S,x}$ is a 'principal direction' of S at x

Proposition: [C. Segre] If x is not an umbilic: there are 5 principal directions of S at x

Theorem : [C. Segre]

S is totally umbilic \iff $S \subset v_2(\mathbb{P}^2) \subset \mathbb{P}^5$

• Let H = a principal hyperplane of S at x

<u>Definition</u>: $L_H \in \mathbb{P}T_{S,x}$ is a 'principal direction' of S at x

Proposition: [C. Segre] If x is not an umbilic: there are 5 principal directions of S at x

• $S \not\subset v_2(\mathbb{P}^2) \rightsquigarrow$ the 'principal curves' form Segre's 5-web \mathcal{SW}_S on S

•
$$P = \left\{ \begin{array}{cc} P_{\mathbf{k}} & \bullet^{P_{\mathbf{k}}} \\ P_{\mathbf{k}} & \bullet^{P_{\mathbf{k}}} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

•
$$P = \left\{ \begin{array}{ccc} {}^{\rho_1} & {}^{\bullet^{\rho_2}} \\ {}^{\bullet}_{\rho_3} & {}^{\bullet}_{\rho_4} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

•
$$\Sigma = \mathbf{BI}_P(\mathbb{P}^2) \xrightarrow{\mu} \mathbb{P}^2$$
 Del Pezzo's surface

Example:

•
$$P = \left\{ \begin{array}{ccc} {}^{\rho_1} & {}^{\bullet^{\rho_2}} \\ {}^{\bullet}_{\rho_3} & {}^{\bullet}_{\rho_4} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

•
$$\Sigma = \mathbf{BI}_P(\mathbb{P}^2) \xrightarrow{\mu} \mathbb{P}^2$$
 Del Pezzo's surface

• K_{Σ}^{-1} very ample

•
$$P = \left\{ \begin{array}{ccc} {}^{\rho_1} & {}^{\bullet^{\rho_2}} \\ {}^{\bullet}_{\rho_3} & {}^{\bullet}_{\rho_4} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

- $\Sigma = \mathbf{BI}_P(\mathbb{P}^2) \xrightarrow{\mu} \mathbb{P}^2$ Del Pezzo's surface
- K_{Σ}^{-1} very ample \longrightarrow embedding $\varphi: \Sigma \xrightarrow{\left|K_{\Sigma}^{-1}\right|} \mathbb{P}^{5}$

•
$$P = \left\{ \begin{array}{ccc} {}^{\rho_1} & {}^{\bullet^{\rho_2}} \\ {}^{\bullet}_{\rho_3} & {}^{\bullet}_{\rho_4} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

- $\Sigma = \mathbf{BI}_P(\mathbb{P}^2) \xrightarrow{\mu} \mathbb{P}^2$ Del Pezzo's surface
- K_{Σ}^{-1} very ample \longrightarrow embedding $\varphi: \Sigma \xrightarrow{\left|K_{\Sigma}^{-1}\right|} \mathbb{P}^{5}$
- $\varphi(\Sigma) \neq v_2(\mathbb{P}^2) \longrightarrow \text{Segre's 5-web } \mathcal{SW}_{\varphi(\Sigma)} \text{ on } \varphi(\Sigma)$

•
$$P = \left\{ \begin{array}{ccc} {}^{\rho_1} & {}^{\bullet^{\rho_2}} \\ {}^{\bullet}_{\rho_3} & {}^{\bullet}_{\rho_4} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

- $\Sigma = \mathbf{BI}_P(\mathbb{P}^2) \xrightarrow{\mu} \mathbb{P}^2$ Del Pezzo's surface
- K_{Σ}^{-1} very ample \longrightarrow embedding $\varphi: \Sigma \subseteq |K_{\Sigma}^{-1}| \longrightarrow \mathbb{P}^5$
- $\varphi(\Sigma) \neq v_2(\mathbb{P}^2) \longrightarrow \text{Segre's 5-web } \mathcal{SW}_{\varphi(\Sigma)} \text{ on } \varphi(\Sigma)$
- ullet $\mu_*\circarphi^*ig(\mathcal{SW}_{arphi(\Sigma)}ig)$: 5-web on \mathbb{P}^2

•
$$P = \left\{ \begin{array}{ccc} {}^{\rho_1} & {}^{\bullet^{\rho_2}} \\ {}^{\bullet}_{\rho_3} & {}^{\bullet}_{\rho_4} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

- $\Sigma = \mathbf{BI}_P(\mathbb{P}^2) \xrightarrow{\mu} \mathbb{P}^2$ Del Pezzo's surface
- K_{Σ}^{-1} very ample \longrightarrow embedding $\varphi: \Sigma \xrightarrow{\left|K_{\Sigma}^{-1}\right|} \mathbb{P}^{5}$
- $\varphi(\Sigma) \neq v_2(\mathbb{P}^2) \longrightarrow \text{Segre's 5-web } \mathcal{SW}_{\varphi(\Sigma)} \text{ on } \varphi(\Sigma)$
- $\mu_*\circ arphi^*ig(\mathcal{SW}_{arphi(\Sigma)}ig)$: 5-web on \mathbb{P}^2 = Bol's web ${\mathcal B}$

•
$$P = \left\{ \begin{array}{ccc} {}^{\rho_{\mathbf{L}}} & {}^{\bullet_{P_2}} \\ {}^{\bullet}_{\rho_3} & {}^{\bullet}_{\rho_4} \end{array} \right\} \subset \mathbb{P}^2$$
 four points in general position

- $\Sigma = \mathbf{BI}_P(\mathbb{P}^2) \xrightarrow{\mu} \mathbb{P}^2$ Del Pezzo's surface
- K_{Σ}^{-1} very ample \longrightarrow embedding $\varphi: \Sigma \subseteq |K_{\Sigma}^{-1}| \longrightarrow \mathbb{P}^5$
- $\varphi(\Sigma) \neq v_2(\mathbb{P}^2) \longrightarrow \text{Segre's 5-web } \mathcal{SW}_{\varphi(\Sigma)} \text{ on } \varphi(\Sigma)$
- $\mu_*\circ arphi^*ig(\mathcal{SW}_{arphi(\Sigma)}ig)$: 5-web on \mathbb{P}^2 = Bol's web ${\mathcal B}$

$$\underline{\mathsf{Remark}}: \Sigma = \mathsf{BI}_P(\mathbb{P}^2) \simeq \overline{M}_{0,5}$$

• $X = \text{smooth cubic hypersurface in } \mathbb{P}^4$

- $X = \text{smooth cubic hypersurface in } \mathbb{P}^4$
 - \exists 6 lines $\subset X$ through a general point $x \in X$

• $X = \text{smooth cubic hypersurface in } \mathbb{P}^4$

```
\exists 6 lines \subset X through a general point x \in X \longleftrightarrow 6-web by lines on X
```

• $X = \text{smooth cubic hypersurface in } \mathbb{P}^4$

```
\exists 6 lines \subset X through a general point x \in X \longleftrightarrow 6-web by lines on X
```

• Y= smooth degree 4 hypersurface in \mathbb{P}^9

- $X = \text{smooth cubic hypersurface in } \mathbb{P}^4$
 - \exists 6 lines \subset X through a general point $x \in X$ \longleftrightarrow 6-web by lines on X

- ullet Y= smooth degree 4 hypersurface in \mathbb{P}^9
 - $\exists 64.512 \ \mathbb{P}^2\text{'s} \subset \text{in } Y$ $\text{through } y \in Y \text{ general}$ $\longleftrightarrow 64512\text{-web by 2-planes on } Y$

- $X = \text{smooth cubic hypersurface in } \mathbb{P}^4$
 - \exists 6 lines \subset X through a general point $x \in X$ \longleftrightarrow 6-web by lines on X

- ullet Y= smooth degree 4 hypersurface in \mathbb{P}^9
 - $\exists 64.512 \ \mathbb{P}^2\text{'s} \subset \text{in } Y$ $\text{through } y \in Y \text{ general}$ $\longleftrightarrow 64512\text{-web by 2-planes on } Y$
- $Z^{2n+1} =$ smooth intersection of two hyperquadrics in \mathbb{P}^{2n+3}

- $X = \text{smooth cubic hypersurface in } \mathbb{P}^4$
 - \exists 6 lines \subset X through a general point $x \in X$ \longleftrightarrow 6-web by lines on X

- ullet Y= smooth degree 4 hypersurface in \mathbb{P}^9
 - $\exists 64.512 \ \mathbb{P}^2\text{'s} \subset \text{in } Y$ $\text{through } y \in Y \text{ general}$ $\longleftrightarrow 64512\text{-web by 2-planes on } Y$
- $Z^{2n+1} =$ smooth intersection of two hyperquadrics in \mathbb{P}^{2n+3}
- $\exists \ 2^{2n} \ \mathbb{P}^{n} \text{'s} \subset \text{in } Z$ $\text{through } z \in Z \text{ general} \qquad \longleftrightarrow \quad 2^{2n} \text{-web by } n \text{-planes on } Z$

ullet C= algebraic curve of degree d in \mathbb{P}^2

• $C = \text{algebraic curve of degree } d \text{ in } \mathbb{P}^2$

• $C = \text{algebraic curve of degree } d \text{ in } \mathbb{P}^2$

• $C = \text{algebraic curve of degree } d \text{ in } \mathbb{P}^2$

 $\underline{\mathsf{Definition}}: \mathcal{W}_{\mathcal{C}} = \mathsf{web} \mathsf{ formed} \mathsf{ by the lines tangent to } \check{\mathcal{C}}$

ullet C= algebraic curve of degree d in \mathbb{P}^2

 $\frac{\textbf{Definition}}{\textbf{Definition}}: \boldsymbol{\mathcal{W}}_{\mathcal{C}} = \text{web formed by the lines tangent to } \check{\mathcal{C}}$ $= d\text{-web by lines on } \check{\mathbb{P}}^2 \setminus \check{\mathcal{C}}$

algebraic 3-web $\mathcal{W}_{\mathcal{C}}$ associated to a plane cubic $\mathcal{C} \subset \mathbb{P}^2$

ullet $V^r=$ reduced algebraic subvariety of degree d in \mathbb{P}^n

ullet $V^r=$ reduced algebraic subvariety of degree d in \mathbb{P}^n

 $\mathcal{W}_V = d$ -web of codimension r on $G_{n-r}(\mathbb{P}^n)$

• V^r = reduced algebraic subvariety of degree d in \mathbb{P}^n

 $\mathcal{W}_V = d$ -web of codimension r on $G_{n-r}(\mathbb{P}^n)$

Definitions : a web ${\mathcal W}$ is

1. algebraic if $\mathcal{W} = \mathcal{W}_V$ with $V \subset \mathbb{P}^n$ algebraic

• V^r = reduced algebraic subvariety of degree d in \mathbb{P}^n

 $\mathcal{W}_V = d$ -web of codimension r on $G_{n-r}(\mathbb{P}^n)$

${\color{red} {\sf Definitions}}$: a web ${\color{blue} {\cal W}}$ is

- 1. algebraic if $\mathcal{W} = \mathcal{W}_V$ with $V \subset \mathbb{P}^n$ algebraic
- 2. algebraizable if $\mathcal{W}\simeq\mathcal{W}_V$ with \mathcal{W}_V algebraic

ullet $V^r=$ reduced algebraic subvariety of degree d in \mathbb{P}^{n+r-1}

- V^r = reduced algebraic subvariety of degree d in \mathbb{P}^{n+r-1}
- $\Pi \in G_{n-1}(\mathbb{P}^{n+r-1})$ generic

- V^r = reduced algebraic subvariety of degree d in \mathbb{P}^{n+r-1}
- ullet $\Pi \in G_{n-1}ig(\mathbb{P}^{n+r-1}ig)$ generic

$$\Pi \cdot V = p_1(\Pi) + \cdots + p_d(\Pi)$$

- V^r = reduced algebraic subvariety of degree d in \mathbb{P}^{n+r-1}
- ullet $\Pi \in \mathcal{G}_{n-1}ig(\mathbb{P}^{n+r-1}ig)$ generic

$$\Pi \cdot V = p_1(\Pi) + \cdots + p_d(\Pi)$$

- V^r = reduced algebraic subvariety of degree d in \mathbb{P}^{n+r-1}
- ullet $\Pi \in \mathcal{G}_{n-1}ig(\mathbb{P}^{n+r-1}ig)$ generic

$$\Pi \cdot V = p_1(\Pi) + \cdots + p_d(\Pi)$$

••• d local submersions $p_i:\left(G_{n-1}(\mathbb{P}^{n+r-1}),\Pi\right)\longrightarrow V$

- V^r = reduced algebraic subvariety of degree d in \mathbb{P}^{n+r-1}
- ullet $\Pi \in \mathcal{G}_{n-1}ig(\mathbb{P}^{n+r-1}ig)$ generic

$$\Pi \cdot V = p_1(\Pi) + \cdots + p_d(\Pi)$$

- ••• d local submersions $p_i:\left(G_{n-1}(\mathbb{P}^{n+r-1}),\Pi\right)\longrightarrow V$
- $\longrightarrow \mathcal{W}(p_1,\ldots,p_d) \stackrel{\mathrm{loc}}{=} \mathcal{W}_V$

- V^r = reduced algebraic subvariety of degree d in \mathbb{P}^{n+r-1}
- ullet $\Pi \in \mathcal{G}_{n-1}ig(\mathbb{P}^{n+r-1}ig)$ generic

$$\Pi \cdot V = p_1(\Pi) + \cdots + p_d(\Pi)$$

- ••• d local submersions $p_i:\left(G_{n-1}(\mathbb{P}^{n+r-1}), \Pi\right)\longrightarrow V$
- $igwedge \mathcal{W}(p_1,\ldots,p_d) \stackrel{ ext{loc}}{=} \mathcal{W}_V : d ext{-web of codim } r ext{ on } G_{n-1}(\mathbb{P}^{n+r-1})$

ullet $V^r\subset \mathbb{P}^{n+r-1}$ of degree d \longleftrightarrow d-web $oldsymbol{\mathcal{W}}_V$ on $G_{n-1}ig(\mathbb{P}^{n+r-1}ig)$

ullet $V^r\subset \mathbb{P}^{n+r-1}$ of degree d \longleftrightarrow d-web \mathcal{W}_V on $G_{n-1}ig(\mathbb{P}^{n+r-1}ig)$

Remark: $\operatorname{codim}(\mathcal{W}_V) = r$

• $V^r\subset \mathbb{P}^{n+r-1}$ of degree $d\longleftrightarrow d$ -web \mathcal{W}_V on $G_{n-1}ig(\mathbb{P}^{n+r-1}ig)$

$$\underline{\mathsf{Remark}}: \ \mathsf{codim} \left(\mathcal{W}_V \right) = r \quad \big| \quad \mathit{nr} = \mathsf{dim} \ \mathit{G}_{\mathsf{n}-1} \big(\mathbb{P}^{\mathsf{n}+\mathsf{r}-1} \big)$$

• $V^r \subset \mathbb{P}^{n+r-1}$ of degree $d \longleftrightarrow d$ -web \mathcal{W}_V on $G_{n-1}ig(\mathbb{P}^{n+r-1}ig)$

$$\underline{\mathsf{Remark}} : \mathsf{codim} \left(\mathcal{W}_V \right) = r \quad \big| \quad \mathit{nr} = \mathsf{dim} \ \mathit{G}_{\mathsf{n}-1} \big(\mathbb{P}^{\mathsf{n}+\mathsf{r}-1} \big)$$

• Even restricting to the case of webs whose codimension divides the dimension of the ambient space :

• $V^r \subset \mathbb{P}^{n+r-1}$ of degree $d \longleftrightarrow d$ -web \mathcal{W}_V on $G_{n-1}ig(\mathbb{P}^{n+r-1}ig)$

Remark:
$$\operatorname{codim}(\mathcal{W}_V) = r \mid nr = \dim G_{n-1}(\mathbb{P}^{n+r-1})$$

• Even restricting to the case of webs whose codimension divides the dimension of the ambient space :

[Chern 1982]:

"the subject is a wide generalization of the geometry of projective algebraic varieties. Just as intrinsic algebraic varieties are generalized to Kähler manifolds and complex manifolds, such a generalization to web geometry seems justifiable."

Webs are everywhere...

- Algebra
- Topology
- Geometry
- Theory of dynamical systems
- Theory of DEs & PDEs
- Mathematical Physics
- Economy

- $\mathcal{W}_3 = \mathsf{a}$ 3-web on $U \subset \mathbb{C}^2$
- ullet $u_1,u_2,u_3:U o\mathbb{C}$ = first integrals of $oldsymbol{\mathcal{W}}_3$

- $\mathcal{W}_3 = \mathsf{a}$ 3-web on $U \subset \mathbb{C}^2$
- ullet $u_1,u_2,u_3:U o\mathbb{C}$ = first integrals of $oldsymbol{\mathcal{W}}_3$

Thm: [Thomsen 1927] The following assertions are equivalent:

- $\mathcal{W}_3 = \mathsf{a}$ 3-web on $U \subset \mathbb{C}^2$
- ullet $u_1,u_2,u_3:U o\mathbb{C}$ = first integrals of $oldsymbol{\mathcal{W}}_3$

Thm: [Thomsen 1927] The following assertions are equivalent:

1. W_3 is parallelizable

- $\mathcal{W}_3 = \mathsf{a}$ 3-web on $U \subset \mathbb{C}^2$
- ullet $u_1,u_2,u_3:U o\mathbb{C}$ = first integrals of $oldsymbol{\mathcal{W}}_3$

Thm: [Thomsen 1927] The following assertions are equivalent:

1.
$$W_3$$
 is parallelizable $\simeq \frac{\mathcal{W}(x,y,x-y)}{\mathcal{W}(x,y,x-y)}$

- $\mathcal{W}_3 = \mathsf{a}$ 3-web on $U \subset \mathbb{C}^2$
- ullet $u_1,u_2,u_3:U o\mathbb{C}$ = first integrals of $oldsymbol{\mathcal{W}}_3$

Thm: [Thomsen 1927] The following assertions are equivalent:

1.
$$W_3$$
 is parallelizable $\simeq \frac{W(x,y,x-y)}{y}$

2. W_3 is hexagonal

- $\mathcal{W}_3 = \mathsf{a}$ 3-web on $U \subset \mathbb{C}^2$
- ullet $u_1,u_2,u_3:U o\mathbb{C}$ = first integrals of $oldsymbol{\mathcal{W}}_3$

Thm: [Thomsen 1927] The following assertions are equivalent:

1.
$$W_3$$
 is parallelizable $\simeq \frac{W(x,y,x-y)}{y}$

- **2.** W_3 is hexagonal
- **3.** \mathcal{W}_3 is flat : $K_{\mathcal{W}_3} \equiv 0$

- $\mathcal{W}_3 = \mathsf{a}$ 3-web on $U \subset \mathbb{C}^2$
- $u_1, u_2, u_3: U \to \mathbb{C} = \text{first integrals of } \mathcal{W}_3$

Thm: [Thomsen 1927] The following assertions are equivalent:

1.
$$W_3$$
 is parallelizable $\simeq \frac{W(x,y,x-y)}{y}$

- **2.** W_3 is hexagonal
- **3.** \mathcal{W}_3 is flat : $K_{\mathcal{W}_3} \equiv 0$
- **4.** $\exists F_1, F_2, F_3$ such that $F_1(u_1) + F_2(u_2) + F_3(u_3) \equiv 0$

Definition: \mathcal{W}_3 is *hexagonal* if all 'hexagons' are closed

- $oldsymbol{\cdot} \mathcal{W}_3 = \mathsf{a} \ \mathsf{3} ext{-web on} \ \mathit{U} \subset \mathbb{C}^2$
- $u_1, u_2, u_3: U \to \mathbb{C} = \text{first integrals of } \mathcal{W}_3$

Theorem: The following assertions are equivalent:

1.
$$W_3$$
 is parallelizable $\simeq W(x, y, x - y)$

- **2.** \mathcal{W}_3 is hexagonal \nearrow
- **3.** \mathcal{W}_3 is flat : $K_{\mathcal{W}_3} \equiv 0$
- **4.** $\exists F_1, F_2, F_3$ such that $F_1(u_1) + F_2(u_2) + F_3(u_3) \equiv 0$

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

ullet 'Abelian relation' of \mathcal{W}_d

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

• 'Abelian relation' of $\mathcal{W}_d = (F_1, \dots, F_d) \in (\mathcal{O}_{(\mathbb{C},0)})^d$ s.t.

$$F_1(u_1)+\cdots+F_d(u_d)\equiv 0$$

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

• 'Abelian relation' of $\mathcal{W}_d = (F_1, \dots, F_d) \in (\mathcal{O}_{(\mathbb{C},0)})^d$ s.t. $F_1(u_1) + \dots + F_d(u_d) \equiv 0$

•
$$\mathcal{A}(\mathcal{W}_d) = \left\{ \mathsf{AR} \; \mathsf{of} \; \mathcal{W}_d \right\} = \left\{ \sum_i u_i^*(dF_i) \equiv 0 \right\}$$

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

• 'Abelian relation' of $\mathcal{W}_d = (F_1, \dots, F_d) \in (\mathcal{O}_{(\mathbb{C},0)})^d$ s.t. $F_1(u_1) + \dots + F_d(u_d) \equiv 0$

•
$$\mathcal{A}(\mathcal{W}_d) = \left\{ \mathsf{AR} \; \mathsf{of} \; \mathcal{W}_d \right\} = \left\{ \sum_i u_i^*(dF_i) \equiv 0 \right\} \longleftarrow \mathbb{C}$$
-vector space

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

• 'Abelian relation' of $\mathcal{W}_d=\left(F_1,\ldots,F_d\right)\in\left(\mathcal{O}_{(\mathbb{C},0)}\right)^d$ s.t. $F_1(u_1)+\cdots+F_d(u_d)\equiv 0$

- $\mathcal{A}(\mathcal{W}_d) = \left\{\mathsf{AR} \; \mathsf{of} \; \mathcal{W}_d \right\} = \left\{ \sum_i u_i^*(dF_i) \equiv 0 \right\} \longleftarrow \mathbb{C}$ -vector space
- ullet 'Rank' of $\mathcal{W}_d = extsf{rk}(\mathcal{W}_d) = \dim_{\mathbb{C}} \mathcal{A}(\mathcal{W}_d)$

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

- 'Abelian relation' of $\mathcal{W}_d=\left(F_1,\ldots,F_d\right)\in\left(\mathcal{O}_{(\mathbb{C},0)}\right)^d$ s.t. $F_1(u_1)+\cdots+F_d(u_d)\equiv 0$
- $\mathcal{A}(\mathcal{W}_d) = \left\{ \mathsf{AR} \; \mathsf{of} \; \mathcal{W}_d \right\} = \left\{ \sum_i u_i^*(dF_i) \equiv 0 \right\} \longleftarrow \mathbb{C}$ -vector space
- ullet 'Rank' of $\mathcal{W}_d = extsf{rk}(\mathcal{W}_d) = \dim_{\mathbb{C}} \mathcal{A}ig(\mathcal{W}_dig)$

Example:
$$\log(x) + \log(y) - \log(xy) = 0$$

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

• 'Abelian relation' of $\mathcal{W}_d = (F_1, \dots, F_d) \in (\mathcal{O}_{(\mathbb{C},0)})^d$ s.t. $F_1(u_1) + \dots + F_d(u_d) \equiv 0$

- $\mathcal{A}(\mathcal{W}_d) = \left\{\mathsf{AR} \; \mathsf{of} \; \mathcal{W}_d \right\} = \left\{ \sum_i u_i^*(dF_i) \equiv 0 \right\} \longleftarrow \mathbb{C}$ -vector space
- ullet 'Rank' of $\mathcal{W}_d = extsf{rk}(\mathcal{W}_d) = \dim_{\mathbb{C}} \mathcal{A}ig(\mathcal{W}_dig)$

Example:
$$\log(x) + \log(y) - \log(xy) = 0$$

• $\mathcal{A}(\mathcal{W}(x, y, xy)) = \langle \log(x) + \log(y) - \log(xy) = 0 \rangle$

$$\mathcal{W}_d = \mathcal{W}(u_1, u_2, \dots, u_d)$$
 first integrals $u_i : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$

Definitions:

• 'Abelian relation' of $\mathcal{W}_d = (F_1, \dots, F_d) \in (\mathcal{O}_{(\mathbb{C},0)})^d$ s.t. $F_1(u_1) + \dots + F_d(u_d) \equiv 0$

- $\mathcal{A}(\mathcal{W}_d) = \left\{\mathsf{AR} \; \mathsf{of} \; \mathcal{W}_d \right\} = \left\{ \sum_i u_i^*(dF_i) \equiv 0 \right\} \longleftarrow \mathbb{C}$ -vector space
- ullet 'Rank' of $\mathcal{W}_d = extsf{rk}(\mathcal{W}_d) = \dim_{\mathbb{C}} \mathcal{A}ig(\mathcal{W}_dig)$

Example:
$$\log(x) + \log(y) - \log(xy) = 0$$

• $\mathcal{A}(\mathcal{W}(x, y, xy)) = \langle \log(x) + \log(y) - \log(xy) = 0 \rangle$ $\mathbf{rk} = 1$

$$\mathcal{W}_C \stackrel{ ext{loc}}{=} \mathcal{W}(p_1, \dots, p_d)$$

ullet degree d curve $C\subset \mathbb{P}^n \leadsto d ext{-web } \mathcal{W}_C$ by hypersurfaces on $\check{\mathbb{P}}^n$

$$\mathcal{W}_C \stackrel{\mathrm{loc}}{=} \mathcal{W}(p_1, \ldots, p_d)$$

 $\begin{array}{l} \bullet \; \omega = \text{differential of the first} \\ \text{kind on } C \; \left(\; i.e. \; \; \omega \in \mathbf{H}^0(\omega_C^1) \, \right) \\ \end{array}$

$$\mathcal{W}_C \stackrel{\mathrm{loc}}{=} \mathcal{W}(p_1, \ldots, p_d)$$

- $\begin{array}{l} \bullet \; \omega = \mbox{differential of the first} \\ \mbox{kind on } C \; \left(\; i.e. \; \; \omega \in \mathbf{H}^0(\omega_C^1) \, \right) \\ \end{array}$
- Abel's Theorem : $\sum_i p_i^*(\omega) \equiv 0$

$$\mathcal{W}_C \stackrel{\mathrm{loc}}{=} \mathcal{W}(p_1, \ldots, p_d)$$

- $\begin{array}{l} \bullet \; \omega = \text{differential of the first} \\ \text{kind on } C \; \left(\; i.e. \; \; \omega \in \mathbf{H}^0(\omega_C^1) \, \right) \\ \end{array}$
- Abel's Theorem : $\sum_{i} p_{i}^{*}(\omega) \equiv 0 \iff (p_{i}^{*}(\omega))_{i=1}^{d} \in \mathcal{A}(\mathcal{W}_{C})$

$$\mathcal{W}_C \stackrel{\mathrm{loc}}{=} \mathcal{W}(p_1, \ldots, p_d)$$

- $\begin{array}{l} \bullet \; \omega = \text{differential of the first} \\ \text{kind on } C \; \left(\; i.e. \; \; \omega \in \mathbf{H}^0(\omega_C^1) \, \right) \\ \end{array}$
- <u>Abel's Theorem</u> : $\sum_{i} p_{i}^{*}(\omega) \equiv 0 \iff (p_{i}^{*}(\omega))_{i=1}^{d} \in \mathcal{A}(\mathcal{W}_{C})$
- $\begin{array}{c} \Longrightarrow \mathsf{Isomorphism} : \mathsf{H}^0\big(\omega_C^1\big) \stackrel{\sim}{\longrightarrow} \mathcal{A}\big(\mathcal{W}_C\big) & \mathsf{p}_a(C) = \mathsf{rk}\big(\mathcal{W}_C\big) \\ \omega & \longmapsto \big(p_i^*(\omega)\big)_{i=1}^d \end{array}$

ullet $\mathcal{W}_d=d$ -web of codimension 1 on $U\subset\mathbb{C}^n$

• $\mathcal{W}_d = d$ -web of codimension 1 on $U \subset \mathbb{C}^n$

Theorem: [Bol (n=2), Chern]

$$\mathsf{rk}ig(\mathcal{W}_dig) \leq \pi(d,2) = rac{1}{2}(d-1)(d-2)$$
 $(n=2)$

$$\mathbf{rk}(\mathcal{W}_d) \le \pi(d,2) = \frac{1}{2}(d-1)(d-2)$$
 $(n=2)$
 $\mathbf{rk}(\mathcal{W}_d) \le \pi(d,n) = \sum_{\sigma>0} \max \left(0, d-\sigma(n-1)-1\right)$

• $\mathcal{W}_d = d$ -web of codimension 1 on $U \subset \mathbb{C}^n$

Theorem: [Bol (n=2), Chern]

$$\mathsf{rk}ig(\mathcal{W}_dig) \leq \pi(d,2) = rac{1}{2}(d-1)(d-2)$$
 $(n=2)$

$$\mathbf{rk}(\mathcal{W}_d) \le \pi(d,2) = \frac{1}{2}(d-1)(d-2)$$
 $(n=2)$
 $\mathbf{rk}(\mathcal{W}_d) \le \pi(d,n) = \sum_{\sigma>0} \max \left(0, d-\sigma(n-1)-1\right)$

Corollary: for a degree d curve $C \subset \mathbb{P}^n$: $\mathbf{p}_a(C) \leq \pi(d,n)$

• $\mathcal{W}_d = d$ -web of codimension 1 on $U \subset \mathbb{C}^n$

Theorem: [Bol (n=2), Chern]

$$\mathsf{rk}ig(\mathcal{W}_dig) \leq \pi(d,2) = rac{1}{2}(d-1)(d-2)$$
 $(n=2)$

$$\mathbf{rk}(\mathcal{W}_d) \le \pi(d,2) = \frac{1}{2}(d-1)(d-2)$$
 $(n=2)$
 $\mathbf{rk}(\mathcal{W}_d) \le \pi(d,n) = \sum_{\sigma>0} \max \left(0, d-\sigma(n-1)-1\right)$

Corollary: for a degree d curve $C \subset \mathbb{P}^n$: $\mathbf{p}_a(C) \leq \pi(d,n)$

Definition: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d, n) > 0$

• $\mathcal{W}_d = d$ -web of codimension 1 on $U \subset \mathbb{C}^n$

Theorem: [Bol (n=2), Chern]

$$\mathsf{rk}(\mathcal{W}_d) \le \pi(d,2) = \frac{1}{2}(d-1)(d-2)$$
 $(n=2)$

$$\mathsf{rk}(\mathcal{W}_d) \leq \pi(d,n) = \sum_{\sigma>0} \mathsf{max}\left(0,d-\sigma(n-1)-1\right)$$

Corollary: for a degree d curve $C \subset \mathbb{P}^n$: $\mathbf{p}_a(C) \leq \pi(d,n)$

<u>Definition</u>: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d, n) > 0$

Example:
$$\operatorname{rk}(\mathcal{W}(x, y, xy)) = \pi(3, 2) = 1$$

<u>Definition</u>: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d, n) > 0$

<u>Definition</u> : \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d, n) > 0$

Examples:

1. degree d reduced curve $C \subset \mathbb{P}^2 \leadsto d$ -web \mathcal{W}_C on $\check{\mathbb{P}}^2$

<u>Definition</u>: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d,n) > 0$

Examples:

1. degree d reduced curve $C \subset \mathbb{P}^2 \leadsto d$ -web \mathcal{W}_C on $\check{\mathbb{P}}^2$

$$\mathbf{H}^0(\omega_C^1)\simeq \mathcal{A}(\mathcal{W}_C)$$

(Abel's Theorem)

<u>Definition</u>: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d, n) > 0$

Examples:

1. degree d reduced curve $C \subset \mathbb{P}^2 \leadsto d$ -web \mathcal{W}_C on $\check{\mathbb{P}}^2$

$$\begin{array}{ccc} \mathbf{H}^0(\omega_C^1) \simeq \boldsymbol{\mathcal{A}}(\boldsymbol{\mathcal{W}}_C) & \Longrightarrow & \mathbf{p_a}(C) = -\mathbf{rk}(\boldsymbol{\mathcal{W}}_C) \\ \text{(Abel's Theorem)} & \Longrightarrow & \overset{\parallel}{\underbrace{(d-1)(d-2)}{2}} = \pi(d,2) \end{array}$$

<u>Definition</u>: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d, n) > 0$

Examples:

1. degree d reduced curve $C \subset \mathbb{P}^2 \leadsto d$ -web \mathcal{W}_C on $\check{\mathbb{P}}^2$

2. degree d 'Castelnuovo's curve' $C \subset \mathbb{P}^n$: $\mathbf{g}(C) = \pi(d, n)$

<u>Definition</u>: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d,n) > 0$

Examples:

1. degree d reduced curve $C \subset \mathbb{P}^2 \leadsto d$ -web \mathcal{W}_C on $\check{\mathbb{P}}^2$

2. degree d 'Castelnuovo's curve' $C \subset \mathbb{P}^n$: $\mathbf{g}(C) = \pi(d, n)$

$$\mathsf{H}^0(\omega_{\mathcal{C}}^1) \simeq \mathcal{A}(\mathcal{W}_{\mathcal{C}}) \implies \mathsf{p}_{\mathsf{a}}(\mathcal{C}) = \mathsf{rk}(\mathcal{W}_{\mathcal{C}}) = \pi(d,n)$$

<u>Definition</u>: \mathcal{W}_d has maximal rank if $\mathbf{rk}(\mathcal{W}_d) = \pi(d, n) > 0$

Examples:

1. degree d reduced curve $C \subset \mathbb{P}^2 \leadsto d$ -web \mathcal{W}_C on $\check{\mathbb{P}}^2$

2. degree d 'Castelnuovo's curve' $C \subset \mathbb{P}^n$: $\mathbf{g}(C) = \pi(d, n)$

$$\mathsf{H}^0ig(\omega_{C}^1ig)\simeq \mathcal{A}ig(\mathcal{W}_{C}ig) \implies \mathsf{p}_{\mathsf{a}}(C)=\mathsf{rk}(\mathcal{W}_{C})=\pi(d,n)$$

Fact: $V^r \subset \mathbb{P}^{n+r-1}$ Castelnuovo $\Longrightarrow \mathcal{W}_V$ has maximal rank

Algebraization of maximal rank webs

 $m{\cdot}~ m{\mathcal{W}}$ is algebraizable if $m{\mathcal{W}} \simeq m{\mathcal{W}}_V$ with V algebraic

Fact: in many cases, maximal rank webs are algebraizable

Algebraization of maximal rank webs

ullet ${oldsymbol{\mathcal{W}}}$ is algebraizable if ${oldsymbol{\mathcal{W}}}\simeq {oldsymbol{\mathcal{W}}}_V$ with V algebraic

Fact: in many cases, maximal rank webs are algebraizable

Theorem: [Lie-Poincaré] Let \mathcal{W}_4 be a planar 4-web:

$$\mathsf{rk}ig(\mathcal{W}_4ig) = \pi(4,2) = 3 \qquad \Longrightarrow \qquad \mathcal{W}_4 \;\; \mathsf{is} \;\; \mathsf{algebraizable}$$

Algebraization of maximal rank webs

 $m{\cdot}~ m{\mathcal{W}}$ is *algebraizable* if $m{\mathcal{W}} \simeq m{\mathcal{W}}_V$ with V algebraic

Fact: in many cases, maximal rank webs are algebraizable

Theorem: [Lie-Poincaré] Let \mathcal{W}_4 be a planar 4-web:

 $\mathsf{rk} ig(\mathcal{W}_4 ig) = \pi(4,2) = 3 \qquad \Longrightarrow \qquad \mathcal{W}_4 \quad \mathsf{is \ algebraizable}$

Theorem: [Blaschke-Howe 1932 (n = 2), Griffiths 1976]

Let \mathcal{W}_d be a linear d-web on $U \subset \mathbb{C}^n$:

$$\exists$$
 a **complete** AR \Longrightarrow \mathcal{W}_d is algebraic

ullet V_1,\ldots,V_d : germs of hypersurfaces in \mathbb{P}^n

ullet V_1,\ldots,V_d : germs of hypersurfaces in \mathbb{P}^n

• V_1, \ldots, V_d : germs of hypersurfaces in \mathbb{P}^n

• $\omega_i \in \Omega^{n-1}(V_i)$ not trivial (for $i=1,\ldots,d$)

• V_1, \ldots, V_d : germs of hypersurfaces in \mathbb{P}^n

• $\omega_i \in \Omega^{n-1}(V_i)$ not trivial (for $i=1,\ldots,d$)

Abel-Inverse Theorem:

$$\sum_{i} p_{i}^{*} ig(\omega_{i}ig) \equiv 0$$

• V_1, \ldots, V_d : germs of hypersurfaces in \mathbb{P}^n

• $\omega_i \in \Omega^{n-1}(V_i)$ not trivial (for $i = 1, \ldots, d$)

Abel-Inverse Theorem: $\exists V \subset \mathbb{P}^n \text{ alg. hypersurface}$ $\exists \omega \in \mathbf{H}^0(V, \omega_V^{n-1}) \text{ such that}$ $V_i \subset V, \ \omega_i = \omega|_{V_i} \ \forall \ i=1,\ldots,n$

Algebraization of webs of maximal rank

Algebraization of webs of maximal rank

Theorem: [Bol (n = 3), (Chern-Griffiths), Trépreau]

Let \mathcal{W}_d be a d-web on $U \subset \mathbb{C}^n$ with $n \geq 3$:

$$\mathsf{rk}(\mathcal{W}_d) = \pi(d,n) \implies \mathcal{W}_d$$
 is algebraizable

Algebraization of webs of maximal rank

Theorem: [Bol
$$(n = 3)$$
, (Chern-Griffiths), Trépreau]

Let \mathcal{W}_d be a d-web on $U \subset \mathbb{C}^n$ with $n \geq 3$:

$$\mathsf{rk}(\mathcal{W}_d) = \pi(d,n) \implies \mathcal{W}_d$$
 is algebraizable

Theorem: [Pirio-Trépreau 2013]

For a d-web \mathcal{W}_d of codimension r>1 on $U\subset\mathbb{C}^{nr}$:

$$\mathcal{W}_d$$
 has maximal r -rank $(\mathbf{rk}^r(\mathcal{W}_d) = \pi(d,n,r))$ \Longrightarrow $(\text{generalized sense if } d = d_{n,r})$

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	
$\mathbf{p}_{a}(C) = \mathbf{h}^{0}(C, \omega_{C}^{1})$	
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^ee/\mathbf{H}_1(C,\mathbb{Z})$	
$\mathbf{AJ}_C^k:C^k o \mathbf{J}_C$	
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	
Torelli's theorem	
$arphi_{ \Omega^1_C }:C o \mathbb{P}\mathbf{H}^0(C,\omega^1_C)^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	
$\mathbf{p}_{a}(\mathit{C}) = \mathbf{h}^{0}(\mathit{C}, \omega_{\mathit{C}}^{1})$	
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^{\vee}/\mathbf{H}_1(C,\mathbb{Z})$	
$\mathbf{AJ}_C^k:C^k\to\mathbf{J}_C$	
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	
Torelli's theorem	
$arphi_{ \Omega^1_{\mathcal{C}} }:\mathcal{C} o \mathbb{P}\mathbf{H}^0(\mathcal{C},\omega^1_{\mathcal{C}})^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}(\mathcal{W}_d)$
$\mathbf{p}_{a}(C) = \mathbf{h}^{0}(C, \omega_{C}^{1})$	
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^{ee}/\mathbf{H}_1(C,\mathbb{Z})$	
$\mathbf{AJ}_C^k:C^k\to\mathbf{J}_C$	
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	
Torelli's theorem	
$arphi_{ \Omega^1_{\mathcal{C}} }:\mathcal{C} o \mathbb{P}\mathbf{H}^0(\mathcal{C},\omega^1_{\mathcal{C}})^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}(\mathcal{W}_d)$
$\mathbf{p}_{a}(C) = \mathbf{h}^{0}(C, \omega_{C}^{1})$	$rk(\mathcal{W}_d) = \dim \mathcal{A}(\mathcal{W}_d) = ho$
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^ee/\mathbf{H}_1(C,\mathbb{Z})$	
$\mathbf{AJ}_C^k:C^k o \mathbf{J}_C$	
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	
Torelli's theorem	
$arphi_{ \Omega^1_{\mathcal{C}} }:\mathcal{C} o \mathbb{P}\mathbf{H}^0(\mathcal{C},\omega^1_{\mathcal{C}})^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}(\mathcal{W}_d)$
$\mathbf{p}_{a}(C) = \mathbf{h}^{0}(C, \omega_{C}^{1})$	$rk(\mathcal{W}_d) = dim\mathcal{A}(\mathcal{W}_d) = ho$
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^ee/\mathbf{H}_1(C,\mathbb{Z})$	$\mathbf{J}_{\mathcal{W}_d} = ig(\mathcal{A}(\mathcal{W}_d)^ee, 0ig) \simeq (\mathbb{C}^ ho, 0ig)$
$\mathbf{AJ}_C^k:C^k o \mathbf{J}_C$	
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	
Torelli's theorem	
$arphi_{ \Omega^1_{\mathcal{C}} }:\mathcal{C} o \mathbb{P}\mathbf{H}^0(\mathcal{C},\omega^1_{\mathcal{C}})^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}(\mathcal{W}_d)$
$\mathbf{p}_{a}(C) = \mathbf{h}^{0}(C, \omega_{C}^{1})$	$rk(\mathcal{W}_d) = dim\mathcal{A}(\mathcal{W}_d) = ho$
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^ee/\mathbf{H}_1(C,\mathbb{Z})$	$\mathbf{J}_{\mathcal{W}_d} = ig(\mathcal{A}(\mathcal{W}_d)^ee, 0ig) \simeq (\mathbb{C}^ ho, 0ig)$
$\mathbf{AJ}_C^k:C^k o \mathbf{J}_C$	$AJ^{\mathcal{W}'}_{\mathcal{W}_d}:(\mathbb{C}^{\mathcal{W}'},0) o J_{\mathcal{W}_d}$
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	
Torelli's theorem	
$arphi_{ \Omega^1_{\mathcal{C}} }:\mathcal{C} o \mathbb{P}\mathbf{H}^0(\mathcal{C},\omega^1_{\mathcal{C}})^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}(\mathcal{W}_d)$
$\mathbf{p}_{a}(C) = \mathbf{h}^{0}(C, \omega_{C}^{1})$	$rk(\mathcal{W}_d) = dim\mathcal{A}(\mathcal{W}_d) = ho$
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^ee/\mathbf{H}_1(C,\mathbb{Z})$	$\mathbf{J}_{\mathcal{W}_d} = ig(\mathcal{A}(\mathcal{W}_d)^ee, 0ig) \simeq (\mathbb{C}^ ho, 0ig)$
$\mathbf{AJ}_C^k:C^k o \mathbf{J}_C$	$AJ^{\mathcal{W}'}_{\mathcal{W}_d}:(\mathbb{C}^{\mathcal{W}'},0) o J_{\mathcal{W}_d}$
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	$\Theta_{{oldsymbol{\mathcal{W}}}_d}\subset {f J}_{{oldsymbol{\mathcal{W}}}_d} \ \ ig(ho=d+1ig)$
Torelli's theorem	
$arphi_{ \Omega^1_{\mathcal{C}} }:\mathcal{C} o \mathbb{P}H^0(\mathcal{C},\omega^1_{\mathcal{C}})^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C}, \omega_{\mathcal{C}}^1)$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}(\mathcal{W}_d)$
$\mathbf{p}_{a}(\mathit{C}) = \mathbf{h}^{0}(\mathit{C}, \omega_{\mathit{C}}^{1})$	$rk(\mathcal{W}_d) = dim\mathcal{A}(\mathcal{W}_d) = ho$
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^ee/\mathbf{H}_1(C,\mathbb{Z})$	$\mathbf{J}_{\mathcal{W}_d} = \left(\mathcal{A}(\mathcal{W}_d)^ee, 0 ight) \simeq (\mathbb{C}^ ho, 0)$
$\mathbf{AJ}_C^k:C^k\to\mathbf{J}_C$	$AJ^{\mathcal{W}'}_{\mathcal{W}_d}:(\mathbb{C}^{\mathcal{W}'},0) o J_{\mathcal{W}_d}$
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	$\Theta_{{oldsymbol{\mathcal{W}}}_d}\subset {f J}_{{oldsymbol{\mathcal{W}}}_d} \ \ ig(ho=d+1ig)$
Torelli's theorem	Torelli's theorem?
$arphi_{ \Omega^1_{\mathcal{C}} }:\mathcal{C} o \mathbb{P}\mathbf{H}^0(\mathcal{C},\omega^1_{\mathcal{C}})^ee$	

Algebraic curves	Webs of codim 1
degree d curve $C \subset \mathbb{P}^n$	d -web ${\mathcal W}_d$ on $({\mathbb C}^n,0)$
$\omega \in \mathbf{H}^0(\mathcal{C},\omega^1_\mathcal{C})$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}(\mathcal{W}_d)$
$\mathbf{p}_{a}(\mathit{C}) = \mathbf{h}^{0}(\mathit{C}, \omega_{\mathit{C}}^{1})$	$rk(\mathcal{W}_d) = dim\mathcal{A}(\mathcal{W}_d) = ho$
$\mathbf{J}_C = \mathbf{H}^0(\omega_C^1)^ee/\mathbf{H}_1(C,\mathbb{Z})$	$\mathbf{J}_{\mathcal{W}_d} = \left(\mathcal{A}(\mathcal{W}_d)^{\vee}, 0\right) \simeq (\mathbb{C}^{ ho}, 0)$
$\mathbf{AJ}_C^k:C^k o \mathbf{J}_C$	$AJ^{\mathcal{W}'}_{\mathcal{W}_d}: (\mathbb{C}^{\mathcal{W}'},0) o J_{\mathcal{W}_d}$
$\Theta_{\mathcal{C}} \subset \mathbf{J}_{\mathcal{C}}$	$\Theta_{{oldsymbol{\mathcal{W}}}_d}\subset {f J}_{{oldsymbol{\mathcal{W}}}_d} \ \ ig(ho=d+1ig)$
Torelli's theorem	Torelli's theorem?
$arphi_{ \Omega^1_C }:C o \mathbb{P}\mathbf{H}^0(C,\omega^1_C)^ee$	$arphi_{\mathcal{F}}: (\mathbb{C},0) ightarrow \mathbb{P} \mathcal{A}(\mathcal{W}_d)^ee$

• Bol's web $\mathcal{B} = \mathcal{W}\left(x \ , \ y \ , \ \frac{x}{y} \ , \ \frac{1-x}{1-y} \ , \ \frac{x(1-y)}{y(1-x)} \right)$

• Bol's web $\mathcal{B} = \mathcal{W}\left(x \; , \; y \; , \; \frac{x}{y} \; , \; \frac{1-x}{1-y} \; , \; \frac{x(1-y)}{y(1-x)} \; \right) \implies \mathsf{rk}(\mathcal{B}) \leq 6$

• Bol's web
$$\mathcal{B} = \mathcal{W}\left(x , y , \frac{x}{y} , \frac{1-x}{1-y} , \frac{x(1-y)}{y(1-x)}\right) \implies \mathsf{rk}(\mathcal{B}) \le 6$$

$$ullet$$
 $\mathcal{A}(\mathcal{B}) =$

• Bol's web
$$\mathcal{B} = \mathcal{W}\left(x, y, \frac{x}{y}, \frac{1-x}{1-y}, \frac{x(1-y)}{y(1-x)}\right) \implies \mathsf{rk}(\mathcal{B}) \le 6$$

•
$$\mathcal{A}(\mathcal{B}) = \left\langle \log(\mathbf{x}) - \log(\mathbf{x}) - \log\left(\frac{\mathbf{x}}{\mathbf{y}}\right) = 0 \right\rangle$$

• Bol's web $\mathcal{B} = \mathcal{W}\left(x , y , \frac{x}{y} , \frac{1-x}{1-y} , \frac{x(1-y)}{y(1-x)}\right) \implies \mathsf{rk}(\mathcal{B}) \le 6$

•
$$\mathcal{A}(\mathcal{B}) = \left\langle \log(\mathbf{x}) - \log(\mathbf{x}) - \log\left(\frac{\mathbf{x}}{\mathbf{y}}\right) = 0 \right\rangle^{\mathbf{Aut}(\mathcal{B})}$$

• Bol's web
$$\mathcal{B} = \mathcal{W}\left(x \ , \ y \ , \ \frac{x}{y} \ , \ \frac{1-x}{1-y} \ , \ \frac{x(1-y)}{y(1-x)} \right) \implies \mathsf{rk}(\mathcal{B}) \le 6$$

•
$$\mathcal{A}(\mathcal{B}) = \left\langle \log(x) - \log(x) - \log\left(\frac{x}{y}\right) = 0 \right\rangle^{\mathbf{Aut}(\mathcal{B})} \oplus \left\langle \mathbf{(Abel)} \right\rangle$$

• Bol's web $\mathcal{B} = \mathcal{W}\left(x, y, \frac{x}{y}, \frac{1-x}{1-y}, \frac{x(1-y)}{y(1-x)}\right) \implies \mathsf{rk}(\mathcal{B}) \le 6$

•
$$\mathcal{A}(\mathcal{B}) = \left\langle \log(x) - \log(x) - \log\left(\frac{x}{y}\right) = 0 \right\rangle^{\mathbf{Aut}(\mathcal{B})} \oplus \left\langle \mathbf{(Abel)} \right\rangle$$

• Abel's 5-terms relation :

$$\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$$

• Bol's web $\mathcal{B} = \mathcal{W}\left(x, y, \frac{x}{y}, \frac{1-x}{1-y}, \frac{x(1-y)}{y(1-x)}\right) \implies \mathsf{rk}(\mathcal{B}) \le 6$

•
$$\mathcal{A}(\mathcal{B}) = \left\langle \log(x) - \log(x) - \log\left(\frac{x}{y}\right) = 0 \right\rangle^{\operatorname{Aut}(\mathcal{B})} \oplus \left\langle \operatorname{(Abel)} \right\rangle$$

• Abel's 5-terms relation :

$$\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$$

where
$$\mathbf{D}(x) = \mathbf{L}i_2(x) + \frac{\log(x)\log(1-x)}{2} - \frac{\pi^2}{6}$$
 (Rogers' dilogarithm)

• Bol's web $\mathcal{B} = \mathcal{W}\left(x, y, \frac{x}{y}, \frac{1-x}{1-y}, \frac{x(1-y)}{y(1-x)}\right) \implies \mathsf{rk}(\mathcal{B}) \le 6$

•
$$\mathcal{A}(\mathcal{B}) = \left\langle \log(x) - \log(x) - \log\left(\frac{x}{y}\right) = 0 \right\rangle^{\operatorname{Aut}(\mathcal{B})} \oplus \left\langle \operatorname{(Abel)} \right\rangle$$

• Abel's 5-terms relation :

$$\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$$

where
$$\mathbf{D}(x) = \mathbf{L}i_2(x) + \frac{\log(x)\log(1-x)}{2} - \frac{\pi^2}{6}$$
 (Rogers' dilogarithm)

• [Bol 1936] : ${\cal B}$ is 'exceptional' $\stackrel{def}{=}$ $\left\{ egin{array}{l} \mbox{of maximal rank} \\ + \mbox{non-algebraizable} \end{array} \right.$

Definition:
$$\mathcal{W}_d$$
 on $(\mathbb{C}^n, 0)$ exceptional if
$$\begin{cases} \mathbf{rk}(\mathcal{W}_d) = \pi(d, n) \\ + \text{ non-algebraizable} \end{cases}$$

Remark: W_d exceptional \implies n=2 and $d \ge 5$

Definition:
$$\mathcal{W}_d$$
 on $(\mathbb{C}^n, 0)$ exceptional if $\begin{cases} \mathsf{rk}(\mathcal{W}_d) = \pi(d, n) \\ + \mathsf{non-algebraizable} \end{cases}$

Remark: W_d exceptional \implies n=2 and $d \ge 5$

Examples: •
$$\mathcal{B}$$
: $\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$

$$\underline{\textbf{Definition}}: \mathcal{W}_d \text{ on } (\mathbb{C}^n, 0) \text{ exceptional if } \begin{cases} \mathbf{rk}(\mathcal{W}_d) = \pi(d, n) \\ + \text{ non-algebraizable} \end{cases}$$

Remark: W_d exceptional \implies n=2 and $d \ge 5$

Examples: •
$$\mathcal{B}$$
: $\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$

• $\mathcal{W}_{SK} =$ 'Spence-Kummer web'

Definition:
$$\mathcal{W}_d$$
 on $(\mathbb{C}^n, 0)$ exceptional if $\begin{cases} \mathsf{rk}(\mathcal{W}_d) = \pi(d, n) \\ + \mathsf{non-algebraizable} \end{cases}$

Remark: W_d exceptional \implies n=2 and $d \ge 5$

Examples: •
$$\mathcal{B}$$
: $\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$

• $\mathcal{W}_{SK} = \text{`Spence-Kummer web'}$:

$$2 \mathbf{D}_{3}(x) + 2 \mathbf{D}_{3}(y) - \mathbf{D}_{3}(\frac{x}{y}) + 2 \mathbf{D}_{3}(\frac{1-x}{1-y}) + 2 \mathbf{D}_{3}(\frac{x(1-y)}{y(1-x)})$$
$$- \mathbf{D}_{3}(xy) + 2 \mathbf{D}_{3}(-\frac{x(1-y)}{(1-x)}) + 2 \mathbf{D}_{3}(-\frac{(1-y)}{y(1-x)}) - \mathbf{D}_{3}(\frac{x(1-y)^{2}}{y(1-x)^{2}}) = 0$$

Definition:
$$\mathcal{W}_d$$
 on $(\mathbb{C}^n, 0)$ exceptional if
$$\begin{cases} \mathsf{rk}(\mathcal{W}_d) = \pi(d, n) \\ + \mathsf{non-algebraizable} \end{cases}$$

Remark: W_d exceptional \implies n=2 and $d \ge 5$

Examples: •
$$\mathcal{B}$$
: $\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$

• $\mathcal{W}_{SK}=$ 'Spence-Kummer web' :

$$2 \mathbf{D}_{3}(x) + 2 \mathbf{D}_{3}(y) - \mathbf{D}_{3}(\frac{x}{y}) + 2 \mathbf{D}_{3}(\frac{1-x}{1-y}) + 2 \mathbf{D}_{3}(\frac{x(1-y)}{y(1-x)})$$
$$- \mathbf{D}_{3}(xy) + 2 \mathbf{D}_{3}(-\frac{x(1-y)}{(1-x)}) + 2 \mathbf{D}_{3}(-\frac{(1-y)}{y(1-x)}) - \mathbf{D}_{3}(\frac{x(1-y)^{2}}{y(1-x)^{2}}) = 0$$

$$\frac{\mathsf{Fact}}{d}: \left\{ \begin{array}{l} \mathsf{Algebraic} \\ d\text{-webs } \mathcal{W}_{\mathcal{C}} \end{array} \right\}$$

Definition:
$$\mathcal{W}_d$$
 on $(\mathbb{C}^n, 0)$ exceptional if
$$\begin{cases} \mathsf{rk}(\mathcal{W}_d) = \pi(d, n) \\ + \mathsf{non-algebraizable} \end{cases}$$

Remark: W_d exceptional \implies n=2 and $d \ge 5$

Examples:
$$\bullet \mathcal{B}: \mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$$

• $\mathcal{W}_{SK}=$ 'Spence-Kummer web' :

$$\begin{split} & 2\,\mathbf{D}_{3}\!\left(\,x\,\right) + 2\,\mathbf{D}_{3}\!\left(\,y\,\right) - \mathbf{D}_{3}\!\left(\,\frac{x}{y}\,\right) + 2\,\mathbf{D}_{3}\!\left(\,\frac{1-x}{1-y}\,\right) + 2\,\mathbf{D}_{3}\!\left(\,\frac{x(1-y)}{y(1-x)}\,\right) \\ & - \,\mathbf{D}_{3}\!\left(\,xy\,\right) + 2\,\mathbf{D}_{3}\!\left(\,-\frac{x(1-y)}{(1-x)}\,\right) + 2\,\mathbf{D}_{3}\!\left(\,-\frac{(1-y)}{y(1-x)}\,\right) - \mathbf{D}_{3}\!\left(\,\frac{x(1-y)^{2}}{y(1-x)^{2}}\,\right) = 0 \end{split}$$

$$\underline{\mathsf{Fact}}: \left\{ \begin{array}{l} \mathsf{Algebraic} \\ d\text{-webs} \ \mathcal{W}_{\mathcal{C}} \end{array} \right\} \sqcup \left\{ \begin{array}{l} \mathsf{Exceptional} \\ d\text{-webs} \end{array} \right\}$$

Definition:
$$\mathcal{W}_d$$
 on $(\mathbb{C}^n, 0)$ exceptional if
$$\begin{cases} \mathsf{rk}(\mathcal{W}_d) = \pi(d, n) \\ + \mathsf{non-algebraizable} \end{cases}$$

Remark: W_d exceptional \implies n=2 and $d \ge 5$

Examples: •
$$\mathcal{B}$$
: $\mathbf{D}(x) - \mathbf{D}(y) - \mathbf{D}\left(\frac{x}{y}\right) - \mathbf{D}\left(\frac{1-y}{1-x}\right) + \mathbf{D}\left(\frac{x(1-y)}{y(1-x)}\right) = 0$

• $\mathcal{W}_{SK} = \text{`Spence-Kummer web'}$:

$$2 \mathbf{D}_{3}(x) + 2 \mathbf{D}_{3}(y) - \mathbf{D}_{3}(\frac{x}{y}) + 2 \mathbf{D}_{3}(\frac{1-x}{1-y}) + 2 \mathbf{D}_{3}(\frac{x(1-y)}{y(1-x)})$$
$$- \mathbf{D}_{3}(xy) + 2 \mathbf{D}_{3}(-\frac{x(1-y)}{(1-x)}) + 2 \mathbf{D}_{3}(-\frac{(1-y)}{y(1-x)}) - \mathbf{D}_{3}(\frac{x(1-y)^{2}}{y(1-x)^{2}}) = 0$$

Chern-Griffiths (1981):

"(...) we cannot refrain from mentionning what we consider to be the fundamental problem on the subject, which is to determine the maximum rank non-linearizable webs. The strong conditions must imply that there are not many. It may not be unreasonable to compare the situation with the exceptional simple Lie groups."

Chern-Griffiths (1981):

"(...) we cannot refrain from mentionning what we consider to be the fundamental problem on the subject, which is to determine the maximum rank non-linearizable webs. The strong conditions must imply that there are not many. It may not be unreasonable to compare the situation with the exceptional simple Lie groups."

Chern (1985):

"The determination of all webs of maximal rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

Chern-Griffiths (1981):

"(...) we cannot refrain from mentionning what we consider to be the fundamental problem on the subject, which is to determine the maximum rank non-linearizable webs. The strong conditions must imply that there are not many. It may not be unreasonable to compare the situation with the exceptional simple Lie groups."

Chern (1985):

"The determination of all webs of maximal rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

Chern's problem: to determine and classify the exceptional webs

Theorem: [Marin-Pereira-Pirio 2006]

There are planar exceptional d-webs for every $d \ge 5$

Theorem: [Marin-Pereira-Pirio 2006]

There are planar exceptional d-webs for every $d \ge 5$

Theorem: [Pereira-Pirio 2010]

Up to projective equivalence, there are 4 infinite series and 13 sporadic examples of exceptional CDQL webs on \mathbb{P}^2

Theorem: [Marin-Pereira-Pirio 2006]

There are planar exceptional d-webs for every $d \ge 5$

Theorem: [Pereira-Pirio 2010]

Up to projective equivalence, there are 4 infinite series and 13 sporadic examples of exceptional CDQL webs on \mathbb{P}^2

• The 5-web $\mathcal{W}\Big(\,x\,,\,y\,,\,x+y\,,\,x-y\,,\,x^2+y^2\,\Big)$ is exceptional

Theorem: [Marin-Pereira-Pirio 2006]

There are planar exceptional d-webs for every $d \ge 5$

Theorem: [Pereira-Pirio 2010]

Up to projective equivalence, there are 4 infinite series and 13 sporadic examples of exceptional CDQL webs on \mathbb{P}^2

• The 5-web $\mathcal{W}(x, y, x+y, x-y, x^2+y^2)$ is exceptional

AR:
$$8(x)^6 + 8(y)^6 + (x+y)^6 + (x-y)^6 - 10(x^2+y^2)^3 = 0$$

Theorem: [Marin-Pereira-Pirio 2006]

There are planar exceptional d-webs for every $d \ge 5$

Theorem: [Pereira-Pirio 2010]

Up to projective equivalence, there are 4 infinite series and 13 sporadic examples of exceptional CDQL webs on \mathbb{P}^2

• The 5-web $\mathcal{W}(x, y, x+y, x-y, x^2+y^2)$ is exceptional

AR:
$$8(x)^6 + 8(y)^6 + (x+y)^6 + (x-y)^6 - 10(x^2+y^2)^3 = 0$$

• The exceptional webs remain mysterious...

• Determine all the exceptional planar 5-webs

• Determine all the exceptional planar 5-webs

ullet Exceptional 5-webs $\stackrel{?}{\longleftrightarrow}$ analytic exceptional surfaces in \mathbb{P}^5

- Determine all the exceptional planar 5-webs
- ullet Exceptional 5-webs $\stackrel{?}{\longleftrightarrow}$ analytic exceptional surfaces in \mathbb{P}^5
- Extend algebraic geometry to webs of maximal rank

- Determine all the exceptional planar 5-webs
- Exceptional 5-webs $\stackrel{?}{\longleftrightarrow}$ analytic exceptional surfaces in \mathbb{P}^5
- \bullet Extend algebraic geometry to webs of maximal rank $(\ \exists \ \mathsf{Torelli} \ \mathsf{theorem} \ \mathsf{for} \ \mathsf{webs} \, ? \,)$

- Determine all the exceptional planar 5-webs
- Exceptional 5-webs $\stackrel{?}{\longleftrightarrow}$ analytic exceptional surfaces in \mathbb{P}^5
- Extend algebraic geometry to webs of maximal rank
 (∃ Torelli theorem for webs?)
- ullet For a non-reduced curve $C\subset \mathbb{P}^2$:
 - is there a web-theoretic object $\mathcal{W}_{\mathcal{C}}$ corresponding to it?
 - what would be an abelian relation for such a 'web' ${\cal W}_C$?

Some problems : in algebraic geometry

Some problems : in algebraic geometry

Algebraic geometry	Web geometry
Variety $V^r \subset \mathbb{P}^{n+r-1}$ degree d and dim r	\mathcal{W}_d on $(\mathbb{C}^{nr},0)$ d -web of codim r
$\omega \in H^0(V,\Omega_V^q) q=1,\ldots,r$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}^q(\mathcal{W}_d)$
$\mathbf{h}^{q,0}(V) = \mathbf{h}^0ig(V,\Omega_V^qig)$	$rk^q({\mathcal{W}}_d) = \dim {\mathcal{A}}^q({\mathcal{W}}_d)$
$\mathbf{h}^{q,0}(V) \leq \pi^q(d,n,r)$	$rk^q(\mathcal{W}_d) \leq \pi^q(d,n,r)$

Some problems : in algebraic geometry

Algebraic geometry	Web geometry
Variety $V^r \subset \mathbb{P}^{n+r-1}$ degree d and dim r	\mathcal{W}_d on $(\mathbb{C}^{nr},0)$ d -web of codim r
$\omega \in H^0(V,\Omega_V^q) q=1,\ldots,r$	$\underline{\omega} = (\omega_i)_{i=1}^d \in \mathcal{A}^q(\mathcal{W}_d)$
$\mathbf{h}^{q,0}(V) = \mathbf{h}^0ig(V,\Omega_V^qig)$	$rk^q({\mathcal{W}}_d) = \dim {\mathcal{A}}^q({\mathcal{W}}_d)$
$\mathbf{h}^{q,0}(V) \leq \pi^q(d,n,r)$	$rk^q(\mathcal{W}_d) \leq \pi^q(d,n,r)$

• For *q* < *r* :

determine the varieties $V^r\subset \mathbb{P}^{n+r-1}$ of 'maximal q-rank' i.e. such that $\mathbf{h}^{q,0}(V)=\pi^q(d,n,r)$ where $d=\deg V$

끝났어

관심을 가져 주셔서 감사합니다

*

THANK YOU FOR YOUR ATTENTION THE END