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1 Introduction

Random matrices were introduced in multivariate statistics, in the thirties by
Wishart [Wis] (see also [Mu]) and in theoretical physics by Wigner [Wig] in
the fifties. Since then, the theory developed in a wide range of mathematics
fields and physical mathematics. These lectures give a brief introduction of
one aspect of Random Matrix Theory (RMT): the asymptotic distribution
of the eigenvalues of random Hermitian matrices of large size N . The study
of some asymptotic regimes leads to interesting results and techniques.
Let A be a N × N Hermitian matrix with eigenvalues λi, 1 ≤ i ≤ N . We
can define the spectral measure of A by

µA =
1

N

N∑
i=1

δλi

or

µA(∆) =
1

N
#{1 ≤ i ≤ N, λi ∈ ∆}, ∆ ⊂ R.

One of the main problem in RMT is to investigate the convergence of the
random spectral measures (µAN ) for a given family of random matrices AN

of size N when N −→∞. Another question of interest is the behavior on
extreme eigenvalues.

Two regimes will be considered in the asymptotic N −→∞:
1) The global regime: we consider µAN (∆) for a fixed Borel set ∆ of

size |∆| ∼ 1 and look for the convergence of µAN (∆) to µ(∆) where µ is
a probability. In general, the distribution µ can be found explicitely (ex:
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Wigner distribution) and depends on the distribution of the ensemble of
matrices AN .

2) The local regime: we are interested in the microscopic properties of
the eigenvalues (ex: spacing distribution). As in the Central Limit Theorem,
we make a renormalisation of certain probabilistic quantities to obtain non
degenerate limits. We now consider NµAN (∆N) where the size of ∆N tends to
0, i.e. we make a zoom around u looking at the interval ∆N = [u−εN , u+εN ]
with εN −→ 0. The universality conjecture says that, in the local regime,
renormalisation gives universal limits (independent of the distribution of the
ensemble AN). This regime is more delicate to study and often requires the
distribution of the eigenvalues.

We shall present different techniques in RMT:
1) Moment method: in order to study the convergence of µAN , we compute

its moments

µA(xk) =
1

N

N∑
i=1

λki =
1

N
Tr(Ak)

and

E[
1

N
Tr(Ak)] =

1

N

N∑
i1,...,ik=1

E[Ai1i2Ai2i3 . . . Aiki1 ].

If A is a matrix with independent coefficients, we can compute the leading
term of the right-hand side of the above equation, using some combinatorics.
This is the aim of section 2.

2) The Stieltjes transform: we can also prove the convergence of µAN by
proving the convergence of µAN (fz) for a large class of bounded continuous
functions fz depending on a parameter z ∈ C\R. We consider fz(x) = 1

x−z .
µ(fz) is the Stieltjes transform of the measure µ. We present this technique
in Section 3 for a Gaussian ensemble of matrices (GUE).

3) Orthogonal polynomials: In Section 4, we provide a deep analysis of
GUE: density of eigenvalues, correlation functions in order to handle the local
regime. The method relies on orthogonal polynomials.

1.1 Notations

• HN , resp. SN , denotes the set of N × N Hermitian, resp. symmet-
ric, matrices with complex, resp. real, coefficients. These spaces are
equipped with the trace, denoted by Tr.

2



• If M ∈ HN , we denote by (λk(A))1≤k≤N its eigenvalues (in RN).

• For a matrix M ∈ HN , we define the spectral measure of M as the
probability measure defined by:

µM =
1

N

N∑
i=1

δλi(M)

where δx is the Dirac mass at point x. If M is a random matrix, then,
µM is a random probability measure.

• P(R) is the set of probability measures, equipped with the weak topol-
ogy so that µ−→µ(f) :=

∫
f(x)dµ(x) is continuous if f is bounded

continuous on R.

• N(0, σ2) denotes the Gaussian distribution on R with mean 0 and vari-
ance σ2.
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Part I

Global behavior

2 Wigner matrices

We consider a sequence of random matrices AN = (ANij )1≤i,j≤N of size N in
HN (or SN) defined on a probability space (Ω,F ,P). We assume that for
fixed N , (ANij )1≤i≤j≤N are independent random variables and moreover that

E[ANij ] = 0 and E[|ANij |2] =
σ2

N
. (2.1)

Such matrices, with independent coefficients, are called Wigner matrices.
The aim of the chapter is to prove the convergence of the spectral measure
µAN = 1

N

∑N
i=1 δλi(AN ) of the eigenvalues of AN to the semicircular distribu-

tion:

µsc,σ2(dx) =
1

2πσ2

√
4σ2 − x21[−2σ,2σ](x)dx.

We first prove the convergence of the moments of µAN when the entries
of AN have finite moments.

Theorem 2.1 Assume (2.1) and for all k ∈ N

αk = sup
N

sup
1≤i≤j≤N

E[|
√
NANij |k] <∞ (2.2)

Then,

lim
N→∞

1

N
Tr((AN)k) =

{
0 if k odd

σ2p (2p)!
p!(p+1)!

if k = 2p

where the convergence holds a.s. and in expectation. The numbers Cp =
(2p)!

p!(p+1)!
are called the Catalan numbers.

Note that 1
N

Tr((AN)k) =
∫
R x

kdµAN (dx) = 1
N

∑
i λ

k
i (A

N).
Before proving this theorem, we shall give some combinatorial results.
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2.1 Some properties of the Catalan numbers

Lemma 2.1 1) The Catalan numbers Cp satisfy:
Cp = #{ rooted oriented trees with p edges }

= #{ Dyck paths with 2p steps }
2) Let µsc(dx) = 1

2π

√
4− x21[−2,2](x)dx the semicircular distribution of

variance 1, then ∫
R
x2p+1µsc(dx) = 0;

∫
R
x2pµsc(dx) = Cp.

A tree is a connected graph with no cycle. A root is a marked vertex. A
tree is oriented if it is drawn (or embedded) into the plane; it inherits the
orientation of the plane.

A Dyck path of length 2p is a path in Z2 starting from (0, 0) and ending
at (2p, 0) with increments of the form (1,+1) or (1,−1) and staying above
the real axis.

Property 2.1 There is a bijection between the set of oriented trees and the
set of Dyck paths.

Sketch of proof: (see [G])
1) We define a walk on the tree with p vertices : we consider the oriented
tree as a ”fat tree” replacing each edge by a double edge, surrounding the
original one. The union of these edges define a path surrounding the tree.
The walk on the tree is given by putting the orientation of the plane on this
path and starting from the root. To define the Dyck path from the walk
on the tree, put an increment (1, 1) when one meets an edge that has not
been visited and (1,−1) otherwise. It is easy to see that this defines a Dyck
path. Now, given a Dyck path, glue the couples of steps when one step +1 is
followed by a step -1 and replace each glued couple by an edge. We obtain a
path decorated with edges. Continue this procedure to obtain a rooted tree.
�
Proof of Lemma 2.1: 1) We verify that the cardinal of the above sets is
given by the Catalan numbers. Let Dp:= #{ Dyck paths with 2p steps }.
Let us verify that Dp satisfy the relation:

D0 = 1, Dp =

p∑
l=1

Dl−1Dp−l, (2.3)
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Let 1 ≤ l ≤ p and Dp,l := #{ Dyck paths with 2p steps hitting the real axis
for the first time at time 2l (i.e. after 2l steps) }. Then, Dp =

∑p
l=1Dp,l.

Now, we have

Dp,l = #{ Dyck paths from (0, 0) to (2l, 0) strictly above the real axis}
×#{ Dyck paths from (2l, 0) to (2p,0) }.

#{ Dyck paths from (2l, 0) to (2p, 0) } = Dp−l and
#{ Dyck paths from (0, 0) to (2l, 0) strictly above the real axis } = Dl−1

(since the first and last step are prescribed, shift the real axis to +1 to have
a correspondence with Dyck paths with 2(l − 1) steps).

Now, it remains to prove that (2.3) characterizes the Catalan numbers.
To this end, we introduce the generating function S(z) =

∑∞
k=0Dkz

k. Since
Dk ≤ 22k, the serie is absolutely convergent for |z| ≤ 1/4. From the recur-
rence relation (2.3), it is easy to see that S(z) satisfies:

S(z)− 1 = z(S(z))2

and therefore

S(z) =
1−
√

1− 4z

2z
.

A Taylor development of this function gives S(z) =
∑ (2k)!

k!(k+1)!
zk and thus

Dk = Ck.
2) The computations of the moments of the semicircular distribution

follows from standard computations (perform the change of variables x =
2 sin(θ) in the integral). �

Proof of Theorem 2.1 We first prove the convergence in expectation. Put
X =

√
NAN . The entries of X are centered with variance σ2.

1

N
E[Tr(AN)k] =

1

N
E[

N∑
i1,...,ik=1

ANi1i2 . . . A
N
iki1

]

=
1

N1+k/2
E[

N∑
i1,...,ik=1

Xi1i2 . . . Xiki1 ] (2.4)

Let i = (i1, · · · , ik) and set P (i) = E[Xi1i2 . . . Xiki1 ]. From the assumption
(2.2),

P (i) ≤ ak
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for some constant ak independent of N (by Holder’s inequality). From the
independence and centering of the entries,

P (i) = 0

unless to any edge (ip, ip+1), there exists l 6= p such that (ip, ip+1) = (il, il+1)
or (il+1, il). A single edge gives a zero contribution.
We now want to characterize the set of indices i giving a non null contribution
in the limit N −→∞. To i, we associate a graph G(i) = (V (i), E(i)) where
the set of vertices is given by V (i) = {i1, · · · , ik} and the set of edges E(i) =
{(i1, i2), · · · , (ik, ik+1)} with by convention ik+1 = i1. G(i) is connected. We
denote by Ḡ(i) = (V̄ (i), Ē(i)) the skeleton of G(i), that is V̄ (i) are the
distinct points of V̄ (i), Ē(i) the set of edges of E(i) without multiplicities.

Lemma 2.2 Let G = (V,E) a connected graph, then,

|V | ≤ |E|+ 1

vhere |A| denotes the cardinal of the distinct elements in the set A. The
equality holds iff G is a tree.

Proof: We prove the inequality by recurrence over |V |. This is true for
|V | = 1. Let |V | = n. Take a vertex v in V and split G into (v, e1, · · · , el)
and (G1, · · ·Gr) connected graphs where (e1, . . . el) are the edges containing v.
We have r ≤ l. Gi := (Vi, Ei) and by the induction hypothesis, |Vi| ≤ |Ei|+1.
Then,

|V | = 1 +
r∑
i=1

|Vi| ≤ 1 +
r∑
i=1

(|Ei|+ 1)

= 1 + |E| − l + r ≤ 1 + |E|.

If |V | = |E| + 1, we must have equality in all the previous decompositions.
But, if there is a loop in G, we can find a vertex v with r < l. �
Since P (i) = 0 unless each edge appears at least twice, we have |Ē(i)| ≤
[k/2] where [x] denotes the integer part of x, and from the previous lemma,
|V̄ (i)| ≤ [k/2] + 1. Since the indices vary from 1 to N , there are at most
N [k/2]+1 indices contributing in the sum (2.4) and

1

N
E[Tr(AN)k] ≤ akN

[k/2]−k/2.
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Therefore, if k is odd,

lim
N −→∞

1

N
E[Tr(AN)k] = 0.

If k is even, the indices i which contribute to the limit are those for which
V̄ (i) = k/2 + 1. From the lemma, it follows that Ḡ(i) is a tree and |Ē(i)| =
k/2 = |E(i)|/2, that is each edge appears exactly twice and G(i) appears as
a fat tree. For such i, Ḡ(i) is an oriented rooted tree: the root is given by
the directed edge (i1, i2), the order of the indices induces a cyclic order on
the fat tree, that uniquely prescribes an orientation. For these indices i,

P (i) =
∏
e∈Ẽ(i)

E[|Xe|2]k/2 = (σ2)k/2.

Up to now, we only consider the shape of the tree, without considering the
numerotation of the vertices. For the same geometry of the rooted tree, there
are N(N−1) . . . (N− k

2
) ∼ N1+k/2 choices for the distinct vertices. Therefore,

E[
1

N
Tr(AN)k] =

N(N − 1) . . . (N − k
2
)

Nk/2+1

× #{ rooted oriented trees with k/2 edges } + o(1)

−→ Ck/2.

This ends the proof of the convergence in expectation. It remains to prove
the a.s. convergence. To this end, we prove that the variance of 1

N
Tr(AN)k

is of order 1
N2 . We refer to [G] for the computation of the variance. We just

give an outline .

V ar

(
1

N
Tr(AN)k

)
= E

[(
1

N
Tr(AN)k

)2
]
− E

[(
1

N
Tr(AN)k

)]2

=
1

N2+k

∑
i1,...ik,i

′
1...i
′
k

[P (i, i′)− P (i)P (i′)]

where P (i, i′) = E[Xi1i2 . . . Xiki1Xi′1i
′
2
. . . Xi′ki

′
1
].

As above, we introduce a graphG(i, i′) with vertices V (i, i′) = {i1, · · · , ik, i′1, · · · , i′k}
and edges E(i, i′) = {(i1, i2), · · · , (ik, ik+1), (i′1, i

′
2), · · · , (i′k, i′k+1)}. To give a

contribution to the leading term, the graph must be connected (if E(i) ∩
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E(i′) = ∅, then P (i, i′) = P (i)P (i′)). Moreover, each edge must appear at
least twice and thus,

|V (i, i′)| ≤ |E(i, i′)|+ 1 ≤ k + 1.

This shows that the variance is at most of order 1
N

. A finer analysis (see [G])
shows that the case |V (i, i′)| = k + 1 cannot occur and V ar

(
1
N

Tr(AN)k
)

=
O( 1

N2 ). Thus,

E[
∑
N

(
1

N
Tr(AN)k − E(

1

N
Tr(AN)k))2] <∞

implying that

1

N
Tr(AN)k − E(

1

N
Tr(AN)k)−→ 0 a.s.. �

Theorem 2.2 Under the assumption (2.1), µAN
converges to µsc,σ2 a.s, that

is for every bounded continuous function f ,

lim
N

∫
R
f(x)dµAN (x) =

∫
R
f(x)dµsc,σ2(x) a.s.. (2.5)

Sketch of Proof: From Theorem 2.1, Lemma 2.1 2) (and a scaling argument
to pass from σ = 1 to general σ), (2.5) is satisfied if f is replaced by a
polynomial.
We use Wierestrass theorem to approximate f by a polynomial uniformly on
the compact [−B,B] with B > 2σ. For δ > 0, we choose a polynomial P
such that

sup
x∈[−B,B]

|f(x)− P (x)| ≤ δ.

Then,∣∣∣∣∫
R
f(x)dµAN (x)−

∫
R
f(x)dµsc,σ2(x)

∣∣∣∣ ≤ ∣∣∣∣∫
R
P (x)dµAN (x)−

∫
R
P (x)dµsc,σ2(x)

∣∣∣∣
+2δ +

∫
|x|>B

|f(x)− P (x)|dµAN (x)

since µsc,σ2 has a support in [−2σ, 2σ]. The first term in the above equation
tends to 0 as N −→∞ thanks to Theorem 2.1. For the third term, let p
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denote the degree of P , then,∫
|x|>B

|f(x)− P (x)|dµAN (x) ≤ C

∫
|x|>B

|x|pdµAN (x)

≤ CB−p+2q

∫
x2(p+q)dµAN (x) ∀q

Thus, since
∫
x2(p+q)dµAN (x)−→

∫
x2(p+q)dµsc,σ2(x),

lim sup
N

∫
|x|>B

|f(x)− P (x)|dµAN (x) ≤ CB−p+2q(2σ)2p+2q −→
q→∞

0

since B > 2. Then δ−→ 0 gives the result. �

We now give a statement of Wigner’s theorem without existence of the mo-
ments of the coefficients.

Theorem 2.3 Assume that the Hermitian matrix AN = 1√
N
X satisfies E[Xij] =

0, E[|Xij|2] = 1 and the diagonal entries are iid real variables, those above
the diagonal are iid complex variables, then µAN converges to µsc a.s..

We refer to Guionnet [G], Bai-Silverstein [BS], Bai [B] for the passage from
Theorem 2.1 to Theorem 2.3. It relies on an appropriate truncation of the
coefficients of AN into bounded coefficients and the following lemma:

Lemma 2.3 Let λ1(A) ≤ . . . ≤ λN(A) and λ1(B) ≤ . . . ≤ λN(B) the ranked
eigenvalues of two Hermitian matrices A and B. Then,

N∑
i=1

|λi(A)− λi(B)|2 ≤ Tr(A−B)2.

2.2 On the extremal eigenvalues

Proposition 2.1 [BY], [BS]
Assume that AN = 1√

N
XN with Xii iid centered with finite variance, (Xij)i<j)

iid with distribution µ with
∫
xµ(dx) = 0,

∫
|x|2µ(dx) = σ2,

∫
|x|4µ(dx) <

∞. Then, the largest eigenvalue λmax(A
N) converges a.s. to 2σ.

From the convergence of the spectral distribution µAN to the semicircular
distribution µsc,σ2 and using that µsc,σ2([2σ− ε, 2σ]) > 0, one can easily show
that

lim inf
N −→∞

λmax(A
N) ≥ 2.
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The upper bound requires sharp combinatorial techniques. Bai and Yin
([BS]) shows that one can find s = sN such that∑

N

P (Tr(AN)2s ≥ (2σ + ε)2s) <∞.

Since P (λmax(A
N) ≥ (2σ + ε)) ≤ P (Tr(AN)2s ≥ (2σ + ε)2s), Borel-Cantelli’s

lemma gives
lim sup
N −→∞

λmax(A
N) ≤ 2 + ε.

2.3 Comments

1. This method is quite general and requires only minimal hypothesis on
the moments of the entries of the matrix (we do not need the explicit
distribution of the entries). Nevertherless, we cannot obtain sharp in-
formations on the spectrum by this method. The method is also valid
for the real symmetric case.

2. The set of Dyck paths with 2k steps (or the set of oriented tree with
k edges) is also in bijection with the set of non-crossing pair partitions
of {1; . . . , 2k}.
A partition π is said to be crossing if there exists p < q < p′ < q′ such
that p, p′ belongs to the same block of π, q, q′ belongs to the same block
of π, the two blocks being distinct. It is not crossing otherwise. A pair
partition is a partition with all blocks of cardinality 2.
We refer to Hiai-Petz [HP] for a proof of Wigner theorem using non
crossing pair-partitions.
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3 The resolvent approach

In this Section, we prove Wigner’s theorem in the particular case of a Gaus-
sian Wigner matrix, using the resolvent approach. We also consider a model
of sample covariance matrices and prove the convergence of its spectral mea-
sure.

3.1 The Gaussian Unitary Ensemble (GUE)

Definition 3.1 GUE(N ; σ2) is the Gaussian distribution on HN given by

PN,σ2(dM) =
1

ZN,σ2

exp(− 1

2σ2
Tr(M2))dM (3.1)

where dM denotes the Lebesgue measure on HN given by

dM =
N∏
i=1

dMii

∏
1≤i<j≤N

d<Mijd=Mij

and ZN,σ2 is a normalizing constant. ZN,σ2 = 2N/2(πσ2)N
2/2.

In the following, in the asymptotics N −→∞, we shall consider this ensem-
ble with variance 1/N i.e. GUE(N ; 1

N
). In other words, a random matrix is

distributed as GUE(N ; 1
N

) if HN(i, i) is distributed as N(0, 1
N

), <HN(j, k),
=HN(j, k), j < k are distributed as N(0, 1

2N
), all the variables being inde-

pendent.

Remark 3.1 1) GUE(N ; 1
N

) is a Wigner matrix (independent entries);
2) The distribution PN,σ2 is invariant under the unitary transformation TU :
M −→U∗MU where U is a unitary matrix (UU∗ = U∗U = I), that is for all
Borelian B of Hn:

PN,σ2(TU(B)) = PN,σ2(B).

Theorem 3.1 (Wigner’s theorem)
Let HN a random matrix distributed as GUE(N ; 1

N
) and µHN

its spectral
measure. Then, a.s.

µHN

weak−→
N→∞

µsc

where µsc denotes the semicircular distribution µsc(dx) = 1
2π

√
4− x21[−2,2](x)dx.
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To prove this theorem, we shall use the Stieltjes transform of µN .

Definition 3.2 Let m a probability measure on R. The function

gm(z) =

∫
R

m(dx)

x− z

defined for z ∈ C\R is the Stieltjes transform of m.

We present some properties of the Stieltjes transform (see [AG], [BS, Ap-
pendix]).

Proposition 3.1 Let g the Stieltjes transform of a probability m. Then,

i) g is analytic on C\R and g(z̄) = g(z),

ii) =z=(g(z)) > 0 for =z 6= 0,

iii) limy→∞ y|g(iy)| = 1.

iv) If i)-iii) are satisfied for a function g, then, there exists a probability m
such that g is the Stieltjes transform of m.

v) If I is an interval such that m does not charge the endpoints, then,

m(I) = lim
ε→0

1

π

∫
I

=g(x+ iε)dx

(inversion formula).

vi) m−→ gm is continuous from P(R) endowed with the weak topology to
the set of analytic functions endowed with the uniform topology on com-
pacts of C\R.

Note that if M ∈ HN and µM denotes its spectral measure, then

gµM (z) =

∫
R

1

x− z
dµM(x)

=
1

N

N∑
i=1

1

λi(M)− z

=
1

N
Tr((M − zI)−1)
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GM(z) := (M − zI)−1 is called the resolvent of the matrix M and satisfies:
1) ||GM(z)|| ≤ 1

|=(z)| where ||.|| denotes the operator norm on the set of
matrices.

2) G′M(z).A = −GM(z)AGM(z) where G′ is the derivative of G with
respect to M , z fixed.

We now establish an integration by part formula for the Gaussian ensemble.

Proposition 3.2 Let HN a random matrix defined on a probability space
(Ω,F ,P) distributed as GUE(N , 1/N). Let Φ a C1 function on HN with
bounded derivative. Then,

E[Φ′(HN).A] = NE[Φ(HN) Tr(HNA)] ∀A ∈ HN . (3.2)

This proposition is an extension of the well known integration by part formula
for the unidimensional Gaussian distribution: if g is distributed as N(0, σ2),
then,

E[f ′(g)] =
1

σ2
E[f(g)g].

Proof: The Lebesgue measure dM on HN is invariant by translation, thus

I :=

∫
HN

Φ(M) exp(−N
2

tr(M2))dM = ZN,1/NE[Φ(HN)]

satisfies

I =

∫
HN

Φ(M + εA) exp(−N
2

tr((M + εA)2))dM.

The derivative in ε of the right-hand side of the above equation is zero and
equals

dI

dε
|ε=0 =

∫
HN

Φ′(M).A exp(−N
2

tr(M2))dM

+

∫
HN

Φ(M) exp(−N
2

tr(M2))(−N Tr(AM))dM

This gives (3.2). �

Proposition 3.3 Let HN distributed as GUE(N , 1/N) and

gN(z) =
1

N
Tr((HN − zI)−1) =

∫
R

1

x− z
dµHN

(x)
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with z ∈ C\R. Then, gN(z) satisfies:

E[(gN(z))2] + zE[gN(z)] + 1 = 0. (3.3)

Proof: We apply (3.2) to Φ(M) = (GM(z))ij, z ∈ C\R, i, j ≤ N . Then,

E[−(GHN
(z)AGHN

(z))ij] = NE[GHN
(z)(i, j) Tr(HNA)]

for all A ∈ HN and in fact for all matrix A (by C- linearity of (3.2) in A).
Take A = Ekl the element of the canonical basis (Ekl(p, q) = δkpδlq) in the
above formula to obtain (writing G for GHN

(z) to simplify):

E[GikGlj] +NE[GijHN(l, k)] = 0.

Take i = k, j = l and take the normalized sum in i, j of the above equations
( 1
N2

∑
i,j . . .); we obtain:

1

N2
E[(TrG)2] +

1

N
E[Tr(GHN)] = 0.

Now, GHN = GN(z)(HN − zI + zI) = I + zGN(z). Thus, we obtain:

E[gN(z)2] + 1 + zE[gN(z)] = 0. �

Lemma 3.1 There exists a constant C (independent of N , z) such that:

Var(gN(z)) ≤ C

N2|=z|2
. (3.4)

Proof of Lemma 3.1: We can use an argument of concentration of measure
for the Gaussian distribution: let γn,σ denote the centered Gaussian distri-
bution on Rn of covariance σ2I and F a Lipschitz function on Rn (for the
Euclidian norm) with constant c, then (see [L])

γn,σ[{x, |F (x)−
∫
Fdγn,σ| ≥ δ}] ≤ 2 exp(−−κδ

2

c2σ2
). (3.5)

for some (universal) constant κ. For F : R → R, we define its extension on
HN by F (M) = Udiag(F (λ1), · · · , F (λN)U∗ if M = Udiag(λ1, · · · , λN)U∗.
We have the following property:
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If F is c-Lipschitz on R, its extension to HN with the norm ||M ||2 =√
tr(M2)(isomorphic to RN2

with the Euclidian norm) is c-Lipschitz.

It follows that if f is c-Lipschitz on R, then F (M) := 1
N

Tr(f(M)) is c√
N

-

Lipschitz (use |Tr(M)| ≤
√
N ||M ||2). Now, using that g(x) := 1

x−z is Lips-

chitz with constant 1
|=z| , we obtain from (3.5):

P[|gN(z)− E(gN(z))| ≥
√
δ] ≤ 2 exp

(
−δ|=z|

2N

2/N

)
= 2 exp

(
−δ|=z|2N2/2

)
.

Integrating the above inequality in δ gives (3.4). �

Proof of Theorem 3.1: Set hN(z) = E[gN(z)]. From (3.3) and Lemma 3.1,
hN(z) satisfies

|h2
N(z) + zhN(z) + 1| ≤ C

N2|=z|2

and |hN(z)| ≤ 1
|=z| . The sequence (hN(z))N is analytic on C\R , uniformly

bounded (as well as the derivatives) on the compact sets of C\R. From a
classical theorem (Montel [He]), (hN(z))N is relatively compact. It is enough
to prove that any limit point is unique. Let h a limit point. It is easy to
see that h(z) satisfies properties i)-iii) of Proposition 3.1 and the quadratic
equation

h2(z) + zh(z) + 1 = 0.

Therefore, h(z) = 1
2
(−z+

√
z2 − 4), the choice of the sign + before the square

root follows from iii). Thus, h is determined uniquely and hN(z)−→h(z) for
z ∈ C\R. Moreover, one can verify that h is the Stieltjes transform of the
semicircular distribution µsc.
Now, using again Lemma 3.1 and some tools of complex analysis, we can
prove (see [PL] for details) that a.s., gN converge uniformly to h on compact
of C\R. From vi) of Proposition 3.1, it follows that µHN

converge to µsc a.s..
�

3.2 Some generalisations: the Wishart ensemble

Let A = (Aij) a p×N matrix with iid complex Gaussian entries of variance
1 (E[|Aij|2] = 1). Define WN = 1

N
A∗A. WN is a Hermitian positive random

matrix of size N called a complex Wishart matrix (or Laguerre matrix).
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Proposition 3.4 Let p,N −→∞ such that p(N)
N
−→N→∞ c ≥ 1. Then, the

spectral measure µWN
of WN converges a.s. to the probability measure given

by

µMP (dx) =
1

2πx
((x− a−)(a+ − x))1/21[a−,a+](x)dx

where a± = (1±
√
c)2. µMP is called the Marchenko-Pastur distribution

Sketch of Proof: As in the GUE case, we show that E[gWN
(z)] converges

to a function h satisfying a quadratic equation. h is the Stieltjes transform
of the Marchenko-Pastur distribution. This relies on:

1) the distribution of the Wishart matrix WN (see [Mu]):

CN,p(det(M))p−N exp(−N Tr(M))1(M≥0)dM

2) an integration by part’s formula: for p > N , WN is inversible a.s. and

E[Φ′(WN).A]−NE[Φ(WN) Tr(A)] + (p−N)E[Φ(WN) Tr(H−1
N A)] = 0.

Apply the above formula to Φ(M) = (GM(z)M)ij = (I + zGM(z))ij. After
some computations as in the GUE case, we obtain:

zE[g2
WN

(z)] + 1 + zE[gWN
(z)]− p−N

N
E[gWN

(z)] = 0

leading to h(z) solution of

zh2(z) + (z + (1− c))h(z) + 1 = 0.�

3.3 Comments

1) This method also holds for real symmetric matrices, that is for the Gaus-
sian Orthogonal Ensemble (GOE) or for real Wishart matrices. The GOE(N ,
σ2) ensemble is the distribution of the symmetric matrix S of size N where
Sii is distributed as N(0, 2σ2), Sij, i < j is distributed as N(0, σ2), all these
variables being independent.

2) Wigner matrices can also be considered using Stieltjes transform. In-
stead of the formula E[γΦ(γ)] = σ2E[Φ′(γ)] for γ a centered Gauusian dis-
tribution of variance σ2 we can use a cumulant development for a random
variable X:

E[XΦ(X)] =

p∑
l=0

κl+1

l!
E[Φ(l)(X)] + εp

17



where κl are the cumulants of X and |εp| ≤ supx∈R Φ(p+1)(x)|E[|X|p+2]. See
[KKP] for the development of this method.
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Part II

Local Behavior

4 The Gaussian Unitary Ensemble

In this section, we continue the study of the GUE in a deeper way, in order
to obtain the local behavior of the spectrum. Recall that GUE(N , 1

N
)) is the

Gaussian distribution on HN given by:

PN(dM) =
1

ZN
exp(−1

2
N Tr(M2))dM (4.1)

4.1 Distribution of the eigenvalues of GUE(N , 1
N )

Let HN a random matrix distributed as GUE(N , 1
N

)) and we denote by
λ1(HN) ≤ · · · ≤ λN(HN) the ranked eigenvalues of HN .

Proposition 4.1 The joint distribution of the eigenvalues λ1(HN) ≤ · · · ≤
λN(HN) has a density with respect to Lebesgue measure equal to

pN(x) =
1

Z̄N

∏
1≤i<j≤N

(xj − xi)2 exp(−N
2

N∑
i=1

x2
i )1x1≤···≤xN (4.2)

∆(x) =
∏

1≤i<j≤N(xj−xi) is called the Vandermonde determinant and equals

det(xj−1
i )1≤i,j≤N .

We refer to Mehta [Me, Chap. 3] for the proof of this proposition. It relies
on the expression of the N2 components of M in (4.1) in terms of the N
eigenvalues (xi) andN(N−1) independent parameters (pi) which parametrize
the unitary matrix U in the decomposition M = Udiag(x)U∗. Heuristically,
the term exp(−N

2

∑N
i=1 x

2
i ) comes from the exp(−1

2
N Tr(M2)) in PN and the

square of the Vandermonde determinant comes from the Jacobian of the map
M 7→ ((xi), U) after integration on U on the unitary group.

Corollary 4.1 If f is a bounded function of HN , invariant by the unitary
transformations, that is f(M) = f(UMU∗) for all unitary matrix U then
f(M) = f(λ1(M), · · · , λN(M)) is a symmetric function of the eigenvalues
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and

E[f(HN)] =
1

ZN

∫
hN

f(M) exp(−1

2
N Tr(M2))dM

=
1

Z̄N

∫
x1≤···≤xN

f(x1, · · · , xN)
∏

1≤i<j≤N

(xi − xj)2 exp(−N
2

N∑
i=1

x2
i )d

Nx

=
1

N !Z̄N

∫
RN

f(x1, · · · , xN)
∏

1≤i<j≤N

(xi − xj)2 exp(−N
2

N∑
i=1

x2
i )d

Nx

4.2 k-point correlation functions of the GUE

Let ρN a symmetric density distribution on RN , considered as the distribution
of N particles Xi.

Definition 4.1 Let k ≤ N . The k- point correlation functions of (Xi) are
defined by

RN,k(x1, · · ·xk) =
N !

(N − k)!

∫
RN−k

ρN(x1, · · ·xN)dxk+1 · · · dxN . (4.3)

The correlation functions are, up to a constant, the marginal distributions
of ρN . Heuristically, RN,k is the probability of finding a particle at x1, ....
a particle at xk. The factor N !

(N−k)!
comes from the choice of the k particles

and the symmetry of ρN (see the computation below). We have, using the
symmetry of ρN ,

E[
N∏
i=1

(1 + f(Xi)] = E[
N∑
k=0

∑
i1<···<ik

f(Xi1) · · · f(Xik)]

=
N∑
k=0

E[
∑

i1<···<ik

f(Xi1) · · · f(Xik)]

=
N∑
k=0

(
N
k

)
E[f(X1) · · · f(Xk)]

=
N∑
k=0

1

k!

N !

(N − k)!
E[f(X1) · · · f(Xk)]
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and thus,

E[
N∏
i=1

(1 + f(Xi))] =
N∑
k=0

1

k!

∫
Rk

f(x1) · · · f(xk)RN,k(x1, · · ·xN)dx1 · · · dxk.

(4.4)
The correlation functions enables to express probabilistic quantities as:

1) The hole probability:
Take f(x) = 1R\I − 1 where I is a Borel set of R. Then, the left-hand side of
(4.4) is the probability of having no particles in I. Therefore,

P(∀i,Xi 6∈ I) =
N∑
k=0

(−1)k

k!

∫
Ik
RN,k(x1, · · ·xk)dx1 · · · dxk.

In particular, for I =]a,+∞[,

P(maxXi ≤ a) =
N∑
k=0

(−1)k

k!

∫
[a,∞[k

RN,k(x1, · · ·xk)dx1 · · · dxk. (4.5)

2) the density of state:

E[
1

N

N∑
i=1

f(Xi)] =
1

N

∫
R
f(x)RN,1(x)dx

that is 1
N
RN,1(x)dx represents the expectation of the empirical distribution

E[ 1
N

∑N
i=1 δXi

].

We now compute the correlation functions associated to the symmetric den-
sity of the (unordered) eigenvalues of the GUE

ρN(x) =
1

N !Z̄N

∏
1≤i<j≤N

(xi − xj)2 exp(−N
2

N∑
i=1

x2
i ).

Proposition 4.2 The correlation functions of the GUE(N , 1
N

) are given by

RN,k(x1, · · ·xk) = det(KN(xi, xj))1≤i,j≤k (4.6)

where the kernel KN is given by

KN(x, y) = exp(−N
4

(x2 + y2))
N−1∑
l=0

ql(x)ql(y) (4.7)
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where

ql(x) =

(
N

2π

)1/4
1√
2ll!

hl(
√
N/2 x) (4.8)

where hl are the Hermite polynomials.

The process of the eigenvalues of GUE is said to be a determinantal pro-
cess.
Proof: Since the value of a determinant does not change if we replace a col-
umn by the column + a linear combination of the others, we have that the
Vandermonde determinant ∆(x) = det(Pj−1(xi)) if Pj denotes a polynomial
of degree j with higher coefficient equal to 1.
Let w(x) = exp(−N

2
x2) and define the orthonormal polynomials ql with re-

spect to w such that:
- ql is of degree l, ql(x) = alx

l + . . . with al > 0.
-
∫
R ql(x)qp(x)w(x)dx = δpl.

(ql)l also depends on N and is up to a scaling factor the family of Hermite
polynomials (to be discussed later).
Thus, ∆(x) = CN det(qj−1(xi)) and, using (det(A))2 = det(A) det(AT ), we
have:

ρN(x) =
1

Z̃N

∏
1≤i≤N

w(xi) (det(qj−1(xi)))
2

=
1

Z̃N

∏
1≤i≤N

w(xi) det

(
N∑
l=1

ql−1(xi)ql−1(xj)

)
i,j≤N

=
1

Z̃N
det (KN(xi, xj))i,j≤N

where

KN(x, y) =
√
w(x)

√
w(y)

N∑
l=1

ql−1(x)ql−1(y) =
N−1∑
l=0

φl(x)φl(y)

where φl(x) =
√
w(x)ql(x). The sequence (φl)l is orthornormal for the

Lebesgue measure dx. From the orthonormality of (φl), it is easy to show
that the kernel KN satisfies the properties:∫

R
KN(x, x)dx = N
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∫
R
KN(x, y)KN(y, z)dy = KN(x, z).

This proves (4.6) for k = N (up to a constant). The general case follows
from the Lemma:

Lemma 4.1 Let JN = (Jij) a matrix of size N of the form Jij = f(xi, xj)
with f satisfying:

1.
∫
R f(x, x)dx = C

2.
∫
R f(x, y)f(y, z)dy = f(x, z)

Then, ∫
R

det(JN)dxN = (C −N + 1) det(JN−1)

where JN−1 is a matrix of size N − 1 obtained from JN by removing the last
row and column containing xN .

Proof of Lemma 4.1:

det(JN) =
∑
σ∈ΣN

ε(σ)
N∏
i=1

f(xi, xσ(i))

where ΣN is the set of permutations on {1, . . . , N} and ε stands for the sig-
nature of a permutation. We integrate in dxN . There are two cases: i) if
σ(N) = N , the integration of f(xN , xN) gives C; the set of such σ is isomor-
phic to ΣN−1 and the signature (in ΣN−1) of the restriction to {1, ..., N − 1}
is the same as the signature of σ. This gives the term C det(JN−1).
ii) σ(N) ∈ {1, ..., N − 1}. For such σ, the integral in dxN gives

Aσ :=
N−1∏

i=1,i 6=σ−1(N)

f(xi, xσ(i))

∫
f(xσ−1(N), xN)f(xN , xσ(N))dxN

Aσ =
N−1∏

i=1,i 6=σ−1(N)

f(xi, xσ(i))f(xσ−1(N), xσ(N)) =
N−1∏
i=1

f(xi, xσ̂(i))

where σ̂ is a permutation on ΣN−1 which coincides with σ for i ≤ N − 1, i 6=
σ−1(N) and σ̂(σ−1(N)) = σ(N) 6= N . Now, it remains to see that σ̂ can
be obtained from N − 1 distinct permutations σ or in the other sense, from
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σ̂, we can construct N − 1 permutations σ by inserting N between any two
indices i, σ̂(i). Moreover, since the number of cycles of σ and σ̂ is the same,
ε(σ) = −ε(σ̂). We thus obtain the formula of the lemma. �

In the case of GUE, J = (KN(xi, xj)) satisfies the hypothesis of the lemma
with C = N .∫

R
det(KN(xi, xj))i,j≤N dxN = (N −N − 1) det(KN(xi, xj))i,j≤N−1∫

R
det(KN(xi, xj))i,j≤N−1 dxN−1 = (N −N − 2) det(KN(xi, xj))i,j≤N−2.

Integrating over all the variables gives:∫
R

det(KN(xi, xj))i,j≤N dx1 . . . dxN = N !

and therefore, Z̃N = N !. Integrating over the N − k variables dxk+1, . . . dxN
gives:∫

R
det(KN(xi, xj))i,j≤Ndx1 . . . dxN = (N − k)! det(KN(xi, xj))i,j≤k

and

Rk,N(x1, . . . xk) =
N !

(N − k)!

∫
ρN(x1, . . . xN)dxk+1 . . . dxN

=
1

(N − k)!

∫
det(KN(xi, xj))i,j≤Ndxk+1 . . . dxN

= det(KN(xi, xj))i,j≤k

This proves (4.6) and (4.7). It remains to determine the polynomials ql. Let
hl the Hermite polynomial of degree l defined by:

hl(x) = (−1)lex
2

(
d

dx

)l
(e−x

2

).

These polynomials (see [S]) are orthogonal with respect to e−x
2
dx,
∫
R h

2
l (x)e−x

2
dx =

2ll!
√
π and the coefficient of xl in hl is 2l. Then, it is easy to see that ql given

by (4.8) are orthonormal with respect to exp(−N
2
x2)dx. �
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Corollary 4.2 Let µ̄HN
(dx) = E[µHN

(dx)] where µHN
is the spectral distri-

bution of GUE(N , 1
N

), then µ̄HN
(dx) is absolutely continuous with respect to

Lebesgue measure with density fN given by:

fN(x) =
1

N
RN,1(x, x) =

1

N
KN(x, x), x ∈ R.

fN is called the density of state.

4.3 The local regime

Let us denote, for I a Borel set of R, νN(I) = #{i ≤ N ;λi ∈ I} = NµHN
(I)

where λi are the eigenvalues of GUE(N , 1
N

). From Wigner’s theorem, as
N −→∞, νN(I) ∼ N

∫
I
fsc(x)dx) a.s. where fsc is the density of the semi-

circular distribution µsc. The spacing between eigenvalues is of order 1/N .
In the local regime, we consider an interval IN whose size tends to 0 as
N −→∞. Two cases have to be considered.

a) Inside the bulk: Take IN = [u − εN , u + εN ] with u such that
fsc(u) > 0 that is u ∈]− 2, 2[. Then, νN(IN) has the order of a constant for
εN ∼ 1

N
. This suggest to introduce new random variables (renormalisation)

li by

λi = u+
li

Nfsc(u)
, i = 1, . . . N.

The mean spacing between the rescaled eigenvalues li is 1. Straightforward
computations give:

Lemma 4.2 The correlation functions Rbulk of the distribution of (l1, . . . , lN)
are given in terms of the correlation functions of the (λi) by

Rbulk
N,k (y1, . . . , yk) =

1

(Nfsc(u))k
RN,k(u+

y1

Nfsc(u)
, . . . , u+

yk
Nfsc(u)

). (4.9)

We shall see in the next subsection the asymptotic of the correlation functions
Rbulk (or the kernel KN).

b) At the edge of the spectrum: u = 2 (or -2). fsc(u) = 0.

νN([2− εN , 2]) =
N

2π

∫ 2

2−ε

√
4− x2dx =

N

2π

∫ ε

0

√
4y − y2dy ∼ CNε3/2.
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So the normalisation at the edge is ε = 1
N2/3 and we define the rescaled

correlation functions by:

Redge
N,k (y1, . . . , yk) =

1

(N2/3)k
RN,k(2 +

y1

N2/3
, . . . , 2 +

yk
N2/3

). (4.10)

From (4.5) and (4.10),

P[N2/3(λmax−2) ≤ a] =
N∑
k=0

(−1)k

k!

∫
[a,∞[k

Redge
N,k (x1, · · ·xk)dx1 · · · dxk. (4.11)

where λmax is the maximal eigenvalue of the GUE.
The asymptotic of Redge will be given in the next section.

4.4 Limit kernel

The asymptotic of the correlation functions relies on asymptotic formulas for
the orthonormal polynomials ql for l ∼ N . We have the following:

Proposition 4.3 (Plancherel - Rotach formulas, [S])
Let (hn)n denote the Hermite polynomials.

1) If x =
√

2n+ 1 cos(Φ) with ε ≤ Φ ≤ π − ε,

exp(−x2/2)hn(x) = bn(sin(Φ))−1/2{sin[(
n

2
+

1

4
)(sin(2Φ)−2Φ)+3π/4]+O(

1

n
)}

(4.12)
where bn = 2n/2+1/4(n!)1/2(πn)−1/4.

2) If x =
√

2n+ 1 + 2−1/2n−1/6t, t bounded in C,

exp(−x2/2)hn(x) = π1/42n/2+1/4(n!)1/2(n)−1/12{Ai(t) +O(
1

n
)}

where Ai is Airy’s function, that is the solution of the differential equation

y′′ = xy with y(x) ∼x→+∞
1

2
√
π
x−1/4 exp(−2

3
x3/2).

From these formulas, one can show:

Theorem 4.1

lim
N→∞

Rbulk
n,k (y1, . . . , yk) = det(Kbulk(yi, yj))i,j≤k (4.13)
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where

Kbulk(x, y) =
sin(π(x− y))

π(x− y)
(4.14)

lim
N→∞

Redge
n,k (y1, . . . , yk) = det(Kedge(yi, yj))i,j≤k (4.15)

where

Kedge(x, y) =
Ai(x)Ai′(y)− Ai′(x)Ai(y)

(x− y)
(4.16)

Sketch of Proof of (4.13): From (4.9), (4.6), we may find the limit of

1

Nfsc(u)
KN(u+

s

Nfsc(u)
, u+

t

Nfsc(u)
).

We express the kernel KN given by (4.7) thanks to Cristoffel-Darboux for-
mula (see Appendix)

KN(X, Y ) =
kN−1

kN

qN(X)qN−1(Y )− qN(Y )qN−1(X)

X − Y
exp(−N

4
(X2 + Y 2))

KN(X, Y ) =
1

2N(N − 1)!
√
π

hN(
√
N/2 X)hN−1(

√
N/2 Y )− hN(

√
N/2 Y )hN−1(

√
N/2 X)

X − Y

× exp(−N
4

(X2 + Y 2))

with kN the highest coefficient in qN . Then, set X = u + s
Nfsc(u)

, Y =

u+ t
Nfsc(u)

, u = 2 cos(Φ). Then, fsc(u) = sin(Φ)
π

and

x =
√
N/2X =

√
2N(cos(Φ) +

πs

2N sin(Φ)
).

In order to use Plancherel-Rotach formulas, we express x as

x =
√

2N + 1 cos(ΦN).

A development gives

ΦN = Φ +
a

2N
+O(

1

N2
)

with a = 1
2 tan(Φ)

− πs
sin2(Φ)

. Then,

sin(2ΦN)− 2ΦN = (sin(2Φ)− 2Φ) +
a

N
(cos(2Φ)− 1) +O(

1

N2
)
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and
(sin(ΦN))−1/2 = (sin(Φ))−1/2(1 +O(1/N)).

Formula (4.12) gives:

exp(−x2/2)hN(x) = bN(sin(Φ))−1/2{sin[(
N

2
+

1

4
)(sin(2Φ)−2Φ)+

a

2
(cos(2Φ)−1)+

3π

4
]+O(1/N)}

We make the same transformations for e−x
2/2hN−1(x), e−y

2/2hN(y), e−y
2/2hN−1(y)

giving φ′N , ΨN and Ψ′N associated respectively to:

a′ = − 1

2 tan(Φ)
− πs

sin2(Φ)
, b =

1

2 tan(Φ)
− πt

sin2(Φ)
, b′ = − 1

2 tan(Φ)
− πt

sin2(Φ)
.

Then, we replace in the product hN(x)hN−1(y) the product of two sinus
by a trigonometric formula and then in the difference, we obtain a linear
combination of cosinus, The difference of two of them cancels using that
a′ + b = a + b′. Then, we use again a trigonometric formula. After some
computations, the kernel Kbulk appears. The Airy kernel appears, using the
second formula of Plancherel-Rotach.

Corollary 4.3 (Fluctuations of λmax)
The fluctuations of the largest eigenvalue of the GUE around 2 are given by:

P(N2/3(λmax − 2) ≤ x) = F2(x)

where F2 is called the Tracy-Widom distribution and is given by

F2(x) =
∞∑
k=0

(−1)k

k!

∫
]x,∞[k

det(Kedge(yi, yj))1≤i,j≤kd
ky.

F2 can be written F2(x) = det(I −K)L2(x,∞) where K is the integral operator
on L2 with kernel Kedge(x, y) and the det is the Fredholm determinant.

4.5 Comments

1. The computation of the correlation functions which have a determi-
nantal form is specific to the unitary case and do not hold for the GOE
case.

2. We refer to [D], [Me] for others computations involving correlation func-
tions such as the spacing distribution.
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3. The Tracy-Widom distribution can also be expressed as

F2(x) = exp

(
−
∫ ∞
x

(y − x)q2(y)dy)

)
where q′′(x) = xq(x) + q3(x) with q(x) = Ai(x)(1 + o(1)) as x−→∞.
The function q is called the solution of Painlevé II equation (see [TW]).

4. One of the important ideas of the theory is that of universality. This
idea, in fact a conjecture, is that the statistical properties of the eigen-
values in the local scale do not depend assymptotically on the ensemble,
that is the sine kernel (4.14) is ”universal” and appears in other models
of Hermitian random matrices.
This has been shown for

- a class of Hermitian Wigner matrices: Soshnikov [S] (for the edge),
Johansson [J]. See also the recent preprints on ArXiv (Erdos, Ramirez,
Schlein, Yau and Tao, Vu).

- unitary invariant ensemble of the form

PN(dM) = CN exp(−N Tr(V (M)))dM

for a weight V satisfying some assumptions. See [DKMVZ], [PS]. Note
that the GUE corresponds to the quadratic weight V (x) = 1

2
x2. For

example, for the Wishart ensemble (associated to the Laguerre polyno-
mials), we have the same asymptotic kernel as in the GUE, while the
density of state is not universal (semicircular for GUE and Marchenko-
Pastur distribution for Wishart). The main difficulty for general V is
to derive the asymptotics of orthogonal polynomials. This can be done
using Riemann-Hilbert techniques (see [D]).

5 Appendix

5.1 Orthogonal polynomials (see [D], [S])

Let w(x) a positive function on R such that
∫
R |x|

mw(x)dx <∞ for all m ≥ 0.
On the space of real polynomials P [X], we consider the scalar product

(P |Q) =

∫
R
P (x)Q(x)w(x)dx.
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Then the orthogonalisation procedure of Schmidt enables to construct of
sequence of orthogonal polynomials (pl): pl is of degree l and∫

R
pm(x)pn(x)w(x)dx = 0 if m 6= n.

We denote by al the coefficient of xl in pl(x) and dl =
∫
R pl(x)2w(x)dx.

Example: If w(x) = exp(−x2), the Hermite polynomials hl are orthogonal
with al = 2l and dl = 2ll!

√
π.

Christoffel-Darboux formula: We consider a family of orthonormal poly-
nomials (pl) (dl = 1) for the weight w. We denote by Kn the kernel defined
by:

Kn(x, y) =
n−1∑
l=0

pl(x)pl(y).

Kn is the kernel associated to the orthogonal projection in the space of poly-
nomials of degree less than n− 1. This kernel has a simple expression based
upon a three terms recurrence relation between the (pl):

xpn(x) = αnpn+1(x) + βnpn(x) + αn−1pn−1(x)

for some coefficients αn = an
an+1

and βn ( depending on an and the coefficient

bn of xn−1 in pn).
From this relation, one obtains:

Kn(x, y) = αn−1
pn(x)pn−1(y)− pn(y)pn−1(x)

x− y
(5.1)

For the orthonormal polynomials ql defined in (4.8),

al(= aN,l) =

(
N

2π

)1/4
(√

N

l!

)l

and αN−1 = 1.

5.2 Fredholm determinant

Let K(x, y) a bounded measurable kernel on a space (X,µ) where µ is a finite
measure on X. The Fredholm determinant of K is defined by

D(λ) = det(I−λK) := 1+
∞∑
k=1

(−λ)k

k!

∫
Xk

det(K(xi, xj))1≤i,j≤k µ(dx1) . . . µ(dxk).
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The serie converges for all λ.
This can be extended to a space with a σ finite measure and a kernel of trace
class (see [Si]).
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