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Abstract. We give another proof of the generic semisimplicity of the big

quantum cohomology of the symplectic isotropic Grassmannians IG(2, 2n).

Contents

Introduction 1
1. Conventions and notation for quantum cohomology 2
2. Geometry of IG(2, 2n) 4
3. Small quantum cohomology of IG(2, 2n) 6
4. Four-point Gromov-Witten invariants 8
5. Big quantum cohomology of IG(2, 2n) 9
References 12

Introduction

In papers [6, 12] jointly with Sergey Galkin we have shown that the big quan-
tum cohomology of the symplectic isotropic Grassmannians IG(2, 2n) is generically
semisimple. In [6] only the case of IG(2, 6) is considered and the proof is computer-
assisted. The proof in [12] is not computer-assisted and works for all IG(2, 2n), but
it needs many lengthy computations. The purpose of this paper is to give a pure
thought argument which works uniformly for all IG(2, 2n), is conceptually different
from the ones in loc.cit., and might be generalizable to all IG(m, 2n).

The strategy of our proof is the following. We view the big quantum cohomology
as a deformation family of zero-dimensional schemes over a base (see Sec. 1.2). The
special fibre of this family is (the spectrum of) the small quantum cohomology.
Generic semisimplicity of the big quantum cohomology translates into the smooth-
ness of the generic fibre1 of the deformation family. Similarly, generic semisimplicity
of the small quantum cohomology translates into the smoothness of the special fi-
bre. So it may very well happen that the generic fibre is smooth, whereas the
special one is not. This is exactly what happens in the case of IG(2, 2n). In fact,
we prove that for IG(2, 2n) the total space of the deformation family (the spectrum
of the big quantum cohomology) is a regular scheme over a field of characteristic
zero. Therefore, by a version of ”generic smoothness” in characteristic zero, one
concludes that the generic fibre is smooth. Thus, we obtain the generic semisim-
plicity of the big quantum cohomology,2 whereas the small quantum cohomology
of IG(2, 2n) is known to be non-semisimple by [2, 3].

1By ”generic fiber” we always mean ”fiber over the generic point of the base scheme”.
2This argument reminded us of Problem 2.8 from [8].
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Our original motivation to look at this problem comes from Dubrovin’s conjec-
ture. We will not elaborate on this here and rather refer to [5, 6, 8] and references
therein. Let us just mention that the Grassmannians IG(2, 2n) are the simplest ex-
plicit examples available in the literature where one has to work with big quantum
cohomology to formulate Dubrovin’s conjecture.
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stage of this project.

1. Conventions and notation for quantum cohomology

Here we briefly recall the definition of the quantum cohomology ring for a smooth
projective variety X. To simplify the exposition and avoid introducing unnecessary
notation we impose from the beginning the following conditions on X: it is a Fano
variety of Picard rank 1 and Hodd(X,Q) = 0. For a thorough introduction we refer
to [11].

1.1. Definition. Let us fix a graded basis ∆0, . . . ,∆s in H∗(X,Q) and dual linear
coordinates t0, . . . , ts. It is customary to choose ∆0 = 1. Let R be the ring of
formal power series Q[[q]], k its field of fractions, and K an algebraic closure of k.

The genus zero Gromov-Witten potential of X is an element Φ ∈ R[[t0, . . . , ts]]
defined by the formula

Φ =
∑

(i0,...,is)

〈∆⊗i00 , . . . ,∆⊗iss 〉
ti00 . . . tiss
i0! . . . is!

, (1.1)

where 〈∆⊗i00 , . . . ,∆⊗iss 〉 :=
∑∞
d=0〈∆

⊗i0
0 , . . . ,∆⊗iss 〉dqd, and the rational numbers

〈∆⊗i00 , . . . ,∆⊗iss 〉d are Gromov-Witten invariants of X of degree d.
Using (1.1) one defines the quantum cohomology ring of X. Namely, on the basis

elements we put

∆a ?∆b =
∑
c

Φabc∆
c, (1.2)

where Φabc = ∂3Φ
∂ta∂tb∂tc

, and ∆0, . . . ,∆s is the basis dual to ∆0, . . . ,∆s with respect

to the Poincaré pairing. Expression (1.2) is naturally interpreted as an element of
H∗(X,Q)⊗Q K[[t0, . . . , ts]].

It is well known that (1.2) makes H∗(X,Q) ⊗Q K[[t0, . . . , ts]] into a commuta-
tive, associative, graded K[[t0, . . . , ts]]-algebra with the identity element ∆0. We
will denote this algebra BQH(X). For convenience we recall the definition of the
grading:

deg(∆i) = |∆i|, deg(q) = index (X), deg(ti) = 1− |∆i|,

where |∆i| is the Chow degree of ∆i and index (X) is the largest integer n such
that −KX = nH for some ample divisor H on X.
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The algebra BQH(X) is called the big quantum cohomology algebra of X to
distinguish it from a simpler object called the small quantum cohomology algebra
which is the quotient of BQH(X) with respect to the ideal (t0, . . . , ts). We will
denote the latter QH(X) and use ?0 instead of ? for the product in this algebra.
It is a finite dimensional K-algebra. Equivalently one can say that QH(X) =
H∗(X,Q) ⊗Q K = H∗(X,K) as a vector space, and the K-algebra structure is
defined by putting ∆a ?0 ∆b =

∑
c〈∆a,∆b,∆c〉∆c.

1.1.1. Remark. We are using a somewhat non-standard notation BQH(X) for the
big quantum cohomology and QH(X) for the small quantum cohomology to stress
the difference between the two. Note that this notation is different from the one
used in [6] and is closer to the notation of [12].

1.1.2. Remark. The above definitions look slightly different from the ones given
in [11]. The differences are of two types. The first one is that QH(X) and BQH(X)
are in fact defined already over the ring R and not only over K. We pass to K from
the beginning, since in this paper we are only interested in generic semisimplicity
of quantum cohomology. The second difference is that in some papers on quantum
cohomology one unifies the coordinate q with those coordinates ti which are dual
to H2(X,Q), but the resulting structures are equivalent.

1.2. Deformation picture. The small quantum cohomology, if considered over
the ring R (cf. Remark 1.1.2), is a deformation of the ordinary cohomology algebra,
i.e. if you put q = 0, then the quantum product becomes the ordinary cup-product.
Similarly, the big quantum cohomology is an even bigger deformation family of
algebras. Since we work not over R but over K, we lose the point of classical limit
but still retain the fact that BQH(X) is a deformation family of algebras with the
special fiber being QH(X).

Throughout this paper we view Spec(BQH(X)) as a deformation family of zero-
dimensional schemes over Spec(K[[t0, . . . , ts]]). In the base of the deformation we
consider the following two points: the origin (the closed point given by the maximal
ideal (t0, . . . , tn)) and the generic point η. The fiber of this family over the origin is
the spectrum of the small quantum cohomology Spec(QH(X)). The fiber over the
generic point will be denoted by Spec(BQH(X)η). It is convenient to summarize
this setup in the diagram

Spec(QH(X))

��

// Spec(BQH(X))

π

��

Spec(BQH(X)η)oo

πη

��
Spec(K) // Spec(K[[t0, . . . , ts]]) ηoo

(1.3)

where both squares are Cartesian.
By construction BQH(X) is a free module of finite rank over K[[t0, . . . , ts]].

Therefore, it is a noetherian semi-local K-algebra which is flat and finite over
K[[t0, . . . , ts]]. Note that neither K[[t0, . . . , ts]] nor BQH(X) are finitely generated
over the ground field K. Therefore, some extra care is required in the standard com-
mutative algebra (or algebraic geometry) constructions. For example, the notion
of smoothness is one of such concepts.
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1.3. Semisimplicity. Let A be a finite dimensional algebra over a field F of char-
acteristic zero. It is called semisimple if it is a product of fields. Equivalently,
the algebra A is semisimple iff the scheme Spec(A) is reduced. Another equivalent
condition is to require the morphism Spec(A)→ Spec(F ) to be smooth.

Definition: one says that BQH(X) is generically semisimple iff BQH(X)η is a
semisimple algebra.

As already described in the introduction, we will prove the generic semisimplicity
of BQH(IG(2, 2n)) by a version of generic smoothness in characteristic zero.

2. Geometry of IG(2, 2n)

Let V be a complex vector space endowed with a symplectic form ω. In this case
the dimension of V has to be even and we denote it by 2n. For any 1 ≤ m ≤ n there
exists an algebraic variety IGω(m,V ) that parametrizes m-dimensional isotropic
subspaces of V . For m = 2, and this is the case we are considering in this paper, it
has the following explicit description. Consider the ordinary Grassmannian G(2, V )
with its Plücker embedding into P(Λ2V ). The symplectic form ω defines a hyper-
plane Hω ⊂ P(Λ2V ) and the intersection of G(2, V ) with Hω is exactly IGω(2, V ).
Thus, we have inclusions

IGω(2, V ) ⊂ G(2, V ) ⊂ P(Λ2V ). (2.1)

For different ω’s the varieties IGω(m,V ) are isomorphic, therefore we will often
simply write IG(m, 2n).

2.1. Special cohomology classes. As for ordinary Grassmannians, one considers
the short exact sequence of vector bundles on X = IGω(2, V )

0→ U→ V→ V/U→ 0, (2.2)

where V is the trivial vector bundle with fiber V , U is the subbundle of isotropic
subspaces, and V/U is the quotient bundle. Usually one refers to U and V/U as
tautological subbundle and tautological quotient bundle respectively. Apart from
(2.2) one can also consider the short exact sequence

0→ U⊥/U→ V/U→ V/U⊥ → 0. (2.3)

By taking Chern classes of vector bundles in these sequences we obtain two sets of
cohomology classes which generate the cohomology ring:

i) Special Schubert classes. These are the Chern classes of V/U. They are indexed
by integers k ∈ [0, 2n− 2] and can be explicitly described as follows. Let

Z(E2n−k−1) = {V2 ∈ X | dim(V2 ∩ E2n−k−1) ≥ 1}.

Then σk = [Z(E2n−k−1)] ∈ H2k(X,Z). In the above, E2n−k−1 is a subspace of
dimension 2n− k− 1 such that the rank of ω|E2n−k−1

is minimal. Note that σ0 = 1
is the fundamental class of X.

ii) These are the Chern classes of U and U⊥/U. Vector bundle U is of rank 2, so
it only has two non-vanishing Chern classes ai = ci(U) for i = 1, 2. Vector bundle
U⊥/U is self-dual of rank 2n − 4, therefore it has only n − 2 non-vanishing Chern
classes bi = c2i(U

⊥/U) for i ∈ [1, n− 2].
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2.2. Cohomology ring of IG(2, 2n). The cohomology ring of X can be neatly
described in terms of generators and relations. We will give two presentations
using the two sets of special cohomology classes defined above.

Proposition 2.1. The cohomology ring H∗(X,Q) is isomorphic to the quotient of
the ring Q[σ1, · · · , σ2n−2] by the ideal generated by the elements

det(σ1+j−i)1≤i,j≤r, with r ∈ [3, 2n− 2] (2.4)

and the two elements

σ2
n−1 + 2

n−1∑
i=1

(−1)iσn−1+iσn−1−i and σ2
n + 2

n−2∑
i=1

(−1)iσn+iσn−i. (2.5)

The dimension of H∗(X,Q) is equal to 22
(
n
2

)
= 2n(n− 1).

Proof. This is the statement of [1, Theorem 1.2]. �

Proposition 2.2. The cohomology ring H∗(X,Q) is isomorphic to the quotient of
the ring Q[a1, a2, b1, · · · , bn−2] by the ideal generated by

(1− (2a2 − a2
1)x2 + a2

2x
4)(1 + b1x

2 + · · ·+ bn−2x
2n−4) = 1 (2.6)

The last equality is viewed as an equality of polynomials in the variable x and gives
a concise way to write a system of equations in the variables ai, bi.

Proof. This result is well know to specialists but we include a short proof for the
convenience of the reader.

Let us start by checking that (2.6) holds in the cohomology ring. Define P (x) =
1 + a1x + a2x

2 and Q(x) = 1 + b1x
2 + · · · + bn−2x

2n−4 and rewrite (2.6) as
P (x)P (−x)Q(x) = 1. We interpret the polynomial P (x) as the total Chern class
of U and Q(x) as the total Chern class of U⊥/U. Now by using basic properties of
Chern classes and short exact sequences (2.2) and (2.3) it is easy to see that the
above relation does hold.

The above discussion shows that we have a natural homomorphism of Q-algebras

ψ : Q[a1, a2, b1, · · · , bn−2]/(P (x)P (−x)Q(x)− 1)→ H∗(X,Q) (2.7)

sending ai’s to ai’s and bi’s to bi’s. To prove the proposition it is enough to establish
two facts: i) σi’s can be expressed in terms of ai’s and bi’s, ii) the dimensions of
both algebras in (2.7) are equal. To prove the first fact one can use again simple
properties of Chern classes. The proof of the second fact is given below.

First, we need to show that Q[a1, a2, b1, · · · , bn−2]/(P (x)P (−x)Q(x)−1) is finite
dimensional. This can be done similarly to the finite-dimensionality part of the
proof of [1, Theorem 1.2]: essentially it is an application of [1, Lemma 1.2]. Second,
we need to compute the dimension of this algebra. For this we can proceed similarly
to the proof of [1, Lemma 1.1], which is based on [13], and get the desired 2n(2n−1).

�
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2.3. Lines on IG(2, 2n). Here we recall the description of lines on X (see [10] for
example). Since we have an inclusion X ⊂ G(2, 2n), a line on X is also a line on
the ordinary Grassmannian G(2, 2n). In particular it is given by a pair (W1,W3) of
nested subspaces of dimensions 1 and 3 respectively. The corresponding line being
the set

`(W1,W3) = {V2 ∈ X | W1 ⊂ V2 ⊂W3}.

In X, there are two different types of lines corresponding to two Sp2n-orbits in the
variety Y of all lines on X:

• If W3 is not isotropic, then W1 is the kernel of the symplectic form ω on
W3, therefore W1 is determined by W3. We shall denote by `(W3) a line of
this type. The set of these lines is the open Sp2n-orbit in Y which we will

denote by Y̊ .
• If W3 is isotropic, then W1 is any one-dimensional subspace in W3. This is

the closed Sp2n-orbit in Y .

3. Small quantum cohomology of IG(2, 2n)

3.1. Two presentations. As was already mentioned in Section 2.2, the ordinary
cohomology ring of the Grassmannian IG(2, 2n) is generated by the special Schubert
classes σ1, . . . , σ2n−2 with relations (2.4) and (2.5). Since deg(q) = 2n−1, the only
relation that needs to be modified is the second equation in (2.5). Moreover, up
to a constant factor, this modification is unique for degree reasons. The complete
answer for arbitrary Grassmannians IG(m, 2n) was given in [1, Theorem 1.5] which
we reproduce here in the special case of m = 2.

Theorem 3.1 (Buch-Kresch-Tamvakis). The small quantum cohomology ring QH(X)
is isomorphic to the quotient of the ring K[σ1, · · · , σ2n−2] by the ideal generated by
the elements

det(σ1+j−i)1≤i,j≤r, with r ∈ [3, 2n− 2]

and the two elements

σ2
n−1 + 2

n−1∑
i=1

(−1)iσn−1+iσn−1−i and σ2
n + 2

n−2∑
i=1

(−1)iσn+iσn−i + (−1)n+1qσ1.

Combining the above theorem with Proposition 2.2 we arrive at the following
statement.

Corollary 3.2. The small quantum cohomology ring QH(X) is isomorphic to the
quotient of the ring K[a1, a2, b1, · · · , bn−2] by the ideal generated by

(1− (2a2 − a1)x2 + a2
2x

4)(1 + b1x
2 + · · ·+ bn−2x

2n−4) = 1 + qa1x
2n. (3.1)

3.2. Structure of QH(X). In this paragraph we will study the decomposition of
the K-algebra QH(X) into the direct product, or, equivalently, the decomposition
of the K-scheme Spec(QH(X)) into connected components.

We will use the presentation of QH(X) described in Corollary 3.2. Thus, the
K-scheme Spec(QH(X)) is given as a closed subscheme of the affine space An =
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Spec(K[a1, a2, b1, . . . , bn−2]) defined by the equations

2a2 − a2
1 + b1 = 0

a2
2 + b1(2a2 − a2

1) + b2 = 0

b1a
2
2 + b2(2a2 − a2

1) + b3 = 0

. . . (3.2)

bi−1a
2
2 + bi(2a2 − a2

1) + bi+1 = 0

. . .

bn−4a
2
2 + bn−3(2a2 − a2

1) + bn−2 = 0

bn−3a
2
2 + bn−2(2a2 − a2

1) = 0

bn−2a
2
2 − qa1 = 0.

It is clear that the origin of An is a solution of this system. Moreover, this solution
corresponds to a fat point of Spec(QH(X)). Indeed, it is easy to see that the Zariski
tangent space of (3.2) at the origin is one-dimensional. Thus, the origin is a fat
point of Spec(QH(X)). Let A be the corresponding factor of QH(X). Thus, we
have the direct product decomposition

QH(X) = A×B, (3.3)

where B corresponds to components of Spec(QH(X)) supported outside of the
origin.

To determine the structure of A we look for solutions of (3.2) in the ring
K[ε]/εn−1 that extend the zero solution. It is easy to see that putting a1 = 0,
letting a2 be an arbitrary element of K[ε]/εn−1 of the form O(ε), and recover-
ing bi’s by elimination process gives rise to a solution of (3.2) with the property
bi = O(εi). Another way to phrase it is to say that we have obtained a surjective
algebra homomorphism

A→ K[ε]/εn−1. (3.4)

Thus, the dimension of A is at least n − 1. Moreover, below we will see that this
map is an isomorphism.

Now let us examine the structure of B, i.e. we need to study solutions of (3.2)
different from the origin3. It is convenient to rewrite (3.1) as

(z4 − (2a2 − a1)z2 + a2
2)(z2n−4 + b1z

2n−6 + · · ·+ bn−2) = z2n − a1,

where we set q = −1 for convenience. By making the substitution a1 = z1 +z2, a2 =
z1z2, and putting Q(z) = z2n−4 + b1z

2n−6 + · · ·+ bn−2 we arrive at

(z2 − z2
1)(z2 − z2

2)Q(z) = z2n − (z1 + z2). (3.5)

In geometric terms this manipulation corresponds to pulling back our system (3.2)
with respect to the morphism

Spec(K[z1, z2, b1, . . . , bn−2])→ Spec(K[a1, a2, b1, . . . , bn−2])

3Note that from (3.2) it is clear that variables bi can be eliminated, i.e. they are determined
by ai’s.
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defined by

a1 7→ z1 + z2, a2 7→ z1z2, bi 7→ bi.

It is a double cover unramified outside of the locus z1 = z2.
Let us count solutions of (3.5) for which z1 6= z2 and both of them are non-zero.

This reduces to counting pairs z1, z2 satisfying

z2n
1 = z1 + z2

z2n
2 = z1 + z2.

Eliminating z2 using the first equation we obtain that z1 must be a solution of

(z2n
1 − z1)2n = z2n

1 .

Now it is straightforward to count that there are 2(n− 1)(2n− 1) distinct pairs of
numbers (z1, z2) satisfying our conditions that we obtain in this way.

In terms of the original system (3.2) the above computation means that there
are at least (n − 1)(2n − 1) distinct solutions outside of the origin. Note that we
have divided the number of solutions by 2, since the initial count was on the double
cover. In other words the dimension of B is at least (n− 1)(2n− 1).

Up to now we have shown that dimK(A) ≥ n− 1 and dimK(B) ≥ (n− 1)(2n−
1). Since dimK(QH(X)) = 2n(n − 1), this implies that dimK(A) = n − 1 and
dimK(B) = (n− 1)(2n− 1). Hence, (3.4) is an isomorphism.

The above discussion can be summarized in the following statement.

Proposition 3.3. The scheme Spec(QH(X)) decomposes into the disjoint union
of (2n− 1)(n− 1) reduced points Spec(K) and one fat point Spec(K[ε]/εn−1).

4. Four-point Gromov-Witten invariants

In Section 5 we will study the deformation of QH(X) in the big quantum co-
homology BQH(X) in a very special direction, namely in the direction σ2. In
particular we shall need to compute the following invariants:

I1(pt, σ2, σi, σj).

Note first that for dimension reasons these invariants vanish except if we have
i + j = 2n − 2. We shall also use the following result which simply follows from
Kleiman-Bertini’s Theorem [9] (see also [4, Lemma 14]).

Lemma 4.1. The Gromov-Witten invariant I1(pt, σ2, σi, σj) is the number of lines
meeting general representatives of the cohomology classes pt, σ2, σi and σj. Fur-
thermore, given any open dense subset of the set of lines, the above lines can be
chosen in this open subset.

As a consequence, we may only consider lines in Y̊ , the open orbit of the variety
Y of lines on X in order to compute the above invariants. For Z ⊂ X a subvariety
in X, we define

Y̊ (Z) = {` ∈ Y̊ | ` ∩ Z 6= ∅}.

Lemma 4.2. We have the following equalities

Y̊ ({E2}) = {`(W3) ∈ Y̊ | E2 ⊂W3} ' P(C2n/E2) \ P(E⊥2 /E2)

Y̊ (Z(E2n−k−1)) = {`(W3) ∈ Y̊ | dim(W3 ∩ E2n−k−1) ≥ 1}.
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For E2 and E2n−k−1 in general position, their intersection is isomorphic to

P(E2 + E2n−k−1/E2) \ P((E2 + E2n−k−1) ∩ E⊥2 /E2) ⊂ P(C2n/E2) \ P(E⊥2 /E2).

Proof. The first equality is clear. For the isomorphism we just map W3 to W3/E2

and remark that W3 is non isotropic if and only if W3/E2 is not contained in
E⊥2 /E2.

The second equality is also easy. Let V2 ∈ `(W3)∩Z(E2n−k−1). Then dim(V2 ∩
E2n−k−1) ≥ 1 and V2 ⊂W3. Conversely, for W3 satisfying dim(W3∩E2n−k−1) ≥ 1,
we can find a 2-dimensional isotropic subspace V2 ⊂ W3 meeting E2n−k−1 non
trivially.

For k = 0, we have E2 + E2n−k−1 = C2n (recall that E2 and E2n−k−1 are in

general position) thus Y̊ (Z(E2n−k−1)) = Y̊ and the result follows. For k ≥ 1, we
have E2 ∩E2n−k−1 = 0 (since they are in general position). This implies for W3 in
the intersection the inclusion W3 ⊂ E2 +E2n−k−1 thus W3/E2 ⊂ E2 +E2n−k−1/E2

proving the result. �

Corollary 4.3. We have I1(pt, σ2, σi, σj) = δi+j,2n−2.

Proof. We already explained that the invariant vanishes unless i + j = 2n − 2.
In that case, I1(pt, σ2, σi, σj) is the number of lines meeting {E2}, Z({E2n−3}),
Z({E2n−i−1}) and Z({E2n−j−1}) where the spaces Ek are in general position and
such that ω|Ek has minimal rank. The variety of such lines is the intersection in
P(C2n/E2) \ P(E⊥2 /E2) of the three linear spaces

P(E2 + E2n−3/E2), P(E2 + E2n−i−1/E2) and P(E2 + E2n−j−1/E2).

These linear spaces are in general position and of respective codimension 1, i − 1
and j − 1. These codimensions add up to the dimension of P(C2n/E2) thus the
linear spaces meet in exactly one point. �

5. Big quantum cohomology of IG(2, 2n)

In [6, 12] it is proved that the big quantum cohomology of IG(2, 2n) is generically
semisimple. In this section we will give an alternative proof of this result. This is
the main result of this article.

As before we let X = IG(2, 2n) and consider the deformation BQHτ (X) of the
small quantum cohomology QH(X) inside the big quantum cohomology BQH(X)
in the direction τ = σ2. Explicitly it means the following. For any cohomology
classes a, b ∈ H∗(X) the product is of the form

a ?τ b = a ?0 b+ t
∑
σ

∑
d≥1

qdId(a, b, σ, σ2)σ∨ +O(t2),

where a ?0 b is the small quantum product, σ runs over the basis of the cohomol-
ogy consisting of Schubert classes, σ∨ is the dual basis, and t is the deformation
parameter.

According to the dimension axiom for GW invariants Id(σi, σj , σ, σ2) vanishes
unless

i+ j + deg(σ) + 2 = (2n− 1)d+ 2(2n− 2).

From here one easily deduces that d = 1 is the only possibility unless i = j = 2n−2.
Therefore, applying Corollary 4.3, we have

σi ?τ σj = σi ?0 σj + δi+j,2n−2qt+O(t2) (5.1)
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for i+ j < 4n− 4.
Consider the following elements in BQHτ (X)

∆r = det(σ1+j−i)1≤i,j≤r for r ∈ [3, 2n− 2]

Σ2n−2 = σn−1 ?τ σn−1 + 2

n−1∑
i=1

(−1)iσn−1+i ?τ σn−1−i

Σ2n = σn ?τ σn + 2

n−2∑
i=1

(−1)iσn+i ?τ σn−i + (−1)n+1qσ1,

where all products are taken in BQHτ (X). Note that these are “the same” elements
as those defining relations in the presentation of QH(X) in Theorem 3.1. The lower
indices indicate the degree of the respective element in BQHτ (X). The variable t
can only appear together with a positive power of q so that qdt can only occur in
elements of degree at least deg(q) + deg(t) = 2n− 2.

Lemma 5.1. We have ∆r = O(t2) for all r ∈ [3, 2n−2], Σ2n−2 = (−1)nqt+O(t2)
and Σ2n = O(t2).

Proof. (i) Here we prove the statement about ∆r’s. From Theorem 3.1 we know
that ∆r = O(t2) for r ∈ [3, 2n − 3]. Thus, we only need to consider ∆2n−2.
Inductively developing the determinant with respect to the first column we have

∆2n−2 =

2n−2∑
s=1

(−1)s−1σs ?τ ∆2n−2−s = O(t2)− σ2n−4 ?τ ∆2 + σ2n−3 ?τ ∆1 − σ2n−2,

where we used the fact that ∆r = O(t2) for r ∈ [3, 2n− 3]. Thus, we need to prove
that

σ2n−4 ?τ σ2 − σ2n−4 ?τ σ1 ?τ σ1 + σ2n−3 ?τ σ1 − σ2n−2 (5.2)

is of the form O(t2). We will see this by reducing everything to products of special
Schubert classes. First, let us look at the term σ2n−4 ?τ σ1 ?τ σ1. By degree reasons
(or dimension axiom for GW invariants) we have

(σ2n−4 ?τ σ1) ?τ σ1 = (σ2n−3 + σ′2n−3) ?τ σ1, (5.3)

where σ′2n−3 is a Schubert class of degree 2n − 3 different from σ2n−3. Since by
(5.1) we have σ2n−3 ?τ σ1 = σ2n−3 ?0 σ1 + qt+O(t2), we only need to take care of
the term σ′2n−3 ?τ σ1. By degree reasons we have

σ′2n−3 ?τ σ1 = σ′2n−3 ?0 σ1 + I1(σ′2n−3, σ1,pt, σ2)qt+O(t2).

Applying the dimension axiom for GW invariants we see that the 4-point invariant
I1(σ′2n−3, σ1,pt, σ2) is equal to the 3-point invariant I1(σ′2n−3,pt, σ2). The latter
can be computed using results in [3] and we get I1(σ′2n−3,pt, σ2) = 1. Therefore,
we obtain

σ′2n−3 ?τ σ1 = σ′2n−3 ?0 σ1 + qt+O(t2). (5.4)

Plugging (5.3) and (5.4) into (5.2) and using that ∆2n−2 vanishes modulo t we get
the required statement.

(ii) To prove the statements about Σ2n−2 and Σ2n we only need to use (5.1) and
the fact that these elements vanish modulo t. �
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5.1. Structure of BQHτ (X). Recall from Section 3.2 that for QH(X) we have the
direct product decomposition

QH(X) = A×B = A×
∏
i∈I

Bi

where A = K[ε]/εn−1 each Bi is the ground field K. By Hensel’s lemma this
decomposition lifts to BQHτ (X) and we have

BQHτ (X) = A×
∏
i∈I

Bi (5.5)

where A and Bi are algebras over K[[t]].

By construction K[[t]]-algebra BQHτ (X) is a free module over K[[t]] of finite
rank equal to dimH∗(X). Therefore, A and Bi’s are also free K[[t]]-modules of
finite rank. Reducing modulo t one sees that the rank of A is n−1 and the ranks of
Bi’s are all equal to 1. Similarly we obtain that the natural algebra homomorphism
K[[t]]→ Bi is an isomorphism of K-algebras.

Proposition 5.2. The ring BQH(X) is regular.

Proof. Let us first prove that BQHτ (X) is a regular ring, which reduces to showing
that A is regular. For this we use the presentation of BQHτ (X) as the quotient
of (K[[t]])[σ1, · · · , σ2n−2] with respect to the ideal generated by the elements ∆r

with r ∈ [3, 2n − 2], Σ2n−2 and Σ2n. Computing the Jacobian of this system at
the origin one sees that it is of maximal possible rank 2n − 2. From here, using
Prop. 8.4A and Prop. 8.7 of [7], as usual, one obtains that dimK µ/µ

2 = 1, where
µ is the maximal ideal of A. Since the Krull dimension of A is also equal to one,
we obtain the regularity of A.

The regularity of BQH(X) can be obtained by using an identical argument with
the Jacobian. The only difference is the number of the deformation parameters.
Note that no additional GW invariants are necessary. �

Theorem 5.3. BQH(X) is generically semisimple.

Proof. This is a simple corollary of the above Proposition 5.2. Let us give a short
proof for completeness.

The coordinate ring of the generic fiber

BQH(X)η = BQH(X)⊗K[[t0,...,ts]] K((t0, . . . , ts))

is a localization of BQH(X). Therefore, it is also a regular ring, since BQH(X)
was regular. This implies that BQH(X)η is a product of finite field extensions of
K((t0, . . . , ts)) which was our definition of semisimplicity. �

Remark 5.4. We view the above theorem as a consequence of ”generic smoothness”
in characteristic zero. The reason it is not formulated this way lies in the fact that
both BQH(X) and K[[t0, . . . , ts]] have modules of Kähler differentials of infinite
rank. It might be possible to bypass this obstacle by working with a version of
Kähler differentials that uses the topology of these rings but we did not pursue this.
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