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1 Small oscillations in nonlinear hamiltonian PDEs

EXAMPLE: Consider the NLS equation:

(NLS) ut+i∆u−imu−ig(x, |u|2)u = 0, u = u(t, x), x ∈ Td = Rd/2πZd;

g – real analytic function. This equation can be written in the hamiltonian form:

ut = i∇H(u), H(u(x)) =
1

2

∫
Td

(
|∇u|2 +m|u|2 +G(x, |u(x)|2

)
dx ,

where G′y(x, y) = g(x, y) and∇H(u) is the variational derivative of the functional H

(i.e., its L2-gradient). I will regard a solution u(t, x) as a curve

t 7→ u(t) ∈ 〈 function space 〉

I wish to study global in time small solutions and analyse their linear stability. NOTE THAT

if d > 3, then even for small and smooth initial data it is unknown if a global solution exists.

A-priori, a solution u(t, x) exists only for a non-trivial finite time-interval.
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WHAT IS KNOWN about long-time behaviour of small solutions: i) sufficient conditions in

terms of the function g and the dimension d so that for a smooth initial data a solution

exists for all values of time. For example, for equation

ut + i∆u− i|u|2qu = 0, q ∈ N, x ∈ Td,

this is true if d ≤ 2 and q is any, or d = 3 and q ≤ 2.

In this case non-trivial UPPER bounds on the growth of the Sobolev norms of solutions as

t→∞ are obtained by J. Bourgain and others.

ii) For the cubic NLS equation ut + i∆u− i|u|2u = 0 in T2, Colliander -Keel - Staffilani

- Takaoka - Tao obtained LOWER bounds for growth of SOME solutions on long (not

infinite) time intervals.

iii) The heuristic theory of wave turbulence studies behaviour of small solutions for NLS

equations when t� 1 and the space-period is not 2π, but L, where L� 1.
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Naturally, to study small solutions, eq. (NLS) should be regarded as a perturbation of the

linear Schrödinger equation

(S) ut + i∆u− imu = 0, x ∈ Td .

Solutions for (S) may be written by the Fourier method:

u(t, x) =
∑
s∈Zd

use
iλsteis·x, λs = λs(m) = |s|2 +m.

This is a superposition of standing waves with integer wave-vectors s. The function

Zd 3 s 7→ λs is called the dispersion relation.

An important special case is given by superpositions of finitely-many standing waves:

LetA ⊂ Zd, |A| = n <∞. Consider a superposition of n standing waves with the

wave-vectors s ∈ A:

uA(t, x) =
∑
s∈A

use
iλs(m)teis·x, |A| = n <∞.
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I will callA the set of linearly excited modes. Solutions uA(t, x) with various finite setsA
are dense among all solutions of the linear equation and are time-quasiperiodic (QP).

In particular, ifA is a one-point set,A = {a}, then

u{a}(t, x) = uae
i(|a|2+m)teia·x

is a time-periodic solution. The periodic solutions and their perturbations are significantly

easier to study, but there are too few of them – periodic solutions are very exceptional.

In difference with finite dimension, no global approach to prove existence of time-periodic

solutions of Hamiltonian PDEs is known.

The goal of my talk is to show that small-amplitude QP solutions also are important for the

theory of non-linear equations, and that their role in that theory seriously depends on

whether d = 1 or d > 1.
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Consider again

uA(t, x) =
∑
s∈A

use
i(|s|2+m)teis·x ,

and denote

ρs := 1
2 |us(t)|

2 = const , s ∈ A .

The vector ρ = (ρs, s ∈ A) ⊂ Rn+ is the vector of actions of the solution uA. Clearly

uA(t) = uA(t; ρ) ∈ Tnρ,A = {
∑

use
is·x, 1

2 |us|
2 = ρs if s ∈ A; us = 0 otherwise} .

This set Tnρ,A is an n-torus in the function space. It is invariant for the linear Schrödinger

equation (S) and is filled in with its time - QP solutions uA(t). Abusing language, I will call

Tnρ,A a linear torus and uA(t) ∈ Tnρ,A – a linear solution.
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THE PROBLEM. Study how a small QP “linear” solution uA(t, x) =∑
s∈A use

iλs(m)teis·x, and the corresponding small invariant “linear” torus Tnρ,A are

perturbed in (NLS). That is, study if (NLS) has a time-quasiperiodic solution close to

uA(t, x) and an invariant n-torus, close to Tnρ,A.

There are two main difficulties here – the infinite-dimensionality and the resonances

between the frequencies {λs}.

For d = 1 this problem was resolved in

[SK, Pöschel] Ann. Math. 143 (1996). This was done in two steps:

STEP 1. Put the equation to a normal form in the vicinity of a “linear” torus Tnρ,A. – That

is, in the vicinity of that torus in a function space, choose a special system of coordinates,

depending on ρ, such that in the new coordinates the equation we study becomes easier.

STEP 2. After a proper scaling near Tnρ,A, the obtained normal form equation becomes a

small perturbation of a linear hamiltonian system, which depends on the vector-parameter

ρ in a non-degenerate way. Next apply to this perturbed equation a theory of perturbations

of parameter-depending linear hamiltonian systems (which has been developed before

that).
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In the 1d case, the proof in [SK, Pöschel] works for any finite setA. It allows to construct

many time-quasiperiodic solutions ũA(t; ρ) for the 1d (NLS). The closures of these

solutions in the function space are smooth “non-linear” tori T̃nρ,A, invariant for (NLS). For

d = 1 the obtained solutions ũA(t; ρ) always are linearly stable. Jointly they are

“asymptotically dense” near the origin of the phase space, and are well observed

numerically.

But for d > 1 the task turned out to be much more complicated since:

? at the Step 2 the required theorem for perturbations of space-multidimensional

parameter-depending linear equations is significantly more complicated than its 1d

analogy. – This is the analytic difficulty. It is serious, but – in a sense – technical.
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? But at Step 1 we arrive at a very serious algebraical difficulty. To explain it, consider the

cubic NLS ut + i∆u− imu− i|u|2u = 0, x ∈ Td, d ≥ 2 .

The nonlinear part of its Hamiltonian, written in Fourier, is

H4 = 1
4

∑
s1+s2=s3+s4

us1us2 ūs3 ūs4 .

The normal form transformation delets all terms of H4 except the resonant terms:

(∗) us1us2 ūs3 ūs4 such that s1 + s2 = s3 + s4 and λs1 + λs2 = λs3 + λs4 .

In the 1d-case there are just a few terms (∗). But if d ≥ 2, there are many of them since

there are plenty of resonances between the frequencies λs = |s|2 +m, s ∈ Zd. Now

too many nonlinear terms remain in the normal form, and it is possible to analyse it only if

n ≤ 2. That is, to treat perturbations only of very special solutions uA(t)). This fact was

first discussed by Bourgain for d = 2. For its detailed analysis for any d see

Cl. Procesi & M. Procesi, A KAM–algorithm for the resonant nonlinear Schrödinger

equation. Adv. Math. 272 (2015), 399-470.

For the moment there is no hope to handle the algebraical difficulty. We encounter the

same problems when study other space-multidimensional H PDEs.
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I will present a way to overcome the two difficulties, suggested in our work [EGK].

The idea to handle the crucial algebraical difficulty is the following. Consider any HPDE

with cubic nonlinearity (e.g. – the cubic NLS). The resonant part its Hamiltonian, which

stays in the NF, is formed by the resonant monomials, corresponding to the indices

s1, s2, s3, s4 such that

(∗) s1 + s2 = s3 + s4 and λs1 + λs2 − λs3 − λs4 = 0 .

Let us assume that the H PDE involves a mass-parameter m. Then λs = λs(m) and

λs1 + λs2 − λs3 − λs4 is an analytic function of m. If the dispersion relation s 7→ λs is

“non-degenerate”, this function of m vanishes identically only for very special quadruples

s1, s2, s3, s4. Then for each “regular” (i.e. “not very special”) quadruple there is a

zero-measure set M(s1, s2, s3, s4) such that λs1 + λs2 − λs3 − λs4 6= 0 for all m

outside this set. So for m outside the zero-measure set M = ∪M(s1, s2, s3, s4) the

relation (∗) may hold only for very special quadruples s1, s2, s3, s4. Then the normal

form contains just “a few” terms and may be analysed. Accordingly, the H PDE also may be

analysed for all m 6∈M .
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For the (NLS) the dispersion function is λs = |s|2 +m. It depends on m linearly, i.e. in a

very degenerate way, and for (NLS) the idea does not work.

MAIN EXAMPLE (and our main goal): the Klein-Gordon equation

(KG) utt −∆u+mu+ g(x, u) = 0, x ∈ Td, m ∈ [1, 2] .

It is well known that (KG) may be rewritten as an abstract NLS equation. So the

preceeding discussion applies to it. The dispersion relation for (KG) is λs =
√
|s|2 +m.

This is a perfect nonlinear function of m. But asymptotically λs ∼ |s|+O(s−1) . So if

d > 1, then asymptotically λs = |s| is a
√

integer, and has rather complicated

Diophantine properties. This fact makes the problem to study small solutions of (KG) more

difficult. In [EGK] we decided to start the realisation of our program with an easier equation

(and now we are working on (KG) ).

Recent works on the KAM for (KG):

W.-M. Wang, Preprint (2016);

M. Berti, Ph. Bolle, Preprint (2016).

11



2 Beam equation.

Following J.Geng & J. You (Nanjing), let us consider the nonlinear beam equation:

utt + ∆2u+mu+ g(x, u) = 0, x ∈ Td ,

g(x, u) = u3 +O(u4) =: G′u(x, u) , m ∈ [1, 2].
(Beam)

Now λs = λs(m) =
√
|s|4 +m ∼ |s|2 +O(|s|−2). This is better than in the case of

(KG) equation since |s|2 ∈ Z.

Preliminary transformation of the equation: denote

Λ =
√

∆2 +m, ψ = 2−1/2(Λ1/2u+ iΛ−1/2u̇) .

In terms of the complex function ψ(t) = ψ(t, x) the equation reads

ψ̇ = i
(

Λψ − 2−1/2Λ−1/2g(x, 2−1/2Λ−1/2
(
ψ + ψ̄

)
)
)
.
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The ψ-equation is a hamiltonian system. It may be written in the hamiltonian form:

ψ̇ = i∇ψHbeam , Hbeam =

∫ [
(Λψ)ψ̄ +G(x,Λ−1/2

(ψ + ψ̄√
2

)
)
]
dx .

This equation is similar to NLS. Let us write ψ(x) as Fourier series

ψ(x) =
∑
s∈Zd

ξse
is·x , ψ̄(x) =

∑
s∈Zd

ξ̄se
−is·x .

Denote ηs = ξ̄s. Then ψ̄(x) =
∑
s ηse

−is·x, and we may write the beam equation as

the Hamiltonian system for the pair of infinite complex vectors ξ = (ξs, s ∈ Zd),

η = (ηs, s ∈ Zd):

(Beam) ξ̇s = i
∂H

∂ηs
, η̇s = −i∂H

∂ξs
, s ∈ Zd ,

where

Hbeam =
∑

λsξsηs +

∫
G
(
x,
∑
s

ξse
is·x + ηse

−is·x
√

2λs

)
.
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In the complex (ξ, η)-variables, the “linear” QP solutions ψA(t, x) of the linear beam

equation which we wish to perturb reed

(ξs(t), ηs(t))A =

 (ξs0e
iλst, ηs0e

−iλst), s ∈ A ,
0 s /∈ A .

A “linear” solution is real if ξs(t) = η̄s(t). It stays on the real “linear” n-torus

Tnρ,A = {(ξ, η) : ξa = η̄a,
1
2 |ξa|

2 = 1
2 |ηa|

2 = ρa if a ∈ A; ξs = ηs = 0 if s /∈ A} ,

which is invariant for the linear beam equation.

MY GOAL: Study solutions of (Beam) near the torus Tnρ,A.

The problem depends on 3 different parameters:

m ∈ [1, 2], ρ ∈ Rn+, |ρ| � 1, A ⊂ Zd, |A| = n .

All the three parameters are crucially important and play very different roles.

The problem simplifies significantly if n = 1 or d = 1.
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3 Admissible setsA

In difference with the space-one-dimensional equations, in the multidimensional case we

have to assume that the finite set of excited modesA is in some sense “nondegenerate”:

Definition. A finite set of linearly excited modesA ⊂ Zd is called admissible if

1) a, b ∈ A, a 6= b ⇒ |a| 6= |b| .
2) if d ≥ 3 and |A| ≥ 2, then another – more involved condition – should hold:

For any two different points a, b ∈ A, the integer sphere of radius |b| with the center at

a+ b intersects the integer sphere of radius |a| with the center at the origin at most in two

points.

Lemma. Admissible sets are typical: take at random n points a1, . . . an in the large cube

Kd = {s ∈ Zd : |sj | ≤ N, j = 1, . . . , d}.

SetA = {a1, . . . , an}. Then P{A is admissible } = 1−O(N−γ) , γ > 0 .

Everywhere below I assume thatA is admissible.
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Recall that we want to perturb the real ”linear” solutions

Tnρ,A 3 (ξs(t; ρ), ηs(t; ρ))A =

 (ξs0e
iλst, ηs0e

−iλst), s ∈ A ,
0 s /∈ A ,

ρa = 1
2 |ξa|

2 = 1
2 |ηa|

2. The linearly excited modes {a ∈ A} are the most important.

Denote by ω the frequency vector, formed by them:

ω = ωA(m) = (ωa, a ∈ A) ∈ Rn, ωa = λa .

Then ωa1 6= ωa2 if a1 6= a2 since the setA is admissible.
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4 The normal form

I recall that in terms of the complex Fourier coefficients ξ = (ξs, s ∈ Zd),

η = (ηs, s ∈ Zd), the Hamiltonian of (Beam) is

Hbeam =
∑

λsξsηs +

∫
G
(
x,
∑
s

ξse
is·x + ηse

−is·x
√

2λs

)
=: H2

beam + . . . ,

and that we wish to study (Beam) near the small real “linear” n-tori Tnρ,A, where the vector

of actions ρ = (ρa, a ∈ A) is a small parameter of this problem,

ρ ∈ Rn+ , |ρ| � 1 , n = |A| .
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First, near Tnρ,A I make the usual elementary change of coordinate: I keep the

infinitely-many coordinates ξs, ηs with s /∈ A without change, and for the finitely-many

modes ξa, ηa with a ∈ A pass from them to the action-angles (r, θ), where r ∈ Rn is

small and θ ∈ Tn, using the usual relation:

ξa =
√

2(ρa + ra) eiθa , ηa =
√

2(ρa + ra) e−iθa , a ∈ A .

Now the linear torus Tnρ,A reeds

Tnρ,A = {r = 0, θ ∈ Tn, ξs = ηs = 0 ∀ s ∈ Zd \ A} .
In the new variables the quadratic part

∑
s∈Zd λs(m)ξsηs of the hamiltonian becomes

H2
beam = Const + ω(m) · r +

∑
s∈Zd\A

λs(m)ξsηs .

Vector ρ = (ρ1, . . . , ρn) is a parameter, and
(
(r, θ), (ξs, ηs), s ∈ Zd \ A

)
are the

coordinates near Tnρ,A.
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DENOTE

A+ = {s ∈ Zd \ A : |s| = |a| for some a ∈ A}

(A+ is the “shade ofA”). Note thatA+ is a finite set. Then

Zd = A ∪A+ ∪ 〈the rest〉.

Accordingly I write

Hbeam = Const + ω(m) · r +
∑
s∈A+

λs(m)ξsηs +
∑

s∈Zd\(A∪A+)

λs(m)ξsηs + . . . .

Assume thatA is admissible. Then for m ∈ [1, 2] outside certain bad zero-measure set

C, in [EGK] we obtain the following

Normal Form Theorem:
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THEOREM 1. If the action-vector ρ ∈ Rn+ is sufficiently small, then near Tnρ,A there

exists a canonical transformation from new variables
(
r̃, θ̃, (ξ̃s, η̃s, s ∈ Zd \ A)

)
to the

old variables
(
r, θ, (ξs, ηs, s ∈ Zd \ A)

)
, such that in the tilde–variables the

transformed Hamiltonian Hnew = Hnew(r̃, θ̃, ξ̃, η̃; ρ) reeds:

Hnew = Ω(ρ) · r̃ +
〈
K(ρ)

(
ξ̃f , η̃f

)
,
(
ξ̃f , η̃f

)〉
+

∑
a∈Zd\(A∪A+)

Λa(ρ)ξ̃aη̃a +H3.

The Hnew explicitly depends on the small vector-parameter ρ:

i) the frequency-vector Ω(ρ) is affine in ρ, Ω(ρ) = ω(m) +Lρ, where the linear operator

L is non-degenerate, so we have the non-degenerate frequency modulation ρ 7→ Ω(ρ);

ii) the frequencies Λa(ρ) = λa(m) +
∑
bM

b
aρb also are affine in ρ;

iii) K(ρ) is an explicit real symmetric matrix of size 2|A+| quadratic in
√
ρj ’s;

iv) the Hamiltonian vector-field iJ∇H3 is small compare to |ρ|.
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So Hnew as a function of the parameter ρ ∈ R+ is:

Hnew =Const(ρ) + 〈 linear in ρ and explicit 〉+ o(ρ).

Hnew = Ω(ρ) · r̃ +
〈
K(ρ)

(
ξ̃f , η̃f

)
,
(
ξ̃f , η̃f

)〉
+

∑
a∈Zd\(A∪A+)

Λa(ρ)ξ̃aη̃a +H3.

Properties of the matrix K(ρ) and its Hamiltonian operator iJK(ρ) are crucial :
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The matrix K(ρ) is of size 2|A+| × 2|A+| and is explicit. Its Hamiltonian operator

iJK(ρ) IS NOT Hermitian or anti-Hermitian. What we know about it:

a) (non-degeneracy) for typical values of ρ, the operator iJK(ρ) is invertible;

b) (easy cases) if d = 1 or |A| = 1, then all eigenvalues of iJK(ρ) are elliptic;

c) (stability/instability) if d ≥ 2 and |A| ≥ 2, then some of the eigenvalues are elliptic, and

i) for some values of ρ the operator iJK(ρ) has no hyperbolic eigenvalues;

ii) but for some other ρ’s part of its eigenvalues may be hyperbolic;

iii) some of the elliptic eigenvalues are multiple identically in ρ. But for typical ρ all the

hyperbolic eigenvalues are simple.

In [EGK] we proved an abstract KAM-theorem, applicable to Hamiltonians of the form

Hnew. For that theorem both conditions, given above in bold, are crucially important.

Its application gives us:
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5 Final theorem

There exists a zero-measure set C ⊂ [1, 2] such that for each m /∈ C and any

admissible setA the following holds:

THEOREM 2. There is a closed set R ⊂ Rn+ = {ρ} of the action-vectors ρ which has

density one at zero, such that if ρ ∈ R, then the “linear” time-QP solution (ξ, η)A(t; ρ) of

the linear beam equation persists as a time-QP solution (ξ, η)n / l
A (t; ρ) of (Beam). The

closure of the curve (ξ, η)n / l
A (t; ρ) in the equation’s function-space is a smooth n-torus,

close to the original “linear” torus Tnρ,A, and invariant for (Beam). A constructed solution

(ξ, η)n / l
A (t, ρ) is linearly stable if and only if the hamiltonian matrix iJK(ρ) is stable. If

d = 1 or |A| = 1, then (ξ, η)n / l
A always is stable. While if d ≥ 2, then for each admissible

setA the persisted solutions (ξ, η)n / l
A are linearly stable for some values of ρ, but for

certain admissible setsA the persisted solutions are unstable for some other values of ρ.

CONJECTURE. The instability and stability of the KAM-solutions (ξ, η)n / l
A (t; ρ) both are

typical, if d ≥ 2.
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The conjecture is a question from linear algebra since JK(ρ) is an explicitly defined finite

real matrix.

Together the constructed quasiperiodic solutions (ξ, η)n / l
A (t; ρ) of (Beam) with a fixed set

A form in the function space of (Beam) a subset TA of the Hausdorff dimension 2n,

n = |A|, invariant for the equation. Now consider T = ∪TA, where the union is taken

over all admissible setsA. This set is invariant for (Beam) and has infinite Hausdorff

dimension. Some time-quasiperiodic solutions of (Beam), lying on T , are linearly stable,

while, if d ≥ 2, then some others are unstable.

If d ≥ 2, then the constructed linearly unstable KAM-solutions (ξ, η)n / l
A (t; ρ) of (Beam)

create around them certain zones of instability. So our theory implies some instability

features for small-amplitude solutions for the space-multidimensional beam equations. In

the Nonlinear Physics this behaviour is known as the modulation instability.
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