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On the semi-stiff boundary conditions for the Ginzburg-Landau equations

Mathematical models of supraconductivity

The full Ginzburg-Landau energy

Two dimensional supraconductivity is described by the
Ginzburg-Landau energy

Gε(u,A) =
1

2

∫
Ω
|∇u−iAu|2+

1

4ε2

∫
Ω

(1−|u|2)2+
1

2

∫
Ω
|curlA−hext |2.

* Ω is a smooth bounded connected domain.

* u : Ω→ C is the condensate wave function.

* A : Ω→ R2 is the magnetic potential.

* hext is the external magnetic field.

* ε = 1
κ is the inverse of the G.L parameter.
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Mathematical models of supraconductivity

The full Ginzburg-Landau energy

In this model 0 ≤ |u|2 ≤ 1 is the density of Cooper pairs of
electrons.

An important feature of the model is the existence of vortices. A
vortex can be defined as small regions in the domain where |u|2 is
close to 0.
The driving force for the appearing of such vortices is the magnetic
field.
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Mathematical models of supraconductivity

The model of Bethuel-Brézis-Hélein

In their work F.Bethuel,H.Brézis and F.Hélein suggest to study the
simplified G.L energy

Eε(u) =
1

2

∫
Ω
|∇u|2 +

1

4ε2

∫
Ω

(1− |u|2)2

subject to a Dirichlet condition g ∈ C 1(∂A,S1) with non-zero
topological degree.

This model leads to quantized vortices as caused by a magnetic
field in type II superconductors !
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Mathematical models of supraconductivity

The semi-stiff G.L equations

The Dirichlet boundary condition is not physical and it is natural
to try to relax this condition.

L.Berlyand and K.Voss propose to study critical points of Eε(u) in
the space

I = {u ∈ H1(Ω;C); |tr∂Ωu| = 1 on ∂Ω}

The Euler-Lagarange equations are
−∆u + 1

ε2 u(|u|2 − 1) = 0, in Ω,
|u| = 1, a.e on ∂Ω,

u ∧ ∂νu = 0, on ∂Ω.
(1)

In order to produce nonconstant solutions we can prescribe the
degree on the connected components of ∂Ω.
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Mathematical models of supraconductivity

The semi-stiff G.L equations

Let u ∈ H
1
2 (γ,S1), with γ a simple, smooth, closed curve, the

degree of u on γ is

deg(u, γ) =
1

2π

∫
γ
u ∧ ∂u

∂τ
dτ.

The degree is an integer. The connected components of the space
I are classified using the degree. One can look solutions of (1)
with prescribed degree(s) on ∂Ω.
Problem : The degree is not continuous under weak H1

convergence ! Finding solutions of (1) with prescibed degree(s) on
the boundary is a problem with lack of compactness.
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Existence/Nonexistence results for minimizing solutions

preliminary lemmas

Notations : If Ω is simply connected, let

Ip = {u ∈ H1(Ω,R2); |u| = 1 on ∂Ω, deg(u, ∂Ω) = p}

If Ω is doubly connected, Ω = ω1 \ ω0 with ω0 ⊂ ω1 let

Ip,q = {u ∈ I; deg(u, ∂ω1) = p, deg(u, ∂ω0) = q}.
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Existence/Nonexistence results for minimizing solutions

preliminary lemmas

Lemma (Price lemma)

Let {u(n)} ⊂ Ip,q be a sequence which converges to u weakly in
H1(A,R2) with u ∈ Ir ,s . Then

1

2

∫
Ω
|∇u|2dx ≤ lim inf

n→+∞

∫
Ω
|∇u(n)|2 − π(|p − r |+ |q − s|)

or equivalently (by sobolev embeddings)

Eε(u) ≤ lim inf
n→+∞

Eε(u
(n))− π(|p − r |+ |q − s|). (2)
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Existence/Nonexistence results for minimizing solutions

preliminary lemmas

Let mε(p) = inf{Eε(v); v ∈ I, deg(v , ∂Ω) = p} and
mε(p, q) = inf{Eε(v); v ∈ I, deg(v , ∂ω1) = p, deg(v , ∂ω0) = q}.

Lemma

Thanks to a special choice of test functions we have :

mε(p) ≤ π|p|

mε(r , s) ≤ π(|p − r |+ |q − s|)

Proposition

Let p ≥ 1 then mε(p) = pπ and is not attained.
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Existence/Nonexistence results for minimizing solutions

The case Ω doubly connected

Now if we assume that Ω = ω1 \ ω0, with ω0 ⊂ ω1 two smooth
simply connected domain.

Proposition

If p > 0 ≥ q then mε(p, q) = π(p + |q|) and is not attained.
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Existence/Nonexistence results for minimizing solutions

The case Ω doubly connected

Theorem (L.Berlyand,P.Mironescu,2004)

1) If cap(Ω) ≥ π then mε(1, 1) is attained for all ε > 0.

2) If cap(Ω) < π then there exists an ε1 such that mε(1, 1) is
attained for ε ≥ ε1 > 0 and mε(1, 1) is not attained for
ε < ε1.

Remark : cap(Ω) is a measure of the thickness of Ω. For example
if Ω = {z ∈ C; ρ < |z | < R} then cap(Ω) = 2π

ln(R/ρ) .
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The Laplace equation with semi-stiff boundary conditions

In order to prove the second part of the previous theorem one is
lead to prove that :

m∞(1, 1) = inf{
∫

Ω
|∇u|2; u ∈ I1,1}

is always attained ant that m∞(1, 1) < 2π.
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The Laplace equation with semi-stiff boundary conditions

This suggest to study the problems m∞(p, q), with (p, q) ∈ Z2.
Remark : Due to the conformal invariance of the Dirichlet integral
one can assume that Ω = {z ∈ C; ρ < |z | < 1}.

We are interested in critical points of E∞(u) =
∫

Ω |∇u|
2 in the

space I. They satisfy
−∆u = 0, in Ω,
|u| = 1, a.e on ∂Ω,

u ∧ ∂νu = 0, on ∂Ω.
(3)
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The Laplace equation with semi-stiff boundary conditions

Proposition

Let p > 0 ≥ q then m∞(p, q) = π(p + |q|) and

* If p > 0 and q = 0 then there is no solution of (3) in Ip,0.
* If p > 0 and q < 0 then there exists solutions of (3), all

solutions are holomorphic and energy minimizing i.e m∞(p, q)
is attained.
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The Laplace equation with semi-stiff boundary conditions

Proposition

Let p ≥ 2. There exists a sequence of critical radius Rcp , R
′
cp with

0 = Rc1 < Rc2 < Rc3 < ... < 1, 0 = R ′c1
< R ′c2

< R ′c3
< ... < 1,

Rcp > R ′cp such that

1) If ρ ≥ Rcp , then the minimum of E∞ in Ip,p is attained, the

minimizers are radial and m∞(p, p) = 2πp 1−ρp
1+ρp .

2) If ρ < R ′cp then then the radial solutions of (3) is no longer
minimizing.
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The Laplace equation with semi-stiff boundary conditions

Application to G.L equations

Proposition

Let p > 0 there exists cp > 0 and εp > 0 such that if cap(Ω) > cp
and ε > εp then mε(p, p) is attained.
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The Laplace equation with semi-stiff boundary conditions

Application to G.L equations

Thank you for your attention !
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