On the semi-stiff boundary conditions for the Ginzburg-Landau equations

On the semi-stiff boundary conditions for the Ginzburg-Landau equations

Rémy Rodiac

Université Paris-Est-Créteil

15th January 2014

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Two dimensional supraconductivity is described by the Ginzburg-Landau energy

$$G_{\epsilon}(u,A) = \frac{1}{2} \int_{\Omega} |\nabla u - iAu|^2 + \frac{1}{4\epsilon^2} \int_{\Omega} (1 - |u|^2)^2 + \frac{1}{2} \int_{\Omega} |curlA - h_{ext}|^2.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Two dimensional supraconductivity is described by the Ginzburg-Landau energy

$$G_{\epsilon}(u,A) = \frac{1}{2} \int_{\Omega} |\nabla u - iAu|^2 + \frac{1}{4\epsilon^2} \int_{\Omega} (1 - |u|^2)^2 + \frac{1}{2} \int_{\Omega} |curlA - h_{ext}|^2.$$

- * Ω is a smooth bounded connected domain.
- * $u: \Omega \to \mathbb{C}$ is the condensate wave function.
- * $A: \Omega \to \mathbb{R}^2$ is the magnetic potential.
- * *h_{ext}* is the external magnetic field.
- * $\varepsilon = \frac{1}{\kappa}$ is the inverse of the G.L parameter.

In this model $0 \le |u|^2 \le 1$ is the density of Cooper pairs of electrons.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

In this model $0 \le |u|^2 \le 1$ is the density of Cooper pairs of electrons.

An important feature of the model is the existence of vortices. A vortex can be defined as small regions in the domain where $|u|^2$ is close to 0.

In this model $0 \le |u|^2 \le 1$ is the density of Cooper pairs of electrons.

An important feature of the model is the existence of vortices. A vortex can be defined as small regions in the domain where $|u|^2$ is close to 0.

The driving force for the appearing of such vortices is the magnetic field.

On the semi-stiff boundary conditions for the Ginzburg-Landau equations Mathematical models of supraconductivity The model of Bethuel-Brézis-Hélein

In their work F.Bethuel, H.Brézis and F.Hélein suggest to study the simplified G.L energy

$${\sf E}_arepsilon(u)=rac{1}{2}\int_{\Omega}|
abla u|^2+rac{1}{4arepsilon^2}\int_{\Omega}(1-|u|^2)^2$$

subject to a Dirichlet condition $g \in C^1(\partial A, \mathbb{S}^1)$ with non-zero topological degree.

In their work F.Bethuel, H.Brézis and F.Hélein suggest to study the simplified G.L energy

$$E_arepsilon(u) = rac{1}{2}\int_\Omega |
abla u|^2 + rac{1}{4arepsilon^2}\int_\Omega (1-|u|^2)^2$$

subject to a Dirichlet condition $g \in C^1(\partial A, \mathbb{S}^1)$ with non-zero topological degree.

This model leads to quantized vortices as caused by a magnetic field in type II superconductors !

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The Dirichlet boundary condition is not physical and it is natural to try to relax this condition.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

The Dirichlet boundary condition is not physical and it is natural to try to relax this condition.

L.Berlyand and K.Voss propose to study critical points of $E_{\varepsilon}(u)$ in the space

$$\mathcal{I} = \{ u \in H^1(\Omega; \mathbb{C}); | \textit{tr}_{\partial \Omega} u | = 1 \textit{ on } \partial \Omega \}$$

The Dirichlet boundary condition is not physical and it is natural to try to relax this condition.

L.Berlyand and K.Voss propose to study critical points of $E_{\varepsilon}(u)$ in the space

$$\mathcal{I} = \{ u \in H^1(\Omega; \mathbb{C}); | \textit{tr}_{\partial\Omega} u | = 1 \textit{ on } \partial\Omega \}$$

The Euler-Lagarange equations are

The Dirichlet boundary condition is not physical and it is natural to try to relax this condition.

L.Berlyand and K.Voss propose to study critical points of $E_{\varepsilon}(u)$ in the space

$$\mathcal{I} = \{ u \in H^1(\Omega; \mathbb{C}); |tr_{\partial\Omega}u| = 1 \text{ on } \partial\Omega \}$$

The Euler-Lagarange equations are

$$\begin{cases} -\Delta u + \frac{1}{\varepsilon^2} u(|u|^2 - 1) = 0, & \text{in } \Omega, \\ |u| = 1, & \text{a.e on } \partial \Omega, \\ u \wedge \partial_{\nu} u = 0, & \text{on } \partial \Omega. \end{cases}$$
(1)

In order to produce nonconstant solutions we can prescribe the degree on the connected components of $\partial \Omega$.

Let $u \in H^{\frac{1}{2}}(\gamma, \mathbb{S}^1)$, with γ a simple, smooth, closed curve, the degree of u on γ is

$$\deg(u,\gamma) = rac{1}{2\pi} \int_{\gamma} u \wedge rac{\partial u}{\partial au} d au.$$

Let $u \in H^{\frac{1}{2}}(\gamma, \mathbb{S}^1)$, with γ a simple, smooth, closed curve, the degree of u on γ is

$$\deg(u,\gamma) = rac{1}{2\pi} \int_{\gamma} u \wedge rac{\partial u}{\partial au} d au.$$

The degree is an integer. The connected components of the space \mathcal{I} are classified using the degree. One can look solutions of (1) with prescribed degree(s) on $\partial\Omega$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Let $u \in H^{\frac{1}{2}}(\gamma, \mathbb{S}^1)$, with γ a simple, smooth, closed curve, the degree of u on γ is

$$\deg(u,\gamma) = rac{1}{2\pi} \int_{\gamma} u \wedge rac{\partial u}{\partial au} d au.$$

The degree is an integer. The connected components of the space \mathcal{I} are classified using the degree. One can look solutions of (1) with prescribed degree(s) on $\partial\Omega$.

Problem : The degree is not continuous under weak H^1 convergence ! Finding solutions of (1) with prescibed degree(s) on the boundary is a problem with **lack of compactness**.

Notations : If Ω is simply connected, let

$$\mathcal{I}_{p} = \{ u \in H^{1}(\Omega, \mathbb{R}^{2}); |u| = 1 \text{ on } \partial\Omega, deg(u, \partial\Omega) = p \}$$

If Ω is doubly connected, $\Omega = \omega_1 \setminus \omega_0$ with $\overline{\omega_0} \subset \omega_1$ let

$$\mathcal{I}_{p,q} = \{ u \in \mathcal{I}; deg(u, \partial \omega_1) = p, deg(u, \partial \omega_0) = q \}.$$

Lemma (Price lemma)

Let $\{u^{(n)}\} \subset \mathcal{I}_{p,q}$ be a sequence which converges to u weakly in $H^1(A, \mathbb{R}^2)$ with $u \in \mathcal{I}_{r,s}$. Then

$$\frac{1}{2}\int_{\Omega}|\nabla u|^{2}dx\leq\liminf_{n\to+\infty}\int_{\Omega}|\nabla u^{(n)}|^{2}-\pi(|p-r|+|q-s|)$$

or equivalently (by sobolev embeddings)

$$E_{\varepsilon}(u) \leq \liminf_{n \to +\infty} E_{\varepsilon}(u^{(n)}) - \pi(|p - r| + |q - s|).$$
(2)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

SQA

Let
$$m_{\varepsilon}(p) = \inf\{E_{\varepsilon}(v); v \in \mathcal{I}, deg(v, \partial \Omega) = p\}$$
 and
 $m_{\varepsilon}(p, q) = \inf\{E_{\varepsilon}(v); v \in \mathcal{I}, deg(v, \partial \omega_1) = p, deg(v, \partial \omega_0) = q\}.$

Lemma

Thanks to a special choice of test functions we have :

$$egin{aligned} m_arepsilon(m{p}) &\leq \pi |m{p}| \ m_arepsilon(m{r},m{s}) &\leq \pi (|m{p}-m{r}|+|m{q}-m{s}|) \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let
$$m_{\varepsilon}(p) = \inf\{E_{\varepsilon}(v); v \in \mathcal{I}, deg(v, \partial \Omega) = p\}$$
 and
 $m_{\varepsilon}(p, q) = \inf\{E_{\varepsilon}(v); v \in \mathcal{I}, deg(v, \partial \omega_1) = p, deg(v, \partial \omega_0) = q\}.$

Lemma

Thanks to a special choice of test functions we have :

$$egin{aligned} & m_arepsilon(m{
ho}) \leq \pi |m{
ho}| \ & m_arepsilon(m{
ho},m{s}) \leq \pi (|m{
ho}-m{r}|+|m{q}-m{s}|) \end{aligned}$$

Sac

Proposition

Let $p \ge 1$ then $m_{\varepsilon}(p) = p\pi$ and is not attained.

On the semi-stiff boundary conditions for the Ginzburg-Landau equations Existence/Nonexistence results for minimizing solutions The case Ω doubly connected

Now if we assume that $\Omega = \omega_1 \setminus \omega_0$, with $\omega_0 \subset \omega_1$ two smooth simply connected domain.

Proposition

If $p > 0 \ge q$ then $m_{\varepsilon}(p,q) = \pi(p+|q|)$ and is not attained.

On the semi-stiff boundary conditions for the Ginzburg-Landau equations Existence/Nonexistence results for minimizing solutions The case Ω doubly connected

Theorem (L.Berlyand, P.Mironescu, 2004)

- 1) If $cap(\Omega) \ge \pi$ then $m_{\varepsilon}(1,1)$ is attained for all $\varepsilon > 0$.
- 2) If $cap(\Omega) < \pi$ then there exists an ε_1 such that $m_{\varepsilon}(1,1)$ is attained for $\varepsilon \ge \varepsilon_1 > 0$ and $m_{\varepsilon}(1,1)$ is not attained for $\varepsilon < \varepsilon_1$.

On the semi-stiff boundary conditions for the Ginzburg-Landau equations Existence/Nonexistence results for minimizing solutions The case Ω doubly connected

Theorem (L.Berlyand, P.Mironescu, 2004)

- 1) If $cap(\Omega) \ge \pi$ then $m_{\varepsilon}(1,1)$ is attained for all $\varepsilon > 0$.
- 2) If $cap(\Omega) < \pi$ then there exists an ε_1 such that $m_{\varepsilon}(1,1)$ is attained for $\varepsilon \ge \varepsilon_1 > 0$ and $m_{\varepsilon}(1,1)$ is not attained for $\varepsilon < \varepsilon_1$.

Remark : $cap(\Omega)$ is a measure of the thickness of Ω . For example if $\Omega = \{z \in \mathbb{C}; \rho < |z| < R\}$ then $cap(\Omega) = \frac{2\pi}{\ln(R/\rho)}$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

In order to prove the second part of the previous theorem one is lead to prove that :

$$m_{\infty}(1,1) = \inf\{\int_{\Omega} |
abla u|^2; u \in \mathcal{I}_{1,1}\}$$

is always attained ant that $m_\infty(1,1) < 2\pi$.

This suggest to study the problems $m_{\infty}(p, q)$, with $(p, q) \in \mathbb{Z}^2$. **Remark** : Due to the conformal invariance of the Dirichlet integral one can assume that $\Omega = \{z \in \mathbb{C}; \rho < |z| < 1\}$.

This suggest to study the problems $m_{\infty}(p, q)$, with $(p, q) \in \mathbb{Z}^2$. **Remark**: Due to the conformal invariance of the Dirichlet integral one can assume that $\Omega = \{z \in \mathbb{C}; \rho < |z| < 1\}$.

We are interested in critical points of $E_{\infty}(u) = \int_{\Omega} |\nabla u|^2$ in the space \mathcal{I} . They satisfy

$$\begin{cases}
-\Delta u = 0, & \text{in } \Omega, \\
|u| = 1, & \text{a.e on } \partial\Omega, \\
u \wedge \partial_{\nu} u = 0, & \text{on } \partial\Omega.
\end{cases}$$
(3)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Proposition

Let $p > 0 \ge q$ then $m_{\infty}(p,q) = \pi(p+|q|)$ and

- * If p > 0 and q = 0 then there is no solution of (3) in $\mathcal{I}_{p,0}$.
- * If p > 0 and q < 0 then there exists solutions of (3), all solutions are holomorphic and energy minimizing i.e m_∞(p,q) is attained.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Proposition

- Let $p \ge 2$. There exists a sequence of critical radius R_{c_p} , R'_{c_p} with $0 = R_{c_1} < R_{c_2} < R_{c_3} < ... < 1$, $0 = R'_{c_1} < R'_{c_2} < R'_{c_3} < ... < 1$, $R_{c_p} > R'_{c_n}$ such that
 - 1) If $\rho \ge R_{c_p}$, then the minimum of E_{∞} in $\mathcal{I}_{p,p}$ is attained, the minimizers are radial and $m_{\infty}(p,p) = 2\pi p \frac{1-\rho^p}{1+\rho^p}$.
 - 2) If $\rho < R'_{c_{\rho}}$ then the radial solutions of (3) is no longer minimizing.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Proposition

Let p > 0 there exists $c_p > 0$ and $\varepsilon_p > 0$ such that if $cap(\Omega) > c_p$ and $\varepsilon > \varepsilon_p$ then $m_{\varepsilon}(p, p)$ is attained.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Thank you for your attention !