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(s.) { e2Am + (p1 — |x?) m — 20am3 — 2a0m3m =0
‘ e2Amp + (p2 — |x[?) m2 — 2a0m3 — 2a0n3ne = 0,

where x € R, d =1,2,3, ¢ is a small parameter, 111, 12 > 0 are
chemical potentials, g, a1, ap are positive constants.

Goal

» construct (n1e, 1m2¢) solution to (S) such that 7., 72 > 0,

» understand the behaviour of (11, 72:) as e — 0
(Thomas—Fermi limit).



Results for one single equation
(GP) e2An. +(1—|x]?)n. —n2 =0, xcRY,

Ground states 7. of (GP) converge in the limit ¢ — 0 to

—o - m0(x)
no(x) = { Vv1—1|x]?2 if [x| <1

0 if x| >1
0 1 x|
1—|x|?
We set n-(x) = e¥/35(y) where y = 52‘/3| :
Then v =0+ 2351 + 3y, + .-, where

> o is the Hastings-McLeod solution of the Painlevé Il
equation, that is the unique solution of

(PIT) 45 +y10—7% =0 yeR
that satisfies Yo(y) e VY Yo (y) yﬁ—zoo 0,

» for n > 1, ~y, satisfies v,(y) — 0.
y—+oo



The Thomas—Fermi limit for the system

We expect (me, m2=) — (10, 7120),

where 110, 7720 are compactly supported in disks with radius R; and
R>, and given by (we assume Ry < R»)

< x| <R Ri<|x|<R | |x| >R
77%0 2a1r12(R2 x[?) 0 0
2 | R- 2 R3—|x|?
120 2a2 i 2a2r12(R1 x]) 22a2 0

It implies [2/I12 > 0. We will assume later [, > 0, I'1, > 0.

We also assume R7 > %’%Rlz (ensures that 150(0) > 0).

n10(x) 720(x)




Let 5 € (0,2/3).
RY is divided in three domains Dy, D;, D> defined as follows.

2 2 2 g2 2 2 2
0 RP—2ef RZ—eB RZ  RI4eP RP42eP R3 ||

Do={x.|x|*<R? <P} Dy={x,|x|>>R%+<P}
Dy ={x||x|?~R?|<2e}

In each of these domains, we use a different variable and a
different ansatz to look for a solution (11, 72) of (S¢) that
converges to (710, 720) as € — 0.

domain Do Dy D>
: 2 2 RE—|x|? R3—|x|?
variable | z = Rf — |x] =" Y2 = 573

ansatz | m(x) =w(z) | m(x) =e"3v(y) n(x) =0
m2(x) =7(2) | m2(x) = BA01)Y? | na(x) = 3u(y2)




Formal expansions of w and 7 in Dy
x € Dy: m(x) = w(z), n(x) = 7(2), z= R12 — |x|2.

w=wg + 2wy + etwy + - -

r=m0+e’n +etn 4,

wo(z):mo(x):< 2 >1/221/2,

where

2010 12

1/2
RR-RE T\
2()42 2a2F12

roz) = o) =

For m > 1, (wm,Tm) are obtained recursively by plugging these
expansions into (S¢) and cancelling the terms corresponding to
successive powers of 2 in the equations.



Formal Expansion of 1 in D,
R3—|xP

x € Dy: m(x) =0, m2(x) = 3 p(y2), Y2 = =a7

po=po+ ey +eBup + -

Plugging the expansion in (S¢), we find for every n:

RY®  —an/3
pnl) = a0 (s ).

2

where the functions v, are the one which where obtained in the
expansion of the ground state of the single equation.



Formal expansions of v and ) in D,
x €D m(x) =ePu(n), m(x) =PAn)2 n
vV =1y —|—52/31/1 —|—54/3y2 + -
A=A1e72B 4 N+ 25BN +¥3N + -

Plugging these expansions into (S.), we obtain:

RE—R}

A1) = 5,

4R12V6/ + Toy1vp — 2041r121/8 =0.

Mo(y1) = 34 — S2wo(y1)*.

Forn>1, ( — 4R128§1+ 6a1r121/§ — [y )Vn = Fp,

=:W(y1)>0

25!17

— _2x __20p
)\” - 2a2 YoVn + (Rzszf)

R IxP

22/3

where F, and §, can be explicitely written in terms of the Ax’'s and

the yy'sfor 0 < k< n—1.



Calculation of 1

» For Ry < |x| < Rz, y1 — —o0 and €Y/3u(y;) - 0, thus
E—

Vo(yl) — 0.

Y1——00
» For |x| < Ri, y1 = 400 and

3v0(y1) —3 (it (RE = I )) . thus
1/2

i
uo(yl)yHN+Oo (2;}112) :

Moreover,
4Rfl/6l + Toyvivg — 21 F12ug’ =0

has a non-trivial solution with fast decay at —oo only if [, > 0 and
12 > 0. Under this condition,

()

0
(201)1/217)? R

vo(y1) =



Truncation of the asymptotic expansions

From now on,
w(z) = Z%:O e"wm(z), 7(2) = anﬂﬁo M 7m(2),
v(y1) = S0 02" 3ua(n), M) = Zzz_l e23\n(11),

p(y2) = Y neo €2 pin(y2)-

Comparison of (w,7) and £¥/3(v, \Y/?) in Dy N D,
Lemma. Let N >0, M > 525N, Then for / =0,1,2,

_ O(Eﬁ(N_l/z_/)),

Loo(DoﬂDl)

|2 (- o)

dz!

= o(e?(N=1),

LOO(DoﬁDl)

L (r(2) = o))




Comparison of ¢/3(v, \Y/2) and (0,*3p) in Dy N D;
Lemma. Let N> 0, L > 38(N + 1)/2. Then for / € {0,1,2},

d (153
Vo > 0, Hdz’(e y(yl))

— o=
LOO(DlﬂDg)

and

d’ 1/3 1/2 1/3
7(6 Ay1)7< —¢€ u(yz))

75 _ 0(5,8(N+1—I)).
4

Loo(DlﬁDQ)




We plug into (S;) the ansatz
m = e'/3 (/)1 + 52("’“)/3P),

1 = /3 <p2 i E2(N+1)/3Q)’

where
51/3[)1 = d.w+ Xs€1/31/,
51/3p2 =&, 7+ X5€1/3)\1/2 + \Uggl/3,u.
1 d)s X Xe X Wg
0 R%—2£ﬁ Rf—a'g R% R%+5ﬁ R%+25’6 Rg ‘X|2
2]

Dy

Do



The equation satisfied by (P, Q)

P
A g | =00+ 2eer.0) s Pixpa)
where
A — —*3A + PE(X) re(X)
c re(x) —eB3A + g:(x) |’
R2 o R2
pe(x) = —2072 _ T _ 4 6agp? + 20003,

an  £2/3

G=(x) = —y» + 6a2p3 + 2040/)%, r-(x) = dapp1p2,

fO(X) — g AN+1)/3 4/3 Apl + gg %2/3 p1t+yip1 — 2a1p1 — 2a0p2p1
3
43 Mpa + yapa2 — 20003 — 2a0p3p2

£2(x, P, Q) = 2173 [ 301p1P? + 20092 PQ + app1 Q? ]
15 ? ? Y

3a202Q? + 2a0p1 PQ + cop2 P?

D AN+1)/3 [ a1P? + agPQ? }

P @) = 02Q° + 00P?Q



Estimate on the source term f°
Let N> 1. Then there exists 3 € (0,2/3), L, M large integers
such that

< g2,

1] 2y =

Estimate on the resolvent of A.
A is invertible, and

||Ae_1H/;(L2(Rd)2,HV1V(Rd)2) < 43,
where HL(R9)? is the closure of C3°(R?)? for the norm

1P Qe = Jas (VPP +|VQP) dx
+ Ja max(L, min(|yal, [y2))(|PI? + |Q[?)dbx.



The fixed point argument
The fixed point theorem is applied to the map
©. : HLRI? — HL(RY)?
(P,Q) — AT +ATE(P,Q)+ATE(P,Q)
in the ball B of H} (]R"’)2 centered at the origin, with radius

(]Rd)2 S 6710/3

From the Sobolev embeddlng H1 (Rd) C HYRY) c L*(RY) we
infer: for every (P, Q) € H,},(]Rd)Z, we have £2 € [2(R%)? and

172(P, Q)llpaay < =2Y/313)|(P, Q)2 gy

Thus, HAglff(P, Q)HH,}V(Rd)Z S 52N/371H(P7 Q)H%—I\},(Rd)Q
HL(RY) c HY(RY) c L5(RY) implies
HA;lfj(P, Q)HH}V(R")Q < 54N/3H('D Q)HHl (R9)2

It follows that the ball is stable by ©, and similar arguments show
that it is a contraction on that ball.



The main result

Theorem Let N >> 1. Then there exists 3 € (0,2/3), L, M large
integers, such that for & small enough, there is (P, Q) € (H})?
with

1P, Q) pye S e 1073

such that
7 - ¢5T+X5€1/3A1/2 + w€€1/3u+€2N/3+1Q

solves (S¢).



