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Introduction
We call soliton a solution u(t,x) = Qc(x — ct) (¢ > 0) of

(gKdV) Owu+ 05 (2u+f(u)) =0 t,xeR

General questions about the collision of two solitons

Let u(t) be a solution such that
u(t) ~ Qg (x — at) + Qo (x — cot) as t — —oo,
where Qc, (x — c1t), Qc,(x — c2t) are two solitons (0 < ¢ < ¢1)

» What is the behavior of u(t) during and after the collision?
» Do the solitons survive the collision at the principal order?
> If yes, are their speeds (size) and trajectories (shift) modified?

» Is the collision elastic or inelastic?



Previous results concerning the collision of solitons

> Integrable cases (f(u) = v?, u3, v? + aud)

There exist explicit multi-solitons solutions describing for all
time the interaction of solitons.

The collision is elastic

[Fermi, Pasta and Ulam], [Zabusky and Kruskal], [Lax],
[GGKM], [Hirota], [Miura et al.], etc.

» Numerical simulations and experiments

For several non integrable models, the collision seems
inelastic but almost elastic (small dispersive trail)

[Eilbeck and McGuire|, [Bona et al.] (BBM), [Shih] (gKdV),
[Craig et al.] and references therein (Euler, KdV, experiments)
etc.

For non integrable models, there is no general rigorous
argument saying that solitons survive a collision.



We report on recent works describing the collision of two solitons
for the quartic (non integrable) gKdV

O+ 0, (Pu+u*)=0 t,xeR

in two different regimes:

» Very different sizes: 0 < ¢ € 1
[Martel, Merle: Annals of Math. (2011)] (arXiv 2007)

» Almost equal sizes: ¢ ~ c.
[Martel, Merle: Inventiones Math. (2011)] (arXiv 2009)



Asymptotic results in the energy space - One soliton
Solitons are u(t, x) = Qc(x — ¢t — xp), ¢ > 0,
Qc(x) = c3 Q(Vex)
Q+@* =0 Q)= (3) cosh? (3x)

Orbital stability by conservation laws [Weinstein, 1986]

|lu(0) — Qc||yr is small = Vt, ||u(t) — Qc(. — p(t))|| g is small

Asymptotic stability [Martel and Merle, 2001-2007]

Under the same assumptions, there exists c™ ~ c¢ such that
u(t) — Qe+ (. —y(t)) =0 forx > Gt
y'(t) = ct ast— 4o

Earlier result by [Pego and Weinstein, 1994].



Schematic representation of asymptotic stability: a solution initially
close to a soliton simplifies to a soliton plus a small residue.

residual
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initial data at ¢ = 0 close to Qq,




Asymptotic results in the energy space - Multi—soliton

Existence of asymptotic multi-solitons [Martel, 2005]

Let c; # c, . There exists a unique solution in HY such that

lim U(t) - (ch—(- - t)+ Qc;(- -G t)=0

t——o0

Stability of multi-solitons in H! [Martel, Merle and Tsai, 2002]

For T large:

H ch —aTl)+ Qu(-—T)) HHl is small =
vt > T, H —(Qa (- = y1(t)) + Qo (- — yo(t HHl is small



Schematic representation of stability of two decoupled solitons

residual _/\ / \
AAANAANAAANL . . t— 400

initial data close to Q., + Qc,




|. Interaction of two solitons with very different sizes

Assume 0 < ¢, < ¢; . Let U(t) be such that
tﬂToo u(t) - (Qc;(- —qt)+ Qc;(- —qt)=0

THM 1 [Martel and Merle, 2007]

There exist ¢ ~ ¢, ¢ ~ ¢, such that
c, ~0 c, ~0

U(t,x) = Qe (x — ya(D)) + Quy (x — ya(£)) + wH (£, ),

» Stability:
\1
sup [[w(t)[|n < K(c )3
teR

> Inelasticity:

+ +

G _\u —\8 ,
1 _ 1> 2 1< _ +
o1z Zag@h i I @Ol £0



Inelastic interaction of a large soliton and a small soliton
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Comments on THM 1

v

The two solitons are preserved through the collision
\1 NS
sup W (B)llmn < K(g)3 and Q- lm ~ K(cy)®

The collision is almost elastic

v

lw ()l <N Qcs e

v

Speed change and dispersive residue

|wt(t)|[r 4 0ast — +oc and ¢f > ¢ and ¢, < ¢

v

Nonexistence of a pure 2-soliton solution in this regime



» THM 1 is the first rigorous result describing an inelastic
collision between two nonlinear objects

» Extension by Claudio Mufioz : the same result holds for any
f(u) instead of u*, for small solitons (0 < ¢, < ¢; < 1),
provided the Taylor expansion of f near zero is

f(u):up+auq+uqo(1) forp:2,30r4yq>p7

in the non integrable case. Therefore, all collisions are
elastic if and only if the equation is integrable.



Il. Interaction of two solitons with almost equal sizes

Now, we assume

&G — G
¢ +c

0 < pp= < 1

e In the integrable case, let UC; & be a KdV 2—soliton. Using
explicit formulas, [LeVeque, 1987] proved

sup | U o (£:) = Qi) (X = y1(8)) = Qo) (x — y2(t))| < Crp.
Moreover,
min(y1(t) — y2(t)) = 2| In p1o| + O(1).

Two solitons with almost equal speeds do not cross and
remain at a large distance for all time.



e In the quartic (non integrable) case, there are no explicit
2-solitons, but iy < 1 allows use of perturbation theory.

THM [Mizumachi, 2003]
Assume

u(0) ~ Q(x) + Q(x + Yo) where Yo > 0 is large
Then, for some C1+ > c2Jr close to 1, for large time,
u(t,x) = QC1+(X —t—y)+ QC2+(X —ct—yy )+ w(t,x),

where w is small.



Using time reversibility (t — —t, x — —x), Mizumachi’s result
constructs a 2-soliton like solution for all time:

At +o0,

u(t,x) = QC1+(X —t—y)+ QC2+(X —ct—yy )+ w(t,x),
and at —oo,

u(t,x) = Qur(x — ¢ t =y ) + Qs (x — & t =y ) + w(t, x).

For all time, the two solitons are separated at least by %Yo.



Our result improves on Mizumachi's ansatz to give more
information on such solutions.

The principal question concerns the elastic or inelastic character
of the collision.

Assume ¢; ~ ¢, ~ 1.
We change variables, so that the problem is to study solutions of

U+ (U — U+ UH=0, t,xeR.

behaving as a sum Q1 (¢)(x — y1(t)) + Quipo(r)(x — y2(t)) for
11, o small.



Assume 0 < po < 1. Let U(t) be such that

lim U(t) = Qi—po(- + pot) — Quype(. — pot) =0,

t——00

THM 2 [Martel and Merle, 2010]
There exist pui(t), pa(t), y1(t), y2(t) such that

U(,%) = Qupg(o)(x = 12(8)) + Qu ey (x = ya(£)) + w(t, )
» Sharp stability:

sup [w(t)llm < 45

teR

min(y1(t) — y2(t)) = 2| In o[ + O(1)

f—llTooul(t) = /j/ii_ ~ [, t_':TOOMQ(t) = N;— ~ =L

» Inelasticity: for K > 0,

pl = Ho X g i3+ o S =g, liminf [lw(e)][p # 0



Interaction of two solitons of almost equal size for quartic gkdV
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Sketch of the proof of THM 2

(1) Main step: construction of an approximate solution
We use separation of variables, solitons spatial decoupling and the
special form of the nonlinear interactions of the two solitons

(2) Stability proof
We use refinements of stability and asymptotic stability techniques.
Such arguments are needed after the collision but also during the

collision to justify the approximate solution on a large time interval
(T > |In pol).

(3) Inelasticity
Qualitative version, using a contradiction argument



(1) Main step: construction of an approximate solution

We look for an approximate solution of Vi + (Vi — V + V4), =0,

Vi (6)2(8)ya (8)y2(8) (X) = Ru(t, x) + Ra(t, x) + w(t, x),

where
Rj(t7x) = Ql+uj(t)(x - yj(t))

Recall

d 1 /1 1
<dqu+u) = T 1ty <3Ql+uj " 2XQ1+“"> = AQuy

and set AR;(t,x) = ANQ11,,(x — y;(t)),



Then,

Vit (Vix = V+ V) =E+F+

E=" MR+ > (i — 7)) (R

j=1,2 j=1,2
F=((Ri+R)"—R{ — R3)

PY% )

E: time derivative of Ry(t) and Ry(t)
F: nonlinear interaction terms between R; and R»



Using Q(x) ~ (10)Y3e=I,

X—00
F = (4R:R} +4RRS)
= 4(10)1/3 (e—xm Q3(x—y1) + 4(10)Y/3ex ™ Q3(X—y2))x + ...
— 4(10)/3eY (e Q3 (x—y1) + &7 Q3(x—y2))X + ...
where y = y1 — y» is the distance between the two solitons.

Three independent variables : x3 = x — y1, X0 = x — y» and e 7.

Let

wa(t,x) = e (A(x — y1(1)) + Aa(x = 2(2))).

For a suitable choice of Aj(x), A2(x), a and «, we find
Fa +ae (AR — ARy) + ae Y ((Ri)x + (Ra)x) = O(e™2)

The values of a and « are unique to solve the problem



Returning to the equation of V' and the expression of E, we get
/'1’1 ~ O[e_ya ﬂ2 ~ _aey7
1~ pr—ae”, Yo ~ iz —ae™.

In particular, y ~ 2ae™

For the proof of THM 2, we need to compute an approximate
solution V up to order e=2Y(t) Then, the system becomes

fii~ae” +Burye”,
fio~—ae Y —Burye”,
yi~pi—ae '—bipuiye”,

Yo~ pp—ae Y —bypoye .



(2) Stability proof

Write the solution U(t) as

U(t, ) = Vi (1) a(0)a (8) () (X) + (£, X),

where (t) is a rest term.

The control of the rest term (t) uses variants of techniques used
for large time stability and asymptotic stability of solitons and
multi-solitons. Note that the solitons are decoupled for all time

since y(t) = y1(t) — y2(t) is large as pp is small.
2

We obtain ||e(t)||g1 < pg  for all ¢.



(3) Inelasticity
Assume U(t) is a pure 2-soliton solution.

A contradiction follows from:

» On the one hand, by uniqueness properties, U(t) satisfies
U(t,x) = U(—t, —x) up to translation in space and time.
Thus, uj(t), yj(t) which are related to U(t) also have
symmetry properties under the transformation t — —t.

» On the other hand, the dynamical system satisfied by p;(t),
yj(t) is not symmetric by the transformation x — —x, t — —t
at order e~ 2¥(1), Indeed, from the algebra in the quartic case,
we have by # by. (In the integrable case, f(u) = u?, we have
checked by = by.)



