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Introduction

We call soliton a solution u(t, x) = Qc(x − ct) (c > 0) of

(gKdV ) ∂tu + ∂x(∂2xu + f (u)) = 0 t, x ∈ R

General questions about the collision of two solitons

Let u(t) be a solution such that

u(t) ∼ Qc1(x − c1t) + Qc2(x − c2t) as t → −∞,

where Qc1(x − c1t), Qc2(x − c2t) are two solitons (0 < c2 < c1)

I What is the behavior of u(t) during and after the collision?

I Do the solitons survive the collision at the principal order?

I If yes, are their speeds (size) and trajectories (shift) modified?

I Is the collision elastic or inelastic?



Previous results concerning the collision of solitons

I Integrable cases (f (u) = u2, u3, u2 + au3)

There exist explicit multi-solitons solutions describing for all
time the interaction of solitons.
The collision is elastic
[Fermi, Pasta and Ulam], [Zabusky and Kruskal], [Lax],
[GGKM], [Hirota], [Miura et al.], etc.

I Numerical simulations and experiments

For several non integrable models, the collision seems
inelastic but almost elastic (small dispersive trail)
[Eilbeck and McGuire], [Bona et al.] (BBM), [Shih] (gKdV),
[Craig et al.] and references therein (Euler, KdV, experiments)
etc.

For non integrable models, there is no general rigorous
argument saying that solitons survive a collision.



We report on recent works describing the collision of two solitons
for the quartic (non integrable) gKdV

∂tu + ∂x(∂2xu + u4) = 0 t, x ∈ R

in two different regimes:

I Very different sizes: 0 < c2 � c1
[Martel, Merle: Annals of Math. (2011)] (arXiv 2007)

I Almost equal sizes: c1 ∼ c2.
[Martel, Merle: Inventiones Math. (2011)] (arXiv 2009)



Asymptotic results in the energy space - One soliton

Solitons are u(t, x) = Qc(x − ct − x0), c > 0,

Qc(x) = c
1
3Q(
√
cx)

Q ′′ + Q4 = Q, Q(x) =
(
5
2

) 1
3 cosh−

2
3
(
3
2x
)

Orbital stability by conservation laws [Weinstein, 1986]

‖u(0)− Qc‖H1 is small ⇒ ∀t, ‖u(t)− Qc(.− ρ(t))‖H1 is small

Asymptotic stability [Martel and Merle, 2001-2007]

Under the same assumptions, there exists c+ ∼ c such that

u(t)− Qc+(.− y(t))→ 0 for x > c
10 t

y ′(t)→ c+ as t → +∞

Earlier result by [Pego and Weinstein, 1994].



Schematic representation of asymptotic stability: a solution initially
close to a soliton simplifies to a soliton plus a small residue.

Qc+

initial data at t = 0 close to Qc0

t → +∞
residual
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Asymptotic results in the energy space - Multi–soliton

Existence of asymptotic multi-solitons [Martel, 2005]

Let c−1 6= c−2 . There exists a unique solution in H1 such that

lim
t→−∞

U(t)− (Qc−1
(.− c−1 t) + Qc−2

(.− c−2 t)) = 0

Stability of multi-solitons in H1 [Martel, Merle and Tsai, 2002]

For T large:

∥∥u(T )− (Qc1(.− c1T ) + Qc2(.− c2T ))
∥∥
H1 is small ⇒

∀t > T ,
∥∥u(t)− (Qc1(.− y1(t)) + Qc2(.− y2(t)))

∥∥
H1 is small



Schematic representation of stability of two decoupled solitons

(i) Stability of the sum of N decoupled solitons.

∀t ≥ 0,

����u(t) −
N�

j=1

Qc0j
(· − xj(t))

����
H1

≤ A0

�
α + e−γ0L

�
. (8.3)

(ii) Asymptotic stability of the sum of N solitons.
There exist c+

1 , . . . , c+
N , with |c+

j − c0
j | ≤ A0

�
α + e−γ0L

�
, such that

����u(t) −
N�

j=1

Qc+j
(· − xj(t))

����
H1(x>c01t/10)

→ 0, x�
j(t) → c+

j as t → +∞. (8.4)

As in Theorem 4, one cannot expect the convergence to hold in H1(x > 0). Indeed,
assumption (8.2) on the initial data allows the existence in u(t) of an additional soliton
of size less than α (thus travelling at arbitrarily small speed). Moreover, convergence in
H1(R) would imply that u(t) is one of the special solutions U(t) as constructed in Theorem
8, thus it cannot be true in general.

Note that a stability result similar to (8.3) in Theorem 9 is the main tool to prove the
existence result in Theorem 8.

Remark also that
�N

j=1 Qc0j
(x−xj(t)) is not a solution of the (gKdV) equation, because

of interactions between solitons of order e−γ0(L+t). It is thus natural to find an error term
of this nature in (8.3). However, if instead of comparing u(t) with the sum of N solitons,
we measure its distance to the familly of multi-solitons constructed in Theorem 8, then
the error term is only A0α; see [60].

The following picture illustrates the behavior in large time of a solution initially close
to the sum of two decoupled solitons.

Qc+
1

Qc+
2

t → +∞

initial data close to Qc1 + Qc2

residual
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I. Interaction of two solitons with very different sizes

Assume 0 < c−2 � c−1 . Let U(t) be such that

lim
t→−∞

U(t)− (Qc−1
(.− c−1 t) + Qc−2

(.− c−2 t)) = 0

THM 1 [Martel and Merle, 2007]

There exist c+1 ∼
c−2 ∼0

c−1 , c+2 ∼
c−2 ∼0

c−2 such that

U(t, x) = Qc+1
(x − y1(t)) + Qc+2

(x − y2(t)) + w+(t, x),

I Stability:

sup
t∈R
‖w+(t)‖H1 ≤ K (c−2 )

1
3

I Inelasticity:

c+1
c−1
−1 & (c−2 )

17
6 ,

c+2
c−2
−1 . −(c−2 )

8
3 , lim

t→+∞
‖w+(t)‖H1 6= 0.



Inelastic interaction of a large soliton and a small soliton

Qc−1

Qc+
1

c+
1 > c−1

Qc−2

Qc+
2

c+
2 < c−2

non zero residual

t = 0

t → +∞

t → −∞

The first part of Theorem 10 has been extended to (1.3) with general nonlinearity f for
which solitons are stable in Weinstein’s sense. The second part, i.e. the inelastic nature of
the collision, has been proved for general non integrable nonlinearities for small solitons
by Muñoz [71] (in that work, both solitons are small, and one is much smaller than the
other one).

The proof of Theorem 10 in [59] is long and involved and beyond the scope of this
course. We just sketch the main steps of the proofs in [59], and refer to the review paper
[57] and to the original paper for details.

1. First, we construct an approximate solution to the problem in the collision region,
i.e. in the time interval [−c−( 1

2
)+ , c−( 1

2
)+ ]. The approximate solution has the form of

a series in terms of c = c2/c1 and involves a delicate algebra.

2. Second, using asymptotic arguments similar to the ones presented in the previous
sections, we justify that the solution U(t) is close to the approximate solution (so
that the description of the collision given by the approximate solution is relevant)

and we control the solution in large time, i.e. for |t| > c−( 1
2
)+ .

3. Finally, we prove the inelastic character of the collision by a further analysis of the
approximate solution. The defect is due to a nonzero extra term in the approximate
solution after recomposition of the series. Thus, the defect is a direct consequence
of the algebra underlying the construction of the approximate solution.
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Comments on THM 1

I The two solitons are preserved through the collision

sup
t
‖w+(t)‖H1 ≤ K (c−2 )

1
3 and ‖Qc−2

‖H1 ∼ K (c−2 )
1
12

I The collision is almost elastic

‖w+(t)‖H1 � ‖Qc−2
‖H1

I Speed change and dispersive residue

‖w+(t)‖H1 6→ 0 as t → +∞ and c+1 > c−1 and c+2 < c−2

I Nonexistence of a pure 2-soliton solution in this regime



I THM 1 is the first rigorous result describing an inelastic
collision between two nonlinear objects

I Extension by Claudio Muñoz : the same result holds for any
f (u) instead of u4, for small solitons (0 < c−2 � c−1 � 1),
provided the Taylor expansion of f near zero is

f (u) = up + auq + uqo(1) for p = 2, 3 or 4, q > p,

in the non integrable case. Therefore, all collisions are
elastic if and only if the equation is integrable.



II. Interaction of two solitons with almost equal sizes

Now, we assume

0 < µ0 =
c−2 − c−1
c−1 + c−2

� 1.

• In the integrable case, let Uc−1 ,c
−
2

be a KdV 2–soliton. Using

explicit formulas, [LeVeque, 1987] proved

sup
t,x

∣∣∣Uc−1 ,c
−
2

(t, x)− Qc1(t)(x − y1(t))− Qc2(t)(x − y2(t))
∣∣∣ ≤ Cµ20.

Moreover,

min
t

(y1(t)− y2(t)) = 2| lnµ0|+ O(1).

Two solitons with almost equal speeds do not cross and
remain at a large distance for all time.



• In the quartic (non integrable) case, there are no explicit
2-solitons, but µ0 � 1 allows use of perturbation theory.

THM [Mizumachi, 2003]
Assume

u(0) ∼ Q(x) + Q(x + Y0) where Y0 > 0 is large

Then, for some c+1 > c+2 close to 1, for large time,

u(t, x) = Qc+1
(x − c+1 t − y+1 ) + Qc+2

(x − c+2 t − y+2 ) + w(t, x),

where w is small.



Using time reversibility (t → −t, x → −x), Mizumachi’s result
constructs a 2-soliton like solution for all time:

At +∞,

u(t, x) = Qc+1
(x − c+1 t − y+1 ) + Qc+2

(x − c+2 t − y+2 ) + w(t, x),

and at −∞,

u(t, x) = Qc+1
(x − c+1 t − y−1 ) + Qc+2

(x − c+2 t − y−2 ) + w(t, x).

For all time, the two solitons are separated at least by 1
2Y0.



Our result improves on Mizumachi’s ansatz to give more
information on such solutions.

The principal question concerns the elastic or inelastic character
of the collision.

Assume c−1 ∼ c−2 ∼ 1.
We change variables, so that the problem is to study solutions of

Ut + (Uxx − U + U4)x = 0, t, x ∈ R.

behaving as a sum Q1+µ1(t)(x − y1(t)) + Q1+µ2(t)(x − y2(t)) for
µ1, µ2 small.



Assume 0 < µ0 � 1. Let U(t) be such that

lim
t→−∞

U(t)− Q1−µ0(.+ µ0t)− Q1+µ0(.− µ0t) = 0,

THM 2 [Martel and Merle, 2010]
There exist µ1(t), µ2(t), y1(t), y2(t) such that

U(t, x) = Q1+µ1(t)(x − y1(t)) + Q1+µ2(t)(x − y2(t)) + w(t, x)

I Sharp stability:

sup
t∈R
‖w(t)‖H1 ≤ µ2−0 ,

min
t

(y1(t)− y2(t)) = 2| lnµ0|+ O(1)

lim
t→+∞

µ1(t) = µ+1 ∼ µ0, lim
t→+∞

µ2(t) = µ+2 ∼ −µ0

I Inelasticity: for K > 0,

µ+1 − µ0 & µ50, µ+2 + µ0 . −µ50, lim inf
t→+∞

‖w(t)‖H1 6= 0



Interaction of two solitons of almost equal size for quartic gKdV

• Inelasticity of the interaction.

lim inf
t→+∞

�w(t)�H1 ≥ cµ3
0, (10.14)

µ+
1 ≥ µ0 + cµ5

0, µ+
2 ≤ −µ0 − cµ5

0. (10.15)

It follows immediately from the lower bound (10.14) that no pure 2-soliton exists,
which was a new result in this regime.

Comments on the results:

1. For the specific solution U(t) considered in Theorem 11, the dynamics of the pa-
rameters µj(t), yj(t) are closely related to the function

Y (t) = Y0 + 2 ln(cosh(µ0t)) which solves Ÿ = 2αe−Y , lim
±∞

Ẏ = ±2µ0, Ẏ (0) = 0. (10.16)

More information on the behavior of U(t) and the parameters µj(t), yj(t) in terms of Y (t)
is available in [60].

2. Theorem 11 answers the two questions raised before concerning the interaction of
two solitons of almost equal speeds. The lower bounds in estimates (10.14) and (10.15)
measure the defect of U(t) at +∞; in other words, they quantify in the energy space H1

the inelastic character of the collision of 2 solitons of (10.8) in the regime where µ0 is
small.

The behavior of the solution U(t) considered in Theorem 11 is represented schemati-
cally by the following picture:

non zero residual

1 + µ0

> 1 + µ0< 1 − µ0

1 − µ0

t → −∞

t ∼ 0

t → +∞
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Sketch of the proof of THM 2

(1) Main step: construction of an approximate solution
We use separation of variables, solitons spatial decoupling and the
special form of the nonlinear interactions of the two solitons

(2) Stability proof
We use refinements of stability and asymptotic stability techniques.
Such arguments are needed after the collision but also during the
collision to justify the approximate solution on a large time interval
(T � | lnµ0|).

(3) Inelasticity
Qualitative version, using a contradiction argument



(1) Main step: construction of an approximate solution

We look for an approximate solution of Vt + (Vxx −V + V 4)x = 0,

Vµ1(t),µ2(t),y1(t),y2(t)(x) = R1(t, x) + R2(t, x) + w(t, x),

where
Rj(t, x) = Q1+µj (t)(x − yj(t)).

Recall
Q ′′1+µj + Q4

1+µj
= (1 + µj)Q1+µj ,

(
d

dµ
Q1+µ

)

|µ=µj
=

1

1 + µj

(
1

3
Q1+µj +

1

2
xQ ′1+µj

)
= ΛQ1+µj ,

and set ΛRj(t, x) = ΛQ1+µj (x − yj(t)),



Then,

Vt + (Vxx − V + V 4)x = E + F + G (w) + H(w).

E =
∑

j=1,2

µ̇jΛRj +
∑

j=1,2

(µj − ẏj)(Rj)x ,

F =
(
(R1 + R2)4 − R4

1 − R4
2

)
x
,

G (w) =
(
wxx − w + 4

(
R3
1 + R3

2

)
w
)
x
,

H(w) = wt +
(

(R1 + R2 + w)4 −
(
(R1 + R2)4 + 4

(
R3
1 + R3

2

)
w
))

x

E : time derivative of R1(t) and R2(t)
F : nonlinear interaction terms between R1 and R2

G : linear terms of order 1 in w
H: higher order terms



Using Q(x) ∼
x→∞

(10)1/3e−|x |,

F =
(
4R2R

3
1+6R2

1R
2
2 + 4R1R

3
2

)
x

= 4(10)1/3
(
e−x+y2Q3(x−y1) + 4(10)1/3ex−y1Q3(x−y2)

)
x

+ ...

= 4(10)1/3e−y
(
e−x+y1Q3(x−y1) + ex−y2Q3(x−y2)

)
x

+ ...

where y = y1 − y2 is the distance between the two solitons.

Three independent variables : x1 = x − y1, x2 = x − y2 and e−y .

Let

wA(t, x) = e−y(t) (A1(x − y1(t)) + A2(x − y2(t))) .

For a suitable choice of A1(x), A2(x), a and α, we find

FA+G (wA)+αe−y (ΛR1 − ΛR2) + ae−y ((R1)x + (R2)x) = O(e−
3
2
y )

The values of a and α are unique to solve the problem



Returning to the equation of V and the expression of E , we get

µ̇1 ∼ αe−y , µ̇2 ∼ −αey ,
ẏ1 ∼ µ1 − ae−y , ẏ2 ∼ µ2 − ae−y .

In particular, ÿ ∼ 2αe−y

For the proof of THM 2, we need to compute an approximate
solution V up to order e−2y(t). Then, the system becomes

µ̇1 ∼ α e−y + β µ1 y e
−y ,

µ̇2 ∼ −α e−y − β µ2 y e−y ,
ẏ1 ∼ µ1 − a e−y−b1 µ1 y e−y ,
ẏ2 ∼ µ2 − a e−y − b2 µ2 y e

−y .



(2) Stability proof

Write the solution U(t) as

U(t, x) = Vµ1(t),µ2(t),y1(t),y2(t)(x) + ε(t, x),

where ε(t) is a rest term.

The control of the rest term ε(t) uses variants of techniques used
for large time stability and asymptotic stability of solitons and
multi-solitons. Note that the solitons are decoupled for all time
since y(t) = y1(t)− y2(t) is large as µ0 is small.

We obtain ‖ε(t)‖H1 ≤ µ
5
2

−

0 for all t.



(3) Inelasticity

Assume U(t) is a pure 2-soliton solution.

A contradiction follows from:

I On the one hand, by uniqueness properties, U(t) satisfies
U(t, x) = U(−t,−x) up to translation in space and time.
Thus, µj(t), yj(t) which are related to U(t) also have
symmetry properties under the transformation t → −t.

I On the other hand, the dynamical system satisfied by µj(t),
yj(t) is not symmetric by the transformation x → −x , t → −t
at order e−

3
2
y(t). Indeed, from the algebra in the quartic case,

we have b1 6= b2. (In the integrable case, f (u) = u2, we have
checked b1 = b2.)


