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Abstract:
If the first mathematical results were obtained more than 30 years
ago with the interpretation of the celebrated Hofstadter butterfly,
more recent experiments in Bose-Einstein theory suggest new
questions. I will present a survey on sometime old results
(Helffer-Sjöstrand, Puig, Avila-Jitomirskaya-Krikorian,...) and also
discuss more recent questions with generalized butterflys (Dalibard
and coauthors, Hou, Royo-Letelier ... and many authors in this
conference). Our historics is focused on the mathematical results
and we refer to [DalGerJuzOhb] for a survey on the Physics
literature adding perhaps the names of Wilkinson, Bellissard in the
list..



The spectral properties of a charged particle in a two-dimensional
system submitted to a periodic electric potential and a uniform
magnetic field crucially depend on the arithmetic properties of the
number θ representing the magnetic flux quanta through the
elementary cell of periods, see e.g. [Bel] for a description of various
models.
Since the works by Azbel [Az] and Hofstadter [Hof] it is generally
believed that for irrational α the spectrum is a Cantor set, that is a
now-where dense (the interior of the closure is empty) and perfect
set (closed + no isolated point), and the graphical presentation of
the dependence of the spectrum on θ shows a fractal behavior
known as the Hofstadter butterfly.



After intensive efforts this was rigorously proved recently (Ten
Martinis conjecture) for all irrational values of α for the discrete
Hofstadter model, i.e. the discrete magnetic Laplacian admitting a
reduction to the almost Mathieu equation, see [AvJi] and
references therein.



Only few results are available for other models. Traditionally, a
couple of semiclassical methods plays an important role in the
analysis of the two-dimensional magnetic Schrödinger operators
with periodic potentials, see e.g. [BDP] for a review. In particular,
the bottom part of the spectrum for strong magnetic fields can be
described up to some extent using the tunnelling asymptotics.
As this meeting shows, physicists have no problems to use these
results without to come back to the initial problem.



Coming back to mathematics, a more detailed analysis (Helffer and
Sjöstrand [HS1, HS2, HS3]) shows that the study of some parts of
the spectrum for the Schrödinger operator with a magnetic field
and a periodic electric potentials reduces to the spectral problem
for an operator pencil of one-dimensional quasiperiodic
pseudodifferential operators.

Under some symmetry conditions for the electric potentials, the
operator pencil reduces to the study of small perturbation of the
continuous analog of the almost-Mathieu (=Harper) operator,
which allowed one to carry out a rather detailed iterative analysis
for special values of α.
In particular, in several asymptotic regimes a Cantor structure of
the spectrum was proved.
This involved a pseudo-differential calculus, whose relevance in this
context was predicted by the physicist Wilkinson (from england).



Pseudo-differential operators

In [HS1, HS2, HS3] (1988-1990) a machinery was developed for an
iterative semiclassical analysis of a special class of
pseudodifferential operators. One was concerned with the
non-linear spectral problem (or, in other words, with the spectral
problem for an operator pencil). Namely, for a family of
self-adjoint operators A(µ) depending µ ∈ R the µ-spectrum
µ-specA(µ) denotes the set of all µ such that 0 ∈ SpecA(µ).
The simplest case being the family A− µ.



Quantization

Let L : R2 → R be a periodic smooth function,
L(x , ξ + 2π;µ, h) = L(x + 2π, ξ;µ, h) = L(x , ξ;µ, h). Here µ and h
are real parameters. By the Weyl quantization procedure one can
assign to L an operator L̂h(µ) in L2(R) by

L̂h(µ)f (x) =
1

2πh

∫
R

∫
R

e iξ(x−y)/hL
(x + y

2
, ξ;µ, h

)
f (y)dξ dy . (1)



The operator L̂h obtained is referred to as the Weyl h-quantization
of L, and quantum Hamiltonians resulting from periodic symbols
are often called Harper-like operators.

In particular, the symbol L(x , ξ) := cos x + cos ξ produces the
Harper operator on the real line,

L̂hf (x) =
f (x + h) + f (x − h)

2
+ cos x f (x). (2)



In [HS3], in order to treat the Harper operator and perturbations
of it occuring in a renormalization procedure, the following notion
was introduced.

Definition

A symbol L(x , ξ;µ, h) will be called of strong type I if the following
conditions are satisfied for all h ∈ (0, h0) with some h0 > 0:

(a) L depends analytically on µ ∈ [−4, 4].

(b) There exists ε > 0 such that

(b1) L(x , ξ;µ, h) is holomorphic in

Dε =
{

(µ, x , ξ) ∈ C× C× C : |µ| ≤ 4, |=x | < 1

ε
, |=ξ| < 1

ε
,
}
,

(b2) for (µ, x , ξ) ∈ Dε, there holds∣∣L(x , ξ;µ, h)− (cos x + cos ξ − µ)
∣∣ ≤ ε.



Continuation of the definition

(c) The following symmetry conditions hold:

L(x , ξ;µ, h) = L(ξ, x ;µ, h) = L(x ,−ξ;µ, h)
L(x , ξ;µ, h) = L(x + 2π, ξ;µ, h) = L(x , ξ + 2π;µ, h).

By ε(L) we will denote the minimal value of ε for which the above
conditions hold.



In [HS1, HS2, HS3] a detailed analysis was performed for
pseudodifferential operators associated with strong type I symbols.
One of the results was

Theorem 1

Let L(µ, h) be a strong type I symbol. There exist ε0 , C s. t. if
ε(L) ≤ ε0 and if (2π)−1h is an irrational admitting a representation
as a continuous fraction

h

2π
=

1

n1 +
1

n2 +
1

n3 + . . .

with nj ≥ C , then the µ-spectrum of the associated operators

L̂h(µ) is a zero measure Cantor set.

In particular, this applies to the spectrum of the Harper’s model.
But the theorem says also that this is stable by perturbations
respecting all the symmetries.



Schrödinger operators with magnetic potentials

For operators H =
∑2

j=1(hDxj − Aj )
2 + V with periodic potentials

V ,
V (x1 + 2π, x2) ≡ V (x1, x2 + 2π) ≡ V (x1, x2) ,

and constant (or periodic) magnetic fields

Curl ~A = B ,

it was shown in several asymptotic regimes that the study of some
parts of the spectrum reduces to a non-linear spectral problem of
the above type.



This is for example the case when

I B−1-pseudodifferential operators with symbols close to
V (x , ξ) (see for example [HS4] which treats the strong
magnetic case)

I for B-pseudodifferential operators with symbols to the first
Floquet eigenvalue of the Schrödinger operator without
magnetic field (Peierls substitution) (corresponding to the
case of the weak magnetic field, see [HS1], [HS3] and [HS4]
and earlier contribution by physicists (see in [Bel] and
references therein).



Hence, strong type I operators appear for strong magnetic field
when considering potentials V close to cos x1 + cos x2.
Moreover in the semi-classical limit or in the tight binding
situation, it can be shown (case of a square lattice) that—up to
the multiplication by an exponentially small term corresponding to
the tunneling—– the lowest Floquet eigenvalue is close to
(cos θ1 + cos θ2).
Here it is important to assume the symmetry for V
V (−x2, x1) = V (x1, x2), an assumption of non degenerate minima
for V (one for each cell) and a geometric assumption on the
geodesics for neighboring wells (the geometry is the Agmon metric
(V −min V )dx2).



Symbols associated with some discrete operators

It is well known that the spectrum of the operator (2) as a set
coincides with the spectrum of the discrete magnetic Laplacian
acting on `2(Z2), see e.g. [HS1],

Chf (m, n) = e ihnf (m+1, n)+e−ihnf (m−1, n)+f (m, n−1)+f (m, n+1).

More generaly consider a bounded linear operator Ch acting on
`2(Z2) given by an infinite matrix

(
C (p, q)

)
, p, q ∈ Z2, satisfying

C (p + k , q + k) = e−ihk2(p1−q1)C (p, q), p, q, k ∈ Z2, (3)

with some h > 0.



Proposition A

Let Ch be a bounded self-adjoint operator in `2(Z2) with the
property (3) and satisfying |C (p, q)| ≤ ae−b|p−q| for some a, b > 0
and all p, q ∈ Z2. Then the spectrum of Ch coincides with the
spectrum of the Weyl h-quantization of the symbol T given by

T (x , ξ) =
∑

m,n∈Z
c(m, n)e−imnh/2e i(mx+nξ), (4)

where c(m, n) = C
(
(0, 0), (m, n)

)
, m, n ∈ Z.



A third point of view

Let us return to the initial operator Ch. By assumption,
C (p, q) = exp

(
ihp2(q1 − p1)

)
c(q − p) for any p, q ∈ Z2, hence

Chf (p) =
∑

q∈Z2 e ihp2(q1−p1)c(q − p)f (q)

=
∑

q∈Z2 e ihp2q1c(q)f (p + q).

Therefore, Ch commutes with the shift f (p1, p2) 7→ f (p1 + 1, p2),
and the Floquet-Bloch theory is applicable.



Let us introduce the functions

R 3 ϕ 7→ bn(ϕ) =
∑
k∈Z

c(k , n)e ikϕ, n ∈ Z, ϕ ∈ R.

All these functions are 2π-periodic and analytic in a complex
neighborhood of R. Consider a family of operators acting in `2(Z),

Ch(θ)g(m) =
∑
n∈Z

bn(mh + θ)g(m + n), m ∈ Z, θ ∈ R ,

which satisfies
Ch(θ) = Ch(θ + 2π) .



Therefore, by the Floquet-Bloch theory, one has

SpecCh =
⋃

θ∈[0,2π)

SpecCh(θ) .

Furthermore, for any θ the operators Ch(θ) and Ch(θ + h) are
unitarily equivalent, Ch(θ + h) = SCh(θ)S−1, where S is the shift
in `2(Z), Sf (n) = f (n + 1), which implies
SpecCh =

⋃
θ∈[0,h) SpecCh(θ).

This coincides with the spectrum of the following operator Th

acting in L2
(
Z× [0, h)

)
Thu(m, θ) = Ch(θ)uθ(m), uθ(m) = u(m, θ), m ∈ Z.



In the case of the symbol (x , ξ) 7→ cos x + cos ξ we get the
Hofstadter’s butterfly
On the vertical axis the parameter proportional to the flux
α = h

2π ∈ [0, 1]. On the horizontal line y = α the union over θ of
the spectra of the family Ch(θ). The picture results of
computations for rational α’s.

The hamiltonian point
of view permits to explain the behavior of the spectrum as α 7→ 0
or more generally as α→ p

q .



The gaps in the spectrum.
This is the ”colored” butterfly realized in 2003 by Y. Avron and his
team.

	  



One can consider other lattices: the hexagonal Hofstadter’s
butterfly (after Kerdelhue, Kreft-Seiler, Claro,....)



Let us consider more generally the family of operators on `2(Z)

(Hλ,αu)n = un+1 + un−1 + 2λ cos 2π(θ + nα)un .

Different names for this operator are given including Harper or
Almost-Mathieu.
If α = p

q is rational the spectrum consists of the union of q
intervals possibly touching at the end point. If α is irrational the
spectrum is independent of θ and:

Ten Martini Theorem

The spectrum of the almost Mathieu operator Hλ,α is a Cantor set
for all irrational α and for all λ 6= 0.

Previously, we were discussing the case λ = 1. Ten Martini
conjectures was popularized by B. Simon in reference to some offer
of M. Kac.
Computations for λ 6= 1 are proposed in a ”numerical” paper of
Guillement-Helffer-Treton [GHT].



Historics

Azbel (1964), Bellissard-Simon (1982), Van Mouche (1989),
Helffer-Sjöstrand (1989), Puig (2004), Avila-Krikorian (2008),
Avila-Jitomirskaya (2009).
Unfortunately Mark Kac is not here for offering the ten Martini.



About the proof

I The proof is more related to dynamical systems.

I It involves different arguments for different families of
irrationals (diophantine, Liouville).

I This result cannot be applied to the magnetic Schrödinger
operator.

I The result is unknown for the hexagonal case (see however the
semi-classical results by P. Kerdelhue [Kerd] ).



Recent developments

Using lasers one can produce potentials which are related to
various lattices. Hence there are new experiments permitting to
recover Harper’s like spectrum.

As soon as I understand, one is extremely far of seeing some
Cantor spectrum. But one can see, for example if the flux through
a cell is close to 2π × 1

3 two ”big” gaps in the spectrum.



Other examples

J. Royo-Leteller has started (see [Hou] ) to analyze rigorously the
case of a Kagome lattice.

The minima appear on the center of the black zone around an
hexagon. The maximum at the center of the Hexagon. Each
minimum has four nearest neighbours (for the Agmon distance).
These minima are leaving on a Kagome lattice (subset of an
hexagonal lattice). The figure is invariant by the double triangular
lattice.



The Kagome butterfly



We recall that the Harper model was τ1 + τ∗1 + λ(τ2 + τ∗2 ), which
corresponds to the h− quantification of 2 cos ξ + 2λ cos x , with
h = 2πα.
Here we take τ1 = e ix and τ2 = e ihDx , with h proportional to some
flux.
K̂ is isospectral to the h-pseudodifferential system on the line : 0 1 + τ∗2 1 + e i h

2 τ1τ
∗
2

1 + τ2 0 e−i h
8 + e i 3h

8 τ1

1 + e−i h
2 τ2τ

∗
1 e i h

8 + e−i 3h
8 τ∗1 0

 (5)



The h-principal symbol is 0 1 + e−iξ 1 + e−iξ+ix

1 + e iξ 0 1 + e ix

1 + e−ix+iξ 1 + e−ix 0

 (6)



The characteristic polynomial is

∆(λ, x , ξ) = −λ3 + 2λ(3 + cos ξ + cos(ξ − x) + cos x)
+4(1 + cos ξ + cos x + cos(ξ − x)) .

It has three roots :

λ1 = −2 , λ±(x , ξ) = 1±
√

3 + 2 cos ξ + 2 cos(ξ − x) + 2 cos x .

The range is [−1, 4] as confirmed by the numerical computations
in [Hou].



This seems to have the triangular symmetry. This characteristic
polynomial seems to have a nice structure like for the Harper’s
model.

In [Kerd], one meets the matrix(
0 1 + e ix + e iξ

1 + e−ix + e−iξ 0

)
whose characteristic polynomial is

∆(λ) = λ2 − (3 + 2 cos x + 2 cos(x − ξ) + 2 cos ξ) .

with roots

λ±(x , ξ) = ±
√

3 + 2 cos x + 2 cos(x − ξ) + 2 cos ξ .



Artificial magnetic flux

We follow the colloquium paper of Dalibard, Gerbier, and co
[DalGerJuzOhb] (Colloquium: Artificial gauge potentials for
neutral atoms) but just described what is mathematically done.
The starting point is a Schrödinger operator on L2(R2;C2) :

Sh := (−h2∆ + V (x))⊗ I + hU(x) ,

where U(x) is the 2× 2 matrix:

U(x) =
Ω

2

(
cos θ e−iφ sin θ

e iφ sin θ − cos θ

)
,

φ and θ are C∞ functions, and Ω > 0.



U has two eigenvalues ±Ω
2 and we would like to see the effect of

the term hU(x) on the spectrum.
For each x , the eigenvectors of U(x) are given by

χ1(x) =

(
cos θ2

e iφ sin θ
2

)
, χ2(x) =

(
− sin θ

2 e−iφ

cos θ2

)
.

In some regime (to be determined, and which is called adiabatic in
the above mentioned paper) it is natural to look (neglecting the
interactions in the two particles) to look at the two operators:

L2(R2,C) 3 u 7→ Heff
j u := 〈χj (x) ,Sh(uχj )(x)〉C2 ,

where 〈· , ·〉C2 denotes the scalar product in C2 (with the choice
that it is antilinear with the second variable).



Let us concentrate on the case j = 1 and let us make explicit the
effective Hamiltonian Heff

1 relative to χ1.

Heff
1 := (hDx − hA)2 +

h

2
Ω + V (x) +

h2

4

(
|∇θ|2 + sin2(θ)|∇φ|2

)
where

A = −(sin
θ

2
)2∇φ = −1

2
(1− cos θ)∇φ .

The first interesting point to observe is that A is not exact.That is
we can compute the corresponding magnetic field and we get

B(x) = −1

2
sin θ(x) (∇θ(x)×∇φ(x)) , (7)

where × denotes the interior product of two vectors in R2.



Remarks and naive questions

As observed in [DalGerJuzOhb], if we work with χ2, we will get an
opposite flux.

The semi-classical analysis of the initial model seems to be OK if
we assume that V has non degenerate minima and if Ω is small
enough. We have indeed to avoid some resonance between the
spectra of Heff

1 and Heff
2 , which can be read on the harmonic

approximation at the minima. W does not change anything !
May be φ should be h-dependent ?

Question : can we obtain with suitable φ and θ a non trivial
constant (periodic) magnetic field on R2 ? Easy to do it locally
(take φ(x) = x2 and θ(x) = arccos x1) but may be impossible
globally.



Vector valued magnetic potential.
One can also diagonalize U(x) using the matrix :

P(x) =

(
cos θ2 − sin θ

2 e−iφ

e iφ sin θ
2 cos θ2

)
Our initial operator is unitarily equivalent to a matrix-valued

Schrödinger operator

(hD − hA)2 + V

with electric potential

V := V ⊗ I + hΩ

(
1 0
0 1

)
and a magnetic potential which can be computed as

Aj = −iP∗(x) (∂j P)(x).
Hence

Aj =

(
1
2 (1− cos θ)(∂jφ) i

2 e−iφ∂jθ

− i
2 e iφ∂jθ

1
2 (cos θ − 1)∂jφ

)
.



Finally the magnetic field is given by

Bjk := ∂k Aj − ∂j Ak + i [Aj ,Ak ] ,

and after computation (?)

Bjk =

(
1
2 sin θ −1

4 (3 + cos θ)e−iφ

−1
4 (3 + cos θ)e iφ −1

2 sin θ

)
(∂kθ ∂jφ−∂jθ ∂kφ) .

We recover may be in a more natural way the ”effective” magnetic
field we have found in the effective Hamiltonian Heff

1 .

The computations have to be controlled but we can do the
semi-classical analysis in the usual way. Starting at the minimum
of V with the standard semi-classical analysis.
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