Eigenvalues of a nonlinear ground state in the Thomas-Fermi approximation.

Clément Gallo¹ and Dmitry Pelinovsky²,

1 Université Montpellier 2, France 2 McMaster University, Hamilton, Ontario, Canada

(GP)
$$iu_t + \varepsilon^2 \Delta u + (1 - |x|^2)u - |u|^2 u = 0,$$

where $(t,x) \in \mathbb{R} \times \mathbb{R}^d$, d = 1,2,3 and ε is a small parameter.

Existence of the ground state η_{ε}

Theorem (Ignat-Millot, 2006). For ε sufficiently small, there exists a positive minimizer η_{ε} of the Gross–Pitaevskii energy

$$E_{\varepsilon}(u) = \int_{\mathbb{R}} \left(\varepsilon^2 |\nabla u|^2 + (|x|^2 - 1)|u|^2 + \frac{1}{2}|u|^4 \right) dx$$

in the energy space

$$\mathcal{H}_1 = \left\{ u \in H^1(\mathbb{R}^d): \ |x|u \in L^2(\mathbb{R}^d) \right\}.$$

 η_{ε} is a stationnary solution of (GP):

(SGP)
$$\varepsilon^2 \Delta \eta_{\varepsilon} + (1 - |x|^2) \eta_{\varepsilon} - \eta_{\varepsilon}^3 = 0.$$

Convergence of η_{ε}

As $\varepsilon \to 0$, $\eta_{\varepsilon}(x)$ converges to

$$\eta_0(x) = \begin{cases}
\sqrt{1 - |x|^2} & \text{if } |x| < 1 \\
0 & \text{if } |x| > 1.
\end{cases}$$

More precisely,

$$\left\{ \begin{array}{ll} (1-C\varepsilon^{1/3}) \leqslant \frac{\eta_\varepsilon(x)}{(1-x^2)^{1/2}} \leqslant 1 & \text{ for } |x| \leqslant 1-\varepsilon^{2/3} \\ 0 \leqslant \eta_\varepsilon(x) \leqslant C\varepsilon^{1/3} \exp\left(\frac{1-x^2}{4\varepsilon^{2/3}}\right) & \text{ for } |x| \geqslant 1-\varepsilon^{2/3} \end{array} \right.$$

(Aftalion-Alama-Bronsard, 2005; Ignat-Millot, 2006)

Goal

Understand better the behaviour of η_{ε} as $\varepsilon \to 0$.

Motivation: behaviour of the eigenvalues of the linearized operator of (GP) at η_{ε} as $\varepsilon \to 0$, for d=1:

$$u = \eta_{\varepsilon} + v + iw + \mathcal{O}(\|v\|^{2} + \|w\|^{2})$$

$$\partial_{t} \begin{pmatrix} v \\ w \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & \varepsilon^{2} L_{-}^{\varepsilon} \\ -\varepsilon^{2} L_{+}^{\varepsilon} & 0 \end{pmatrix}}_{} \begin{pmatrix} v \\ w \end{pmatrix},$$

where
$$L_{-}^{\varepsilon} = -\partial_{x}^{2} + \frac{x^{2}-1+\eta_{\varepsilon}^{2}}{\varepsilon^{2}}, \qquad L_{+}^{\varepsilon} = -\partial_{x}^{2} + \frac{x^{2}-1+3\eta_{\varepsilon}^{2}}{\varepsilon^{2}}.$$

 λ is an eigenvalue of $\mathcal{L}_{\varepsilon}$ iff $\gamma = -\lambda^2/\varepsilon^2$ is an eigenvalue of (\mathcal{L}) $\varepsilon^2 L_{+}^{\varepsilon} L_{-}^{\varepsilon} w = \gamma w.$

Formal convergence in a simplified problem

In the original operators L^{ε}_{\pm} we replace η^2_{ε} by η^2_0 . We obtain new operators L^{ε}_{\pm} :

$$L_{-}^{\varepsilon} = -\partial_{x}^{2} + \frac{x^{2}-1+\eta_{0}^{2}}{\varepsilon^{2}}, \qquad L_{+}^{\varepsilon} = -\partial_{x}^{2} + \frac{x^{2}-1+3\eta_{0}^{2}}{\varepsilon^{2}}.$$

Then, formally,

$$\varepsilon^{2} \mathcal{L}_{+}^{\varepsilon} \mathcal{L}_{-}^{\varepsilon} = \left(-\varepsilon^{2} \partial_{x}^{2} + x^{2} - 1 + 3\eta_{0}^{2} \right) \left(-\partial_{x}^{2} + \frac{x^{2} - 1 + \eta_{0}^{2}}{\varepsilon^{2}} \right)$$

$$\rightarrow \left(x^{2} - 1 + 3\eta_{0}^{2} \right) \left(-\partial_{x}^{2} + \infty \cdot \mathbf{1}_{\{|x| > 1\}} \right).$$

Theorem. The eigenvalues of (\mathcal{L}) converge as $\varepsilon \to 0$ to the eigenvalues $\gamma_n = 2n(n+1)$, $n \ge 1$ of

$$2(1-x^2)(-\partial_x^2)w = \gamma w,$$
 $x \in (-1,1)$

with Dirichlet boundary conditions $w(\pm 1) = 0$.

Formal convergence in the original problem

With the original operators L_{\pm}^{ε} :

$$L_{-}^{\varepsilon} = -\partial_{x}^{2} + \frac{x^{2} - 1 + \eta_{\varepsilon}^{2}}{\varepsilon^{2}}, \qquad L_{+}^{\varepsilon} = -\partial_{x}^{2} + \frac{x^{2} - 1 + 3\eta_{\varepsilon}^{2}}{\varepsilon^{2}},$$

we have formally from the expansion of $\eta_{arepsilon}$

$$\varepsilon^{2}L_{+}^{\varepsilon}L_{-}^{\varepsilon} = \left(-\varepsilon^{2}\partial_{x}^{2} + x^{2} - 1 + 3\eta_{\varepsilon}^{2}\right)\left(-\partial_{x}^{2} + \frac{x^{2} - 1 + \eta_{\varepsilon}^{2}}{\varepsilon^{2}}\right)$$

$$\rightarrow \left(x^{2} - 1 + 3\eta_{0}^{2}\right)\left(-\partial_{x}^{2} - \frac{1}{(1 - x^{2})^{2}}\mathbf{1}_{\{|x| < 1\}} + \infty \cdot \mathbf{1}_{\{|x| > 1\}}\right).$$

Conjecture. The eigenvalues of (\mathcal{L}) converge as $\varepsilon \to 0$ to the eigenvalues $\gamma_n = 2n(n+1)$, $n \ge 0$ of

$$2(1-x^2)\left(-\partial_x^2 - \frac{1}{(1-x^2)^2}\right)w = \gamma w, \qquad x \in (-1,1)$$

with Dirichlet boundary conditions $w(\pm 1) = 0$.

A change of variable

Write

$$\eta_{\varepsilon}(x) = \varepsilon^{1/3} \nu_{\varepsilon}(y), \quad y = \frac{1 - |x|^2}{\varepsilon^{2/3}}.$$

Then, ν_{ε} solves

 $(\mathsf{Eq} \nu_{\varepsilon})$

$$4(1-\varepsilon^{2/3}y)\nu_{\varepsilon}'' - 2\varepsilon^{2/3}d\nu_{\varepsilon}' + y\nu_{\varepsilon} - \nu_{\varepsilon}^{3} = 0, \quad -\infty < y \leqslant \varepsilon^{-2/3}.$$

In the limit $\varepsilon \to 0$, we formally obtain the Painlevé II equation,

(PII)
$$4\nu_0'' + y\nu_0 - \nu_0^3 = 0, \quad y \in \mathbb{R}.$$

Moreover, as $\varepsilon \to 0$,

$$\varepsilon^{1/3}\nu_{\varepsilon}(\frac{1-|x|^2}{\varepsilon^{2/3}}) \to \left\{ \begin{array}{ccc} \sqrt{1-|x|^2}, & |x|<1 & \rightsquigarrow & \nu_0(y) \underset{y \to +\infty}{\sim} \sqrt{y}, \\ 0, & |x|>1 & \rightsquigarrow & \nu_0(y) \underset{y \to -\infty}{\rightarrow} 0. \end{array} \right.$$

The Hastings McLeod solution of (PII)

Proposition. (Hastings-McLeod, 1980 ; Fokas et al., 2006) (PII) has a unique solution $\nu_0 \in \mathcal{C}^{\infty}(\mathbb{R})$ such that

$$u_0(y) \sim y^{1/2} \quad \text{as} \quad y \to +\infty \quad \text{and} \quad \nu_0(y) \to 0 \quad \text{as} \quad y \to -\infty.$$

Moreover, ν_0 is strictly increasing on \mathbb{R} . As $y \to -\infty$ we have

$$\nu_0(y) = \frac{1}{2\sqrt{\pi}} (-2y)^{-1/4} e^{-\frac{2}{3}(-2y)^{3/2}} \left(1 + \mathcal{O}(|y|^{-3/4}) \right) \underset{y \to -\infty}{\approx} 0,$$

whereas as $y \to +\infty$,

$$u_0(y) \underset{v \to +\infty}{\approx} y^{1/2} \sum_{n=0}^{\infty} \frac{b_n}{(2y)^{3n/2}}$$
,

where $b_0 = 1$, $b_1 = 0$, and for $n \ge 0$,

$$b_{n+2} = 4(9n^2 - 1)b_n - \frac{1}{2} \sum_{i=1}^{n+1} b_m b_{n+2-m} - \frac{1}{2} \sum_{i=1}^{n+1} \sum_{j=1}^{n+2-l} b_j b_m b_{n+2-l-m}.$$

Main Result

Theorem. For every $N \geqslant 0$, there is $\varepsilon_N > 0$ and $C_N > 0$ such that for $0 < \varepsilon < \varepsilon_N$, there exists $R_{N,\varepsilon} \in \mathcal{C}^{\infty} \cap L^{\infty}(-\infty, \varepsilon^{-2/3})$ such that

$$\nu_{\varepsilon} = \sum_{n=0}^{N} \varepsilon^{2n/3} \nu_n + \varepsilon^{2(N+1)/3} R_{N,\varepsilon}, \quad -\infty < y \leqslant \varepsilon^{-2/3}$$

is a positive solution of $(Eq\nu_{\varepsilon})$, where ν_0 is the Hastings-McLeod solution of the Painlevé II equation and the $(\nu_n)_{n\geqslant 1}\subset H^{\infty}(\mathbb{R})$ are defined recursively. Moreover,

$$\|R_{N,\varepsilon}\|_{L^{\infty}(-\infty,\varepsilon^{-2/3})} \leqslant C_N \varepsilon^{-(d-1)/3}$$

and

$$x \mapsto R_{N,\varepsilon}\left(\frac{1-|x|^2}{\varepsilon^{2/3}}\right) \in H^2(\mathbb{R}^d).$$

Proof of the main result: Multiple scale analysis

We plug $\nu_{\varepsilon} = \sum_{n=0}^{N} \varepsilon^{2n/3} \nu_n + \varepsilon^{2(N+1)/3} R_{N,\varepsilon}$ into

$$4(1-\varepsilon^{2/3}y)\nu_\varepsilon'' - 2\varepsilon^{2/3}d\nu_\varepsilon' + y\nu_\varepsilon - \nu_\varepsilon^3 = 0, \quad -\infty < y \leqslant \varepsilon^{-2/3}.$$

We get

- ▶ ν_0 solves (PII) \sim we choose ν_0 to be the Hastings McLeod solution of (PII)
- for $n \geqslant 1$, ν_n solves

$$-4\nu_n'' + W_0\nu_n = F_n, y \in \mathbb{R},$$

where

$$W_0(y) = 3\nu_0^2(y) - y,$$

$$F(y) = -\sum_{y \in Y} y_y y_y = 2dy' + 4yy$$

$$F_n(y) = -\sum_{\substack{n_1, n_2, n_3 < n \\ n_1 + n_2 + n_3 = n}} \nu_{n_1} \nu_{n_2} \nu_{n_3} - 2d\nu'_{n-1} - 4y\nu''_{n-1}.$$

Since $W_0 > 0$ and $F_n \in L^2(\mathbb{R})$ (if $(n, d) \neq (1, 2), (1, 3)$), we choose

$$\nu_n = \left(-\partial_y^2 + W_0\right)^{-1} F_n \in H^2(\mathbb{R}).$$

.

Proof of the main result: Equation of $R_{N,\varepsilon}$

▶ $R_{N,\varepsilon}$ solves, for $y \in (-\infty, \varepsilon^{-2/3})$,

$$-4(1-\varepsilon^{2/3}y)R_{N,\varepsilon}''+2\varepsilon^{2/3}dR_{N,\varepsilon}'+W_0R_{N,\varepsilon}=F_{N,\varepsilon}(y,R_{N,\varepsilon}),$$

where

$$F_{N,\varepsilon}(y,R) = -(4y\nu_N'' + 2d\nu_N')$$

$$-\sum_{n=0}^{2N-1} \varepsilon^{2n/3} \sum_{\substack{n_1 + n_2 + n_3 = n + N + 1 \\ 0 \leqslant n_1, n_2, n_3 \leqslant N}} \nu_{n_1}\nu_{n_2}\nu_{n_3}$$

$$-\left(3\sum_{n=1}^{2N} \varepsilon^{2n/3} \sum_{\substack{n_1 + n_2 = n \\ 0 \leqslant n_1, n_2 \leqslant N}} \nu_{n_1}\nu_{n_2}\right) R$$

$$-\left(3\sum_{n=1}^{2N+1} \varepsilon^{2n/3}\nu_{n-(N+1)}\right) R^2 - \varepsilon^{4(N+1)/3}R^3.$$

Proof of the main result: Construction of $R_{N,\varepsilon}$

We consider the map T_{ε} defined by

$$(T_{\varepsilon}u)(z) = u(\varepsilon^{-2/3} - \varepsilon^{2/3}|z|^2), \quad z \in \mathbb{R}^d.$$

The equation satisfied by $R_{N,\varepsilon}$ can be rewritten as

$$T_{\varepsilon}R_{N,\varepsilon}=(K_{\varepsilon})^{-1}T_{\varepsilon}F_{N,\varepsilon}(\varepsilon^{-2/3}-\varepsilon^{2/3}|z|^2,R_{N,\varepsilon}),$$

where

$$K_{\varepsilon} = -\Delta + W_0(\varepsilon^{-2/3} - \varepsilon^{2/3}|z|^2)$$

Then, $T_{\varepsilon}R_{N,\varepsilon}$ is obtained by a fixed point argument in $H^1(\mathbb{R}^d)$.

- ▶ $S \mapsto T_{\varepsilon} F_{N,\varepsilon}(\varepsilon^{-2/3} \varepsilon^{2/3} |z|^2, S)$ is continuous from $H^1_{rad}(\mathbb{R}^d)$ into $L^2_{rad}(\mathbb{R}^d)$ (Sobolev embeddings)
- ▶ $W_0 \geqslant C > 0$, thus $(K_{\varepsilon})^{-1} : L^2_{rad}(\mathbb{R}^d) \mapsto H^2_{rad}(\mathbb{R}^d)$ is continuous and uniformly bounded in ε .

Proof of the main result: $\nu_{\varepsilon} > 0$

From the asymptotic expansion of ν_{ε} , we deduce

$$\nu_{\varepsilon}(y) - \nu_0(y) \geqslant -C\varepsilon^{2/3}, \quad y \in (-\infty, \varepsilon^{-2/3}).$$

Since $\nu_0(y)$ increases from 0 to $+\infty$ as y goes from $-\infty$ to $+\infty$, we deduce that for $\varepsilon \ll 1$,

$$\nu_{\varepsilon}(y) \geqslant \nu_0(-1) - C\varepsilon^{2/3} > 0, \quad y \in [-1, \varepsilon^{-2/3}],$$

which means

$$\tilde{\eta}_{\varepsilon}(x) := \varepsilon^{1/3} \nu_{\varepsilon} \left(\frac{1 - |x|^2}{\varepsilon^{2/3}} \right) > 0, \quad |x| \leqslant (1 + \varepsilon^{2/3})^{1/2}.$$

It remains to prove that $\tilde{\eta}_{\varepsilon}(x) > 0$ for all $|x| > (1 + \varepsilon^{2/3})^{1/2}$.

Assume by contradiction that there is $r_{\varepsilon} > (1 + \varepsilon^{2/3})^{1/2}$ such that

$$\tilde{\eta}_{\varepsilon}(r_{\varepsilon})=0,\quad \tilde{\eta}'_{\varepsilon}(r_{\varepsilon})<0,$$

where $\tilde{\eta}_{\varepsilon}(|x|) = \tilde{\eta}_{\varepsilon}(x)$. Then, as long as $r > r_{\varepsilon}$ and $\tilde{\eta}_{\varepsilon}(r) < 0$,

$$\frac{d}{dr}\left(r^{d-1}\frac{d}{dr}\tilde{\eta}_{\varepsilon}\right)(r)=\frac{r^{d-1}}{\varepsilon^2}(r^2-1+\tilde{\eta}_{\varepsilon}(r)^2)\tilde{\eta}_{\varepsilon}(r)\leqslant 0,$$

thus, by integration,

$$r^{d-1}\tilde{\eta}'_{\varepsilon}(r) \leqslant r_{\varepsilon}^{d-1}\tilde{\eta}'_{\varepsilon}(r_{\varepsilon}) < 0,$$

and

$$\tilde{\eta}_{\varepsilon}(r) \leqslant r_{\varepsilon}^{d-1} \tilde{\eta}_{\varepsilon}'(r_{\varepsilon}) \int_{r_{\varepsilon}}^{r} s^{1-d} ds \searrow C \in [-\infty, 0),$$

which is a contradiction with the fact that $\tilde{\eta}_{\varepsilon}(r) \to 0$ as $r \to +\infty$. Therefore $\tilde{\eta}_{\varepsilon}(r) > 0$ for all $r \in \mathbb{R}_+$.

Application to the spectrum of L^{ε}_{+} **for** d=1

The Schrödinger operator

$$L_{+}^{\varepsilon} = -\partial_{x}^{2} + \frac{x^{2} - 1 + 3\eta_{\varepsilon}(x)^{2}}{\varepsilon^{2}}$$

is a positive self-adjoint operator on $L^2(\mathbb{R})$ and has a compact resolvent. The eigenfunctions corresponding to the (simple) eigenvalues λ_n^{ε} sorted in increasing order are even (resp. odd) in x if n is odd (resp. even).

If λ is an eigenvalue of L_+^{ε} and $\varphi \in L^2(\mathbb{R})$ is a corresponding eigenfunction, we define a function

$$v \in L^2_{\varepsilon} = \left\{ u \in L^1_{\mathsf{loc}}(-\infty, \varepsilon^{-2/3}) : (1 - \varepsilon^{2/3}y)^{-1/4}u \in L^2 \right\}$$

by

$$\varphi(x) = v\left(\frac{1-x^2}{\varepsilon^{2/3}}\right), \quad x \in \mathbb{R}_+.$$

 $\varphi\in L^2(\mathbb{R})$ is an even (resp. odd) eigenfunction of L^{ε}_+ corresponding to the eigenvalue λ if and only if $v\in L^2_{\varepsilon}$ solves for $y\in (-\infty, \varepsilon^{-2/3})$

$$\left(-4(1-\varepsilon^{2/3}y)^{1/2}\partial_y(1-\varepsilon^{2/3}y)^{1/2}\partial_y+W_{\varepsilon}\right)v=\varepsilon^{4/3}\lambda v,$$

where $W_{\varepsilon}(y)=3\nu_{\varepsilon}^2(y)-y$, and the Neumann boundary condition

$$\varphi'(0) = -2\varepsilon^{-2/3} \left((1 - \varepsilon^{2/3} y)^{1/2} v'(y) \right) \Big|_{y = \varepsilon^{-2/3}} = 0$$
 (NC)

(resp. the Dirichlet boundary condition

$$\varphi(0) = \nu(\varepsilon^{-2/3}) = 0). \tag{DC}$$

Let \check{M}^ε (resp. \tilde{M}^ε) be the Neumann (resp. Dirichlet) realization on L_ε^2 of

$$-4(1-\varepsilon^{2/3}y)^{1/2}\partial_y(1-\varepsilon^{2/3}y)^{1/2}\partial_y+W_\varepsilon(y)$$

The eigenvalues of L^{ε}_+ are related to the eigenvalues $\{\check{\mu}^{\varepsilon}_n\}_{n\geqslant 1}$ and $\{\tilde{\mu}^{\varepsilon}_n\}_{n\geqslant 1}$ of \check{M}^{ε} and \tilde{M}^{ε} by

$$\check{\mu}_n^\varepsilon = \varepsilon^{4/3} \lambda_{2n-1}^\varepsilon \quad \text{and} \quad \tilde{\mu}_n^\varepsilon = \varepsilon^{4/3} \lambda_{2n}^\varepsilon.$$

As $\varepsilon \to 0$, the eigenvalues of \check{M}^ε and \tilde{M}^ε converge to the eigenvalues of the operator on $L^2(\mathbb{R})$,

$$M^0 = -4\partial_y^2 + W_0.$$

Theorem The spectrum of L_+^{ε} consists of an increasing sequence of positive eigenvalues $\{\lambda_n^{\varepsilon}\}_{n\geqslant 1}$ such that for each $n\geqslant 1$,

$$\lim_{\varepsilon \downarrow 0} \frac{\lambda_{2n-1}^\varepsilon}{\varepsilon^{2/3}} = \lim_{\varepsilon \downarrow 0} \frac{\lambda_{2n}^\varepsilon}{\varepsilon^{2/3}} = \mu_n,$$

where μ_n is the $n^{\rm th}$ eigenvalue of M^0 .

Open Questions

- generalize the analysis to the original problem, with the *true* operators L^{ε}_{+} .
- consider the case when the potential is not radially symmetric.
- uniqueness of the ground state for d=3