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(GP) iug +e2Au+ (1 — |x*)u — |u|>u =0,
where (t,x) € R x RY, d =1,2,3 and ¢ is a small parameter.

Theorem (Ignat-Millot, 2006). For e sufficiently small, there exists
a positive minimizer 1. of the Gross—Pitaevskii energy

1
E.(u) = / <e52|Vu|2 + (|x]? = 1)|u)* + 2|u|4> dx
R
in the energy space
My = {u e HY(RY): |x|ue L2(Rd)}.

7. is a stationnary solution of (GP):

(SGP) e?Ane + (1= [x]*)n. —n2 = 0.



As ¢ — 0, nz(x) converges to

UO(X):{ VI—|xP if x| <1

0 if [x] > 1.

More precisely,

(1— Ce/3) < (1ii2§1/2 <1 for |x| < 1—e2/3
0<ne(x) < CeMexp (3z5)  for x| > 122

(Aftalion-Alama-Bronsard, 2005; Ignat-Millot, 2006)

Understand better the behaviour of 7. as ¢ — 0.



Motivation: behaviour of the eigenvalues of the
linearized operator of (GP) at 7. as ¢ — 0, for d = 1:

u=mne+v+iw+O(v|?+|wll)
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where Lf =05 +~—5"5, L& =05 +~—

A is an eigenvalue of L. iff v = —)2/e? is an eigenvalue of

(£) 215 LFw = yw.



In the original operators LS. we replace 12 by 7]8. We obtain new
operators L5 :

e _ 2 | x*2—14no? e _ 2 | x*—1+3n0°
L2=-0+72" L5 =—0i+ =57

Then, formally,

x2—1+ 772
i - (et ra) (< 2L

— (X2 -1+ 37]8) (—8)% + 00 - 1{|x|>1}) .

Theorem. The eigenvalues of (L) converge as € — 0 to the
eigenvalues vy, = 2n(n+1), n > 1 of

2(1 — x®)(—02)w = yw, x € (—1,1)
with Dirichlet boundary conditions w(£1) = 0.



Formal convergence in the original problem
With the original operators L5:
2_ 2 2_ 2
T =)
we have formally from the expansion of 7).

2 1 2
52L§rLE_ = (—52('“))2( +x2 -1+ 37752) <—3)2( + XW)

g2

1
S (—1+3) (—8§—u_)<2)21{x<1} + 00 - 1{|X|>1}> :

Conjecture. The eigenvalues of (L) converge as e — 0 to the
eigenvalues v, = 2n(n+1), n > 0 of

2(1 - x2) (—83—@) w=qw,  xe(-1,1)

with Dirichlet boundary conditions w(+1) = 0.



A change of variable

Write | |2
1—|x
ne(x) = 51/3”5()/): y = 23

Then, v, solves
(Eqve)

4(1 = 2By =282 Bdv. +yv. =12 =0, —oco<y<e 23
In the limit ¢ — 0, we formally obtain the Painlevé Il equation,
(PII) Wi +yry—13=0 yeR.

Moreover, as ¢ — 0,

1- 2a <1 ~ )
sy [ VITRE WIST )
L es 0, x| >1 ~ 1o(y) — O.

y——00



The Hastings McLeod solution of (PIl)
Proposition. (Hastings-McLeod, 1980 ; Fokas et al., 2006)
(PIl) has a unique solution vy € C*°(R) such that

1/2

vo(y) ~y as y—+oo and w(y) =0 as y— —oc.

Moreover, vy is strictly increasing on R. As y — —oo we have

2
vo(y)= 5= (=2y) V43S (14 O(ly[ %)~ 0,

y——00

whereas as y — +00,

b,
vo(y) ~ yl/ZZiO:oWr

y—r+oo
where bg =1, by = 0, and for n > 0,

n+1 n+1 n+2—/

bnio = 4(9n°—1)b, —be bnio m_,z > bibmbnio—i—m.

I=1 m=1



Theorem. For every N > 0, there is ey > 0 and Cy > 0 such that
for 0 < e < ey, there exists Ry . € C>*N L°°(—oo,5*2/3) such that

V. = ZnN:O €2n/3yn + 52(N+1)/3RN’5, o <y< =—2/3

is a positive solution of (Equ.), where vy is the Hastings-McLeod
solution of the Painlevé Il equation and the (vp)n>1 C H*(R) are
defined recursively. Moreover,

RN el oo (—o0,e-2/3) < Cne (47173

and | ’2
1-Ix 2(md
X*—)RN75< 2/3 )EH(R )




Proof of the main result: Multiple scale analysis
We plug Ve = Z,’Yzo 2By, + 2INHNBRy, into

4(1 — 2By —2e2BdV. +yv. — 12 =0, —oco<y<e?/3

We get
» 1 solves (PII) ~ we choose 1g to be the Hastings McLeod
solution of (PII)
» for n > 1, v, solves
—4V:1/ =+ W()Vn = F,, y € R,
where
Wo(y) = 315(y) — v,

Fa(y) = — Z U VnmyVny — 2dUn_1 — 4yvn_;.

ny,np,n3 < n
np+n+n3=n

Since Wy > 0 and F, € L2(R) (if (n,d) # (1,2),(1,3)), we
choose
Vo= (=02 + Wo) ' F, € HA(R).



Proof of the main result: Equation of Ry .

> Ry solves, for y € (_0075_2/3),
—4(1 — gz/ay)f?;\’,’8 + 252/3dR;V76 + WoRn: = Fn-(y, Rne),
where

Fne(y,R) = —(4yvy +2dvy)
2N—-1

2n/3 § :
- Z € n/ an Vn2 Vn3
n=0

m+nm+n=n+N+1
0< nm,m,n <N

2N
_ 3Z€2n/3 Z Vo | R
n=1

n+n=n
0< m,m <N

2N+1
(3 >, N+1)> R? — HNTL/3R3,

n=N+1



We consider the map T, defined by
(Tou)(z) = u(e™?/3 = 2/3|2), zeRC.
The equation satisfied by Ry . can be rewritten as
T-Rye = (K) ' TeFno(e7%3 — €232, Ry ),

where
K. = —A + Wo(e2/3 — £2/3|2)?)
Then, TcRy . is obtained by a fixed point argument in HY(RY).
> S ToFno(e72/3 — £2/3)2)2, S) is continuous from HL  (RY)
into L2, ,(R?) (Sobolev embeddings)
» Wo > C >0, thus (K.)™1: L2, (RY) — HZ ,(RY) is
continuous and uniformly bounded in ¢.



From the asymptotic expansion of v, we deduce
ve(y) — mo(y) = —Ce?/3,  y e (—o0,e72/3).

Since vg(y) increases from 0 to +o00 as y goes from —oo to +oo,
we deduce that for ¢ <« 1,

Vg(y) 2 Vo(il) B C52/3 > 07 y S [*1-/572/3]7

which means

f 13, (1= [x[? 2/3\1/2
fie(x) = v a3 ) >0 X< (T4e™7)Y%
€

It remains to prove that 7i.(x) > 0 for all |x| > (1 + 2/3)1/2,



Assume by contradiction that there is r. > (1 + %/3)}/2 such that
ﬁs(ra) =0, ﬁ::(rs) <0,

where 7jc(|x|) = 7j(x). Then, as long as r > r. and 7j.(r) < 0,

(a1 90N = 1P <o
ar\" @)\ AT RN = B

thus, by integration,
r () < Y (r) <0,

and

7(r) < 91 (r) / S9ds \, C € [~o0,0),

€

which is a contradiction with the fact that 7j.(r) — 0 as r — +o0.
Therefore 7j.(r) > 0 for all r € Ry.



The Schrodinger operator

x? — 14 3n.(x)?
2

€ 92

LS =05 + -
is a positive self-adjoint operator on L?(R) and has a compact
resolvent. The eigenfunctions corresponding to the (simple)
eigenvalues A}, sorted in increasing order are even (resp. odd) in x
if nis odd (resp. even).
If \'is an eigenvalue of L% and ¢ € L?(R) is a corresponding
eigenfunction, we define a function

vel?= {u € 1L (—00,e23):  (1—e23y) Uty ¢ L2}

by



¢ € L?(R) is an even (resp. odd) eigenfunction of L%
corresponding to the eigenvalue X if and only if v € L2 solves for
y € (—o0,e7%/3)
(—4(1 - 52/3y)1/20y(1 - 62/3y)1/20y + WE) v=2e"3\y,
where W.(y) = 3v2(y) — y, and the Neumann boundary condition
¢'(0) = =272 (1 = 2y) V2V (y))

(resp. the Dirichlet boundary condition

=0  (NC)

y=e—2/3

p(0) = v(c~*3) = 0). (DC)



Let M° (resp. ) be the Neumann (resp. Dirichlet) realization
on L2 of

74(1 o E2/3}/)1/20)/(1 o 52/3y)1/23y + Wg(y)

The eigenvalues of L% are related to the eigenvalues {/if,},>1 and
{715} n>1 of M® and W< by
5 =35, | and ji5 =305,

As € — 0, the eigenvalues of M¢ and M converge to the
eigenvalues of the operator on L%(R),

MO = —407 + Wh.



Theorem The spectrum of LS. consists of an increasing sequence
of positive eigenvalues {\5},>1 such that for each n > 1,

g €
fim 2201 _ jj 221
elo ¢2/3 £l0 £2/3

- :una

where 1, is the n' eigenvalue of M.



» generalize the analysis to the original problem, with the true
operators L% .

» consider the case when the potential is not radially symmetric.

> uniqueness of the ground state for d = 3



