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(GP) iut + ε2∆u + (1− |x |2)u − |u|2u = 0,

where (t, x) ∈ R× Rd , d = 1, 2, 3 and ε is a small parameter.

Existence of the ground state ηε
Theorem (Ignat-Millot, 2006). For ε sufficiently small, there exists
a positive minimizer ηε of the Gross–Pitaevskii energy

Eε(u) =

∫
R

(
ε2|∇u|2 + (|x |2 − 1)|u|2 +

1

2
|u|4
)

dx

in the energy space

H1 =
{

u ∈ H1(Rd) : |x |u ∈ L2(Rd)
}
.

ηε is a stationnary solution of (GP):

(SGP) ε2∆ηε + (1− |x |2)ηε − η3
ε = 0.



Convergence of ηε
As ε→ 0, ηε(x) converges to

η0(x) =

{ √
1− |x |2 if |x | < 1

0 if |x | > 1.

More precisely, (1− Cε1/3) 6 ηε(x)

(1−x2)1/2 6 1 for |x | 6 1− ε2/3

0 6 ηε(x) 6 Cε1/3 exp
(

1−x2

4ε2/3

)
for |x | > 1− ε2/3

(Aftalion-Alama-Bronsard, 2005; Ignat-Millot, 2006)

Goal
Understand better the behaviour of ηε as ε→ 0.



Motivation: behaviour of the eigenvalues of the
linearized operator of (GP) at ηε as ε→ 0, for d = 1:

u = ηε + v + iw +O(‖v‖2 + ‖w‖2)

∂t

(
v
w

)
=

(
0 ε2Lε−

−ε2Lε+ 0

)
︸ ︷︷ ︸

Lε

(
v
w

)
,

where Lε− = −∂2
x + x2−1+η2

ε

ε2 , Lε+ = −∂2
x + x2−1+3η2

ε

ε2 .

λ is an eigenvalue of Lε iff γ = −λ2/ε2 is an eigenvalue of

(L) ε2Lε+Lε−w = γw .



Formal convergence in a simplified problem
In the original operators Lε± we replace η2

ε by η2
0. We obtain new

operators Lε±:

Lε− = −∂2
x + x2−1+η0

2

ε2 , Lε+ = −∂2
x + x2−1+3η0

2

ε2 .

Then, formally,

ε2Lε+Lε− =
(
−ε2∂2

x + x2 − 1 + 3η2
0

)(
−∂2

x +
x2 − 1 + η2

0

ε2

)
→

(
x2 − 1 + 3η2

0

) (
−∂2

x +∞ · 1{|x |>1}
)
.

Theorem.The eigenvalues of (L) converge as ε→ 0 to the
eigenvalues γn = 2n(n + 1), n > 1 of

2(1− x2)(−∂2
x )w = γw , x ∈ (−1, 1)

with Dirichlet boundary conditions w(±1) = 0.



Formal convergence in the original problem
With the original operators Lε±:

Lε− = −∂2
x + x2−1+ηε2

ε2 , Lε+ = −∂2
x + x2−1+3ηε2

ε2 ,

we have formally from the expansion of ηε

ε2Lε+Lε− =
(
−ε2∂2

x + x2 − 1 + 3ηε
2
)(
−∂2

x +
x2 − 1 + ηε

2

ε2

)
→

(
x2 − 1 + 3η2

0

)(
−∂2

x−
1

(1− x2)2
1{|x |<1} +∞ · 1{|x |>1}

)
.

Conjecture.The eigenvalues of (L) converge as ε→ 0 to the
eigenvalues γn = 2n(n + 1), n > 0 of

2(1− x2)
(
−∂2

x − 1
(1−x2)2

)
w = γw , x ∈ (−1, 1)

with Dirichlet boundary conditions w(±1) = 0.



A change of variable
Write

ηε(x) = ε1/3νε(y), y =
1− |x |2

ε2/3
.

Then, νε solves

(Eqνε)

4(1− ε2/3y)ν ′′ε − 2ε2/3dν ′ε + yνε − ν3
ε = 0, −∞ < y 6 ε−2/3.

In the limit ε→ 0, we formally obtain the Painlevé II equation,

(PII) 4ν ′′0 + yν0 − ν3
0 = 0, y ∈ R.

Moreover, as ε→ 0,

ε1/3νε(
1−|x |2
ε2/3 )→


√

1− |x |2, |x | < 1 ; ν0(y) ∼
y→+∞

√
y ,

0, |x | > 1 ; ν0(y) →
y→−∞

0.



The Hastings McLeod solution of (PII)
Proposition. (Hastings-McLeod, 1980 ; Fokas et al., 2006)
(PII) has a unique solution ν0 ∈ C∞(R) such that

ν0(y) ∼ y 1/2 as y → +∞ and ν0(y)→ 0 as y → −∞.

Moreover, ν0 is strictly increasing on R. As y → −∞ we have

ν0(y)= 1
2
√
π

(−2y)−1/4e−
2
3

(−2y)3/2 (
1 +O(|y |−3/4)

)
≈

y→−∞
0,

whereas as y → +∞,

ν0(y) ≈
y→+∞

y 1/2
∑∞

n=0
bn

(2y)3n/2 ,

where b0 = 1, b1 = 0, and for n > 0,

bn+2 = 4(9n2−1)bn−
1

2

n+1∑
m=1

bmbn+2−m−
1

2

n+1∑
l=1

n+2−l∑
m=1

blbmbn+2−l−m.



Main Result
Theorem. For every N > 0, there is εN > 0 and CN > 0 such that
for 0 < ε < εN , there exists RN,ε ∈ C∞ ∩L∞(−∞, ε−2/3) such that

νε =
∑N

n=0 ε
2n/3νn + ε2(N+1)/3RN,ε, −∞ < y 6 ε−2/3

is a positive solution of (Eqνε), where ν0 is the Hastings-McLeod
solution of the Painlevé II equation and the (νn)n>1 ⊂ H∞(R) are
defined recursively. Moreover,

‖RN,ε‖L∞(−∞,ε−2/3) 6 CNε
−(d−1)/3

and

x 7→ RN,ε

(
1− |x |2

ε2/3

)
∈ H2(Rd).



Proof of the main result: Multiple scale analysis
We plug νε =

∑N
n=0 ε

2n/3νn + ε2(N+1)/3RN,ε into

4(1− ε2/3y)ν ′′ε − 2ε2/3dν ′ε + yνε − ν3
ε = 0, −∞ < y 6 ε−2/3.

We get

I ν0 solves (PII) ; we choose ν0 to be the Hastings McLeod
solution of (PII)

I for n > 1, νn solves
−4ν ′′n + W0νn = Fn, y ∈ R,

where
W0(y) = 3ν2

0 (y)− y ,

Fn(y) = −
∑

n1, n2, n3 < n
n1 + n2 + n3 = n

νn1νn2νn3 − 2dν ′n−1 − 4yν ′′n−1.

Since W0 > 0 and Fn ∈ L2(R) (if (n, d) 6= (1, 2), (1, 3)), we
choose

νn =
(
−∂2

y + W0

)−1
Fn ∈ H2(R).

.



Proof of the main result: Equation of RN,ε

I RN,ε solves, for y ∈ (−∞, ε−2/3),

−4(1− ε2/3y)R ′′N,ε + 2ε2/3dR ′N,ε + W0RN,ε = FN,ε(y ,RN,ε),

where

FN,ε(y ,R) = −(4yν ′′N + 2dν ′N)

−
2N−1∑
n=0

ε2n/3
∑

n1 + n2 + n3 = n + N + 1
0 6 n1, n2, n3 6 N

νn1νn2νn3

−

3
2N∑
n=1

ε2n/3
∑

n1 + n2 = n
0 6 n1, n2 6 N

νn1νn2

R

−

(
3

2N+1∑
n=N+1

ε2n/3νn−(N+1)

)
R2 − ε4(N+1)/3R3.



Proof of the main result: Construction of RN,ε

We consider the map Tε defined by

(Tεu)(z) = u(ε−2/3 − ε2/3|z |2), z ∈ Rd .

The equation satisfied by RN,ε can be rewritten as

TεRN,ε = (Kε)
−1TεFN,ε(ε

−2/3 − ε2/3|z |2,RN,ε),

where
Kε = −∆ + W0(ε−2/3 − ε2/3|z |2)

Then, TεRN,ε is obtained by a fixed point argument in H1(Rd).

I S 7→ TεFN,ε(ε
−2/3 − ε2/3|z |2, S) is continuous from H1

rad(Rd)
into L2

rad(Rd) (Sobolev embeddings)

I W0 > C > 0, thus (Kε)
−1 : L2

rad(Rd) 7→ H2
rad(Rd) is

continuous and uniformly bounded in ε.



Proof of the main result: νε > 0
From the asymptotic expansion of νε, we deduce

νε(y)− ν0(y) > −Cε2/3, y ∈ (−∞, ε−2/3).

Since ν0(y) increases from 0 to +∞ as y goes from −∞ to +∞,
we deduce that for ε� 1,

νε(y) > ν0(−1)− Cε2/3 > 0, y ∈ [−1, ε−2/3],

which means

η̃ε(x) := ε1/3νε

(
1− |x |2

ε2/3

)
> 0, |x | 6 (1 + ε2/3)1/2.

It remains to prove that η̃ε(x) > 0 for all |x | > (1 + ε2/3)1/2.



Assume by contradiction that there is rε > (1 + ε2/3)1/2 such that

η̃ε(rε) = 0, η̃′ε(rε) < 0,

where η̃ε(|x |) = η̃ε(x). Then, as long as r > rε and η̃ε(r) < 0,

d

dr

(
rd−1 d

dr
η̃ε

)
(r) =

rd−1

ε2
(r 2 − 1 + η̃ε(r)2)η̃ε(r) 6 0,

thus, by integration,

rd−1η̃′ε(r) 6 rd−1
ε η̃′ε(rε) < 0,

and

η̃ε(r) 6 rd−1
ε η̃′ε(rε)

∫ r

rε

s1−dds ↘ C ∈ [−∞, 0),

which is a contradiction with the fact that η̃ε(r)→ 0 as r → +∞.
Therefore η̃ε(r) > 0 for all r ∈ R+.



Application to the spectrum of Lε+ for d = 1
The Schrödinger operator

Lε+ = −∂2
x +

x2 − 1 + 3ηε(x)2

ε2

is a positive self-adjoint operator on L2(R) and has a compact
resolvent. The eigenfunctions corresponding to the (simple)
eigenvalues λεn sorted in increasing order are even (resp. odd) in x
if n is odd (resp. even).
If λ is an eigenvalue of Lε+ and ϕ ∈ L2(R) is a corresponding
eigenfunction, we define a function

v ∈ L2
ε =

{
u ∈ L1

loc(−∞, ε−2/3) : (1− ε2/3y)−1/4u ∈ L2
}

by

ϕ(x) = v
(

1−x2

ε2/3

)
, x ∈ R+.



ϕ ∈ L2(R) is an even (resp. odd) eigenfunction of Lε+
corresponding to the eigenvalue λ if and only if v ∈ L2

ε solves for
y ∈ (−∞, ε−2/3)(
−4(1− ε2/3y)1/2∂y (1− ε2/3y)1/2∂y + Wε

)
v = ε4/3λv ,

where Wε(y) = 3ν2
ε (y)− y , and the Neumann boundary condition

ϕ′(0) = −2ε−2/3
(
(1− ε2/3y)1/2v ′(y)

)∣∣∣∣
y=ε−2/3

= 0 (NC)

(resp. the Dirichlet boundary condition

ϕ(0) = v(ε−2/3) = 0). (DC)



Let M̌ε (resp. M̃ε) be the Neumann (resp. Dirichlet) realization
on L2

ε of

−4(1− ε2/3y)1/2∂y (1− ε2/3y)1/2∂y + Wε(y)

The eigenvalues of Lε+ are related to the eigenvalues {µ̌εn}n>1 and

{µ̃εn}n>1 of M̌ε and M̃ε by

µ̌εn = ε4/3λε2n−1 and µ̃εn = ε4/3λε2n.

As ε→ 0, the eigenvalues of M̌ε and M̃ε converge to the
eigenvalues of the operator on L2(R),

M0 = −4∂2
y + W0.



Theorem The spectrum of Lε+ consists of an increasing sequence
of positive eigenvalues {λεn}n>1 such that for each n > 1,

lim
ε↓0

λε2n−1

ε2/3
= lim

ε↓0

λε2n
ε2/3

= µn,

where µn is the nth eigenvalue of M0.



Open Questions

I generalize the analysis to the original problem, with the true
operators Lε±.

I consider the case when the potential is not radially symmetric.

I uniqueness of the ground state for d = 3


