Christian Peskine

The k-secant Lemma

2010 Algebra and Geometry of Subvarieties of Projective Space

We report on a joint work with Laurent Gruson. Let X be a smooth variety imbedded in \mathbb{P}_N . For $k = k_1 + \ldots + k_r$, we study the Hilbert-Boardman Scheme $HB_{k_1,\ldots,k_r}(X)$ of X. It parametrizes the finite linear subschemes $Z \subset X$ supported in r points x_1, \ldots, x_r (eventually coinciding) and such that $k = d^0(Z)$ and $d_{x_i}^0(Z) = k_i$. We consider the incidence variety $I_{HB} = \{(Z, y) \in HB_{k_1,\ldots,k_r}(X) \times \mathbb{P}_N \text{ such that } Z \cup \{y\} \text{ is on a line}\}$, and we prove the k-secant lemma: the general fiber of the second projection $(I_{HB} \to \mathbb{P}_N)$ is smooth of dimension N - 1 - kc + r, where c is the codimension of X in \mathbb{P}_N (the empty set has all dimensions).

As a special case (when r = 1 and $k = k_1$), we recover a celebrated theorem of Mather : higher polar varieties (for a general point) of a smooth variety are smooth.

Ziv Ran's famous (n+2)-secant lemma can also be recovered as a consequence of our result.

As an obvious corollary of the k-secant lemma, we find that the general projection X_1 of X to \mathbb{P}_{N-1} has generic singularities. In particular, the subvariety $X_k \subset X_1$ formed by points of multiplicity $\geq k$ has codimension k(c-1) in \mathbb{P}_{N-1} , and is smooth outside X_{k+1} . To be more precise, the subvariety $X_{\{k_1,\ldots,k_r\}} \subset X_1$ formed by points whose fiber in X has support in r points $\{x_1,\ldots,x_r\}$ (eventually coinciding) and multiplicity $\geq k_i$ at x_i , has codimension kc - r in \mathbb{P}_{N-1} , and is smooth outside $X_{\{k_1,\ldots,k_r,1\}} = X_{\{k_1,\ldots,k_r\}} \cap X_{k+1}$.

As a consequence of this corollary, we prove a vanishing theorem for codimension 2 smooth varieties, that we conjectured in Trento twenty years ago: $H^p(J_X(q)) = 0$ for p + q < N - 2 and p < N - 1. Finally, with the help of Fyodor Zak, we conjecture a generalization of this result for smooth projective varieties of any codimension in a projective complex space, to be compared with Barth and Zak classical vanishing theorems.