Partenaires





« juillet 2018 »
L M M J V S D
25 26 27 28 29 30 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site >

2 événements

  • Algèbre Géométrie

    Mardi 29 mai 11:30-12:30 - Paul Broussous - Université de Poitiers

    Paul Broussous : TBA

    Lieu : Fermat 2205

    [En savoir plus]

  • Probabilités Statistiques

    Mardi 29 mai 11:30-12:30 - Reda Chhaibi - Université Paul Sabatier, Toulouse

    Le chaos multiplicatif gaussien sur le cercle, matrices aléatoires et polynômes orthogonaux associés

    Résumé : Cet exposé est basé sur un travail (très) en cours avec J. Najnudel, où nous souhaitons faire le pont entre deux questions, ou plutôt deux modèles qui sont apparus dans des domaines différents.
    D’une part, en 1985, J.P Kahane a introduit une mesure aléatoire dénommée le chaos gaussien multiplicatif. Il s’agit moralement d’une mesure dont la dérivée par rapport à la mesure de Lebesgue est l’exponentielle d’un champs gaussien libre - très singulier. Un joli argument d’approximation martingale permet de donner un sens à cela, mais laisse inaccessible les propriétés de l’objet limite. Cet objet semble être au coeur de travaux récents en lien avec le modèle de gravité quantique dit de Liouville en 2d (Rhodes, Vargas, Duplantier, Sheffield...). Nous nous intéresserons uniquement au cas du cercle, que l’on pourrait qualifier de géométrie intégrable.
    D’autre part, il est connu depuis Verblunsky (1930s) qu’une mesure sur le cercle est entièrement déterminée par des coefficients dits de réflection ou de Verblunsky. En termes simples, ce sont les coefficients apparaissant dans la récurrence entre polynomes orthogonaux pour cette mesure.
    Je présenterai une conjecture qualifiant précisément la loi des coefficients de Verblunsky du chaos multiplicatif, et les résultats partiels que nous avons obtenu dans cette direction. Nos résultats viennent d’une excursion par les matrices aléatoires, et en particulier le modèle circulaire beta, étroitement lié au système de Calogero-Moser trigonométrique.

    Lieu : bâtiment Fermat, salle 2102

    [En savoir plus]