Partenaires





« octobre 2017 »
L M M J V S D
25 26 27 28 29 30 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > Séminaires et journées internes > Séminaires de Probabilités-Statistiques > Séminaires 2013-2014

Agenda

séminaire

    • Mardi 15 octobre 2013 11:30-12:30 - Benjamin Groux - UVSQ

      Principes de grandes déviations pour les matrices aléatoires

      Résumé : Les résultats de grandes déviations pour les matrices aléatoires sont assez peu nombreux. Essentiellement, il existe un grand résultat de ce type, établi par Gérard Ben Arous et Alice Guionnet en 1997.
      En 2012, Charles Bordenave et Pietro Caputo établissent un second principe de grandes déviations, en se plaçant non pas dans le cadre gaussien habituel, mais dans le cas de matrices hermitiennes dont les coefficients sont i.i.d. avec une queue de probabilité de la forme e^{-at^{\alpha}}, avec a>0 et \alpha \in ]0,2[. La démonstration consiste principalement en l’étude des graphes aléatoires associés àces matrices aléatoires.
      L’exposé consistera en la présentation de ce résultat, ainsi que des travaux que j’ai entrepris durant mon stage de M2 pour essayer de le généraliser à des matrices de covariance.

      Lieu : amphi H


    • Mardi 5 novembre 2013 11:30-12:30 - Bastien Mallein - Paris 6

      Le plus grand déplacement d’une marche aléatoire en environnement inhomogène en temps

      Résumé : Une marche aléatoire branchante est un processus qui mime l’évolution au cours du temps d’une population. Des individus se déplacent et se reproduisent de façon indépendante. Dans cet exposé, nous nous intéresserons à l’influence de l’évolution au cours du temps de la façon qu’ont les individus de se reproduire. Nous montrerons que dans ce cas, le déplacement maximal peut être notablement retardé par rapport au cas homogène, où tous les individus se reproduisent de la même façon à toutes les époques.

      Lieu : amphi H


    • Mardi 12 novembre 2013 11:30-12:30 - Jean-François Marckert - CNRS, Bordeaux 1

      Convexes compacts du plan et théorie des probabilités

      Résumé : Il existe en théorie des probabilités, et en combinatoire, différents modèles de convexes du plan plus ou moins aléatoires. Existe-t-il une bonne notion de "convexe aléatoire du plan " ? C’est en tournant autour de cette question que nous avons découvert un lien insoupçonné entre l’ensemble des "compacts convexes du plan" et les "lois de proba. sur [0,2pi]". Ce lien, connu dans un cadre non probabiliste depuis fort longtemps est très riche : il permet de re-découvrir, re-démontrer, et découvrir (tout court) certaines propriétés des convexes, et des opérations que l’on peut leur faire subir. Je m’attacherai à expliquer ces faits... Dans une deuxième partie - très courte - j’expliquerai comment engendrer de "jolis" convexes aléatoires (non polygonaux). Il s’agit d’un travail commun avec David Renault (LaBRI).

      Lieu : amphi H


    • Mardi 10 décembre 2013 11:30-12:30 - Amine Asselah - Paris 12

      Fluctuations pour l’agrégation limitée par diffusion interne.

      Résumé : Travail en cours avec E.& B.Scoppola and E.Cirillo Nous discutons de quelques propriétés de modèles d’agrégation limitée par diffusion.

      Lieu : amphi H


    • Mardi 14 janvier 2014 11:30-12:30 - Davit Varron - Besançon

      Linéarisation locale en méthode de vraisemblance empirique pour une classe de modèles semi-paramétriques

      Résumé : Un point de vue possible de la vraisemblance empirique consiste à créer un intervalle de confiance autour d’un estimateur de type "plug-in", en faisant continument varier les poids affectés aux observations, sur un voisinage des poids usuels constamment égaux à 1/n. Autrement dit, la région décrite est l’image d’un ensemble de mesures empiriques "déséquilibrées", par une application explicite T. En général, l’application T est hautement surjective, ce qui rend la construction d’une telle région beaucoup trop exigeante en temps de calculs. Ce temps de calcul est typiquement exponentiel en n (taille de l’échantillon). Sous des hypothèses de (Hadamard/Gâteau) différentiabilité de T, nous proposons une version localement linéarisée de la construction, qui permet de contourner ce problème de temps de calcul. En effet cette linéarisation permet à l’utilisateur de mettre en oeuvre une série d’algorithmes d’optimisation convexe, dont les temps de calculs sont tout à fait raisonnables. Nous montrons la consistance asymptotique de ces régions de confiances, et établissons un résultat similaire pour des paramètres estimés de dimension infinies, qui sont des trajectoires (par exemple, la courbe de hasard cumulé en estimation de durées de vie).

      Lieu : salle 2203


    • Mardi 28 janvier 2014 11:30-12:30 - Oleksiy Khorunzhiy - UVSQ

      Arbres de Catalan, "tree-type walks" et matrices aléatoires

      Résumé : Le nombre de Catalan t(k) = (2k) !/k ! (k+1) ! décrit le nombre des arbres demi-plans enracinés T construits à l’aide de k arêtes. Le parcours chronologique de 2k pas sur T peut être considéré comme une marche W de 2k pas telle que dans son graphe G chaque arête est passée deux fois (en aller et en retour).
      Une des généralisations possibles de W est donnée par les marches W’ de 2k pas telles que dans ses graphes chaque arête est passée 2 fois sauf une arête passée 4 fois. On pourrait appéler ces marches les "(2,4)-walks of tree type". Les marches de ce type jouent un rôle important dans le comptage des moments des grandes matrices aléatoires de certaine classe.
      Dans le cas le plus simple de (2,4)-marches donné par W’, le nombre total w(k) peut être calculé explicitement w(k)= (2k) !/(k-2) ! (k+2) ! ce qui ressemble beaucoup le nombre de Catalan t(k).
      Le cas général de (2,4)-marches est plus riche et plus compliqué.

      Lieu : salle 2102


    • Mardi 4 février 2014 11:30-12:30 - Nicolas Marie - Université Paris Ouest

      Sur l’extension trajectorielle et l’application de modèles types CIR et Jacobi

      Résumé : L’exposé portera sur l’étude de modèles types Cox-Ingersoll-Ross (CIR) et Jacobi pris au sens des trajectoires rugueuses pour un signal gaussien centré, à trajectoires höldériennes, et n’étant généralement pas une semi-martingale.
      Seront établis pour chacun des modèles : l’existence d’une unique solution globale à trajectoires höldériennes, la régularité (continuité et différentiabilité) de l’application d’Itô partielle qui à la condition initiale et au signal associe la solution, ainsi que l’existence d’un schéma d’approximation convergeant uniformément vers la solution presque surement et dans L^p (p\geqslant 1).
      Pour un signal brownien fractionnaire, nous nous concentrerons ensuite sur le comportement en temps long de la solution Y de l’équation de Jacobi, et l’absolue continuité par rapport à la mesure de Lebesgue de la loi de Y_t (t réel positif).
      En s’appuyant sur la régularité de l’application d’Itô partielle, l’existence d’un point fixe aléatoire pour le système dynamique aléatoire continu (cf. L. Arnold (1998)) naturellement associé à Y sera démontrée, puis un théorème ergodique sera établi.
      Avec le calcul de Malliavin, la régularité de l’application d’Itô partielle permet également de montrer que la loi de Y_t admet une densité par rapport à la mesure de Lebesgue pour tout t réel positif. Une expression de cette dernière sera proposée à l’aide du résultat central de I. Nourdin et F. Viens (2009).
      La dernière partie de l’exposé sera consacrée à la modélisation par un modèle type CIR de la concentration dans l’organisme, au cours du temps, d’un médicalement administré par voie intra-veineuse pour un signal brownien fractionnaire.

      Lieu : salle 2102


    • Mardi 11 février 2014 11:30-12:30 - Gilles Pagès - (Paris 6)

      exposé reporté à une date ultérieure

      Résumé : Le but de cet exposé est d’illustrer sur des modèles d’urnes randomisés utilisées en test cliniques les liens existants entre approximation stochastique récursive et modèles d’irones, que ce soit en termes de convergence ou de vitesse de convergence (de type TCL ou p.s. selon la nature des matrices d’actualisation. Après un premier travail sur des modèles avec loi de tirage « linéaires », nous abordons ici avec Sophie Laruelle (MdC UPEC) le cas de lois de tirages non linéaires associées à des fonctions convexes ou concaves qui distordent la composition de l’urne soit dans le sens d’une uniformisation de celle-ci (aversion au risque) soit qui au contraire l’accentuent. le cas deux couleurs est étudié en détail et met en évidence la présence d’ équilibres multiples, dont un seul n’est pas parasite. Lorsque la matrice d’actualisation de l’urne vaut l’identité (cadre de l’urne de Pòlya standard hormis la loi de tirage), ces équilibres parasites sont en outre « silencieux » cas situés aux frontière de l’espace d’états et des techniques issues de l’étude l’algorithme du bandit récursif sont mises à contribution pour établir la convergence p.s.

      Lieu : salle 2102

      Notes de dernières minutes : Reporté à une date ultérieure


    • Mardi 4 mars 2014 11:30-12:30 - Elizabeth Meckes - Case Western Reserve University, Cleveland, et Université Paul Sabatier, Toulouse

      Projections of probability distributions : A measure-theoretic Dvoretzky theorem.

      Résumé : Dvoretzky’s theorem tells us that if we put an arbitrary norm on n-dimensional Euclidean space, no matter what that normed space is like, if we pass to subspaces of dimension about log(n), the space looks pretty much Euclidean. A related measure-theoretic phenomenon has long been observed : the (one-dimensional) marginals of many natural high-dimensional probability distributions look about Gaussian. A question which had received little attention until recently is whether this phenomenon persists for k-dimensional marginals for k growing with n, and if so, for how large a k ? In this talk I will discuss recent work showing that the phenomenon does indeed persist if k less than 2log(n)/log(log(n)), and that this bound is sharp (even the 2 !). The talk will not assume much background beyond basic probability and analysis ; in particular, no prior knowledge of Dvoretzky’s theorem is needed.

      Lieu : salle 2102


    • Pages 1 | 2

Ajouter un événement iCal

Cliquer sur "avec résumé" pour tout dérouler.


Mots-clés

Probabilités Statistiques